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Abstract

In natural language acquisition, it is diffi-
cult to gather the annotated data needed
for supervised learning; however, unanno-
tated data is fairly plentiful. Active learn-
ing methods attempt to select for annotation
and training only the most informative exam-
ples, and therefore are potentially very use-
ful in natural language applications. How-
ever, existing results for active learning have
only considered standard classification tasks.
To reduce annotation effort while maintain-
ing accuracy, we apply active learning to two
non-classification tasks in natural language
processing: semantic parsing and informa-
tion extraction. We show that active learning
can significantly reduce the number of anno-
tated examples required to achieve a given
level of performance for these complex tasks.

1 INTRODUCTION

Active learning is an emerging area in machine learn-
ing that explores methods that, rather than relying
on a benevolent teacher or random sampling, actively
participate in the collection of training examples. The
primary goal of active learning is to reduce the num-
ber of supervised training examples needed to achieve
a given level of performance. Active learning sys-
tems may construct their own examples, request cer-
tain types of examples, or determine which of a set
of unsupervised examples are most usefully labeled.
The last approach, selective sampling (Cohn, Atlas,
& Ladner, 1994), is particularly attractive in natural-
language learning, since there is an abundance of text,
and we would like to annotate only the most infor-

mative sentences. For many language learning tasks,
annotation is particularly time-consuming since it re-
quires specifying a complex output rather than just
a category label, so reducing the number of training
examples required can greatly increase the utility of
learning.

An increasing number of researchers are successfully
applying machine learning to natural language pro-
cessing (see Brill and Mooney (1997) for an overview).
However, only a few have utilized active learning, and
those have addressed two particular tasks: part of
speech tagging (Dagan & Engelson, 1995) and text
categorization (Lewis & Catlett, 1994; Liere & Tade-
palli, 1997). Both of these are fundamentally classi-
fication tasks, while the tasks we address, semantic
parsing and information extraction, are not. Many
language learning tasks require annotating natural lan-
guage text with a complex output, such as a parse tree,
semantic representation, or filled template. However,
the application of active learning to tasks requiring
such complex outputs has not been well studied. Our
research shows how active learning methods can be ap-
plied to such problems and demonstrates that it can
significantly decrease annotation costs for important
and realistic natural-language tasks.

The remainder of this paper is organized as follows.
Section 2 presents background on active learning, and
Section 3 introduces the two language-learning sys-
tems to which we apply active learning. Sections 4 and
5 describe the application of active learning to parser
acquisition together with experimental results. Sec-
tions 6 and 7 describe the application of active learning
to learning information extraction rules and present
experimental results for this task. Section 8 suggests
directions for future research. Finally, Section 9 de-
scribes some related research, and Section 10 presents
our conclusions.



2 BACKGROUND ON ACTIVE
LEARNING

Because of the relative ease of obtaining on-line text,
we focus on selective sampling methods of active learn-
ing. In this case, learning begins with a small pool of
annotated examples and a large pool of unannotated
examples, and the learner attempts to choose the most
informative additional examples for annotation. Exist-
ing work in the area has emphasized two approaches,
certainty-based methods (Lewis & Catlett, 1994), and
committee-based methods (Freund, Seung, Shamir, &
Tishby, 1997; Liere & Tadepalli, 1997; Dagan & En-
gelson, 1995; Cohn et al., 1994).

In the certainty-based paradigm, a system is trained on
a small number of annotated examples to learn an ini-
tial classifier. Next, the system examines unannotated
examples, and attaches certainties to the predicted an-
notation of those examples. The k examples with the
lowest certainties are then presented to the user for an-
notation and retraining. Many methods for attaching
certainties have been used, but they typically attempt
to estimate the probability that a classifier consistent
with the prior training data will classify a new example
correctly.

In the committee-based paradigm, a diverse commit-
tee of classifiers is created, again from a small number
of annotated examples. Next, each committee mem-
ber attempts to label additional examples. The ex-
amples whose annotation results in the most disagree-
ment amongst the committee members are presented
to the user for annotation and retraining. A diverse
committee, consistent with the prior training data, will
produce the highest disagreement on examples whose
label is most uncertain with respect to the possible
classifiers that could be obtained by training on that
data.

