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Abstract

In many classification tasks training data have missing
feature values that can be acquired at a cost. For build-
ing accurate predictive models, acquiring all missing val-
ues is often prohibitively expensive or unnecessary, while
acquiring a random subset of feature values may not be
most effective. The goal ofactive feature-value acquisition
is to incrementally select feature values that are most cost-
effective for improving the model’s accuracy. We present an
approach that acquires feature values for inducing a clas-
sification model based on an estimation of the expected im-
provement in model accuracy per unit cost. Experimental
results demonstrate that our approach consistently reduces
the cost of producing a model of a desired accuracy com-
pared to random feature acquisitions.

1 Introduction

In many modeling problems, feature values for training
data are missing, but can be acquired at a cost. In general,
the cost of acquiring the missing information may vary ac-
cording to the nature of the information or of the instance
for which information is missing. Consider, for example,
patient data used to induce a model to predict treatment ef-
fectiveness for a given patient. While missing demographic
information can be obtained at a low cost, missing test re-
sults can be significantly more expensive to obtain. Vari-
ous solutions are available for learning models from incom-
plete data, such as imputation methods [4]. However, these
solutions almost always undermine model performance as
compared to that of a model induced from complete infor-
mation. Since obtaining all missing values may be pro-
hibitively expensive, it is desirable to identify the infor-
mation that would be most cost-effective to acquire. In
this paper we address this generalized version of theactive
feature-value acquisition(AFA) task for classifier induction
[6]: given a model built on incomplete training data, select
feature values that would be most cost-effective to acquire
for improving the model’s accuracy.

Unlike prior work [5], we study AFA in a setting where
the total cost to be spent on acquisitions is not determined
a priori, but rather can be determined on-line based on the
model’s performance as learning progresses. We propose a
general setting for AFA that specifies an incremental acqui-
sition schedule. The solution we propose ranks alternative
feature-value acquisitions based on an estimation of the ex-
pected improvement in model performance per unit cost.
Our approach is general, i.e., it can be applied to select ac-
quisitions for any learner, and to attempt to improve any
performance metric. Experimental results on decision tree
induction demonstrate that our method does consistently re-
sult in significantly improved model accuracy per unit cost
compared to random feature-value acquisition.

2 Task Definition and Algorithm

Active Feature Acquisition: Assume a classifier induction
problem where each instance is represented withn feature
values and a class label. A training set ofm instances can
be represented by the matrixF , whereFi,j corresponds to
the value of thej-th feature of thei-th instance. Initially,
the class label,yi, of each instance is known, and the ma-
trix F is incomplete, i.e., it contains missing values. The
learner may acquire the value ofFi,j at the costCi,j . We
useqi,j to refer to the query for the value ofFi,j . The gen-
eral task of active feature-value acquisition is the selection
of these instance-feature queries that will result in building
the most accurate model (classifier) at the lowest cost. The
framework for the generalized AFA task is presented in Al-
gorithm 1. We view AFA as an iterative task, where at each
step the learner builds a classifier trained on the current data,
and scores the available queries based on this classifier. The
query with the highest score is selected and the feature value
corresponding to this query is acquired. The training data
is appropriately updated and this process is repeated until
some stopping criterion is met, e.g. a desirable model ac-
curacy has been obtained. To reduce computation costs in
our experiments, we acquire queries in fixed-size batches at
each iteration.
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Algorithm 1 General Active Feature-value Acquisition
Framework

Given:
F – initial (incomplete) instance-feature matrix
Y = {yi : i = 1, ..., m} – class labels for all instances
T – training set =< F, Y >

L – base learning algorithm
b – size of query batch
C – cost matrix for all instance-feature pairs

1. Initialize set of possible queriesQ to {qi,j : i =
1, ..., m; j = 1, ..., n; such thatFi,j is missing}

2. Repeat until stopping criterion is met
3. Generate a classifier,M = L(T )
4. ∀qi,j ∈ Q computescore(M, qi,j , Ci,j ,L, T )
5. Select a subsetS of b queries with the highestscore
6. ∀qi,j ∈ S,
7. Acquire values forFi,j

8. RemoveS from Q
9. ReturnM = L(T )

Expected Utility Estimation: Specific solutions to the
AFA problem differ based on the method used to score and
rank queries. In our approach, we provide scores based on
theexpected utilityof each query (defined below). For now
we assume all features are nominal, i.e., they can take on
values from a finite set of values. Assume featurej hasK

distinct valuesV1, ..., VK . The expected utility of the query
qi,j can be computed as:

E(qi,j) =

K∑

k=1

P (Fi,j = Vk)U(Fi,j = Vk) (1)

whereP (Fi,j = Vk) is the probability thatFi,j has the
valueVk, andU(Fi,j = Vk) is the utility of knowing that
the feature valueFi,j is Vk, given by:

U(Fi,j = Vk) =
A(F, Fi,j = Vk) −A(F )

Ci,j

(2)

where A(F ) is the accuracy of the current classifier;
A(F, Fi,j = Vk) is the accuracy of the classifier trained
onF assumingFi,j = Vk; andCi,j is the cost of acquiring
Fi,j . For this paper, we define the utility of an acquisition
in terms of improvement in model accuracy per unit cost.
Depending on the objective of learning a classifier, alter-
nate utility functions could be used. If we were to plot a
graph of accuracy versus model cost after every iteration of
AFA, our Expected Utilityapproach would correspond to
selecting the query that is expected to result in the largest
slope for the next iteration. If all feature costs are equal,
this corresponds to selecting the query that would result in
the classifier with the highest expected accuracy.

Since the true distribution of each missing feature value
is unknown, we estimateP (Fi,j = Vk) in Eq. 1 using a

learner that produces class probability estimates. For each
featurej, we train a classifierMj , using this feature as the
target variable and all other features along with the class
as the predictors. When evaluating the queryqi,j , the clas-
sifier Mj is applied to instancei to produce the estimate
P̂ (Fi,j = Vk). In Eq. 2, the true values ofA(.) are also
unknown. However, since the class labels for the training
data are available at selection time we can estimateA(F )
andA(F, Fi,j = Vk) based on the training set accuracy. In
our experiments, we used 0-1 loss to measure the accuracy
of the classifiers. However, other measures such as class
entropy or GINI index could also be used [5]. In our pre-
liminary studies we did not observe a consistent advantage
to using entropy.

When theExpected Utilitymethod described here is ap-
plied to learn a Naive Bayes classifier and feature costs are
assumed to be equal, it is similar to thegreedy loss reduc-
tion approach presented in [5]. Similar approaches to ex-
pected utility estimation have also been used in the related
task of traditional active learning [8].

Computing the estimated expectationÊ(.) for queryqi,j

requires training one classifier for each possible value of
feature j. Selecting the best fromall available queries
would require exploring, in the worst case,mn queries. So
exhaustively selecting a query that maximizes the expected
utility is computationally very intensive and is infeasible
for most interesting problems. We make this exploration
tractable by reducing the search space to a random sub-
sample of the available queries. We refer to this approach as
Sampled Expected Utility. This method takes a parameterα

(1 ≤ α ≤ mn
b

) which controls the complexity of the search.
To select a batch ofb queries, first a random sub-sample of
αb queries is selected from the available pool, and then the
expected utility of each query in this sub-sample is evalu-
ated. The value ofα can be set depending on the amount of
time the user is willing to spend on this process. One can
expect a tradeoff between the amount of time spent and the
effectiveness of the selection scheme.

3 Experimental Evaluation

Methodology: We evaluated our proposed approach on
four datasets from the UCI repository [1] –car, audio,
lymph, andvote. For the sake of simplicity, we selected
datasets that have only nominal features. None of the UCI
datasets provide feature acquisition costs; so in our experi-
ments we simply assume all costs are equal. For additional
experiments with different cost structures, please refer to
the extended version of this paper [7].

We compared our approach torandom feature acquisi-
tion, which selects queries uniformly at random to provide
a representative sample of missing values. ForSampled
Expected Utilitywe set the exploration parameterα to 10.
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Given the computational complexity ofExpected Utilityit is
not feasible to run the exhaustiveExpected Utilityapproach
on all datasets. However, we did runExpected Utilityon
thevotedataset. For all methods, as a base learner we used
J48 decision-tree induction, which is the Weka implemen-
tation of C4.5 [10]. Laplace smoothing was used with J48
to improve class probability estimates.

The performance of each acquisition scheme was aver-
aged over 10 runs of 10-fold cross-validation. In each fold
of cross-validation, we generated learning curves in the fol-
lowing fashion. Initially, the learner is given a random sam-
ple of feature values, i.e. the instance-feature matrix is par-
tially filled. The remaining instance-feature pairs are used
to initialize the pool of available queries. At each itera-
tion, the system selects a batch of queries, and the values
for these features are acquired. This process is repeated un-
til a desired number of feature values is acquired. Classifi-
cation accuracy is measured after each batch acquisition in
order to generate a learning curve. One system (A) is con-
sidered to besignificantlybetter than another system (B) if
the average accuracy across the points on the learning curve
of A is higher than that ofB according to a paired t-test
(p < 0.05). As in [6], the test data contains only complete
instances, since we want to approximate the true generaliza-
tion accuracy of the constructed model given complete data
for a test instance. For each dataset, we selected the initial
random sample size to be such that the induced model per-
formed at least better than majority class prediction. The
batch size for the queries was selected based on the diffi-
culty of the dataset. For problems that were harder to learn,
we acquired a larger number of feature-values and conse-
quently used larger batch sizes.

