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Abstract

A diverse set of intelligent activities, including natural language understanding and

diagnosis, requires the ability to construct explanations for observed phenomena. In this

paper, we view explanation as abduction, where an abductive explanation is a consistent

set of assumptions which, together with background knowledge, logically entails a set

of observations. We have successfully built a domain-independent system, Accel, in

which knowledge about a variety of domains is uniformly encoded in �rst-order Horn-

clause axioms. A general-purpose abduction algorithm, AAA, e�ciently constructs

explanations in the various domains by caching partial explanations to avoid redundant

work. Empirical results show that caching of partial explanations can achieve more than

an order of magnitude speedup in run time. We have applied our abductive system to

two general tasks: plan recognition in text understanding, and diagnosis of medical

diseases, logic circuits, and dynamic systems. The results indicate that Accel is a

general-purpose system capable of plan recognition and diagnosis, yet e�cient enough

to be of practical utility.
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1 Introduction

Finding explanations for events and actions is an important aspect of general intelligent

behavior. A diverse set of intelligent activities, including natural language understanding,

diagnosis, scienti�c theory formation, and image interpretation, requires the ability to con-

struct explanations for the phenomena observed. For instance, in text understanding, a

reader infers the high-level goals and plans of the characters in a text in order to explain

the events and actions described in the text. In dialog understanding, a participant infers

the goals and plans of other participants based on the utterances exchanged in a conversa-

tion. This kind of inference is known as plan recognition, and it is an important component

of text and dialog understanding

[

3

]

.

Similarly, in medical diagnosis, based on the observed symptoms of a patient, a physi-

cian infers the possible diseases that may explain the symptoms. In physical device diag-

nosis, based on the observed misbehavior of a physical device, a diagnostician infers the

possible faults that may explain the misbehavior. In image interpretation, based on a two-

dimensional image, a vision system infers the objects present in the scene that may explain

the image.

In this paper, we view explanation as abduction. The philosopher C. S. Peirce

[

54

]

de�ned abduction as the process of �nding the best explanation for a set of observations;

i.e. inferring cause from e�ect. The standard logical formalization of abduction within

arti�cial intelligence (AI) de�nes an abductive explanation as a consistent set of assumptions

which, together with background knowledge, logically entails a set of observations

[

10

]

.

Abduction has been proposed as a unifying formalism for explanation in a variety of tasks

including natural language understanding, diagnosis, scienti�c theory formation, and image

interpretation

[

10

]

.

Formulating the generation of explanatory hypotheses as abduction has some advan-

tages over the traditional \expert system" approach. In an expert system, heuristic rules

of the form e! h are used to encode the fact that some evidence e may suggest hypothesis

h. A separate inference engine deduces the set of possible hypotheses that are \implied" by

the evidence. Conict resolution strategies are employed to decide which rules should be

�red �rst and hence to determine the most plausible hypotheses. Such an approach requires

reversing the causal links between hypothesis and evidence. Also, control information about

what to deduce is mixed with declarative knowledge about the relationship between hypoth-

esis and evidence. This is in contrast to abduction, which encodes the relevant knowledge in

its most natural form as \hypothesis h ! evidence e". Abduction also relies on a separate

evaluation criterion such as simplicity to determine which of the candidate hypotheses best

explain some evidence. Abduction is therefore a more natural and declarative approach to

modeling the generation of explanatory hypotheses.

While it has been realized for quite some time within AI that abduction is a general

model for explanation, there have been no empirical explorations into the practical feasibility

of such a general abductive approach to explanation. Many important questions remain

unexplored. For example, is it possible to have a general-purpose yet e�cient algorithm

that can be used for making useful abductive inference in all the various domains? Do we

need special-purpose control heuristics separately tailored for each domain? Do the criteria
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for selecting the best explanations vary according to the domain? How di�cult is it to

encode the knowledge necessary for constructing explanations in the various domains?

To address these important issues, we have successfully built a domain-independent

system called Accel (Abductive Construction of Causal Explanations in Logic). In our

system, knowledge about a variety of domains is uniformly encoded in �rst-order Horn-

clause axioms. A general-purpose abduction algorithm, AAA (ATMS-based Abduction

Algorithm), e�ciently constructs explanations in these domains. We have applied our

abductive system to two general tasks: plan recognition in text understanding, and diagnosis

of medical diseases, logic circuits, and dynamic systems. We believe our approach represents

a good trade-o� between generality and e�ciency | Accel is a general-purpose system

capable of performing all of the above tasks, yet e�cient enough to be of practical utility.

In this paper, we will present extensive empirical results demonstrating the e�cacy and

e�ciency of our system in performing the above tasks.

Previous abduction algorithms and systems, when compared to Accel, are either

too restrictive, too ine�cient, or both. Although the ATMS algorithm of

[

16

]

has been

proven to be a general abduction algorithm for propositional Horn-clause theories

[

39

]

,

many interesting abduction tasks require the expressibility of �rst-order predicate logic.

For example, the tasks of plan recognition in narrative texts, as well as abductive diag-

nosis of logic circuits and continuous dynamic systems, require that the domain theory

be expressed in �rst-order predicate logic. Furthermore, in �rst-order logic, the impor-

tant operation of unifying assumptions (factoring) becomes relevant. Frequently, sim-

ple and coherent explanations can only be constructed by unifying initially distinct as-

sumptions so that the resulting combined assumption explains several observations

[

60;

66

]

. This important problem does not arise in the propositional case.

On the other hand, the general-purpose �rst-order abduction algorithm proposed in

[

66

]

tends to perform a great deal of redundant work in that partial explanations are not cached

and shared among multiple explanations. The ATMS algorithm, though it caches and reuses

partial explanations in order to avoid redundant work, has not been extended to perform

general �rst-order abduction. Also, the ATMS algorithm exhaustively computes all minimal

explanations, which is computationally very expensive for large problems. Even in the

propositional case, computing all minimal explanations is a provably exponential problem

[

40; 65

]

. This indicates that resorting to heuristic search to �nd the best explanations is

the most reasonable approach to building a practical abductive system.

Another important issue in abduction concerns the evaluation of the quality of ex-

planations, i.e., what are the distinguishing features of a good explanation, and how can

evaluation metrics be formulated so as to select and keep only the good explanations among

the exponentially large number of explanations. Simplicity of explanations, de�ned as mak-

ing the least number of assumptions in an abductive explanation, is a widely used metric to

select the best explanations

[

61; 5; 32

]

. In Section 3, we will give convincing evidence that

simplicity is inadequate as an evaluation metric for explanations in text understanding.

Our algorithm AAA overcomes both the generality and e�ciency problems in that it

is an abduction algorithm for �rst-order Horn-clauses, and it uses ATMS-style caching to

avoid redundant work. In Section 6, we will present empirical results which demonstrate
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that caching of partial explanations can achieve more than an order of magnitude speedup

in run time. The AAA algorithm also incorporates a form of heuristic beam search in order

to limit the computational e�orts expended in �nding the best explanations. Explanations

are ranked according to their evaluation metric values and only the best explanations within

the beam width of the beam search algorithm are kept.

Although Accel provides a more declarative approach to the generation of explanatory

hypotheses than a traditional expert system, it is often necessary that axioms be formu-

lated carefully so that the system will perform the desired task correctly and e�ciently.

As in traditional logic programming, it is frequently insu�cient to just \state the cor-

rect knowledge" and expect the desired answers to be inferred. Appropriate programming

methodologies must be developed so that a user knows how to axiomatize a problem to

correctly and e�ciently compute the desired answers

[

58

]

. This is also true in \abductive

logic programming". By successfully applying Accel to the tasks of plan recognition and

diagnosis, we have demonstrated via many examples how a general abductive system can

be used to achieve these tasks.

We now give a brief overview of the various domains on which Accel has been tested:

1. Plan recognition: We de�ne a novel evaluation criterion, called explanatory coherence,

and give empirical results demonstrating that coherence is a better evaluation metric

than simplicity in plan recognition. We also give supporting evidence that our system

is su�ciently general to be able to handle similar plan recognition problems not known

to the system developer in advance.

2. Set covering diagnosis: We prove that, given the appropriate form of axioms, Accel

computes the same diagnoses as those of the set-covering method of Reggia

[

61; 55

]

.

We also present empirical results demonstrating the e�ciency of Accel at diagnosing

50 real-world patient cases using a sizable knowledge base with over six hundred rules.

3. Model-based diagnosis: We use abduction to perform model-based diagnosis, which

concerns inferring faults from �rst principles given knowledge about the correct struc-

ture and behavior of a system. The approach is applied to diagnosing logic circuits (a

full adder) and dynamic systems (a proportional temperature controller and the water

balance system of the human kidney). Empirical results are presented illustrating the

capability of Accel in abductive diagnosis.

The rest of this paper is organized as follows. Section 2 gives a formal de�nition of the

abduction problem that we are addressing, and describes the AAA algorithm. Section 3

concerns abduction in the plan recognition domain. Section 4 concerns the use of general

abduction to achieve diagnosis based on the set covering method. Section 5 presents Ac-

cel's abductive approach to model-based diagnosis. Section 6 presents empirical results on

the speedup obtained through the use of caching in the AAA algorithm. Section 7 presents

related work. Section 8 discusses future work. Section 9 gives the conclusion.
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2 Problem De�nition and Algorithms

2.1 Problem De�nition

The abduction problem that we are addressing can be de�ned as follows.

Given:

� A set of universally quanti�ed �rst-order Horn-clause axioms T (the domain theory),

where an axiom is either of the form

C(v

1

; : : : ; v

k

) P

1

(v

1

; : : : ; v

k

) ^ : : :^ P

r

(v

1

; : : : ; v

k

) (a rule), or

F (v

1

; : : : ; v

k

) (a fact)

� An existentially quanti�ed conjunction O of atoms (the input atoms) of the form

9v

1

; : : : ; v

k

O

1

(v

1

; : : : ; v

k

) ^ : : :^ O

m

(v

1

; : : : ; v

k

)

Find:

All explanations with minimal (w.r.t. variant-subset) sets of assumptions.

We de�ne explanation, variant-subset, and minimality as follows.

De�nition 2.1 Let A (the assumptions) be an existentially quanti�ed conjunction of atoms

of the form

9v

1

; : : : ; v

k

A

1

(v

1

; : : : ; v

k

) ^ : : : ^A

n

(v

1

; : : : ; v

k

)

where n � 0; A[ T j= O, and A [ T is consistent. An assumption set A (together with its

corresponding proof) is referred to as an explanation (or an abductive proof) of the input

atoms.

We will write A as the set fA

1

; : : : ; A

n

g with the understanding that all variables in the set

are existentially quanti�ed and that the set denotes a conjunction.

De�nition 2.2 An assumption set A is a variant-subset of another assumption set B if

there is a renaming substitution � such that A� � B.

For example, A = fp(X; b)g is a variant-subset of B = fp(Y; b); q(Y )g with the renaming

substitution � = fX=Y g.

1

De�nition 2.3 A set of explanations S is minimal if there is no explanation in S whose

assumption set is a variant-subset of the assumption set of another explanation in S.

Since the de�nition of abduction requires consistency of the assumed atoms with the

domain theory, the abduction problem is in general undecidable. In our implemented system

Accel, consistency checking is accomplished in two ways:

1

In this paper, we denote variables by uppercase letters, and constants by lowercase letters.
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1. Using a pre-determined list of nogoods, where a nogood is a set of assumptions

fA

1

(v

1

; : : : ; v

k

); : : : ; A

n

(v

1

; : : : ; v

k

)g such that

8v

1

; : : : ; v

k

A

1

(v

1

; : : : ; v

k

)^ : : :^A

n

(v

1

; : : : ; v

k

)! false:

Consistency checking ensures that an assumed set of atoms is not subsumed by any

nogoods (i.e., no instance of a nogood is a subset of an assumed set of atoms);

2. Using procedural code to check for inconsistency of assumptions (for e�ciency rea-

sons).

2.2 The SAA Algorithm

2.2.1 De�nition and Algorithm

Stickel has proposed an algorithm for computing the set of all �rst-order Horn-clause ab-

ductive proofs

[

66

]

. His algorithm, which we will call SAA (Stickel's Abduction Algorithm),

operates by applying inference rules to generate goal clauses. The initial goal clause is the

input atoms O

1

; : : : ; O

m

. Each atom in a goal clause can be marked with one of proved,

assumed, or unsolved. All atoms in the initial goal clause are marked as unsolved. A �nal

goal clause must consist entirely of proved or assumed atoms.

Let G be a goal clause Q

1

; : : : ; Q

n

, where the leftmost unsolved atom is Q

i

. The algo-

rithm SAA repeatedly applies the following inference rules to goal clauses G with unsolved

atoms:

� Resolution with a fact. If Q

i

and a fact F are uni�able with a most general uni�er

(mgu) �, the goal clause Q

1

�; : : : ; Q

n

� can be derived, where Q

i

� is marked as proved.

� Resolution with a rule. Let C  P

1

^ : : :^ P

r

be a rule where Q

i

and C are uni�able

with a mgu �. Then the goal clause

Q

1

�; : : : ; Q

i�1

�; P

1

�; : : : ; P

r

�;Q

i

�; : : : ; Q

n

�

can be derived, where Q

i

� is marked as proved and each P

k

� is marked as unsolved.