Figure 1 presents abstract pseudocode for both
certainty-based and committee-based selective sam-
pling. In an ideal situation, the batch size, k, would
be set to one to make the most intelligent decisions in
future choices, but for efficiency reasons in retraining
batch learning algorithms, it is frequently set higher.
Results on a number of classification tasks have
demonstrated that this general approach is effective in
reducing the need for labeled examples (see citations
above). Our current work has explored certainty-based
approaches, although committee-based approaches for
our tasks of learning parsers and information extrac-
tion rules is a topic for future research.

Apply the learner to n bootstrap examples, creating
one classifier or a committee of them.

Until there are no more examples or the annotator
is unwilling to label more examples, do:

Use most recently learned classifier/committee
to annotate each unlabeled instance.

Find the k instances with the lowest annotation
certainty/most disagreement amongst
committee members.

Annotate these instances.
Train the learner on the bootstrap examples

and all examples annotated to this point.

Figure 1: Selective Sampling Algorithm

3 NATURAL LANGUAGE
LEARNING SYSTEMS

3.1 PARSER ACQUISITION

Chill is a system that, given a set of training sen-
tences each paired with a meaning representation,
learns a parser that maps sentences into this seman-
tic form (Zelle & Mooney, 1996). It uses inductive
logic programming (ILP) methods (Muggleton, 1992;
Lavrac̆ & Dz̆eroski, 1994) to learn a deterministic shift-
reduce parser written in Prolog. Chill solves the
parser acquisition problem by learning rules to control
the step by step actions of an initial, overly-general
parsing shell. While the initial training examples are
sentence/representation pairs, the examples given to
the ILP system are positive and negative examples
of states of the parser in which a particular opera-
tor should or should not be applied. These examples
are automatically constructed by determining what se-
quence of operator applications (e.g., shift and reduce)
leads to the correct parse. However, the overall learn-
ing task for which user feedback is provided is not a
classification task.

This paper will focus on one application in which
Chill has been tested, learning an interface to a ge-
ographical database. In this domain, Chill learns
parsers that map natural-language questions directly
into Prolog queries that can be executed to produce
an answer. Following are two sample queries for a
database on U.S. geography paired with their corre-
sponding Prolog query:

What is the capital of the state with the
biggest population?



answer(C, (capital(S,C), largest(P,
(state(S), population(S,P))))).

What state is Texarkana located in?
answer(S, (state(S),

eq(C,cityid(texarkana, )),
loc(C,S))).

Given a sufficient corpus of such sentence/rep-
resentation pairs, Chill is able to learn a parser
that correctly parses many novel sentences into log-
ical queries.

3.2 INFORMATION EXTRACTION

We have also developed a system, Rapier, that learns
rules for information extraction (IE) (Califf, 1998).
The goal of an IE system is to find specific pieces of in-
formation in a natural-language document. The spec-
ification of the information to be extracted generally
takes the form of a template with a list of slots to
be filled with substrings from the document (Lehnert
& Sundheim, 1991). IE is particularly useful for ob-
taining a structured database from unstructured doc-
uments and is being used for a growing number of Web
and Internet applications.

Rapier is a bottom-up relational learner, and acquires
rules in the form of a sequence of patterns that identify
relevant phrases in the document. The patterns are
similar to regular expressions that include constraints
on the words, part-of-speech tags, and semantic classes
of the extracted phrase and its surrounding context;
however, in the results in this paper, we use the sim-
plest version of the system which only makes use of
words. We have found that part-of-speech tags may
be useful in some domains, but that words alone pro-
vide most of the power.

Like semantic parsing, IE is not a classification task;
although, like parsing in Chill, it can be mapped to
a series of classification subproblems (Freitag, 1998;
Bennett, Aone, & Lovell, 1997). However, Rapier
does not approach the problem in this manner, and
in any case, the example annotations provided by the
user are in the form of filled templates, not class labels.

In our active learning research, we have focused on
one of the three tasks on which Rapier has been ex-
tensively tested, that of extracting information about
computer-related jobs from netnews postings. Fig-
ure 2 shows an example with part of the correspond-
ing filled template. The task is to extract information
for 17 slots appropriate for the development of a jobs
database. The slots vary in their applicability to dif-

ferent postings. Relatively few postings provide salary
information, while most provide information about the
job’s location. A number of the slots may have more
than one filler; for example, there are slots for the plat-
form(s) and language(s) that the prospective employee
will use.

