
Appears in Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91),
pp. 494-499, Anaheim, CA, July, 1991

An E�cient First-Order Horn-Clause

Abduction System Based on the ATMS

�

Hwee Tou Ng

Raymond J. Mooney

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712

htng@cs.utexas.edu, mooney@cs.utexas.edu

Abstract

This paper presents an algorithm for �rst-order

Horn-clause abduction that uses an ATMS to

avoid redundant computation. This algorithm

is either more e�cient or more general than any

other previous abduction algorithm. Since com-

puting all minimal abductive explanations is in-

tractable, we also present a heuristic version of

the algorithm that uses beam search to compute

a subset of the simplest explanations. We present

empirical results on a broad range of abduction

problems from text understanding, plan recog-

nition, and device diagnosis which demonstrate

that our algorithm is at least an order of mag-

nitude faster than an alternative abduction algo-

rithm that does not use an ATMS.

1 Introduction

Abduction is an important reasoning process under-

lying many tasks such as diagnosis, plan recognition,

text understanding, and theory revision. The stan-

dard logical de�nition of abduction is: Given a set

of axioms T (the domain theory), and a conjunction

of atoms O (the observations), �nd a minimal set of

atoms A (the assumptions) such that A [T j= O

(where A [T is consistent). A set of assumptions

together with its corresponding proof of the observa-

tions is frequently referred to as an explanation of the

observations. Although recent research has seen the

development of several special purpose abduction sys-

tems (e.g., [de Kleer and Williams, 1987]) and some

theoretical analysis of the problem ([Levesque, 1989,

Selman and Levesque, 1990]), there has not been

much emphasis on developing practical algorithms for

the general problem. Existing algorithms tend to be

too restrictive, too ine�cient, or both.

The �rst problem is generality. [Levesque, 1989]

has shown that the ATMS [de Kleer, 1986a] is a gen-

�

This research is supported by the NASA Ames Re-

search Center under grant NCC-2-429. The �rst author is

also supported by an IBM Graduate Fellowship. Equip-

ment used was donated by Texas Instruments.

eral abduction algorithm for propositional Horn-clause

theories. However, many interesting abduction tasks

require the expressibility of �rst-order predicate logic.

In �rst-order logic, the important operation of uni-

fying assumptions (factoring) becomes relevant. Fre-

quently, simple and coherent explanations can only

be constructed by unifying initially distinct assump-

tions so that the resulting combined assumption ex-

plains several observations [Pople, 1973, Stickel, 1988,

Ng and Mooney, 1990]. This important problem does

not arise in the propositional case.

The second problem is e�ciency. The general pur-

pose abduction algorithm proposed in [Stickel, 1988]

can perform a great deal of redundant work in

that partial explanations are not cached and shared

among multiple explanations. The ATMS algorithm,

though it caches and reuses partial explanations in

order to avoid redundant work, has not been ex-

tended to perform general �rst-order abduction. Also,

the ATMS algorithm of [de Kleer, 1986a] exhaus-

tively computes all possible explanations which is

computationally very expensive for large problems.

Even in the propositional case, computing all mini-

mal explanations is a provably exponential problem

[Selman and Levesque, 1990]. This indicates that re-

sorting to heuristic search is the most reasonable ap-

proach to building a practical abduction system.

This paper presents an implemented algorithm for

�rst-order Horn-clause abduction that uses an ATMS

to cache intermediate results and thereby avoid re-

dundant work. The most important additions to the

ATMS involve handling the uni�cation of assump-

tions. The system also incorporates a form of heuris-

tic beam search which can be used to focus the ATMS

on promising explanations and avoid the intractable

problem of computing all possible explanations. We

have evaluated our algorithm on a range of abduc-

tion problems from such diverse tasks as text un-

derstanding, plan recognition, and device diagnosis.

The empirical results illustrate that the resulting sys-

tem is signi�cantly faster than a non-ATMS alterna-

tive, speci�cally, the abduction algorithm proposed in

[Stickel, 1988]. In particular, we show that even when

using heuristic search to avoid computing all possible

explanations, the caching performed by the ATMS in-

creases e�ciency by at least an order of magnitude.

2 Problem De�nition

The abduction problem that we are addressing can be

de�ned as follows.