� Making an assumption. If Q

i

is assumable, then Q

1

; : : : ; Q

n

can be derived with

Q

i

marked as assumed. By assumable, we mean that Q

i

has been designated as an

atom that the algorithm is allowed to assume. The algorithm also checks that all

assumptions made are consistent with the domain theory.

� Factoring with a proved or assumed atom. If Q

j

and Q

i

(j < i) are uni�able with a

mgu �, the goal clause

Q

1

�; : : : ; Q

i�1

�;Q

i+1

�; : : : ; Q

n

�

can be derived.
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2.2.2 Problems with the SAA Algorithm

The SAA algorithm as described above su�ers from two problems.

1. Combinatorial Explosion

It has been shown that, even in the propositional case, computing all minimal (w.r.t.

subset) explanations is provably exponential

[

40; 65

]

, since in the worst case, the

number of minimal explanations is exponentially large. The SAA algorithm computes

all �rst order Horn-clause abductive explanations and therefore it is also at least an

exponential algorithm. (Actually, since the SAA \algorithm" includes consistency

checking of the assumptions, it may not even terminate in general.)

However, in practice, what is needed is only the best explanation, or the best few

explanations. To avoid combinatorially explosive computation,

[

66; 30

]

proposed the

use of a cost metric to rank and heuristically search the more promising explanations

�rst. Each input atom is assigned a cost of assuming that input atom. The antecedents

A

1

; : : : ; A

n

of every rule R in the knowledge base are assigned relative costs C

1

; : : : ; C

n

so that when the algorithm backward-chains on a subgoal G using a rule R, the cost

of each new antecedent subgoal A

i

is cost(G) � C

i

=

P

n

i=1

C

i

. The best explanation

has assumptions with the least cumulative cost.

Simplicity, de�ned as making the minimum number of assumptions in an explanation

(known as the minimum explanation), is another commonly used metric to select the

best explanations

[

61; 5; 32

]

. However, previous work has shown that �nding the

minimum abductive explanation is NP-hard

[

61; 62; 2; 4

]

.

In this paper, we used a form of beam search to overcome the computational in-

tractability problem. Evaluation metrics including a coherence metric and a simplic-

ity metric are used to determine the quality of an abductive proof, and a limited list

of the best abductive proofs are maintained during the search.

2. Redundant Inference

Even with the use of heuristic search to restrict the computation expended in �nding

the good explanations, the SAA algorithm can still perform a great deal of redundant

work in that partial explanations are not cached and shared among multiple explana-

tions. To see why this is the case, consider the two examples shown in Figures 1 and

2.

In the �rst example, after backward-chaining on the rule a  b ^ c ^ d, the SAA

algorithm can either make b an assumption, or backward-chain on the rule b e ^ f .

This introduces two partial abductive proofs, both have the identical subgoals c and d.

The SAA algorithm will then duplicate the same inferences in expanding the subgoals

c and d in the two partial proofs. Since the proof tree rooted at the subgoals c and d

can be arbitrarily deep, substantial e�ort will be wasted duplicating inferences.

In the second example, each time a subgoal (like a, b, and e) is expanded by backward-

chaining, two partial proofs are generated, and inferences will be duplicated across
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a

b c d

a

b c d

a

b c d

e f

KB:
a           b   c   d
b           e   f
c           ...
c           ...
...
d           ...
d           ...
...

Figure 1: Duplicating inference: example 1.

the two successor partial proofs. For instance, the rule b e^ f is applied twice, the

rule e h ^ i is applied four times, etc.

Note that this problem of duplicating inference arises in deductive theorem proving

too. However, we believe that duplicating inference poses a more serious problem in

abduction because multiple abductive proofs must usually be pursued in the search

for a best explanation, whereas in deduction, we are usually interested in a single

deductive proof. The need for multiple abductive proofs tends to result in more

duplicate inferences being made. Also, note that the situation in example 1 arises

each time an assumption is made, and since making assumptions occurs frequently in

abduction, duplicating inferences almost always arise in abduction. In Section 6, we

present empirical results showing that avoiding duplicate inferences can achieve more

than an order of magnitude speedup.

2.2.3 Variant-subsets

The explanations generated by the SAA algorithm may include some that are variant-

subsets of another. For instance, given the following axioms:

inst(G; going) inst(S; shopping) ^ go-step(S;G):

goer(G;P ) inst(S; shopping) ^ go-step(S;G)^ shopper(S; P ):

and the input atoms inst(go1; going) and goer(go1; john1), we can derive the explana-

tion F with assumptions A

F

= finst(X; shopping); go-step(X;go1); inst(Y; shopping); go-

step(Y; go1); shopper(Y; john1)g by backward-chaining on the two axioms. Applying the
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a

a a

a a a a

b c b d

b c b c b d b d

e f e g e f e g

... ... ... ... ... ... ... ...

KB:
a          b   c
a          b   d
b          e   f
b          e   g
e          h   i
e          h   j
...

Figure 2: Duplicating inference: example 2.

factoring operation, we can obtain another explanation E with assumptions A

E

= finst(X;

shopping), go-step(X; go1), shopper(X; john1)g. But note that although A

E

6� A

F

, A

E

� �

A

F

with the renaming substitution � = fX=Y g.

Note that the variant-subset relation is a special case of subsumption. A subsumes

B if A� � B for some substitution �. However, for A to be a variant-subset of B, the

substitution � must be a renaming substitution.

Since explanations that are variant-supersets of other explanations are essentially redun-

dant, they need to be eliminated. Unfortunately, it can be readily shown that determining

variant-subset relation is an NP-complete problem by reduction from directed subgraph

isomorphism, a known NP-complete problem

[

25, page 202

]

. A directed graph G = hV;Ei

is transformed into an assumption set A as follows: for every vertex v 2 V , add the as-

sumption N(X

v

) to A, where X

v

is a variable; for every directed edge e = (v

1

; v

2

) 2 E, add

the assumption E(X

v

1

; X

v

2

) to A, where X

v

1

; X

v

2

are variables. That is, jAj = jV j+ jEj.

It follows that G

1

is isomorphic to a subgraph of G

2

if and only if A

1

is a variant-subset

of A

2

. Hence, determining variant-subsets introduces yet another source of computational

complexity when �nding the minimal explanations in a �rst-order Horn-clause theory.

2.3 The AAA Algorithm

We now present the abduction algorithm used inAccel, calledAAA (ATMS-based Abduc-

tion Algorithm). This algorithm is much like the SAA algorithm, except that the abductive

proofs for a subgoal G are cached and reused when the subgoal G or an instance of G is
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a

c d

f g

{a, bc, bd, efc, egc,
 efd, egd, ...}

...

{b, ef, eg, ...} b

{c} {d}

{g}{f}

{e, ...} e

KB:
a          b   c
a          b   d
b          e   f
b          e   g
...

Figure 3: Caching and sharing inference steps.

encountered subsequently in the search for the best abductive proofs.

To illustrate the idea of proof caching in AAA, consider the example shown in Figure 3.

In the AAA algorithm, each of the rules b e^f , b e^g, e h^ i, etc., will be applied

only once. Associated with each proved subgoal, we store all the abductive proofs of that

subgoal. Figure 3 shows the abductive proofs associated with each subgoal in �nding the

abductive proofs for a in the AAA algorithm.

When the subgoal b is �rst encountered as an antecedent in the rule a  b ^ c, its

abductive proofs are constructed by backward-chaining on the rules b  e ^ f , b  e ^ g,

etc., in the knowledge base in a depth-�rst search order. When all the abductive proofs

of b are found, they are associated with b and stored in a cache. Subsequently, backward-

chaining using the second rule a b^d will encounter the subgoal b again. At this time, all

the previously found abductive proofs of b will be reused without recomputing them again.

2.3.1 De�nition and Algorithm

The use of proof caching is very much in the style of an Assumption-based Truth Mainte-

nance System (ATMS)

[

16

]

, which caches and reuses partial explanations to avoid redundant

work. The ATMS is a general facility for managing logical relationships among proposi-

tional formulas. It maintains multiple contexts at once and is particularly suitable for

problem solving that involves constructing and comparing multiple explanations. In the

ATMS, each problem solving datum is associated with a node. A node in the ATMS can be

further designated as an assumption. Nodes are related via justi�cations. A justi�cation is
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a propositional Horn-clause of the form A

1

^ : : :^A

n

! C, where each A

i

is an antecedent

node and C is the consequent node. An environment is a set of assumptions. Associated

with each node is a set of environments called its label. The di�erence between AAA and

the ATMS is that AAA constructs �rst-order Horn-clause proofs while the ATMS only

deals with propositional Horn-clauses. Also, AAA is a backward-chaining algorithm while

the traditional ATMS is forward-chaining.

We now give a formal description of theAAA algorithm. We will use similar terminology

as in the ATMS.

De�nition 2.4 Let E = hA; �i, where A is a set of assumptions fA

1

(v

1

; : : : ; v

k

);

: : : ; A

n

(v

1

; : : : ; v

k

)g to be interpreted as an existentially quanti�ed conjunction of assump-

tions, and � is a substitution. We say that an atom G has an environment E i� A[T j= G�

and A [ T is consistent.

Note that a substitution � is included as part of an environment E. This allows us to know

directly from an environment E = hA; �i associated with an atom G which instance of G is

provable from the assumptions A.

De�nition 2.5 The label of an atom G (denoted label(G)) is a set of environments fE

1

,

: : : , E

n

g, to be interpreted as a disjunction of environments E

1

_ : : : _ E

n

, where E

i

=

hA

i

; �

i

i, such that

� (Soundness) A

i

[ T j= G�

i

;

� (Consistency) A

i

[ T is consistent;

� (Completeness) For any consistent set of assumptions A where A [ T j= G, A is

subsumed by some A

i

; and

� (Minimality) No A

i

is a variant-subset of some other A

j

.

The label of an atom is thus the set of all minimal (w.r.t. variant-subset) explanations of

the atom G. Note that the set of explanations in a label is minimal w.r.t. to variant-subset

but not subsumption. This is because a set of assumptions A that is obtained by factoring

another set of assumptions B is such that A is subsumed by B (since A = B� for some

substitution �), but we do not want to remove A from the label since factoring frequently

results in better explanations.

Without loss of generality, we can assume that the task of abduction is to �nd all

minimal explanations of an atom O(v

1

; : : : ; v

k

), since all explanations of O

1

(v

1

; : : : ; v

k

) ^

: : :^ O

m

(v

1

; : : : ; v

k

) is the same as all explanations of O(v

1

; : : : ; v

k

) once we add the rule

O(v

1

; : : : ; v

k

) O

1

(v

1

; : : : ; v

k

) ^ : : :^O

m

(v

1

; : : : ; v

k

)

to the domain theory.

The AAA algorithm is presented in Tables 1{2. The top level procedure is compute-

label(G;D), which will compute and return all possible abductive proofs of depth D or less
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of the atom G. In order to limit the search to the promising explanations, the algorithm

will only maintain at most �

intra

number of best explanations for each subgoal encountered

in the search, where the quality of an explanation is determined by some evaluation metric

(such as coherence or simplicity). When �

intra

=1, all possible abductive proofs of depth

D are computed. �

intra

is thus the beam width of the heuristic beam search used to limit

the computational e�orts expended in �nding the best explanations. We used beam search

instead of best-�rst search since best-�rst search requires maintaining the complete list of

partial explanations and so is too memory-consuming. If we let �

intra

= 1, the beam search

algorithm becomes a hill-climbing algorithm.

The AAA algorithm presented in this paper supersedes a previous version reported in

[

48; 47

]

which is incomplete. Speci�cally, the previous version misses explanations that are

obtained when, during resolution of a subgoal with a fact or the consequent of a rule, the

most general uni�er is such that some variables in the subgoal are instantiated.

2.3.2 Indexing and Cache Lookup

The label of a subgoal, once computed, is stored in the cache indexed under the subgoal. The

cache indexing scheme implemented in Accel is discrimination tree indexing, as described

in

[

50

]

.

When AAA queries the cache for some subgoal G, if there exists in the cache some

previous subgoal G

0

that is an alphabetic variant of G or is more general than G (i.e.,

G = G

0

� for some substitution �), then the appropriate subset of G

0

's label, suitably

renamed, will be returned as G's label. The procedure for cache lookup is given in Table 2.

A more aggressive caching scheme may generalize the abductive proofs of a subgoal G

as much as possible at the end of executing compute-label(G;D) so as to obtain generalized

abductive proofs for a more general subgoal G

0

[

68

]

. This has the advantage of potentially

avoiding more duplicate inferences, but at the expense of incurring more work to perform

the generalization at cache insertion time. The AAA algorithm implemented in Accel

does not perform such generalization before storing a subgoal and its proofs in the cache,

as it is unclear if there are any overall net savings in doing so.

The indexing of facts and rules that can potentially unify with a subgoal is also accom-

plished via discrimination tree indexing. See

[

50

]

for more details.