4 ACTIVE LEARNING FOR
SEMANTIC PARSING

Applying certainty-based sample selection to both of
these systems requires determining the certainty of a
complete annotation of a potential new training exam-
ple, despite the fact that individual learned rules per-
form only part of the overall annotation task. There-
fore, our general approach is to compute certainties
for each individual decision made during the process-
ing of an example, and combine these to obtain an
overall certainty for an example. Since both systems
learn rules with no explicit uncertainty parameters,
simple metrics based on coverage of training examples
are used to assign certainties to rule-based decisions.

In Chill, this approach is complicated slightly by the
fact that the current learned parser may get stuck, and
not even complete a parse for a potential new train-
ing example. This can happen because a control rule
learned for an operator may be overly specific, pre-
venting its correct application, or because an opera-
tor required for parsing the sentence may not have
been needed for any of the training examples, so the
parser does not even include it. If a sentence cannot be
parsed, its annotation is obviously very uncertain and
it is therefore a good candidate for selection. However,
there are often more unparsable sentences than the
batch size (k), so we must distinguish between them.
This is done by counting the maximum number of se-
quential operators successfully applied while attempt-
ing to parse the sentence and dividing by the number
of words in the sentence to give an estimate of how
close the parser came to completing a parse. The sen-
tences with a lower value for this metric are preferred
for annotation.

If the number of unparsable examples is less than k,
then the remaining examples selected for annotation
are chosen from the parsable ones. A certainty for
each parse, and thus each potential training example,
is obtained by considering the sequence of operators
applied to produce it. Recall that the control rules for
each operator are induced from positive and negative
examples of the contexts in which the operator should
be applied. As a simple approximation, the number



Posting from Newsgroup

Telecommunications. SOLARIS Systems Administrator. 38-44K.
Immediate need

Leading telecommunications firm in need of an energetic
individual to fill the following position in the Atlanta office:

SOLARIS SYSTEMS ADMINISTRATOR
Salary: 38-44K with full benefits
Location: Atlanta Georgia, no relocation assistance provided

Filled Template

computer_science_job
title: SOLARIS Systems Administrator
salary: 38-44K
state: Georgia
city: Atlanta
platform: SOLARIS
area: telecommunications

Figure 2: Sample Message and Filled Template

of examples used to induce the specific control rule
used to select an operator is used as a measure of the
certainty of that parsing decision. We believe this is
a reasonable certainty measure in rule learning, since,
as shown by Holte, Acker, and Porter (1989), small
disjuncts (rules that correctly classify few examples)
are more error prone than large ones. We then average
this certainty over all operators used in the parse of
the sentence to obtain the metric used to rank the
example.

To increase the diversity of examples included in a
given batch, we do not include sentences that vary
only in known names for database constants (e.g., city
names) from already chosen examples, nor sentences
that contain a subset of the words present in an already
chosen sentence.

5 EXPERIMENTAL RESULTS:
SEMANTIC PARSING

For the experimental results in this paper, we use the
following general methodology. For each trial, a ran-
dom set of test examples is used and the system is
trained on subsets of the remaining examples. First,
n bootstrap examples are randomly selected from the
training examples, then in each step of active learning,
the best k examples of the remaining training exam-

ples are selected and added to the training set. The
result of learning on this set is evaluated after each
round. When comparing to random sampling, the k
examples in each round are chosen randomly.

The initial corpus used for evaluating parser acqui-
sition contains 250 questions about U.S. geography,
paired with Prolog queries. This domain was chosen
due to the availability of an existing hand-build natu-
ral language interface to a simple geography database
containing about 800 facts. The original interface,
Geobase, was supplied with Turbo Prolog 2.0 (Bor-
land International, 1988). The questions were col-
lected from uninformed undergraduates and mapped
into logical form by an expert. Examples from the
corpus were given in Section 3.1. The parser that is
learned from the training data is used to process the
test examples, the resulting queries submitted to the
database, the answers compared to those generated by
the correct representation, and the percentage of cor-
rect answers recorded.