Given:

� A set of �rst-order Horn-clause axioms T (the do-

main theory), where an axiom is either of the form

8v

1

; . . . ; v

k

C P

1

^ . . .^ P

r

(a rule), or

8v

1

; . . . ; v

k

F (a fact)

k � 0; r > 0; C;P

i

; F are atoms containing the vari-

ables v

1

; . . . ; v

k

:

� An existentially quanti�ed conjunction O of atoms

(the input atoms) of the form

9v

1

; . . . ; v

k

O

1

^ . . .^O

m

k � 0;m > 0; O

i

are atoms containing the variables

v

1

; . . . ; v

k

.

Find:

All explanations with minimal (w.r.t. variant-

subset) sets of assumptions.

We de�ne \explanations", \minimal", and \variant-

subset" as follows. Let A (the assumptions) be an

existentially quanti�ed conjunction of atoms of the

form 9v

1

; . . . ; v

k

A

1

^ . . .^A

n

where k � 0; n � 0; A

i

are atoms containing the variables v

1

; . . . ; v

k

such that

A [T j= O and A [T is consistent. An assumption

set A together with its corresponding proof is referred

to as an explanation (or an abductive proof) of the in-

put atoms. We will write A as the set fA

1

; . . . ; A

n

g

with the understanding that all variables in the set

are existentially quanti�ed and that the set denotes

a conjunction. We de�ne an assumption set A to be

a variant-subset of another assumption set B if there

is a renaming substitution � such that A� � B. The

abduction task is to �nd the set S of allminimal expla-

nations such that there is no explanation in S whose

assumption set is a variant-subset of the assumption

set of another explanation in S.

Since the de�nition of abduction requires consis-

tency of the assumed atoms with the domain theory,

the abduction problem is in general undecidable. We

assume in this paper that consistency is checked in

the following way: �nd the logical consequences of

A[T via forward-chaining of some Horn-clause axioms

(some of them are of the form P

1

^ . . .^ P

r

! FAL-

SITY) up to some preset depth limit. If FALSITY

is not derived, we assume that A [T is consistent.

3 The SAA Algorithm

[Stickel, 1988] has proposed an algorithm for comput-

ing the set of all �rst-order Horn-clause abductive

proofs. His algorithm, which we will call SAA, op-

erates by applying inference rules to generate goal

clauses. The initial goal clause is the input atoms

O

1

; . . . ; O

m

. Each atom in a goal clause can be marked

with one of proved, assumed, or unsolved. All atoms in

the initial goal clause are marked as unsolved. A �nal

goal clause must consist entirely of proved or assumed

atoms.

Let G be a goal clause Q

1

; . . . ; Q

n

, where the left-

most unsolved atom is Q

i

. The algorithm SAA re-

peatedly applies the following inference rules to goal

clauses G with unsolved atoms:

� Resolution with a fact. If Q

i

and a fact F are uni�-

able with a most general uni�er (mgu) �, the goal

clause Q

1

�; . . . ; Q

n

� can be derived, where Q

i

� is

marked as proved.

� Resolution with a rule. Let C P

1

^

. . . ^ P

r

be a rule where Q

i

and C are uni�-

able with a mgu �. Then the goal clause

Q

1

�; . . . ; Q

i�1

�; P

1

�; . . . ; P

r

�;Q

i

�; . . . ; Q

n

� can be

derived, where Q

i

� is marked as proved and each

P

k

� is marked as unsolved.

� Making an assumption. If Q

i

is assumable, then

Q

1

; . . . ; Q

n

can be derived with Q

i

marked as as-

sumed.

� Factoring with an assumed atom.

1

If Q

j

is

marked as assumed, j < i, Q

j

and Q

i

are uni�able with a mgu �, the goal clause

Q

1

�; . . . ; Q

i�1

�;Q

i+1

�; . . . ; Q

n

� can be derived.

[Stickel, 1988] also proposed the use of a cost metric

to rank and heuristically search the more promising

explanations �rst. All facts and rules in the knowledge

base as well as assumed atoms are assigned costs. The

best explanation is one with the least cumulative cost.