2.3.3 An Illustrative Example

To illustrate the working of the AAA algorithm, consider the following domain theory:

p(X) q(X; Y ) ^ r(Y;X)

q(a; Z) s(a; Z)

r(U; a) s(U; a)^ t(U)

r(V; b) s(V; b)^ t(V )

For this example, we let all atoms be assumable. Suppose the input atom is p(X) and

we want to �nd all abductive explanations of p(X). The procedure compute-label(p(X);1)

�rst assumes p(X) and adds the environment

A

1

: hfp(X)g; fgi

11



compute-label(G,D)

if cache-lookup(G,D) succeeds then return

label(G)  ;

if G is assumable then

label(G)  fhfGg; fgig

for each fact F uni�able with G

rename the variables in F

� mgu(F;G)

label(G)  label(G) [fh;; �ig

backward-chain(G,D)

store (G,D,label(G)) in the cache

backward-chain(G,D)

if D = 0 then return

for each rule C  P

1

^ : : :^ P

r

rename the variables in the rule

� unify(C,G)

if � 6= fail then

P

1

 P

1

�; : : : ; P

r

 P

r

�

compute-label(P

1

; D � 1)

partial-envs  ;

for each environment hA; �i 2 label(P

1

)

partial-envs  partial-envs [fhA; ��ig

for each P

i

2 fP

2

; : : : ; P

r

g

partial-envs  cross-product(partial-envs,P

i

,D)

variant-subset-minimize(partial-envs)

if jpartial-envsj > �

intra

then

sort partial-envs by the evaluation metric

truncate the size of partial-envs to �

intra

label(G)  label(G) [ partial-envs

variant-subset-minimize(label(G))

if jlabel(G)j > �

intra

then

sort label(G) by the evaluation metric

truncate the size of label(G) to �

intra

Table 1: The AAA Algorithm.
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cross-product(partial-envs,P ,D)

old-partial-envs  partial-envs

partial-envs  ;

for each E

1

= hA

1

; �

1

i 2 old-partial-envs

compute-label(P�

1

; D � 1)

for each E

2

= hA

2

; �

2

i 2 label(P�

1

)

E  hA

1

�

2

[A

2

; �

1

�

2

i

if E is consistent then

partial-envs  partial-envs [ factoring(E,A

1

�

2

,A

2

)

return(partial-envs)

factoring(E,A

1

,A

2

)

�  substitution of E

factors  fEg

for each a

1

2 A

1

for each a

2

2 A

2

�

0

 unify(a

1

,a

2

)

if �

0

6= fail then

E

0

 hA

1

�

0

[A

2

�

0

; ��

0

i

if E

0

is consistent then

factors  factors [ factoring(E

0

; A

1

�

0

; A

2

�

0

)

return(factors)

cache-lookup(G,D)

if (G

0

,D

0

,label(G

0

)) exists in the cache such that

depth D

0

� D and

G = G

0

�

0

for some substitution �

0

then

label(G)  ;

for each E = hA; �i 2 label(G

0

)

H  G

0

�

rename H and A

� mgu(H;G)

if � 6= fail then

label(G)  label(G) [ fhA�; �ig

return(label(G))

else

return(fail)

Table 2: The AAA Algorithm.
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to label(p(X)). backward-chain(p(x);1) is then executed and the rule p(X) q(X; Y ) ^

r(Y;X) is considered. AAA �rst makes the recursive call compute-label(q(X; Y );1) to

compute all abductive explanations of the �rst antecedent of the rule. Two abductive

explanations are returned: E

1

= hfq(X; Y )g; fgi and E

2

= hfs(a; Z)g; fX=a; Y=Zgi, corre-

sponding to assuming q(X; Y ) and backward-chaining on the second rule q(a; Z) s(a; Z).

Next, AAA considers the second antecedent r(Y;X) of the �rst rule. It calls cross-

product(fE

1

; E

2

g; r(Y;X);1) to �nd the cross product of the labels of q(X; Y ) and r(Y;X).

The procedure cross-product steps through the environments of the label of q(X; Y ) one at a

time, and for each environment E

i

, it makes a recursive call to compute the label of r(Y;X)

instantiated under the substitution of E

i

. Since the substitution of E

1

= hfq(X;Y )g; fgi

is empty, the recursive call compute-label(r(Y;X);1) is made and it returns three abduc-

tive explanations: F

1

= hfr(Y;X)g; fgi, F

2

= hfS(U; a); t(U)g; fY=U;X=agi, and F

3

=

hfS(V; b); t(V )g; fY=V;X=bgi. The three explanations correspond to making r(Y;X) an as-

sumption, and backward-chaining on the third and fourth rules. Taking the union of the

appropriately instantiated environment E

1

and each of the environments F

1

; F

2

; F

3

yields

three additional abductive explanations for the label of p(X):

A

2

: hfq(X;Y ); r(Y;X)g; fgi

A

3

: hfq(a; U); s(U; a); t(U)g; fY=U;X=agi

A

4

: hfq(b; V ); s(V; b); t(V )g; fY=V;X=bgi

The second environment E

2

of the label of q(X; Y ) has the substitution fX=a; Y=Zg,

so another recursive call compute-label(r(Z; a);1) is made. However, since the more

general subgoal r(Y;X) has been encountered previously and its abductive proofs are

cached, AAA reuses the appropriate subset of the label of r(Y;X) in the cache. The

environments returned from the call compute-label(r(Z; a);1) are (after renaming) G

1

=

hfr(Y

0

; a)g; fZ=Y

0

; X

0

=agi and G

2

= hfs(U

0

; a); t(U

0

)g; fZ=U

0

gi. Taking the union of the

appropriately instantiated environment E

2

and the environments G

1

and G

2

yields two

additional abductive explanations for the label of p(X):

A

5

: hfs(a; Y

0

); r(Y

0

; a)g; fX=a; Y=Y

0

; Z=Y

0

; X

0

=agi

A

6

: hfs(a; U

0

); s(U

0

; a); t(U

0

)g; fX=a; Y=U

0

; Z=U

0

gi

Finally, factoring of the assumptions s(a; U

0

) and s(U

0

; a) in A

6

yields an additional

abductive explanation for the label of p(X):

A

7

: hfs(a; a); t(a)g; fX=a; Y=a;Z=a;U

0

=agi

The label of p(X) computed is fA

1

; : : : ; A

7

g.

2.3.4 Enhancements to AAA

The AAA algorithm presented above is actually a simpli�cation of the one implemented in

Accel. For the sake of clarity in exposition, we have omitted some less essential details of

the algorithm in Tables 1{2. In order to be more useful and e�cient, the AAA algorithm

has a few additional parameters (in addition to D and �

intra

) so that the algorithm can be

specialized to execute more e�ciently in each of the di�erent domains. These parameters

are:
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� �

inter

: This parameter controls the number of explanations kept after processing each

of the input atoms in the conjunction O

1

^ : : :^O

m

given to Accel. It is always the

case that �

inter

� �

intra

, since �

intra

determines the number of explanations kept at

every subgoal, and so the number of explanations kept at an input atom can be no

more than �

intra

.

� Factoring: This is a parameter to control if factoring should be performed. Factoring

is essential for plan recognition and set-covering-based diagnosis, but it is turned o�

for model-based diagnosis.

� Variant-superset: Since eliminating variant-supersets is an expensive operation, there

is a parameter to control whether it should be used. Eliminating variant-supersets

is necessary for plan recognition, but it is turned o� for model-based diagnosis. It is

specialized to removing (simple) supersets for set-covering-based diagnosis, since the

axioms for set-covering-based diagnosis are propositional.

� Evaluation metric: Each domain has its own explanation evaluation metric to deter-

mine the quality of a given explanation. In the plan recognition domain, coherence

is a better evaluation metric, whereas in the diagnosis domains, the simplicity metric

su�ces.

� Assumable predicates: The atoms that are assumable vary according to the domain.

In the plan recognition domain, all atoms are assumable. In the diagnosis domain,

only atoms corresponding to diseases or behavioral modes (normality, fault modes,

abnormality) are assumable. Abduction in which the assumable atoms are restricted

to a pre-determined set of predicates is known as predicate speci�c abduction

[

66

]

.

A complete list of e�ciency enhancements to AAA is given in

[

44

]

.

3 Plan Recognition

Given a logical representation of the literal meaning of a narrative text in terms of an

existentially quanti�ed conjunction of input atoms, Accel infers an \embellished" inter-

pretation by constructing an abductive proof in which a set of higher-level plans is assumed

that logically entail the characters' observed actions. An abductive proof is considered

an interpretation of the input sentences. We do not focus on the parsing aspect of natu-

ral language understanding, and Accel does not accept natural language input. Instead,

we assume the existence of some appropriate parser that translates a given set of input

sentences into an existentially quanti�ed conjunction of input atoms.

3.1 Explanatory Coherence

3.1.1 Motivation

In previous research on abduction for text understanding and plan recognition, simplicity

has been proposed as a metric for selecting the best explanation. For instance, in

[

5

]

,
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the best interpretation is one that maximizes E � A, where E = the number of explained

observations, and A = the number of assumptions made. The work of Kautz explicitly

incorporates the assumption of minimizing the number of top-level events in deducing the

plan that an agent is pursuing

[

32

]

.

Though an important factor, the simplicity criterion is not su�cient by itself to select

the best explanation. In the area of language understanding, we argue that some notion

of explanatory coherence is more important in deciding which explanation is the best.

Consider the sentences: \Mary had a heart attack. John is depressed." The sentences

translate into the conjunction of the following atoms: name(m,mary), has(m,h), heart-

attack(h), name(j,john), and depressed(j). A knowledge base of axioms relevant to these

input atoms are:

depressed(X)  like(X,Y) ^ bad(condition(Y)) ^ irreplaceable(Y)

depressed(X)  pessimist(X)

bad(condition(X)) has(X,Y) ^ illness(Y)

illness(X) heart-attack(X)

Based on the above axioms, there are two possible interpretations of these sentences, as

shown in Figure 4. Suppose the simplicity metric is de�ned as the inverse of the number

of assumptions made, where every leaf node in the proof graph counts as an assumption,

including input atoms that are not explained (the assumptions in Figure 4 are underlined).

Relying on this simplicity metric results in selecting the interpretation that John is depressed

because he is a pessimist, someone who always feels gloomy about life (Figure 4b). This

is in contrast to our preferred interpretation of the sentences | John is depressed because

John likes Mary and Mary had a heart attack (Figure 4a).

Note that varying the de�nition of simplicity somewhat will not help here. For instance,

using the simplicity criterion of

[

63

]

based on subset minimality does not work well for this

example | it is indi�erent towards both interpretations, instead of choosing the preferred

one. If we decide not to count input atoms as assumptions, then the preferred interpretation

still makes more assumptions (four) compared to only one assumption in the other inter-

pretation. Charniak's simplicity metric of E�A also will not work, since both explanations

would explain exactly one input atom, that John is depressed.

Intuitively, it seems that the �rst interpretation (Figure 4a) is better because the in-

put atoms are connected more \coherently" than in the second interpretation (Figure 4b).

We manage to connect \John is depressed" with \Mary had a heart attack" in the �rst

interpretation, whereas in the second interpretation, they are totally unrelated. This is the

intuitive notion of what we mean by explanatory coherence, i.e., how well the various parts

of the input sentences are \tied together" in the interpretation.

That sentences in a natural language text are connected in a coherent way is reected

in the well known \Grice's conversational maxims"

[

28

]

, which are principles governing

the production of natural language utterances, such as \be relevant", \be informative",

etc. Although the notion that natural language text is coherently structured has long been

recognized by researchers in natural language processing (see

[

3

]

), our work is the �rst to

incorporate the notion of coherence in the context of evaluating an abductive explanation.
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"Mary had a heart attack. John is depressed."

depressed (j)name(j, john)

Interpretation #1
Simplicity metric = 1/A = 1/6

Coherence metric = (1+1)/(5*4/2) = 0.2

1a

name(m, mary)

bad (condition(m))like(j, m) irreplaceable(m)

has(m, h) illness(h)

heart-attack(h)

Interpretation #2
Simplicity metric = 1/A = 1/5

Coherence metric = 0

1b

depressed(j)name(m, mary) has(m, h) heart-attack(h) name(j, john)

pessimist(j)

Figure 4: The importance of explanatory coherence.

3.1.2 De�nition

We would like to formulate our coherence metric so as to possess several desirable proper-

ties. In particular, explanations with more connections between any pair of input atoms

should have higher coherence metric values. Also, a coherence metric with values lying in a

unit range 0{1 will facilitate the comparison of explanations. We have developed a formal

characterization of what we mean by explanatory coherence in the form of a coherence

metric satisfying these properties.

De�nition 3.1 The coherence metric C is de�ned as follows:

C =

X

1�i<j�l

N

i;j

l(l� 1)=2

where

l = the total number of input atoms;

N

i;j

= 1 if there is some node n in the proof graph such that there is a (possibly empty)

sequence of directed edges from n to n

i

and a (possibly empty) sequence of directed edges

from n to n

j

, where n

i

and n

j

are input atoms. Otherwise, N

i;j

= 0.
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The numerator of this metric is the total number of pairs of input atoms that are

connected. The denominator of the metric scales the sum according to the size of the

explanation so that the �nal metric value falls between 0 and 1. Note that the de�nition

of coherence given in this paper is a slight modi�cation of the one given in

[

46; 45

]

. The

new de�nition remedies the anomaly reported in

[

51

]

of occasionally preferring spurious

interpretations of greater depths.

