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Abstract. Active selection of good training examples is an important approach
to reducing data-collection costs in machine learning; however, moginexis
methods focus on maximizing classification accuracy. In many applicasoich

as those with unequal misclassification costs, producing good clasahilitgh
estimates (CPEs) is more important than optimizing classification acciiecy.
introduce novel approaches to active learning based on the algoritbatstep-

LV and ACTIVEDECORATE, by using Jensen-Shannon divergence (a similarity
measure for probability distributions) to improve sample selection for optimiz
ing CPEs. Comprehensive experimental results demonstrate thetberiefur
approaches.

1 Introduction

Many supervised learning applications require more thamale classification of in-
stances. Often, also having accurate Class Probabiliiyngsts (CPES) is critical for
the task. Class probability estimation is a fundamentatephused in a variety of ap-
plications including marketing, fraud detection and creainking. For example, in di-
rect marketing the probability that each customer wouldpase an item is employed
in order to optimize marketing budget expenditure. Sinylan credit scoring, class
probabilities are used to estimate the utility of variousrses of actions, such as the
profitability of denying or approving a credit applicatidithile prediction accuracy of
CPE improves with the availability of more labeled examplexjuiring labeled data
is sometimes costly. For example, customers’ preferen@shba induced from cus-
tomers’ responses to offerings; but solicitations madectpuae customer responses
(labels) may be costly, because unwanted solicitationgesuit in negative customer
attitudes. It is therefore critical to reduce the numberadil acquisitions necessary to
obtain a desired prediction accuracy.

The active learningliterature [1] offers several algorithms for cost-effgetiabel
acquisitions. Active learners acquire training data ineeatally, using the model in-
duced from the available labeled examples to identify hetlpfiditional training exam-
ples for labeling. Different active learning approacheplemdifferent utility scores to
estimate how informative each unlabeled example is, if iaigeled and added to the



training data. When successful, active learning methodscesthe number of instances
that must be labeled to achieve a particular level of acqurdmost all work in active
learning has focused on acquisition policies for inducinguaateclassificationmod-
els and thus are aimed at improving classification accuratiyough active learning
algorithms for classification can be applied for learninguaate CPEs, they may not
be optimal. Active learning algorithms for classificatioayr(and indeed should) avoid
acquisitions that can improve CPEs but are not likely to iotjgtassification. Accurate
classification only requires that the model accuratelygassthe highest CPE to the
correct class, even if the CPEs across classes may be iateclinerefore, to perform
well, active learning methods for classification ought tquace labels of examples that
are likely to change the rank-order of the most likely cld&simprove CPEs, however,
it is necessary to identify potential acquisitions that Wddmprove the CPE accuracy,
regardless of the implications for classification accur&opotstrap-LV [2] is an active
learning approach designed specifically to improve CPHEsifary class problems. The
method acquires labels for examples for which the curremtahexhibits high variance
for its CPEs. BBOTSTRAPLV was shown to significantly reduce the number of label
acquisitions required to achieve a given CPE accuracy coedfia random acquisitions
and existing active learning approaches for classification

In this paper, we propose two new active learning approathesntrast to BOTSTRAP
LV, the methods we propose can be applied to acquire labetgmve the CPEs of an
arbitrary number of classes. The two methods differ by thasuees each employs to
identify informative examples: the first approaclo®@rsTRAR-JS, employs the Jensen-
Shannon divergence measure (JSD) [3]. The second app®adT,STRAPLV-EXT,
uses a measure of variance inspired by the local variang®peal in BDOTSTRARLV.
We demonstrate that for binary class problen@oBSTRARJS is at least comparable
and often superior to B0TSTRARLV. In addition, we establish that for multi-class
problems, BBOTSTRARJS and BOTSTRARLV-EXT identify particularly informative
examples that significantly improve the CPEs compared toagegly in which a repre-
sentative set of examples are acquired uniformly at randdnis.paper also extends the
work of Melville and Mooney [4], which introduced a methodz AVEDECORATE, for
active learning for classification. They compared two meastor evaluating the utility
of examples - label margins and JSD. The results showed thiatnhbeasures are effec-
tive for improving classification accuracy, though JSD ssleffective than margins. It
was conjectured that JSD would be a particularly useful omeaghen the objective
is improving CPEs. We demonstrate here that, for the tasktdfealearning for CPE,
AcTivEDECORATEUSINg JSD indeed performs significantly better than usinggmas.

2 Jensen-Shannon Divergence

Jensen-Shannon divergence (JSD) is a measure of the ‘@hSthatween two prob-
ability distributions [3] which can also be generalized teasure the distance (simi-
larity) between a finite number of distributions [5]. JSD isatural extension of the
Kullback-Leibler divergence (KLD) to a set of distribut®nKLD is defined between
two distributions, and the JSD of a set of distributions ie #iverage KLD of each
distribution to the mean of the set. Unlike KLD, JSD is a truetric and is bounded.