Before we proceed, we note that the explanations

generated by the SAA algorithm may include some

that are variant-subsets of another. For instance,

given the following axioms

2

(inst ?g going) (inst ?s shopping) ^ (go-step ?s ?g)

(goer ?g ?p) (inst ?s shopping) ^ (go-step ?s ?g) ^

(shopper ?s ?p)

and the input atoms (inst go1 going) and (goer go1

john1), we can derive the explanation F with assump-

tions A

F

= f(inst ?x shopping), (go-step ?x go1), (inst

?y shopping), (go-step ?y go1), (shopper ?y john1)g by

backward-chaining on the two axioms. Applying the

factoring operation, we can obtain another explana-

tion E with assumptions A

E

= f(inst ?x shopping),

(go-step ?x go1), (shopper ?x john1)g. But note that

although A

E

6� A

F

, A

E

� � A

F

with the renaming

substitution � = f?x/?yg.

Since explanations that are variant-supersets of

other explanations are essentially redundant, they

need to be eliminated. Unfortunately, it can be read-

ily shown that determining variant-subset relation is

an NP-complete problem by reduction from directed

1

Actually, the algorithm as presented in [Stickel, 1988]

allows for unifying Q

i

with a proved atom as well. How-

ever, it appears that in practice, omitting factoring with

proved atoms does not cause any loss of good explanations

while saving some redundant inferences.

2

Variables are denoted by preceding them with a \?".

subgraph isomorphism. This introduces yet another

source of computational complexity when �nding min-

imal explanations in a �rst-order Horn-clause theory.

4 The Basics of the ATMS

The Assumption-based Truth Maintenance System

(ATMS) [de Kleer, 1986a] is a general facility for man-

aging logical relationships among propositional formu-

las. An ATMS maintains multiple contexts at once

and is particularly suited for problem solving that in-

volves constructing and comparing multiple explana-

tions.

Each problem solving datum is associated with a

node in the ATMS. A node in the ATMS can be further

designated as an assumption. Nodes are related via

justi�cations. A justi�cation is a propositional Horn-

clause of the form a

1

^ . . . ^ a

n

! c, where each a

i

is an antecedent node and c is the consequent node.

A restriction is that assumptions cannot be further

justi�ed. An environment is a set of assumptions. As-

sociated with each node is a set of environments called

its label. The ATMS supports several operations, in-

cluding adding a node, making an assumption, and

adding a justi�cation.

[de Kleer, 1986b] also proposed the use of a

problem-solver-ATMS interface called the consumer

architecture. A consumer is essentially a rule-like

mechanism that is invoked by a set of nodes. It

checks whether some precondition governing this set

of nodes is satis�ed, and if so, the consumer �res and

performs some problem solving work. For example,

�rst-order Horn-clause forward-chaining can be imple-

mented using consumers as follows. De�ne a class to

be an ATMS construct representing a set of nodes with

some common characteristics. Let Class(C) denote

the class representing all nodes whose data have the

same predicate symbol as the atom C. For instance,

Class(P (x)) = fP (a); P (f(b)); . . .g. Then a single con-

sumer can implement a forward-chaining Horn-clause

axiom such as P (x) ^Q(x) ! R(x) by actively look-

ing for nodes with matching arguments in the classes

Class(P (x)) and Class(Q(x)). If the consumer �nds

two such nodes, say P (a) and Q(a), then its precondi-

tion is satis�ed. It then performs the forward-chaining

work by inferring the node R(a), and adding the jus-

ti�cation P (a) ^Q(a)! R(a) to the ATMS.

5 The AAA Algorithm

We now present our ATMS-based, �rst-order, Horn-

clause abduction algorithm AAA. Basically, the algo-

rithm is much like the implementation of a �rst-order

Horn-clause forward-chaining system in the consumer

architecture discussed above, except that the inference

direction is now reversed. We also have the additional

operation of unifying assumptions (factoring). Our

goal is to construct an algorithm similar to SAA, but

one that relies on caching justi�cations and sharing

them among di�erent explanations.

First of all, note that in SAA, an unsolved atom

in a goal clause can either be assumed or backward-

chained on by some rule. However, in an ATMS, a

node, once assumed, can never be further justi�ed by

some Horn-clause rule. To get around this restriction,

when we want to assume an atom D with node n,

we create a similar assumption node n

0

and add the

justi�cation n

0

! n (Table 1).

For every Horn clause axiom A

1

^ . . . ^ A

n

! C,

we create a consumer that is attached to every node

in Class(C). The body of this consumer is shown in

Table 1. We assume there is some preset backward-

chain depth bound so as to prevent in�nite backward-

chaining on recursive rules. We also create a fact con-

sumer for each fact.