In tests on this data, test examples were chosen in-
dependently for 10 trials with n = 25 bootstrap ex-
amples and a batch size of k = 25. The results are
shown in Figure 3, where Chill refers to random sam-
pling, Chill+Active refers to sample selection, and
Geobase refers to the hand-built benchmark. Initially,
the advantage of sample selection is small, since there
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Figure 3: Parser Acquisition Results for Geography Corpus

is insufficient information to make an intelligent choice
of examples; but after 100 examples, the advantage
becomes clear. Eventually, the training set becomes
exhausted, the active learner has no choice in pick-
ing the remaining examples, and both approaches use
the full training set and converge to the same perfor-
mance. However, the number of examples required to
reach this level is significantly reduced when using ac-
tive learning. To get within 5% of the final accuracy
requires 125 selected examples but 175 random exam-
ples, a savings of 29%. Also, to surpass the perfor-
mance of Geobase requires under 100 selected exam-
ples versus 125 random examples, a savings of 20%.
According to a t-test, the differences between active
and random choice at 125 and 175 training examples
are statistically significant at the .05 level or better.

We also ran experiments on a larger, more diverse cor-
pus of geography queries, where additional examples
were collected from undergraduate students in an in-
troductory AI course. The set of questions in the pre-
vious experiments was collected from students in in-
troductory German, with no instructions on the com-
plexity of queries desired. The AI students tended to
ask more complex and diverse queries: their task was
to give 5 interesting questions and the associated log-
ical form for a homework assignment. There were 221
new sentences, for a total of 471. This data was split
into 425 training sentences and 46 test sentences, for
10 random splits. For this corpus, we used n = 50
and k = 25. The results are shown in Figure 4. Here,
the savings with active learning is about 150 exam-

ples to reach an accuracy close to the maximum, or
about a 35% annotation savings. The curve for selec-
tive sampling does not reach 425 examples because of
our elimination of sentences that vary only in database
names and those that contain a subset of the words
present in an already chosen sentence. Obviously this
is a more difficult corpus, but active learning is still
able to choose examples that allow significant savings
in annotation cost.

6 ACTIVE LEARNING FOR
INFORMATION EXTRACTION

A similar approach to certainty-based sample selection
was used with Rapier. A simple notion of the cer-
tainty of an individual extraction rule is based on its
coverage of the training data: pos− 5 ·neg, where pos
is the number of correct fillers generated by the rule
and neg is the number of incorrect ones. Again, “small
disjuncts” that account for few examples are deemed
less certain. Also, since Rapier, unlike Chill, prunes
rules to prevent overfitting, they may generate spuri-
ous fillers for the training data; therefore, a significant
penalty is included for such errors.

Given this notion of rule certainty, Rapier determines
the certainty of a filled slot for an example being eval-
uated for annotation certainty. In the case where a
single rule finds a filler for a slot, the certainty for the
slot is the certainty of the rule that filled it. However,
when more than one slot-filler is found, the certainty
of the slot is defined as the minimum of the certainties
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Figure 4: Parser Acquisition Results for a Larger Geography Corpus

of the rules that produced these fillers. The minimum
is chosen since we want to focus attention on the least
certain rules and find examples that either confirm or
deny them.

A final consideration is determining the certainty of
an empty slot. In some tasks, some slots are empty a
large percentage of the time. For example, in the jobs
domain, the salary is present less than half the time.
On the other hand, some slots are always (or almost
always) filled, and the absence of fillers for such slots
should decrease confidence in an example’s labeling.
Consequently, we record the number of times a slot
appears in the training data with no fillers and use
that count as the confidence of the slot when no filler
for it is found. Once the confidence of each slot has
been determined, the confidence of an example is found
by summing the confidence of all slots.

In order to allow for the more desirable option of ac-
tively selecting a single example at a time (k = 1),
an incremental version of Rapier was created. This
version still requires remembering all of the training
examples but reuses and updates existing rules as new
examples are added. The resulting system can incre-
mentally incorporate new training examples reason-
ably efficiently, allowing each chosen example to im-
mediately effect the result and therefore the choice of
the next example.

7 EXPERIMENTAL RESULTS:
INFORMATION EXTRACTION

The computer-related job-posting corpus used to test
active learning in Rapier consists of 300 postings to
the local newsgroup austin.jobs, as illustrated in
Figure 2. Training and test sets were generated using
10-fold cross-validation, and learning curves generated
by training on randomly or actively selected subsets
of the training data for each trial. For active learning,
there were n = 10 bootstrap examples and subsequent
examples were selected one at a time from the remain-
ing 260 examples.

In information extraction, the standard measurements
of performance are precision (the percentage of items
that the system extracted which should have been
extracted) and recall (the percentage of items that
the system should have extracted which it did ex-
tract). In order to combine these measurements to
simplify comparisons, it is common to use F-measure:
F = (2 · precision · recall)/(precision + recall). It
is possible to weight the F-measure to prefer recall or
precision, but we weight them equally. For the ac-
tive learning results, we measured performance at 10-
example intervals. The results for random sampling
are measured less frequently.