To illustrate the computation of the coherence metric, consider the explanation in Figure

4a. Let n

1

= (name m mary), n

2

= (name j john), n

3

= (depressed j), n

4

= (has m h), and

n

5

= (heart-attack h). The total number of input atoms l = 5. In this explanation, N

3;4

= 1, since there is a node n

4

such that there is a directed path from n

4

to n

3

and also a

directed path from n

4

to n

4

(the trivial empty path). Similarly, N

3;5

= 1. All other N

i;j

=

0. This results in the coherence metric C = 0.2, as shown in Figure 4a.

Some advantages of our coherence metric include:

1. Coherent explanations are often simple explanations. This is because in a coherent

explanation, propositions tend to be more tightly connected together. This increases

the likelihood of assumptions being uni�ed, and leads to a reduction in the number

of assumptions made and thus a simpler explanation.

2. Compared to the simplicity metric, the coherence metric is less vulnerable to changes

in the underlying representation of the knowledge base. It is relatively easy to encode

the axioms in a knowledge base in a slightly di�erent way so as to change the number

of assumptions made in an explanation. However, connections between propositions

are less dependent (relatively speaking) on such changes. For example, suppose we

change the axioms in the given example slightly so that as long as a person likes

something that is in a bad condition (but not necessarily irreplaceable), then that

person is depressed. Also, suppose one has to be poor as well as a pessimist to be

depressed. Given this modi�ed set of axioms, the �rst interpretation now requires

only �ve assumptions, while the second interpretation requires six. So all of a sudden,

the �rst interpretation becomes the simpler explanation of the two. However, the

coherence metric values of both interpretations remain unchanged.

3. Evaluating explanations based on coherence also nicely resolves a problem in abduc-

tion, that of deciding on the appropriate level of speci�city of explanations. Previous

approaches fall into several categories: most speci�c abduction, least speci�c ab-

duction, cost-based (weighted) abduction, and predicate speci�c abduction. In most

speci�c abduction, the assumptions made must be basic, i.e., they cannot be \interme-

diate" assumptions that are themselves provable by assuming some other (more basic)

assumptions

[

13

]

. In least speci�c abduction, the only allowable assumptions are the

input atoms

[

66

]

. In cost-based abduction, costs (or weights) are assigned to the an-

tecedents of backward-chaining rules in order to inuence the decision on whether to

backward-chain on a rule

[

30

]

. In predicate speci�c abduction, the assumptions made

must have predicates from a pre-determined set of predicates.

However, none of the above approaches is completely satisfactory. Least speci�c

abduction is too restrictive since frequently, assumptions other than the input atoms
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must be made, such as those to be inferred by a reader. Most speci�c abduction

is also too rigid since it is not always the case that we want to explain everything

in terms of every available cause, since the causes that explain di�erent input atoms

may be completely unrelated to one another. Cost-based abduction could presumably

arrive at the correct explanation given the \appropriate" set of costs, but it is unclear

how the costs can be assigned in general to work on all problems. Predicate speci�c

abduction is not suitable for text understanding since the assumptions made by a

reader in text understanding are not restricted to a �xed set of predicates.

In our approach, the desired speci�city of an explanation is one which maximizes

coherence. That is, we backward-chain on rules to prove the subgoals in an explanation

only if doing so increases its overall coherence, and thus we make assumptions just

speci�c enough to connect the input atoms. Coherence has been successfully used to

determine the appropriate level of speci�city of explanations for the 50 narrative texts

processed by Accel. Hence, we believe our coherence-based approach is better than

the alternative approaches in determining the speci�city of explanations.

Finally, we want to point out that it is not our belief that simplicity is completely

irrelevant to the selection of explanations. (In fact, in the diagnosis domain, we rely on

simplicity as our evaluation metric.) Rather, we consider explanatory coherence to be

a more important criterion in selecting good explanations in text understanding and plan

recognition. As such, we evaluate explanations in the plan recognition domain based on their

coherence. When there is a tie between the coherence metric values of two explanations, we

then rely on the simplicity metric to break the tie, where the simplicity metric is de�ned

here as 1=A (A = the total number of assumptions made in an explanation). Our empirical

results to be presented later in this section con�rm that coherence is indeed a better measure

in the plan recognition domain.

3.1.3 Computation

The coherence metric as de�ned above can be e�ciently computed. We assume that the

proof graph contains no cycles, since circular justi�cation is not considered a good trait of

an explanation. Using a standard depth-�rst graph search algorithm

[

1

]

, it can be readily

shown that C can be computed in time O(l

2

�N + l � e), where l = the total number of input

atoms, N = the total number of nodes in the proof graph, and e = the total number of

directed edges in the proof graph. See

[

44

]

for more details on computing the coherence

metric.

3.2 Finding Coherent Explanations

As mentioned in Section 2, �nding the simplest abductive explanation has been shown to

be NP-hard

[

61; 62; 2; 4

]

. Unfortunately, �nding the most coherent explanation is also

NP-hard. We present a proof that a specialized instance of our problem of �nding the

most coherent explanation is NP-hard. The specialized optimization problem is: �nding
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the maximally coherent explanation that satis�es simple contradiction restrictions in a two-

level, propositional abduction model.

We will denote the coherence value of an explanation E as C(E). We show that the

corresponding decision problem is NP-complete.

3.2.1 An NP-Completeness Proof

De�nition 3.2 Maximally Coherent Explanation (MCE)

INSTANCE : A set O of observations, a set A of assumptions, a relation M � A � O

(where ha; oi 2M denotes a! o), a collection C of subsets of A (where each subset of A in

C is taken to mean that the conjunction of the assumptions in the subset is contradictory),

and a positive real number K < 1. De�ne an explanation E to be a graph hO[A

0

;M

0

i with

nodes O[A

0

and edges M

0

such that A

0

� A, M

0

�M , fajha; oi 2M

0

g = A

0

, and for every

C

i

2 C, C

i

6� A

0

. (The last condition ensures that A

0

is consistent.)

QUESTION : Is there an explanation E = hO [ A

0

;M

0

i such that C(E) � K?

Theorem 3.1 The MCE problem is NP-complete.

Proof

It is clear thatMCE is in NP. A nondeterministic algorithm for it need only guess some

graph hO [ A

0

;M

0

i and check to see whether the graph constitutes an explanation and

whether C(E) � K. This can be easily done in (nondeterministic) polynomial time.

To satisfy the second requirement of NP-completeness, we will reduce the known NP-

complete problem HITTING SET

[

25

]

to MCE. The HITTING SET problem is :

INSTANCE : A collection D of subsets of a set S, and a positive integer L.

QUESTION : Does S contain a hitting set for D of size L or less, that is, a subset S

0

� S

with jS

0

j � L and such that S

0

contains at least one element from each subset in D?

Given an instance of theHITTING SET problem hS;D; Li, where jSj = n, we construct

an instance of the MCE problem as follows:

O = fo

1

; o

2

; : : : ; o

2n�1

; o

2n

g

A = S = fa

1

; a

2

; : : : ; a

n

g

M = fha

1

; o

1

i; ha

1

; o

2

i; ha

2

; o

3

i; ha

2

; o

4

i; : : : ; ha

n

; o

2n�1

i; ha

n

; o

2n

ig

C = D

K =

n�L

2n(2n�1)=2

Clearly, the construction of such an instance takes deterministic polynomial time. It remains

to prove that D has a hitting set H of size L or less if and only if there is an explanation

E = hO [ A

0

;M

0

i such that C(E) � K.

()) Suppose D has a hitting set H where jH j � L. Let E = hO [ A

0

;M

0

i where A

0

=

S � H = fa

i

1

; a

i

2

; : : : ; a

i

n�jHj

g, M

0

= fha

i

1

; o

2i

1

�1

i; ha

i

1

; o

2i

1

i; ha

i

2

; o

2i

2

�1

i; ha

i

2

; o

2i

2

i; : : :g.

That is, there are two edges connecting every assumption in A

0

to its two corresponding

observations in the explanation. Then
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C(E) =

n� jH j

2n(2n� 1)=2

Since in addition K =

n�L

2n(2n�1)=2

and jH j � L, it follows that C(E) � K.

To prove that for each C

i

2 C, C

i

6� A

0

, assume otherwise. Then for some C

i

2 C,

C

i

� A

0

. Since H \ A

0

= ;, this implies H \ C

i

= ;, contradicting the fact that H is a

hitting set for D (= C).

(() Suppose there is an explanation E = hO [A

0

;M

0

i such that C(E) � K.

C(E) =

jA

0

j

2n(2n� 1)=2

Since C(E)� K =

n�L

2n(2n�1)=2

, it follows that jA

0

j � n � L.

Let H = S � A

0

. Then jH j = n � jA

0

j � L. To prove that H is a hitting set for D,

assume otherwise. That is, there is a subset D

i

2 D such that D

i

\H = ;. Since in addition

A

0

= S �H , and D

i

� S, it follows that D

i

� A

0

. Since D

i

2 C, this implies that the set

of assumptions A

0

is inconsistent, which contradicts that fact that E is an explanation. 2

3.2.2 Heuristic Search

Since our abduction problem of �nding the most coherent explanation contains as a special

case the abduction model formalized in the proof, our problem is clearly computationally

intractable. This justi�es the use of heuristic beam search in theAAA algorithm to compute

the (approximately) best explanations, where the best explanations are those with the

highest coherence metric, and ties are broken based on the simplicity metric of 1=A (A is

the number of assumptions made).

In the plan recognition domain, consistency checking ensures that an object cannot be

of two non-compatible sorts. This is accomplished using a subsort-supersort hierarchy in

the knowledge base that explicitly gives the various sort relationship, like a gun is a weapon,

a bus is a vehicle, etc. Consistency checking also enforces temporal constraints, such as the

�rst substep of a plan precedes its second substep, a plan cannot contain itself as a substep,

etc. Such consistency checking is achieved via procedural code. See

[

44

]

for more details.

3.3 Empirical Results

Evaluating natural language processing systems is becoming an increasingly important issue.

For instance, there is ongoing work to evaluate NLP systems that perform information

extraction from unconstrained texts

[

38

]

. We have completed an evaluation of Accel on a

test suite of 25 examples taken from Robert Goldman's PhD thesis

[

27

]

. We chose this set

of examples to test our system since we are aware of no other pre-existing set of test data

for plan recognition, and it also facilitates comparison between di�erent approaches.

The knowledge base was initially constructed so as to handle this set of 25 examples. In

order to test for generality, Ray Mooney came up with another 25 test examples unbeknown
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to the knowledge base builder (Hwee Tou Ng). The intent is that these additional examples

will test for other novel combinations and sequences of actions that the knowledge base

constructed for the initial 25 examples in principle should be able to handle. We will call

the �rst set of 25 examples the training examples, and the second set of 25 examples the test

examples. Note that our evaluation methodology is similar to that of Goldman, except that

we tested Accel on a di�erent set of 25 test examples whereas Goldman tested his system's

ability to pair up an additional set of 25 similar examples to the initial 25 examples. Hence,

our evaluation criterion is tougher.

Examples of the 50 narrative texts processed by Accel include: \Bill went to the

liquor-store. He pointed a gun at the owner."; \Bill took a bus to a restaurant. He drank

a milkshake. He pointed a gun at the owner. He got some money from him."; \Fred

got a gun. He went to the restaurant. He packed a suitcase."; etc. The knowledge base

axioms are formulated such that higher-level plans (like shopping and robbing) together

with appropriate role-�ller assumptions (like someone is the shopper of a shopping plan

or the robber of a robbing plan) imply the input atoms representing the observed actions

(like going to a store and pointing a gun). Below are some examples of the knowledge base

axioms:

inst(G; going)  inst(S; shopping) ^ go-step(S;G)

goer(G;P )  inst(S; shopping) ^ go-step(S;G) ^

shopper(S; P )

dest-go(G;P )  inst(S; shopping) ^ go-step(S;G) ^

store(S; P )

The �rst axiom asserts that if S is a shopping event and the go-step of S is G, then G is a

going event; the second axiom asserts that if S is a shopping event, the go-step of S is G,

and the shopper of S is P , then the goer of G (i.e., the agent of the going event G) is P ;

and so on.

The plans in the knowledge base include shopping, robbing, restaurant dining, traveling

in a vehicle (bus, taxi, or plane), partying, and jogging. Each of these plans in turn has

subplans, and some of the plans contain recursive subplans. For instance, traveling by plane

includes the subplan of traveling (in some vehicle) to the airport to catch a plane. For each

example, a set of input atoms representing the sentences is given to Accel. To give a sense

of the size of our examples and the knowledge base used, there is a total of 107 KB rules, 45

assumption-nogoods, and 70 taxonomy-sort symbols. Every taxonomy-sort symbol p will

add an axiom (in addition to the 107 KB rules) of the form inst(X; p)! inst(X; supersort-

of -p). The average number and maximum number of input atoms per example are 12.6

and 26 respectively. The knowledge base and the 50 examples are included in

[

44

]

.