If a classifier can provide a distribution of class membegrghibbabilities for a given
example, then we can use JSD to compute a measure of sisnbetiveen the distri-
butions produced by a set (ensemble) of such classified3,(if) is the class proba-
bility distribution given by thei-th classifier for the example (which we will abbre-
viate asP;) we can then compute the JSD of a set of sizas JS(Py, Pa, ..., P,) =
H(Y !, wP) — > w:H(P;); wherew; is the vote weight of the-th classifier in
the set} and H (P) is the Shannon entropy of the distributiéh= {p, : j = 1,..., K},
defined ad{(P) = — Zle p; log p;. Higher values for JSD indicate a greater spread
in the CPE distributions, and it is zero if and only if the distitions are identical. JSD
has been successfully used to measure the utility of exanpkective learning for im-
proving classification accuracy [4]. A similar measure wige ased for active learning
for text classification by McCallum and Nigam [6].

3 Bootstrap-LV and JSD

To the best of our knowledge, Bootstrap-LV [2] is the onlyiaelearning algorithm
designed for learning CPEs. It was shown to require sigmfigdewer training exam-
ples to achieve a given CPE accuracy compared to random isgnguiduncertainty
sampling which is an active learning method focused on classifinasiccuracy [7].
Bootstrap-LV reduces CPE error by acquiring examples foickwvithe current model
exhibits relatively high local variance (LV), i.e., the isce in CPE for a particular ex-
ample. A high LV for an unlabeled example indicates that tloglefis estimation of its
class membership probabilities is likely to be erroneouns, the example is therefore
more desirable to be selected for learning.

Bootstrap-LV, as defined in [2] is only applicable to binatgss problems. We
first provide the details of this method, and then descrilve Wwe extended it to solve
multi-class problems. Bootstrap-LV is an iterative al¢fom that can be applied to any
base learner. At each iteration, we generate a set bbotstrap samples [8] from
the training set, and apply the given learn&rno each sample to generateclas-
sifiersC; : i = 1,...,n. For each example in the unlabeled §&twe compute a
score which determines its probability of being selectedi which is proportional
to the variance of the CPEs. More specifically, the score fan®lez; is computed
as(31, (pi(x;) = B;)*)/D;.min: Wherep;(z;) denotes the estimated probability the
classifierC; assigns to the event that examplebelongs to class 0 (the choice of per-
forming the calculation for class 0 is arbitrary, since tlagiance for both classes is
identical),p; is the average estimate for class 0 across classffigrandp; ,,,;,, is the
average probability estimate assigned to the minorityscigsthe different classifiers.
Saar-Tsechansky and Provost [2] attempt to compensatedamider-representation of
the minority class by introducing the term ,,,;,, in the utility score. The scores pro-
duced for the set of unlabeled examples are normalized @upeoa distribution, and
then a subset of unlabeled examples are selected based atisthibution. The labels
for these examples are acquired and the process is repeated.

The model's CPE variance allows the identification of exarahat can improve
CPE accuracy. However as noted above, the local varianiceagdstl by Bootstrap-LV

5 Our experiments use uniform vote weights, normalized to sum to one.



captures the CPE variance of a single class and thus is nbtapp to multi class
problems. Since we have a set of probability distributiomseach example, we can
instead, use an information theoretic measure, such asal8@dsure the utility of an
example. The advantage to using JSD is that it is a theoligtizall-motivated dis-
tance measure for probability distributions [3] that carthmrefore used to capture the
uncertainty of the class distribution estimation; andtfartnore, it naturally extends to
distributions over multiple classes. We propose a variatioBOOTSTRARLV, where
the utility score for each example is computed as the JSDeoEPES produced by the
set of classifierg’;. This approach, BOTSTRARJS, is presented in Algorithm 1.

Our second approach@TSTRARLV-EXT, is inspired by the Local Variance con-
cept proposed in BOTSTRARLV. For each example and for each class, the variance
in the prediction of the class probability across classfigr i = 1, ...,n is computed,
capturing the uncertainty of the CPE for this class. Subsetly the utility score for
each potential acquisition is calculated as the mean \v@eiacross classes, reflect-
ing the average uncertainty in the estimations of all classalike BOOTSTRARLYV,
BOOTSTRARLV-EXT does not incorporate the factor pf,,,;,, in the score for multi-
class problems, as this is inappropriate in this scenario.