Figure 5 shows the results, where Rapier uses ran-
dom sampling and Rapier+Active uses selective sam-
pling. From 30 examples on, Rapier+Active consis-
tently outperforms Rapier. The difference between
the curves is not large, but does represent a large re-
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Figure 5: Information Extraction Results for Job Postings

duction in the number of examples required to achieve
a given level of performance. At 150 examples, the
average F-measure is 74.56, exactly the same as the
average F-measure with 270 random examples. This
represents a savings of 120 examples, or 44%. The
differences in performance at 120 and 150 examples
are significant at the 0.01 level according to a two-
tailed paired t-test. The curve with selective sampling
does not go all the way to 270 examples, because once
the performance of 270 randomly chosen examples is
reached, the information available in the data set has
been exploited, and the curve will just level off as the
less useful examples are added.

8 FUTURE WORK

Experiments on additional semantic parsing and in-
formation extraction corpora are needed to test the
ability of this approach to reduce annotation costs in
a variety of domains. It would also be interesting to
explore active learning for other natural language pro-
cessing problems such as syntactic parsing, word-sense
disambiguation, and machine translation.

Our current results have involved a certainty-based ap-
proach; however, proponents of committee-based ap-
proaches have convincing arguments for their theo-
retical advantages. Our initial attempts at adapting
committee-based approaches to our systems were not
very successful; however, additional research on this
topic is indicated. One critical problem is obtaining
diverse committees that properly sample the version

space (Cohn et al., 1994).

Although they seem to work quite well, the certainty
metrics used in both Chill and Rapier are quite sim-
ple and somewhat ad hoc. A more principled approach
based on learning probabilistic models of parsing and
information extraction could perhaps result in better
estimates of certainty and therefore improved sample
selection.

Finally, a more intelligent method for choosing batch
sizes is needed. From initial informal experiments with
Chill, we have observed that the optimal batch size
seems to vary with the total amount of training data.
At first, small batches are most beneficial, but later
in learning, larger batches seem better. However, con-
verting Chill to an incremental version as done with
Rapier might sidestep this issue and allow efficient
learning at one step increments.

9 RELATED WORK

Cohn et al. (1994) were among the first to dis-
cuss certainty-based active learning methods in de-
tail. They focus on a neural network approach to ac-
tively searching a version-space of concepts. Liere and
Tadepalli (1997) apply active learning with commit-
tees to the problem of text categorization. They show
improvements with active learning similar to those
that we obtain, but use a committee of Winnow-based
learners on a traditional classification task. Dagan and
Engelson (1995) also apply committee-based learning
to part-of-speech tagging. In their work, a committee



of hidden Markov models is used to select examples
for annotation. Lewis and Catlett (1994) use hetero-
geneous certainty-based methods, in which a simple
classifier is used to select examples that are then an-
notated and presented to a more powerful classifier.
Again, their methods are applied to text classification.

One other researcher has recently applied active learn-
ing to information extraction. Soderland’s (1999)
Whisk system uses an unusual form of selective sam-
pling. Rather than using certainties or committees,
Whisk divides the pool of unannotated instances into
three classes: 1) those covered by an existing rule, 2)
those that are near misses of a rule, and 3) those not
covered by any rule. The system then randomly selects
a set of new examples from each of the three classes
and adds them to the training set. Soderland shows
that this method significantly improves performance
in a management succession domain; however, it is un-
clear how more traditional sample selection methods
would perform by comparison.

10 CONCLUSIONS

Active learning is a new area of machine learning that
has been almost exclusively applied to classification
tasks. We have demonstrated its successful applica-
tion to two more complex natural language process-
ing tasks, semantic parsing and information extrac-
tion. The wealth of unannotated natural language
data, along with the difficulty of annotating such data,
make selective sampling a potentially invaluable tech-
nique for natural language learning. Our results on
realistic corpora for semantic parsing and information
extraction indicate that example savings as high as
44% can be achieved by employing active sample se-
lection using only simple certainty measures for predic-
tions on unannotated data. Improved sample selection
methods and applications to other important language
problems hold the promise of continued progress in
using machine learning to construct effective natural
language processing systems.
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