For each example, the correct explanation was determined based on the authors' intu-

ition before running the example. To measure the quality of an explanation computed by

Accel, we compared it to the correct explanation and recorded three error rates: the recall

error rate R = the number of missing assumptions divided by the number of assumptions

in the correct explanation, the precision error rate P = the number of excess assumptions
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Example Coherence Simplicity

type R P O R P O

Training 0.2% 0% 0.1% 26% 25% 25%

Test 2% 2% 2% 39% 38% 38%

All 1.1% 1% 1% 32% 31% 32%

Table 3: Empirical results comparing coherence and simplicity.

divided by the number of assumptions in the computed explanation, and the overall error

rate O = the average of the recall and precision error rates. (We used similar quality mea-

sures and terminology as in

[

38

]

.) If more than one best explanations are computed for an

example, we take the error rates for the example to be the average of the error rates over

all the best explanations.

We set the beam widths of AAA at �

inter

= 10 and �

intra

= 30 when processing the set

of 50 examples. We ran Accel on the 50 examples using two di�erent evaluation metrics:

the coherence metric (breaking ties based on simplicity) and the simplicity metric. The

empirical results are summarized in Table 3, which shows the average recall (R), precision

(P), and overall (O) error rates for the training examples, test examples, and all examples.

The average run time per example is 1.83 minutes on a Sun Sparc 2 workstation.

The empirical results demonstrate that Accel can e�ciently process these narrative

texts, and it is su�ciently general to be able to handle similar plan recognition problems not

known to the system developer in advance. Furthermore, coherence consistently performs

better than simplicity on the examples tested.

3.4 Comparison with the Probabilistic Approach

Charniak and Goldman

[

9; 8

]

have adopted the Bayesian probabilistic approach to plan

recognition and text understanding. In this approach, an explanation is selected based on

the conditional probabilities of the abduced events given the observations stated in the input

text. As mentioned earlier, the �rst 25 training examples used in our system were taken from

Goldman's thesis and these examples have been successfully processed based on �nding the

most probable explanation. Note that Accel achieved results similar to Goldman's system

on the 25 training examples. Almost all the best explanations are found even though our

knowledge base does not contain any probabilistic or likelihood information.

This may seem surprising. In the probabilistic approach, the primary purpose of a

priori probabilities is to select a most likely explanation when there are otherwise multiple

competing explanations. For instance, in the sentence \John went to the supermarket.", a

higher a priori probability of someone shopping at the supermarket as compared to robbing

the supermarket enables the supermarket shopping interpretation to be selected over the

supermarket robbing interpretation. In our system, we achieve an analogous e�ect by

having an axiom in the knowledge base that explains supermarket in terms of supermarket

shopping, but the knowledge base does not have the corresponding axiom for \supermarket

robbing" that explains supermarket. That is, we have the following axiom in the knowledge

base:
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Hunting (H) Robbing (R) Shopping (S)

Get Gun (G) Enter Store (E)

Figure 5: The Bayesian network for \John got a gun. He entered the grocery store."

inst(S; smarket-shopping) ^ store(S; P )! inst(P; smarket)

but not

inst(S; smarket-robbing) ^ store(S; P )! inst(P; smarket)

This is justi�ed since supermarket shopping is a commonly occurring plan, but not super-

market robbing. (In fact, the knowledge base does not have the high-level plan supermarket-

robbing. Only robbing is present as a high-level plan in the knowledge base.) It then follows

that supermarket shopping is a more coherent interpretation of \John went to the super-

market." since supermarket shopping explains and thus connects both supermarket and

the going action, whereas robbing only explains the going action but not supermarket.

With this style of axiomatization and the use of the coherence metric, Accel is able

to select the correct explanation without resorting to the use of numeric probabilities. In

essence, what is achieved by numeric probabilities in the probabilistic approach is accom-

plished by the judicious use of logical axioms. This is in contrast to the probabilistic

approach which critically depends on knowledge about the numerous prior and posterior

probabilities of the nodes in a Bayesian network constructed from the input sentences. In

practice, such knowledge may not always be available in the required form. For example,

in the probabilistic approach, in order to understand the sentences \John got a rope. He

killed himself.", one needs to know the prior probability of a hanging event, the prior prob-

ability of an entity being a rope, etc, which in turn necessitates making the assumptions

that there are 10

20

things in the world, out of which there are 10

9

ropes, 10

15

get events,

10

3

hangings, etc

[

9

]

. Engineering an appropriate set of probabilities is a major weakness

of the probabilistic approach to text understanding.

In addition, the most probable interpretation selected depends quite critically on the

speci�c values assigned to the various probabilities, and reasonable probability values may

result in the wrong interpretation being selected. For example, consider the sentences

\John got a gun. He entered the grocery store." Figure 5 shows a simple Bayesian network

constructed for these sentences.

Suppose we adopt the following reasonable estimates for the various prior and posterior

probabilities: P (h) = 10

�3

; P (r) = 10

�5

; P (s) = 10

�2

; P (g j h; r) = 0:95; P (g j h; r) =

P (g j h; r) = 0:90; P (g j h; r) = 0:01; P (e j r; s) = 0:95; P (e j r; s) = P (e j r; s) = 0:90;

and P (e j r; s) = 0:01. Note that under these probability estimates, shopping is more

probable than either hunting or robbing a priori. From these estimates, we can compute
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P (r j g; e) = 0:038, P (h j g; e) = 0:080, P (s j g; e) = 0:459, and P (h; s j g; e) = 0:038.

Since the conditional probability of shopping given the observations get-gun and enter-

store is the highest, the chosen interpretation is that John is shopping in the store! Even

though the chosen probability estimates are quite reasonable, the preferred interpretation

that John is robbing the grocery store is not selected. Furthermore, suppose all the above

prior and posterior probabilities remain the same except that P (r) = 1:222 � 10

�4

. Then

P (r j g; e) � P (s j g; e) � 0:3249, and for P (r) > 1:222 � 10

�4

, P (r j g; e) becomes the

highest of all the conditional probabilities. This suggests that the selected interpretation is

quite sensitive to slight variation in the estimated subjective probabilities. Note that the

correct interpretation that John is robbing the store will be selected using our coherence

metric, since the robbing interpretation has a positive coherence value compared to the zero

coherence of hunting or shopping.

Besides the problem of engineering the numerous prior and posterior probabilities of

the nodes in a Bayesian network, the probabilistic approach does not take into account the

importance of text coherence. Selecting an interpretation based solely on the probability of

propositions about the situation being described is ignoring the fact that these propositions

are adjacent sentences in a natural language text, not just random facts observed in the

world.

Cost-based abduction is another scheme proposed by

[

30

]

to select an interpretation

based on the cost of an abductive proof. However, as shown in

[

11

]

, cost-based abduction

can be given a probabilistic semantics. Therefore, cost-based abduction can be regarded as

a kind of probabilistic approach, and it su�ers from the same problems.

In summary, our method yields the correct interpretations without the heavy machinery

of the probabilistic approach, and consistently produces more accurate interpretations than

a metric based on simplicity. The approach generalized well to novel test examples. Our

empirical results indicate that maximizing connections between observations is an important

property of a good explanation in plan recognition.

4 Diagnosis Based on Set Covering

4.1 Generalized Set Covering

Over the past decade, Reggia and his colleagues have developed an increasingly sophisticated

theory of diagnosis, the Generalized Set Covering (GSC) model, and applied the theory

primarily to medical disease diagnosis

[

55

]

.

De�nition 4.1 The basic diagnostic problem in the GSC model is de�ned by four sets:

(D;M;C;M

+

)

D: A �nite set of potential disorders

M : A �nite set of potential manifestations (symptoms)

C � D �M : A causation relation where (d;m) 2 C means \d may cause m"

M

+

�M : The set of observed manifestations for the current case
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E � D is called a cover of M

+

i� for each m 2 M

+

there exists d 2 E such that (d;m) 2

C. A cover is said to be minimum if its cardinality is the smallest among all covers and

irredundant (minimal) if none of its proper subsets is also a cover.

Depending on the domain, one may consider all minimum or all minimal covers of the

observed symptoms as the best diagnoses.

4.2 Set-Covering-Based Diagnosis as Abduction

We can map a GSC diagnostic problem into an abduction problem in Accel as follows:

Let the domain theory T be the set of axioms fd ! mj(d;m) 2 Cg, and let the input

atoms O =

V

m2M

+

m. We use predicate speci�c abduction such that only atoms d 2 D are

assumable.

Theorem 4.1 The set of covers of GSC = the set of explanations in Accel.

Proof Let E = fd

1

; : : : ; d

r

g;M

+

= fm

1

; : : : ; m

s

g.

()) Let E be a cover of M

+

.

Note that d

1

^ : : :^ d

r

^ T is consistent.

Since E is a cover of M

+

, for each m

j

2 M

+

, there exists d

i

2 E such that (d

i

; m

j

) 2 C.

That is,

d

i

^ T j= m

j

It follows that d

1

^ : : :^ d

r

^ T j= m

j

for each m

j

2M

+

. Hence,

d

1

^ : : :^ d

r

^ T j= m

1

^ : : :^m

s

Therefore, E is an explanation for m

1

^ : : :^m

s

.

(() Let E be an explanation for m

1

^ : : :^m

s

. That is,

d

1

^ : : :^ d

r

^ T j= m

1

^ : : :^m

s

Since T = fd! mj(d;m) 2 Cg, it follows that for each m

j

2M

+

, there exists d

i

2 E such

that (d

i

; m

j

) 2 C. (For if there is no such d

i

2 E, then d

1

^ : : :^d

r

^T ^:m

j

is consistent,

contradicting d

1

^ : : : ^ d

r

^ T j= m

1

^ : : :^m

s

.)

Hence E is a cover of M

+

. 2

It follows from this theorem that the set of all minimal covers of GSC is identical to the

set of all minimal explanations in Accel.

2

Since the logical abduction approach is based on a more expressive representation lan-

guage, it can accommodate more naturally \causal chaining"

[

55

]

, incompatible disorders,

and symptoms caused by combinations of disorders. Causal chaining can be achieved in

logical abduction by allowing backward-chaining of depth greater than one. Incompatible

disorders can be enforced through consistency checking by adding nogoods d

1

^d

2

! false.

2

Actually, that all minimal covers of GSC are all minimal explanations in abduction also follows as a

corollary of two published theorems, Theorem 7.1 in

[

63

]

and Theorem 4.2 in

[

57

]

.
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A symptom s that is caused by multiple, simultaneous disorders d

1

; : : : ; d

n

can be encoded

as d

1

^ : : :^ d

n

! s.

A standard concern with the logical approach is that a disorder may not always cause

all of its manifestations. In this case, the axiom d ! m is too strong since assuming d

would be inconsistent if :m is observed. As described in

[

57

]

, this problem is easily handled

by making d ! m a potential assumption rather than an axiom when the symptom is

not deterministic. If assumptions are required to be atomic (as in Accel), then one can

achieve the same e�ect by adding an extra unique antecedent to rules for nondeterministic

symptoms, d ^ a! m, where a represents the assumption that d actually causes m in the

current case.

3

4.3 Empirical Results

Since GSC diagnostic problems can be nicely represented as abduction problems, the re-

maining question is whether a general logic-based abductive system can solve such problems

e�ciently. Furthermore, because the GSC diagnostic problem is NP-hard

[

62

]

, the issue then

becomes whether a logical abductive system can solve real problems in reasonable time and

is competitive with existing set-covering algorithms. To address this issue, we tested Accel

on the medical problem studied in

[

73

]

, which involves determining the areas of the brain

that were damaged in a stroke. There are a total of 25 brain areas (e.g. right frontal lobe)

whose damage can explain 37 basic symptom types (e.g. impaired gag reex). The knowl-

edge base is quite large, consisting of 648 rules of the form: d! m. We were only able to

obtain 50 of the original 100 cases from the authors of the initial study, each consisting of

an average of 8.56 symptoms.

Accel e�ciently computed all of the minimal (w.r.t. subset) explanations in an average

of 2.4 seconds per case on a Sun Sparc 2 workstation. Unfortunately, we could not compare

this result to that obtained in the original study, since no information on run time was

provided. However, the empirical results strongly suggest that a general abductive system

can solve real diagnostic problems in reasonable time.

Since abduction computes the same explanations as set covering when given the same

evaluation criteria, Accel should replicate the accuracy results of the original study. As

discussed in the original study, minimality is too unrestrictive to produce useful results

(Accel returned an average of 26.6 minimal diagnoses per case). With minimum cardi-

nality, Accel produced an average of only 4.6 diagnoses per case. In 44% of the cases,

one of these diagnoses matches the expert's exactly; and in another 46% of the cases, one

of the system's diagnoses was a subset or superset of the expert's (called a \close match"

in

[

73

]

). The remaining 10% of the cases have a diagnosis that either partially matches

the expert's (2%) or all of the diagnoses are totally wrong (8%). These results are slightly

better than those reported in the original study: 6.5 diagnoses/case with 40% exact, 38%

close, 5% partial, 17% wrong. This is presumably due to the fact that our results are based

on only 50 of the original 100 cases. Two other evaluation metrics reported in the original

3

If minimum covers are desired, then the extra assumptions should not count as contributing to the size

of the cover.
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study, most-probable and minimum-collapsed, performed even better. In

[

73

]

, it is claimed

that, although there have been no direct comparisons, the results from any of the covering

metrics appear more promising than those obtained from standard rule-based approaches

to this problem.