Assume an atom D

If D is assumable then

Let n be the node with datum D

Let the predicate symbol of D be P

Create another node n

0

whose datum D

0

is the same

as D except that the predicate symbol of D

0

is A P

Make node n

0

an ATMS assumption node

Add the justi�cation n

0

! n

Backward-chain consumer

(encode a backward-chaining axiom A

1

^ . . . ^A

n

! C)

For every node n newly added to Class(C)

If n is not an assumption node and

backward-chain depth bound is not exceeded and

n uni�es with C with a mgu � and

� does not instantiate any variable in n then

A

0

1

:= A

1

�; . . . ; A

0

n

:= A

n

�; C

0

:= C�

Add the justi�cation A

0

1

^ . . . ^A

0

n

! C

0

Assume the atoms A

0

1

; . . . ;A

0

n

Fact consumer

(encode resolution with a fact F)

For every node n newly added to Class(F)

If n uni�es with F with a mgu � and

� does not instantiate any variable in n then

Make n a fact (i.e., let its label be ffgg)

Algorithm AAA

Add the justi�cation O

1

^ . . . ^O

m

! GOAL

Assume the atoms O

1

; . . . ;O

m

Run the fact consumers, backward-chain consumers,

and forward-chain consumers

For every environment e in the label of GOAL

If factoring of assumptions has not been

performed on e then

For all pairs of assumptions a

i

and a

j

in e

If a

i

and a

j

are uni�able with a mgu �

e

0

:= e�

Run forward-chain consumers but restricted

to forward-chaining on the assumptions

in e

0

(to check its consistency)

Eliminate environments that are variant-supersets

of other environments

Table 1: The AAA Algorithm

For simplicity, we assume in the construction of

AAA that any inconsistent assumption set can be de-

tected by forward-chaining on a single axiom of the

form A

1

^ . . .^A

n

! FALSITY. Forward-chain con-

sumers as described in the last section are used to

encode such forward-chaining axioms.

The AAA algorithm �rst computes all explanations

that are obtained by resolution with facts, resolution

with backward-chaining rules, and making assump-

tions. The last step in the algorithm performs fac-

toring of assumptions in explanations. The resulting

environments in the label of the GOAL node are all the

minimal explanations of the input atoms O

1

^. . .^O

m

.

The AAA algorithm is incomplete in the sense that

some explanations that will be computed by SAA will

not be computed by AAA. Speci�cally, such missed

explanations are those that are obtained when, dur-

ing resolution of an atom in a goal clause with a fact

or the consequent of a rule, the most general uni�er

is such that variables in the goal clause get instan-

tiated. However, for all the problems that we have

tested AAA on, this incompleteness does not pose a

problem. This is because the explanations we seek

are constructed by chaining together general rules to

explain speci�c ground facts. Aside from this incom-

pleteness, we believe that our AAA algorithm com-

putes all other explanations that the SAA algorithm

computes. We are currently working on a formal proof

of this equivalence. We also plan to explore the con-

struction of a version of the AAA algorithm that is

complete.

We have implemented and tested both algorithms.

The empirical results section presents some data com-

paring their performance. The actual performance of

both algorithms indicate very clearly that computing

all minimal explanations is simply too explosive to be

practically useful.

6 The Heuristic Algorithms

In this section, we present our heuristic algorithm

AAA/H that uses beam search to cut down on the

search space. To facilitate comparison, we also con-

structed a heuristic version of SAA called SAA/H.

The di�erences between SAA/H and SAA are:

1. SAA/H is an incremental algorithm that constructs

explanations one input atom at a time.

2. Instead of searching the entire search space, we em-

ploy a form of beam search. We restrict the number

of goal clauses to �

intra

during the incremental pro-

cessing of an input atom. The search terminates

when there are �

intra

number of �nal goal clauses.

The number of �nal goal clauses carried over to the

processing of the next input atom is �

inter

, where

�

inter

� �

intra

.