Results: Our results are presented in Figure 1. For all
datasets,Sampled Expected Utilitybuilds more accurate
models than random sampling for any given number of fea-
ture acquisitions. These results demonstrate that the estima-
tion of the expected improvement in the current model’s ac-
curacy enables effective ranking of potential queries. Con-
sequently,Sampled Expected Utilityselects queries that on
average are more informative for the learner than an aver-
age query selected at random. The differences in perfor-
mance between these two systems on all datasets is signifi-
cant, as defined above. SinceSampled Expected Utilitywas
proposed in order to reduce the computational costs of our
original Expected Utilityapproach, we also examined the
performance and computational time of the exhaustiveEx-
pected Utilityalgorithm forvote. We computed the average
time it took to select queries in each iteration for each of
the methods. We observed that the average selection time
for Expected Utility, Sampled Expected Utilityand random
sampling was3.77× 105, 6.64× 103, and3.8 milliseconds
respectively. These results show that constraining the search
in Expected Utilityby random sampling can significantly re-

duce the selection time (by two orders of magnitude in this
case) without a significant loss in accuracy.

Additional experiments (not presented here) with differ-
ent cost structures demonstrate that for the same cost,Sam-
pled Expected Utilitybuilds more accurate classifiers than
the cost-agnostic random feature acquisition approach. Its
performance is also more consistent than that of a simple
cost-sensitive method which acquires feature values in or-
der of increasing cost. Details of these results may be found
in [7].

4 Related Work

Lizotte et al. [5] study AFA in thebudgeted learning
scenario, in which the total cost to be spent towards acqui-
sitions is determineda priori and the task is to identify the
best set of acquisitions for this cost. In contrast, our set-
ting aims to enable the user to stop the acquisition process
at any time, and as such theorder in which acquisitions
are made is important. Given this criterion, we attempt to
select the next acquisition that will result in the most ac-
curate model per unit cost. Other work on AFA has fo-
cused on theinstance-completionsetting, in which all miss-
ing feature values are acquired for a selected training in-
stance [11, 6]. The instance-completion methods estimate
the utility of having complete feature-value information for
a particular instance, and unlike our approach, do not eval-
uate acquisitions of individual feature values. However, our
method can also be used in the instance-completion setting,
e.g., by selecting the instance with the highest sum of utili-
ties of individual feature-value acquisitions.

Some work oncost sensitivelearning [9] has addressed
the issue of inducing economical classifiers, but it assumes
that thetraining data are complete and focuses on learning
classifiers that minimize the cost of classifying incomplete
test instances. Traditionalactive learning[2] assumes ac-
cess to unlabeled instances with complete feature data and
attempts to select the most useful examples for which to
acquire class labels. Active feature-value acquisition isa
complementary problem that assumes labeled data with in-
complete feature data and attempts to select the most useful
additional feature values to acquire.

5 Future Work and Conclusions

In Sampled Expected Utilitywe use a random sample of
the pool of available queries to make theExpected Utility
estimation feasible. However, it may be possible to improve
performance by applyingExpected Utilityestimation to a
sample of queries that is better than a random sample. One
approach could be to first identify potentially informative
instances, and then select candidate queries only from these
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Figure 1. Comparing alternative active feature-value acqu isition approaches.

instances. Such instances can be identified using methods
proposed for the instance-completion setting for AFA, such
asError Sampling[6]. Preliminary results in this direction
can be found in [7]. An alternative approach could be to
restrict the set of candidate queries to only the most infor-
mative features. A subset of such features could be picked
using afeature selectiontechnique that can capture the in-
teractions among feature values, such as the wrapper ap-
proach of John et al. [3].

In this paper, we propose an expected utility approach to
active feature-value acquisition, that obtains feature values
based on the estimated expected improvement in model ac-
curacy per unit cost. We demonstrate how this computation-
ally intensive method can be made significantly faster, with-
out much loss in performance, by constraining the search to
a sub-sample of potential feature-value acquisitions. Exper-
iments with uniform feature costs show that thisSampled
Expected Utilityapproach consistently builds more accu-
rate models than random sampling for the same number of
feature-value acquisitions.
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