In summary, the results presented in this section demonstrate that our general-purpose

logic-based abductive system can e�ectively represent and e�ciently solve large realistic

problems suitable for set-covering methods. Consequently, the desirability of the existing

special-purpose approach for such problems is lessened. The logical approach is more general

and exible, yet capable of e�ciently solving problems in this more restrictive class.

5 Model-Based Diagnosis via Abduction

5.1 Introduction

Accel also performs model-based diagnosis, which concerns inferring faults from �rst prin-

ciples given knowledge about the correct structure and behavior of a system. The model-

based approach to diagnosis has some advantages over the associational, heuristic rule-based

approach of conventional expert systems. The model-based approach is compositional in

that it lets us de�ne models for a library of basic components, and it works on all systems

composed from those components. The system designer can focus on getting the component

models right, leading to more robust and sound diagnostic systems. The potential is also

better for veri�cation of the underlying knowledge base.

Much research in model-based diagnosis has taken the consistency-based approach and

has been applied primarily to devices with static, persistent states such as combinational

logic circuits

[

15; 17; 63; 18

]

. In the consistency-based approach, a diagnosis is a set of

normality and abnormality assumptions about device components that are consistent with

the observations and the system description. This is in contrast to the abductive approach

of diagnosis used in Accel, where normality and abnormality assumptions about device

components together with the system description must imply or explain the observations.

Poole has proved that the consistency-based and abductive approaches are equivalent

for propositional theories

[

57

]

, and Konolige has extended the conditions under which equiv-

alence holds to general �rst-order causal theories allowing for correlations, uncertainty, and

acyclicity in the causal structure

[

33

]

.

4

In view of such formal equivalence results, issues

such as ease of representation and computational e�ciency are most important. Our empir-

ical results suggest that a number of diagnostic problems, ranging from combinational logic

circuits to continuous dynamic systems such as a proportional temperature controller and

the water balance system of the human kidney, can be e�ectively represented and e�ciently

diagnosed using an abductive approach.

Research in model-based diagnosis can also be classi�ed according to whether infor-

mation about fault models is utilized in diagnosis. The normality-based approach of

[

63;

4

Abduction appears to be better in some cases, as Konolige has reported that \the utility of the consis-

tency based method is open to question", since in explanatory diagnostic tasks, \the answers it produces

may have elements that are not relevant to a causal explanation"

[

33, page 257

]

.
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17

]

does not utilize fault models and any misbehavior di�ering from the correct functioning

of a device can be diagnosed. However, the lack of fault models may result in hypothesizing

implausible faults

[

18; 69

]

. On the other hand, the work of

[

21

]

is fault-based in that the fault

models are a priori determined and given to the diagnostic system. Hence, unanticipated

faults are not detected. Accel combines both normality-based and fault-based diagnosis

in that information about fault models is used in diagnosis and any deviation from the

correct behavior can be diagnosed. The diagnostic systems Sherlock

[

18

]

and GDE+

[

69

]

have similar capability.

In the model-based diagnosis domain, Accel uses predicate speci�c abduction, where

the assumable atoms include component behavioral mode assumptions of three types: (1)

a component is normal; (2) a component is in some known fault mode; or (3) a component

is abnormal (but not necessarily in any known fault mode). Other assumable atoms are

\auxiliary" assumptions including assumptions that the input values of a device are as given,

and in dynamic system diagnosis, that some qualitative magnitude is positive/negative,

that two qualitative values obey some corresponding value constraint, etc. (More details

about these auxiliary assumptions will be provided later.) Explanations in this domain are

evaluated based on simplicity, where the best explanation is one with the least number of

components that are not normal, which include components that are in some known fault

mode and those that are not. Normality assumptions and auxiliary assumptions are \free"

and do not a�ect the simplicity metric of an explanation. If two explanations have the

same number of components that are not normal, then the one with the most number of

components that are in some known fault mode is preferred.

5.2 Diagnosing Logic Circuits

5.2.1 Representation

In this section, we describe how the abductive approach of Accel is used to diagnose a full

adder which is representative of standard, combinational logic circuits. Figure 6(a) shows

a full adder which consists of 2 exclusive-or gates (x1, x2), two and gates (a1, a2), and

one or gate (o1). We assume that each gate has 4 behavioral modes: normal (the output

bit reects the correct gate behavior at all times), stuck-at-0 (the output bit is stuck at 0

regardless of the input bits), stuck-at-1 (the output bit is stuck at 1 regardless of the input

bits), and abnormal (the behavior of the gate is unconstrained).

The knowledge base axiom that describes the correct behavior of an exclusive-or gate

is:

out(X;W;T )  xorg(X)^ in1(X;U;T )^ in2(X;V; T) ^ norm(X)^ xor(U; V;W)

The axiom asserts that if X is an exclusive-or gate (xorg(X)), the �rst input of X is U at

time T (in1(X;U; T)), the second input of X is V at time T (in2(X;V; T )), X is normal

(norm(X)), and the exclusive-or of U and V isW (xor(U; V;W )), then the output ofX isW

at time T (out(X;W;T )). In addition we have the facts xor(0; 0; 0), xor(0; 1; 1), xor(1; 0; 1),

and xor(1; 1; 0). The axioms for and gates and or gates are similar.
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Figure 6: (a) Full adder; (b) Temperature controller.

The following axiom describes the fault mode stuck-at-0 for all gates:

out(X; 0; T ) in1(X;U;T) ^ in2(X; V; T )^ stuck-at-0(X)

The axiom for the fault mode stuck-at-1 is similar. Note that when a gate is assumed to be

abnormal, no prediction can be made about its output bit. However, abduction requires that

the observations be proved from the component behavioral mode assumptions (including

the abnormality assumptions). To overcome this problem, we employ a technique used by

Poole to \parameterize" the abnormality assumption as follows

[

59

]

:

out(X;W;T ) in1(X;U;T )^ in2(X;V; T) ^ ab(X;U;V;W;T )

The antecedent ab(X;U;V;W;T ) in the rule is to be interpreted as \X is abnormal in such

a way that at time T , given input bits U and V , its output bit is W". Note that for any

input bits U and V , and any output bit W , the above axiom always allows us to assume

that the component is abnormal by making the assumption ab(X;U;V;W;T). This axiom

achieves our objective of being able to prove the output observations from the parameterized

abnormality assumption ab(X;U;V;W;T ).

So far, the axioms given are not speci�c to the full adder; they are used to model the

behavior of exclusive-or gates, and gates, and or gates. We also need axioms that specify

the connections among the gates in the given adder, such as

in1(a1; X; T) in1(x1; X; T )

as well as facts that identify the �ve components: xorg(x1); xorg(x2), etc. Furthermore,

in order to allow backward-chaining to terminate at the terminal input values of the full

adder (these terminal input values cannot be further explained in terms of the other gate

values), we need the axiom

in1(x1; X; T ) given-in1(x1; X; T )
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and two other similar axioms for the second input of x1 and the �rst input of a2. We let

given-in1(: : :) (and given-in2(: : :)) be assumable. They are the auxiliary assumptions, and

do not a�ect the simplicity metric of an explanation.

5.2.2 Empirical Results

To assess the performance of Accel, we randomly generated 10 scenarios by assuming that

the various behavioral modes of each gate occur with the following probabilities: norm

65%, stuck-at-0 15%, stuck-at-1 15%, and ab 5%. Each of the 10 scenarios that was

actually generated had one or two gates that were faulty, and the scenarios included some

where a gate was abnormal (ab). For each scenario, we gave Accel I/O tuples where the

input-output bits of the adder di�ered from those of a correctly functioning adder. (By an

I/O tuple, we mean a particular combination of input and output values of the full adder.)

For each I/O tuple, we �rst gave the three input bits and the two output bits of the adder,

and then the output bits of the three gates x1, a1, and a2, in that order. For each scenario,

we stopped as soon as the best diagnosis found by Accel is the correct diagnosis. We

recorded the number of I/O tuples needed to converge on the correct diagnosis for each

scenario. On a Sun Sparc 2 workstation, Accel took an average of 17 seconds to identify

the correct diagnosis for the 10 scenarios tested. The average number of I/O tuples needed

before the correct diagnosis was found is 2.1.

In summary, the abductive approach of diagnosis used inAccel can e�ectively represent

and e�ciently diagnose logic circuits of the kind previously diagnosed by the consistency-

based approach.

5.3 Diagnosing Dynamic Systems

5.3.1 Representation

Much research in model-based diagnosis has focused on diagnosing static, discrete devices

like logic circuits. However, many devices and biological systems are continuous and dy-

namic and require reasoning about changes in behavior over time. Although there has been

a great deal of research on modeling and simulating such systems

[

35; 23

]

, there have been

few attempts to apply general, model-based diagnostic methods to them. The work of

[

43;

42

]

attempts to address this de�ciency by diagnosing dynamic systems using the consistency-

based approach. In this section, we present an abductive approach to diagnosing continuous,

dynamic systems.

We adopt the representation of continuous dynamic systems used in the work of Kuipers'

qualitative simulation (QSIM)

[

35

]

. The continuously changing behavior of a dynamic

system over time is represented as a sequence of qualitative states, where a qualitative

state consists of the qualitative values of the variables of the system. A qualitative value

has two components: a qualitative magnitude (qmag) and a qualitative direction (qdir).

A qualitative magnitude can either be a landmark value or an open interval between two

landmark values, where a landmark value is a value of special signi�cance that a variable

takes on at some point in time. A qualitative direction can be one of increasing (inc),

decreasing (dec), or steady (std).
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The behavior of each dynamic system is governed by a set of qualitative constraints. The

qualitative constraints on the temperature controller (Figure 6(b)) include (each constraint

is preceded by a name identifying that constraint) S : T

ob

i

= T

i

, K : T

ob

s

= T

s

, C

1

: T

s

�T

i

=

e, C

2

: m

+

0

(e) = a, O : P

ob

�W = P , and E : a � P = HF

in

. The m

+

0

(e) = a constraint

asserts that there is a strictly monotonically increasing function between e and a. However,

the exact form of this monotonic function is unspeci�ed. This accounts for the qualitative

nature of the constraint. The purpose of this device is to control the temperature T

ob

i

in the room, so that if the device is connected to a power source with power P

ob

, the

power switch is turned on (represented as W = on), and the temperature T

ob

s

set by the

temperature control knob di�ers from the temperature T

ob

i

in the room, heat ow HF

in

(in the form of hot air or cold air, depending on the direction of temperature di�erence)

will be generated. Furthermore, the amount of heat ow generated is proportional to the

temperature di�erence T

ob

s

� T

ob

i

.

We have successfully represented QSIM's knowledge about the various qualitative con-

straints (=;�; �; =; d=dt;m

+

0

) in Horn-clause axioms in a way suitable for logic-based ab-

ductive diagnosis. Since these Horn-clause axioms encode general knowledge about QSIM

constraints, they are needed in the diagnosis of every dynamic system. These axioms en-

code the various qualitative constraints by de�ning a \holds.constraint-type" predicate for

each type of qualitative constraint. For example, one of the 9 axioms that encode the m

+

0

constraint is:

holds:m

+

0

(F;G;M1; inc;M2; inc) pos(M1) ^ pos(M2) ^ corr-mag:m

+

0

(F;G;M1;M2)

holds:m

+

0

(F;G;M1;D1;M2;D2) asserts that m

+

0

(F ) = G holds with the qualitative value

of the variable F = hM1; D1i and the qualitative value of the variable G = hM2; D2i.

pos(M1) (neg(M1)) asserts that the qualitative magnitude M1 is positive (negative).

corr-mag:m

+

0

(F;G;M1;M2) asserts thatm

+

0

(F ) = G holds with the qualitative magnitude

of F = M1 and the qualitative magnitude ofG = M2. In QSIM, (M1;M2) are referred to as

corresponding values. The 9 axioms for the m

+

0

constraint cover all the distinct possibilities

in which m

+

0

(F ) = G holds since the qualitative magnitude of F can be positive, negative,

or zero, and its qualitative direction can be inc, std, or dec. The other \holds.constraint-

type" predicates, holds:�, holds:�, holds:=, and holds:d=dt, are de�ned by 39, 97, 70, and

9 axioms, respectively. The axioms for holds: � (F;G;H;M1; D1;M2;D2;M3;D3) ensure

that, among other things, the �rst-order derivative constraint F �G

0

+F

0

�G = H

0

is obeyed.

The exact axioms for all the qualitative constraints are listed in

[

44

]

.