3. Each goal clause is assigned a simplicity metric de-

�ned as E=A, where E is the number of input atoms

explained (i.e., atoms marked as proved) and A is

the number of assumptions in a goal clause. Goal

For each input atom O

i

; i = 1; . . . ;m

Add the justi�cation GOAL

i�1

^O

i

! GOAL

i

(or O

1

! GOAL

1

if i = 1)

Loop

Run forward-chaining consumers

Let L(GOAL

i

) be the label of GOAL

i

Order the environments in L(GOAL

i

)

Retain the best (simplest) �

intra

number

of environments in L(GOAL

i

)

Unify the assumptions of the environments

in L(GOAL

i

)

If the number of environments in

L(GOAL

i

) � �

intra

then

exit the loop

Execute backward-chaining and

resolution with facts

If no backward-chaining occurs then

exit the loop

End of loop

Reduce the number of environments in

L(GOAL

i

) to the best �

inter

environments

Table 2: The AAA/H Algorithm

clauses with the highest simplicity metric values are

processed �rst.

Analogous changes are made to the AAA algo-

rithm such that AAA/H is an incremental algorithm

that uses beam search to restrict the search space ex-

plored. To achieve incrementality, the AAA/H algo-

rithm adds the justi�cation O

1

! GOAL

1

when pro-

cessing the �rst input atom O

1

. Subsequently, adding

the input atom O

i

results in adding the justi�cation

GOAL

i�1

^O

i

! GOAL

i

. By doing so, explanations

of the input atoms O

1

^ . . .^O

i

are exactly the envi-

ronments in the label of the node GOAL

i

.

To implement beam search, the algorithm AAA/H

uses the idea of focusing [Forbus and de Kleer, 1988,

Dressler and Farquhar, 1990] to restrict the amount of

work done by the ATMS. There are two main uses of

focusing: to discard unwanted environments and to

only search for those interesting (simplest) environ-

ments. When the algorithm decides to keep only �

inter

number of environments, all other environments with

higher simplicity metric values are removed from the

labels of all nodes. To ensure that only the simplest

environments are searched, each time when a node is

assumed, it is added to a list of focus assumptions and

label propagation is such that only the focused envi-

ronments get propagated.

Since we intend AAA/H to be an e�cient and

practical algorithm, we no longer assume in the con-

struction of AAA/H that any inconsistency can be

detected by forward-chaining on one axiom. That

is, an assumption set may imply FALSITY via

forward-chaining on several axioms with the last ax-

iom having FALSITY as its consequent. Once we

do away with this assumption, we are faced with

the problem that any axiom of the form A

1

^ . . . ^

A

n

! C in the knowledge base can potentially be

used in two ways, backward-chaining during abduc-

tion and forward-chaining during consistency check-

ing. To minimize duplicating work, we now imple-

ment backward-chaining by having the consequent

node \suggest" the assertion of the antecedent nodes,

and letting the forward-chaining consumers add the

actual justi�cation linking the antecedent nodes to the

consequent node. The algorithm AAA/H is given in

Table 2.