Besides the axioms that encode general QSIM constraints, there are also Horn-clause

axioms that encode knowledge about a speci�c dynamic system. We assume in this paper

that a dynamic system malfunctions because of one or more violated constraints, and that

the task of mapping from violated constraints to the a�ected components is done by some

other module external to Accel. The following axioms describe the normal behavior:

qval(ti;M1;D1; T)  norm(s) ^ qval(ti-ob;M1;D1; T )

qval(e;M3;D3; T)  norm(c1) ^ qval(ts;M1;D1; T )^ qval(ti;M2;D2; T )^

holds:� (ts; ti; e;M1; D1;M2;D2;M3;D3)
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qval(ti;M1;D1; T ) asserts that the qualitative value of the variable ti is hM1; D1i at time

(qualitative state) T . The �rst axiom asserts that if constraint s is normal, and the quali-

tative value of ti-ob is hM1; D1i at time T , then the qualitative value of ti is also hM1; D1i

at time T . This encodes the equality constraint between the variables ti-ob and ti. The

second axiom asserts that if constraint c1 is normal, the qualitative value of ts is hM1; D1i

at time T , the qualitative value of ti is hM2; D2i at time T , and ts � ti = e holds with

ts = hM1; D1i; ti = hM2; D2i; e = hM3; D3i, then the qualitative value of e is hM3; D3i at

time T . Similar axioms encode the other constraints.

Note that atoms with the predicate qval are not assumable. As such, in order to allow

backward-chaining to terminate at the terminal input values of a dynamic device (these

terminal input values cannot be further explained), we also need the axiom

qval(ti-ob;M1; D1; T ) given-qval(ti-ob;M1; D1; T )

and three other similar axioms for ts-ob, p-ob, and w. We let given-qval(: : :) be assumable.

They are part of the \auxiliary" assumptions in an abductive explanation.

Note the directionality in which one qualitative value is explained in terms of other

qualitative values. Since abductive diagnosis requires that the input observations (which

consists of the qualitative values of the variables of a dynamic system) be proved, the axioms

are formulated in such a way that the output values (e.g., qval(hfin; : : :)) of a dynamic sys-

tem can be proved from normality assumptions (e.g., norm(s)), fault mode assumptions,

and auxiliary assumptions about the input values (e.g., given-qval(ti-ob; : : :)) and the qual-

itative magnitudes and corresponding values of the variables (these are introduced when

Accel attempts to prove the holds.constraint-type atoms).

For the temperature controller, we also assume that the components corresponding to

the various constraints exhibit the following fault modes: stuck-at-0-std (S;K;C

1

; C

2

; O; E),

stuck-at-roomtemp-std (S), stuck-at-1st-in (C

1

; O), and stuck-at-2nd-in (C

1

). Under the

fault mode stuck-at-0-std (stuck-at-roomtemp-std), the output of a component is h0; stdi

(hroom-temp; stdi) regardless of the input values. Under the fault mode stuck-at-1st-in

(stuck-at-2nd-in), the output of a component is stuck at its �rst (second) input. One Horn-

clause axiom is used to encode one fault mode, as follows:

qval(ti; 0; std; T )  stuck-at-0-std(s) ^ qval(ti-ob;M1;D1; T )

qval(e;M1;D1; T )  stuck-at-1st-in(c1) ^ qval(ts;M1; D1; T ) ^ qval(ti;M2; D2; T )

The Horn-clause axioms in Accel that represent the qualitative constraints capture the

knowledge that QSIM uses to propagate qualitative values across constraints in order to

complete the qualitative values of variables in a qualitative state. In Accel, such knowl-

edge is used for the purpose of diagnosis. However, since the knowledge is now encoded

declaratively, it can also be used for simulation purpose by a forward-chaining inference

procedure. In fact, QSIM can be viewed as a special-purpose theorem prover for predicting

the behavior of dynamic systems described by qualitative constraints. However, not all of

QSIM's knowledge in simulation has been captured in Accel. Speci�cally, knowledge of

state transition that QSIM uses to generate the next qualitative state(s) from an initial

qualitative state is not encoded in Accel, since such knowledge is not needed in diagnosis.
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5.3.2 Empirical Results

We randomly generated 10 scenarios for the temperature controller where each scenario

contains one to two faults and in which no heat ow was generated into the room. For

each scenario, we gave the input atoms representing the qualitative values of the vari-

ables in the following order: T

ob

s

; T

ob

i

; P

ob

;W;HF

in

at the initial qualitative state (t

1

);

T

ob

s

; T

ob

i

; P

ob

;W;HF

in

at the next distinguished time-point qualitative state (t

2

); and the

intermediate variables T

s

; T

i

; e; a; P at state t

2

.

In 9 out of the 10 scenarios, Accel found the correct diagnosis as its best diagnosis.

The one scenario in which Accel failed to �nd the best diagnosis has two faults fstuck-

at-0-std(c1); stuck-at-0-std(c2)g. In this case, the best diagnosis that Accel found after

processing all the intermediate variables is fstuck-at-0-std(c1)g. This is as it should be,

since when c1 is stuck at h0; stdi, the correct behavior of c2 if it is normal is to output

a = h0; stdi at all times, which is indistinguishable from the behavior of c2 if it is in the

fault mode stuck-at-0-std. That c2 is in fact faulty would be detected when c1 is replaced by

a normal, working component and the controller is still found to be malfunctioning. Overall,

the average run time per scenario is 4.24 minutes, and the average number of measurements

of intermediate variables needed to arrive at the correct diagnosis is 4.4.

We also tested Accel on 10 faulty scenarios of the kidney water balance system, a

QSIM model of which is given in

[

34; 36

]

. The system has 7 qualitative constraints and

10 qualitative variables. Two of the scenarios tested correspond to the disorders Diabetes

Insipidus and the Syndrome of Inappropriate Secretion of Anti-Diuretic Hormone (SIADH),

which are disorders found in real patients. Accel found the correct diagnosis as its best

diagnosis in all the 10 scenarios. The average run time per scenario is 6.98 minutes, and the

average number of measurements of intermediate variables needed to arrive at the correct

diagnosis is 3.7.

The empirical results indicate that Accel is capable of e�ciently diagnosing dynamic

systems of the kind modeled by QSIM, and that �rst-order Horn-clause axioms can ef-

fectively represent the qualitative constraints of such systems for the purpose of e�cient

model-based diagnosis.

6 The Utility of Caching

To substantiate our claim that caching is indeed very important in improving the e�ciency of

abduction, we ran Accel with and without caching on a randomly selected set of problems

from each domain. We would have run Accel on all the problems except that some of

them took too long (more than one hour) to run without caching, and frequently did not

successfully run to completion before overowing memory.

For each problem selected, we ran AAA in its normal caching mode as well as in

non-caching mode. If caching is not done, each time when compute-label returns all the

abductive proofs of a subgoal, these proofs are not cached, so that the next time when the

same subgoal is encountered again, its abductive proofs are recomputed. Table 4 shows

the performance �gures comparing the caching and non-caching versions. In the table,

run time is the elapsed time (in minutes) on a Sun Sparc 2 workstation running Lucid
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Problem Time (min) Inference count

No-cache Cache speedup No-cache Cache ratio

train1 22.19 3.10 7.16 1418 138 10.27

train8 0.43 0.24 1.79 118 45 2.62

train13 11.42 2.02 5.65 919 120 7.66

test9 >25.04 2.96 >8.46 >1401 127 >11.03

test19 >26.78 4.17 >6.42 >1561 209 >7.47

brain5 0.16 0.07 2.29 2198 142 15.48

brain10 0.07 0.03 2.33 1004 63 15.94

brain42 0.05 0.02 2.50 783 100 7.83

adder1 43.77 0.51 85.82 157210 749 209.89

adder4 3.81 0.08 47.63 30225 237 127.53

adder10 4.79 0.12 39.92 38110 255 149.45

tc1 >72.53 4.70 >15.43 >17766 442 >40.19

tc4 >68.08 4.35 >15.65 >17766 415 >42.81

tc8 >68.22 4.26 >16.01 >17766 385 >46.15

kidney1 >61.24 7.86 >7.79 >8661 470 >18.42

kidney5 >65.26 7.89 >8.27 >8577 433 >19.81

Average 17.07 45.78

Table 4: Empirical results comparing caching and non-caching performance

Common Lisp; and inference count is the number of times that compute-label is called (i.e.,

the number of logical inferences). Problems denoted by train# and test# are the training

and test examples in the plan recognition domain; problems denoted by brain# are the

examples in the set covering diagnosis domain; and problems denoted by adder#, tc#,

and kidney# are the examples for adder, temperature controller, and kidney water balance

system, respectively. If Accel ran out of memory space and did not completely solve a

problem, its run time and inference count �gures are preceded by a >.

The empirical results indicate that caching can achieve speedup over an order of mag-

nitude, and similarly for the inference count ratio. The exact e�ciency improvement varies

according to the domain, with the adder problems showing the best improvement and the

set covering problems the least. They clearly show that caching is needed to implement an

e�cient abduction algorithm.

Previous systems have used caching-like mechanisms to improve their e�ciency. For

example, the SLD-resolution theorem prover of

[

22

]

caches successes and failures to avoid

repeated proof e�orts. However, he only deals with deductive theorem proving whereas

Accel deals with abductive inference. Empirical results on the use of caching has sometimes

produced conicting evidence as to its usefulness. Although Elkan achieved good results

with the use of caching in

[

22

]

, he also reported that Stickel had independently discovered

and implemented a caching scheme similar to his, but that the results Stickel obtained were

unfavorable to caching on the class of theorems Stickel investigated at the time.

As mentioned in Section 2, we believe that duplicating inference poses a more serious
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problem in abduction because multiple abductive proofs must usually be pursued in the

search for a best explanation, whereas in deduction, we are usually interested in a single

deductive proof. The need for multiple abductive proofs tends to result in more duplicate

inferences being made, since the multiple abductive proofs maintained tend to share many

identical subgoals. In

[

68

]

, Stickel has also expressed similar opinions of the \strong mo-

tivation" to \eliminate search-space redundancy" for abduction since \the presence of an

additional inference rule that allows literals to be either assumed or proved makes the search

space for abduction even larger than that for deduction". Our empirical results con�rm that

caching is indeed very e�ective in improving the e�ciency of abduction.

7 Related Work

There is a great deal of research related to abduction, plan recognition, and diagnosis. Com-

pared to Accel, previous general abduction algorithms and systems are more restrictive,

less e�cient, and not as well tested on real problems. On the other hand, related research

in the areas of plan recognition and diagnosis are more domain speci�c and not based on a

general, unifying formalism.

7.1 General Theory and Algorithms

Pople was the �rst researcher to explore abductive reasoning in AI

[

60

]

, although he was

mainly concerned with using abduction to perform disease diagnosis. Charniak and Mc-

Dermott proposed abduction as a general model for explanation, and recognized that many

diverse AI tasks, including natural language understanding, diagnosis, and image interpre-

tation, can be elegantly modeled as abduction

[

10

]

. Our work takes this hypothesis one step

further and demonstrates via an implemented system that general and e�cient abduction

for the tasks of plan recognition and diagnosis is indeed possible.

The SAA algorithm does not perform caching of partial explanations and therefore

duplicates inferences. To address this problem, Stickel has proposed a method to formulate a

goal-directed, backward-chaining algorithm \metatheoretically" for execution by a forward-

chaining reasoning system such as hyperresolution

[

68

]

. Subsumption checks in the forward-

chaining system ensure that duplicate inferences are not made, and the goal-directedness

of the backward-chaining algorithm can also be preserved. Our AAA algorithm achieves

analogous e�ects of goal-directedness and non-duplicating inference in a direct way, via

backward-chaining and caching.

Ginsberg has implemented a �rst-order ATMS using a multi-valued-logic theorem prover,

MVL

[

26

]

. Compared to Accel, MVL is a more general theorem prover for full �rst-order

predicate logic and it is capable of many kinds of reasoning including default reasoning,

circumscription, temporal reasoning, and probabilistic reasoning. However, his implemen-

tation of the �rst-order ATMS does not cache previously computed partial explanations.

This is in marked contrast to the (propositional) ATMS of de Kleer, in which caching

and sharing of explanations are the distinguishing features. Hence, Ginsberg's system is

an \ATMS" only in the sense that it is an algorithm that computes all possible proofs
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(explanations). In addition, his system has not been tested on large problems.

Kautz has developed a formal theory of plan recognition based on �rst-order predicate

logic

[

31; 32

]

. In his theory, an event hierarchy captures isa relationships between events

(abstraction hierarchy) as well as part-of relationships of events and their components (de-

composition hierarchy). One major di�erence between Kautz's theory and our work is that

his theory models plan recognition as non-monotonic deduction rather than abduction. The

di�erence is similar to that between consistency-based diagnosis and abductive diagnosis.

His theory also makes the assumption that as few top-level events occur as possible, which is

a form of the simplicity criterion, whereas Accel relies on coherence to select explanations

in plan recognition.

The computational complexity of several abductive problems has been formally ana-

lyzed. It has been shown that, even in the propositional case, computing all minimal

explanations is provably exponential

[

40; 65

]

, since in the worst case, the number of mini-

mal explanations is exponentially large. Reggia et al. have shown that �nding parsimonious

(i.e., minimum) explanations in the GSC model is NP-hard

[

62

]

. Bylander et al. have in-

vestigated the complexity of various classes of abduction

[

4

]

and have shown that unless

some very restrictive conditions are satis�ed, abduction is computationally intractable.