Pro- Time (min) #Justi�cations #E

blem S A ratio S A ratio

hare 0.20 0.04 5.00 122 27 4.52 9

snake 35.87 10.94 3.28 629 116 5.42 331

y 180

+

62.78 2:8

+

3240

+

118 27:5

+

850

shop1 5.68 2.26 2.51 637 49 13.00 60

mean 3.41 12.62

Table 3: Empirical results comparing SAA and AAA

Pro- Time (min) #Justi�cations

blem S/H A/H ratio S/H A/H ratio

hare 1.38 0.13 10.62 59 68 0.87

snake 9.40 1.59 5.91 154 109 1.41

y 12.68 1.66 7.64 176 117 1.50

bird 8.68 1.52 5.71 138 95 1.45

shop1 4.35 0.12 36.25 152 58 2.62

shop2 9.06 0.53 17.09 233 104 2.24

work 8.70 0.33 26.36 239 95 2.52

court 10.85 0.57 19.04 271 122 2.22

move 11.53 0.76 15.17 536 227 2.36

copy 12.78 0.83 15.40 561 236 2.38

replace 12.28 0.93 13.20 533 221 2.41

backup 12.74 0.83 15.35 561 236 2.38

paper 14.21 1.06 13.41 673 288 2.34

graph 14.58 1.17 12.46 709 314 2.26

ckt1 1.74 0.13 13.38 212 22 9.64

ckt2 3.04 0.09 33.78 312 35 8.91

ckt3 1.12 0.07 16.00 130 24 5.42

adder 6:66

+

0.17 39:18

+

284

+

36 7:89

+

mean 17.55 3.38

Table 4: Empirical results comparing SAA/H and

AAA/H

7 Empirical Results

In this section, we present our experimental results on

running the various algorithms SAA, AAA, SAA/H,

and AAA/H on a range of abduction problems from

such diverse tasks as text understanding, plan recog-

nition, and device diagnosis. We measure the perfor-

mance and the amount of computation expended by

the algorithms using two metrics: the runtime and

the number of justi�cations (i.e., number of rule invo-

cations) made. The results are presented in Table 3

and 4.

3

The full-search data in Table 3 also gives the

3

The \+" signs in Table 3 and 4 indicate that the cor-

responding examples take much longer to run and we only

recorded the time taken and the number of justi�cations

total number of minimal explanations (#E) for each

problem. All runtimes are actual execution times on

a Texas Instruments Explorer/2 Lisp machine. Note

that the beam widths for SAA/H and AAA/H are

set to the minimum values such that the best expla-

nation is formed for every problem in the set. For the

current set of problems, �

inter

= 4, �

intra

= 20 for

SAA/H, and �

inter

= 4, �

intra

= 16 for AAA/H.

4

The text understanding problems include exposi-

tory text examples about explaining the coloration

of various animals (hare, snake,
y, bird) and nar-

rative text examples about understanding the inten-

tion of someone entering a supermarket (shop1, shop2,

work, court). The plan recognition problems (move,

copy, replace, backup, paper, graph) involve recog-

nizing UNIX users' plans from a sequence of primi-

tive �le commands. The device diagnosis problems

include several simple logic circuit examples (ckt1,

ckt2, ckt3) and a full adder example (adder). In

the diagnosis problems, we restricted the assumable

atoms to be those with one of the two predicates

norm (the component is normal) or ab (the compo-

nent is abnormal). (i.e., we use predicate-speci�c

abduction[Stickel, 1988]). In the rest of the problems,

all atoms are assumable.

To give a sense of the size of our problems and

the knowledge base used, there is a total of 46 KB

facts, 163 KB rules, and 110 taxonomy-sort symbols

5

.

The average number and maximum number of an-

tecedents per rule are 2.8 and 6 respectively, and the

average number of input atoms per problem is 5.6.

(See [Ng and Mooney, 1991] for a complete listing of

the knowledge base and the examples used.)

The empirical results indicate that AAA outper-

forms SAA and AAA/H outperforms SAA/H on the

set of problems we ran. AAA runs about 3 times as

fast as SAA on the few problems we were able to test.

Due to the intractability of computing all minimal ex-

planations, we were unable to run the full-search algo-

rithms on the other problems, which clearly require

heuristic search. Even for the simple problems for

which we have comparative data, the heuristic versions

are about 10 times faster than the full-search versions

while still �nding the simplest explanation (SAA/H is

5 times faster than SAA, AAA/H is 16 times faster

than AAA). Comparing AAA/H with SAA/H, we

see that there is on average at least an order of mag-

nitude speedup on the problems that we have tested.

We believe our results are particularly signi�cant

because, to the best of our knowledge, this is the �rst

empirical validation that an ATMS-based �rst-order

made at the time the program was aborted.

4

Due to the di�erent ordering in which explanations are

generated in both algorithms, the minimum beam widths

for which the best explanations are found in both algo-

rithms need not be the same.

5

Every taxonomy-sort symbol p will add an axiom (in

addition to the 163 KB rules) of the form (inst ?x p) !

(inst ?x supersort-of-p)

abduction algorithm employing caching of explana-

tions performs better than a non-ATMS alternative

even when pruning heuristics are used to �nd a rel-

atively small number of good explanations. We also

want to stress that although the AAA algorithm is in-

complete compared to the SAA algorithm, this does

not a�ect our comparison since on all the problems

that we tested, the situation in which a most general

uni�er actually instantiates the datum of a node does

not arise.

8 Related Work

As mentioned in the introduction, previous algo-

rithms for automated abduction have been either too

restrictive or too ine�cient. Previous research on

the ATMS [de Kleer, 1986a, Levesque, 1989] and its

use in device diagnosis [de Kleer and Williams, 1987]

has been propositional in nature. In particu-

lar, it has not dealt with the problem of uni-

fying assumptions which occurs in general �rst-

order abduction. There has been some previ-

ous work on focusing the ATMS on a subset of

interesting environments [Forbus and de Kleer, 1988,

Dressler and Farquhar, 1990]; however, this work

was not in the context of general �rst-order ab-

duction and did not speci�cally involve using fo-

cusing to perform beam search. Also, although

[Dressler and Farquhar, 1990] has empirical results

comparing focused ATMS performance with that of

non-focused ATMS (thus demonstrating that limited

search is better than complete search), there has been

no previous work comparing limited search ATMS im-

plementation with a limited search non-ATMS alter-

native. Finally, other systems have not been systemat-

ically tested on such a wide range of abduction prob-

lems from text understanding, plan recognition, and

device diagnosis.

9 Conclusion

In this paper, we have presented a new algorithm

for �rst-order Horn-clause abduction called AAA. The

AAA algorithm uses an ATMS to avoid redundant

computation by caching and reusing partial explana-

tions. By comparison, previous abduction algorithms

are either less general or less e�cient. Since computing

all minimal explanations is intractable, we also devel-

oped a heuristic beam-search version of AAA, which

computes a subset of the simplest explanations. In or-

der to evaluate AAA and AAA/H, we performed a

comprehensive set of experiments using a broad range

of abduction problems from text understanding, plan

recognition, and device diagnosis. The results conclu-

sively demonstrate that our algorithm is at least an or-

der of magnitude faster than an abduction algorithm

which does not employ an ATMS.

Acknowledgements

Thanks to Adam Farquhar for allowing us to use his

ATMS code and for discussing technical details of the

ATMS in the early stages of this research. Thanks to

Siddarth Subramanian for writing some of the axioms

for the diagnosis examples.

References

[de Kleer and Williams, 1987] Johan de Kleer and

Brian C. Williams. Diagnosing multiple faults. Ar-

ti�cial Intelligence, 32:97{130, 1987.

[de Kleer, 1986a] Johan de Kleer. An assumption-

based TMS. Arti�cial Intelligence, 28:127{162,

1986.

[de Kleer, 1986b] Johan de Kleer. Problem solving

with the ATMS. Arti�cial Intelligence, 28:197{224,

1986.

[Dressler and Farquhar, 1990] Oskar Dressler

and Adam Farquhar. Putting the problem solver

back in the driver's seat: Contextual control of the

ATMS. In Proceedings of the Second Model-Based

Reasoning Workshop, Boston, MA, 1990.

[Forbus and de Kleer, 1988] Kenneth D. Forbus and

Johan de Kleer. Focusing the ATMS. In Proceed-

ings of the National Conference on Arti�cial Intel-

ligence, pages 193{198, St. Paul, Minnesota, 1988.

[Levesque, 1989] Hector J. Levesque. A knowledge-

level account of abduction. In Proceedings of the

Eleventh International Joint Conference on Arti-

�cial Intelligence, pages 1061{1067, Detroit, MI,

1989.

[Ng and Mooney, 1990] Hwee Tou Ng and Ray-

mond J. Mooney. On the role of coherence in

abductive explanation. In Proceedings of the Na-

tional Conference on Arti�cial Intelligence, pages

337{342, Boston, MA, 1990.

[Ng and Mooney, 1991] Hwee Tou Ng and Ray-

mond J. Mooney. An e�cient �rst-order abduction

system based on the ATMS. Technical Report AI91-

151, Arti�cial Intelligence Laboratory, Department

of Computer Sciences, The University of Texas at

Austin, January 1991.

[Pople, 1973] Harry E. Pople, Jr. On the mechaniza-

tion of abductive logic. In Proceedings of the Third

International Joint Conference on Arti�cial Intelli-

gence, pages 147{152, 1973.

[Selman and Levesque, 1990] Bart Selman and Hec-

tor J. Levesque. Abductive and default reasoning:

A computational core. In Proceedings of the Na-

tional Conference on Arti�cial Intelligence, pages

343{348, Boston, MA, 1990.

[Stickel, 1988] Mark E. Stickel. A prolog-like inference

system for computing minimum-cost abductive ex-

planations in natural-language interpretation. Tech-

nical Note 451, SRI International, September 1988.