Note that the GSC model and the various classes of abduction studied by Reggia et

al. and Bylander et al. only concern propositional abduction in which abductive proofs

are restricted to be of depth one. Similarly, Levesque's characterization of abduction is in

terms of propositional beliefs

[

39

]

. However, our abduction model is more general in that

it allows �rst-order Horn clause axioms with variables.

To limit the computational e�orts expended in the ATMS, Forbus and de Kleer in-

troduced a \focusing" technique in which only relevant environments in an ATMS are

maintained and propagated

[

24

]

. Dressler and Farquhar used a similar focusing mechanism

in their model-based diagnostic system Coco to achieve e�cient diagnosis of logic circuits

[

19

]

. Such focusing techniques achieve pruning e�ects similar to our use of heuristic beam

search in the AAA algorithm. Focusing eliminates environments that are not implied by

some focus environments, while our heuristic beam search eliminates environments based

on their evaluation metric.

Poole's implemented system, Theorist, is a general default and abductive reasoning

system

[

58

]

. Compared toAccel, Theorist also deals with default reasoning, and it handles

full �rst-order predicate logic. However, the hypotheses (i.e., assumptions) that Theorist

can make must be given to the system a priori, while all atoms are assumable in Accel (in

the plan recognition domain). In addition, Theorist is not concerned with e�cient inference

and does not use caching to avoid redundant work, nor has it been tested on large problems.

7.2 Plan Recognition and Natural Language Understanding

7.2.1 Abductive Approaches

Several research e�orts have adopted an abductive approach to text understanding. In

[

7

]

, it is shown that noun-phrase reference determination can be achieved by an abductive

uni�cation procedure that allows for unifying two entities if it is consistent to do so. Hobbs
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et al. have used abduction to solve the four local pragmatics problems of text understanding:

reference resolution, compound nominal interpretation, syntactic ambiguity resolution, and

metonymy resolution

[

30

]

. They argued that the abductive approach provided an elegant

and thorough integration of syntax, semantics, and pragmatics, by combining the idea of

interpretation as abduction and that of parsing as deduction.

The work reported here di�ers from those of

[

7

]

and

[

30

]

in that unlike their emphasis on

mostly linguistic issues like noun-phrase reference determination and syntactic ambiguity

resolution, Accel is concerned with recognizing characters' plans in a narrative text. The

work of

[

5

]

also dealt with plan recognition, but evaluated explanations based on their

simplicity, as opposed to our coherence metric. In addition, unlike their use of marker

passing to restrict the search for explanations, we used a form of beam search to e�ciently

construct explanations.

7.2.2 Probabilistic Approaches

Inferring cause from e�ect is an inherently uncertain process | it is only plausible in-

ference. Statistics and probability theory is the established discipline of study that deals

with uncertainty. Within AI, Pearl has done extensive work on probabilistic reasoning

[

53

]

. Resolving ambiguity in natural language understanding can be formulated as rea-

soning under uncertainty, which is the approach adopted by Charniak and Goldman

[

9; 8;

27

]

. However, as explained in Section 3.4, selecting interpretations based solely on proba-

bility fails to capture the importance of text coherence.

7.2.3 Non-Abductive Approaches

Two early approaches to narrative understanding are script-based and plan-based under-

standing. In the script-based approach used by SAM

[

14

]

, knowledge of stereotypical events

are used to guide the understanding process. In the plan-based approach used by PAM

[

74;

75

]

, knowledge about the actions, plans and goals of characters are used to connect the

observed states and actions to their high level plans and goals. The realization that a com-

plete understanding of narratives requires knowledge of events, plans and goals characterizes

these early approaches

[

64

]

.

The research of Norvig involves the use of marker passing mechanism to make inferences

from narratives

[

49

]

. The knowledge base is structured in a semantic net, and inferences

are made through the collisions of markers at nodes in the semantic net. The weakness of

this approach is that in a sizable knowledge base, the spreading of markers can still lead to

many possible path collisions even when constrained by the predetermined set of allowable

inference paths. Furthermore, the semantics of these predetermined regular-expression-style

inference paths is unclear and the paths appear to be created solely for the convenience of

constraining marker movement to make the inferences desired.

One shortcoming of these non-abductive approaches is that the underlying inference

processes tend to be rather ad hoc and not based on any general, logical foundation. A

logic-based approach o�ers an expressive representation language | �rst-order predicate
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calculus, with a clear, well-understood semantics. Inferences made in plan recognition

acquire a �rm semantic foundation when they are modeled as abduction.

7.3 Diagnosis

The GSC model of Reggia et al. is essentially a propositional abduction model in which

abductive proofs are restricted to be of depth one

[

61; 62

]

. Allemang et al. have used a

similar abduction model and an approximate algorithm to compute parsimonious diagnoses

in a system that performs antibody identi�cation in the domain of red blood cell typing

[

2

]

.

Accel is more general in that it deals with �rst-order Horn clauses, and the explanations

constructed can be of any depth.

Cox and Pietrzykowski have developed a general abductive inference procedure for com-

puting fundamental causes of any observation stated as a �rst-order predicate calculus sen-

tence

[

12; 13

]

. Their theory of abduction falls under the category of most speci�c abduction.

However, their inference procedure does not utilize caching to improve e�ciency, and it has

been tested only on diagnostic problems in logic circuits.

Model-based diagnosis has recently been a very active area of research in AI

[

63; 17;

18; 69; 29

]

. This body of related work has been discussed in Section 5 when model-based

diagnosis was introduced.

7.4 Abduction in Other Domains

Thagard has independently proposed a computational theory of explanatory coherence and

applied it to the evaluation of scienti�c theories

[

72

]

. However, his theory of explanatory

coherence consists of seven principles | symmetry, explanation, analogy, data priority,

contradiction, acceptability, and system coherence. Independent criteria like simplicity

and connectedness have been collapsed into one measure which he termed \explanatory

coherence".

O'Rorke et al. have modeled scienti�c theory formation as abduction

[

52

]

. They illus-

trated how some of Lavoisier's key insights during the Chemical Revolution can be viewed

as examples of theory formation by abduction. Their system di�ers from Accel in that it

is a theory revision system designed to make changes to the rules in the underlying domain

theory, while Accel assumes that its domain theory is correct.

8 Future Work

Future research issues can be broadly classi�ed into three areas: representation and algo-

rithms, natural language understanding, and diagnosis.

8.1 Representation and Algorithms

The axioms allowed in Accel are restricted to �rst-order Horn-clause axioms for e�ciency

reasons, since linear resolution with Horn-clauses is in general more e�cient than binary
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resolution with general clauses. However, the need for full �rst-order predicate logic repre-

sentation, and hence, a general full �rst-order abduction algorithm may arise in the future.

Stickel has already showed how his upside-down meta-interpretation method for abduction

can be extended to deal with non-Horn clauses

[

68

]

.

The e�ciency of Accel can be further improved by compiling the Horn-clauses in the

knowledge base, in the same way that the e�ciency of a deductive theorem prover can be

greatly improved via clause compilation

[

67; 50

]

.

One shortcoming of the AAA algorithm is that the queue of best partial explanations

maintained may become empty at some point in computing the abductive proofs. This

can occur if the beam width �

intra

is not su�ciently large and all best partial explanations

become inconsistent after adding a new input atom. A better approach would have the

capability of recovering from an empty beam of explanations by revising the assumptions

in an inconsistent explanation in order to resolve the contradiction detected and arrive at

a consistent explanation. The work of Subramanian and Mooney addresses this issue

[

70;

71

]

. Their multistrategy learning system, Brace, combines abduction and theory revision

to incorporate observations into a domain theory

8.2 Natural Language Understanding

Accel is currently only able to deal with the plan recognition aspect of text understanding.

As mentioned in the related work section, abductive reasoning can also model noun-phrase

reference determination

[

7

]

and syntactic ambiguity resolution

[

30

]

. Accel needs to be

extended to include parsing of input sentences, and resolving lexical and syntactic ambiguity.

It is often the case that input atoms are too speci�c and cannot be directly deduced

from abductive assumptions. This problem has been reported in

[

6; 45

]

. For instance, in

the sentences \John went to the supermarket. He bought some milk.", assuming that John

was shopping at the supermarket only allows us to derive that he would buy some food,

but not necessarily milk. This problem can be overcome by generalizing explanations to

include abductive proofs of logical consequences of the input atoms. The di�culty in this

generalized de�nition of abductive explanations is to determine what are the relevant and

interesting consequences to derive and explain, since deriving all possible consequences is

clearly intractable. An example of methods to control forward inferences is that developed

for automated knowledge integration

[

41

]

.

The plan recognition knowledge in Accel primarily encodes stereotypical knowledge as

in a script-based system like SAM

[

14

]

. As such, Accel is not capable of handling novel

plans, which involve actions not explicitly de�ned as part of a common plan, yet these

actions are causally related and accomplish some high-level goal of an agent. In addition,

Accel currently fails to handle common substeps that are shared by multiple plans, for

instance, that a going action is part of both the supermarket-shopping and robbing plans.

Overloading of actions to simultaneously achieve multiple goals is known to be a common

occurrence

[

56

]

. Furthermore, Accel is currently restricted to abducing high-level plans

from observed actions, but not observed states. Hence, it will fail to abduce, for instance,

that an agent has the restaurant-dining plan when told that he is hungry. We can of course

write additional axioms to assert that a high-level plan implies an observed state, but to
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do so correctly, we must also assert when a state holds relative to the time of occurrence of

plans and actions. For example, a person is only hungry before dining at a restaurant but

not after. In other words, to properly handle the abduction of high-level plans from observed

states, Accel must be able to reason more generally about time, and the preconditions and

e�ects of actions in terms of the states that an action enables or disables. Extending Accel

to correctly handle these de�ciencies is an important area for future research.

Currently, explanations in the plan recognition domain are evaluated solely on coherence.

Future work needs to integrate likelihood information as an part of the evaluation criterion,

perhaps as a measure secondary to coherence.

8.3 Diagnosis

The work of

[

57; 59; 33

]

has revealed some interesting relationships between consistency-

based and abductive diagnosis, which are two major paradigms in model-based diagnosis.

To what extent do the two approaches coincide and di�er, especially in practical terms such

as ease of representation and diagnostic e�ciency, remains to be investigated.

Our research does not focus on gathering additional measurements to further di�erenti-

ate and narrow the diagnostic candidates. Intelligently selecting which component output

and which additional sensor values to measure is important in achieving e�cient diagno-

sis. For example, in GDE

[

17

]

, additional measurements is gathered via a method that

minimizes the expected entropy of candidate probabilities.

The use of quantitative information in qualitative simulation can greatly reduce the

ambiguity of the qualitative behavior of a dynamic system

[

37

]

. The added precision allows

better di�erential diagnosis

[

20

]

. The ability to monitor a dynamic system over time and

performs diagnosis in real time as the device operates is also important

[

20

]

. Extending

Accel to deal with quantitative knowledge and device monitoring are important future

research issues.

As mentioned earlier, normality-based diagnosis is more exible but may generate im-

plausible diagnoses, while fault-based diagnosis requires explicit knowledge of fault models.

To overcome the limitation of explicitly knowing all fault models in advance, we can instead

develop a method to automatically acquire fault models over time. This can be accomplished

by generalizing the common input-output behavior patterns as summarized by the param-

eterized abnormality assumptions of a component (e.g., ab(X;U; V;W;T)). Such a learning

module would improve the diagnostic accuracy of Accel by recognizing the common fault

modes of a device component.

9 Conclusion

Finding explanations for observed phenomena underlies a diverse set of intelligent activities,

including natural language understanding, diagnosis, scienti�c theory formation, and image

interpretation. The ubiquity of explanation underscores its importance as a research topic

in arti�cial intelligence. In this paper, we view explanation as logical abduction, which

serves as a unifying formalism for explanation.
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This paper has made several important contributions:

1. We have demonstrated the practical feasibility of a general abductive approach to

explanation by successfully building a domain-independent system, Accel, that is

general enough to perform both plan recognition and diagnosis, yet e�cient enough

to be of practical utility. We support this claim by extensively evaluating the system

on 50 narrative texts in the plan recognition domain, on 50 real patient cases in

the set covering diagnosis domain, and on 10 model-based diagnosis scenarios each

on an adder, a temperature controller, and the water balance system of the human

kidney. Except for the adder circuit, each of the knowledge bases contains hundreds

of Horn-clause rules.

2. We have developed a novel evaluation criterion, explanatory coherence, to evaluate the

quality of explanations in the plan recognition domain. We present empirical results

indicating that our coherence metric outperforms the simplicity metric in selecting

the best explanation in the plan recognition domain. Our coherence-based approach

performs as well as the probabilistic approach of plan recognition, but without the

need to engineer numerous prior and posterior probabilities.

3. We present empirical evidence showing that caching of previously computed explana-

tions is critical to the e�ciency of an abduction algorithm. Speci�cally, speedup of

more than an order of magnitude has been obtained on our test problems.

In summary, this paper has demonstrated via an implemented system that general and

e�cient abduction for the tasks of plan recognition and diagnosis is indeed possible, and

the future holds much promise for such a general abductive approach to explanation.
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