Algorithm 1 Bootstrap-JS

Given: set of training example®', set of unlabeled training examplé&s base learning algo-
rithm £, number of bootstrap samplessize of each sample

1. Repeat until stopping criterion is met
2 Generate: bootstrap sampleB;,i = 1,...,n from T
3 Apply learnerC to each samplé; to produce classifier;
4 For eachr; € U
5. VC; generate CPE distributioR; (z;)
6. score; = JS(P1, Pa, ..., P)
7 Vz; € U, D(z;) = scorej/ 3, score;
8 Sample a subsét of m examples fronTU based on the distributio®
9. Remove examples ifi from U and add tdl"
10. ReturnC' = L(T))

4 ActiveDecorate and JSD

AcTIVEDECORATEIs an active learning method that selects examples to béethke
as to improve classification accuracy [4]. It is built on teery by CommitteQBC)
framework for selective sampling [9]; and has been shownutpexform other QBC
approaches, Query by Bagging and Query by BoostingriXeDECORATE is based
on DECORATE[10, 11], which is a recently introduced ensemble metarkeathat di-
rectly constructs diverse committees of classifiers by egipy specially-constructed
artificial training examples.

Given a pool of unlabeled examplescAVEDECORATE iteratively selects exam-
ples to be labeled for training. In each iteration, it getesa committee of classifiers



by applying DECORATEt0 the currently labeled examples. Then it evaluates therpot
tial utility of each example in the unlabeled set, and sslecsubset of examples with
the highest expected utility. The labels for these examalesacquired and they are
transfered to the training set. The utility of an exampleatedmined by some measure
of disagreemenin the committee about its predicted label. Melville and Meyp [4]
compare two measures of utility fordxivEDECORATE— marginsand JSD. Given the
CPEs predicted by the committee for an exan¥tlee margin is defined as the differ-
ence between the highest and second highest predictedylitiés It was shown that
AcTIVEDECORATE using either measure of utility produces substantial ereduc-
tions in classification compared to random sampling. Howexegeneral, using mar-
gins produces greater improvements. Using JSD tends totslamples that reduce
the uncertainty in CPE, which indirectly helps to improvasdification accuracy. On
the other hand, ATIVEDECORATEuUsing margins focuses more directly on determin-
ing the decision boundary. This may account for its bettassification performance.
It was conjectured that if the objective is improving CPE®t JSD may be a better
measure.

In this paper, we validate this conjecture. In addition t;mgsISD, we made two
more changes to the original algorithm, each of which indepetly improved its per-
formance. First, each example in the unlabeled set is as$igrprobability of being
sampled, which is proportional to the measure of utilitytfee example. Instead of se-
lecting the examples with the highest utilities, we sample the unlabeled set based on
the assigned probabilities (as iroBTSTRARLV). This sampling has been shown to
improve the selection mechanism as it reduces the prohabfladding outliers to the
training data and avoids selecting many similar or idehggzamples [12].

The second change we made is in thed®RATEalgorithm. DECORATEensembles
are created iteratively; where in each iteration a new iflasss trained. If adding
this new classifier to the current ensemble increases thardiis training error, then
this classifier is rejected, else it is added to the curresemmle. In previous work,
training error was evaluated using the 0/1 loss functiomyéver, DECORATE can use
any loss (error) function. Since we are interested in impCPE we experimented
with two alternate error functions — Mean Squared Error (M8&d Area Under the
Lift Chart (AULC) (defined in the next section). Using MSE figmed better on the
two metrics used, so we present these results in the resegiaher. Our approach,
ACTIVEDECORATEJS, is shown in Algorithm 2.

5 Experimental Evaluation

5.1 Methodology

To evaluate the performance of the different active CPE odxthwe ran experiments
on 24 representative data sets from the UCI repository fIBpf these datasets were
two-class problems, the rest being multi-class. For thieaskts Kr-vs-kp sick and
optdigity, we used a random sample of 1000 instances to reduce exggaétion time.

8 The CPEs for a committee are computed as the simple average of the &RlEsqdl by its
constituent classifiers.



Algorithm 2 ActiveDecorate-JS
Given: set of training example®, set of unlabeled training exampl&s base learning algo-
rithm £, number of bootstrap samplessize of each sample

1. Repeat until stopping criterion is met

2 Generate an ensemble of classifi€¥s,= Decorate(L,T,n)

3 Foreach:; € U

4 VC; € C* generate CPE distributioR; (x ;)

5. score; = JS(P1, Pa, ..., P)

6 Vz; € U, D(x;) = score;/ 3, score;

7 Sample a subsét of m examples fronU based on the distributiof
8 Remove examples ifi from U and add tdl"

9. ReturnDecorate(L,T,n)

All the active learning methods we discuss in this paper atarearners, i.e., they
can be applied to any base learner. For our experiments, aseadassifier we use a
Probability Estimation Tree (PET) [14], which is an unprdnit8 decision tree for
which Laplace correction is applied at the leaves. Saacfiaesky and Provost [2]
showed that using Bagged-PETs for prediction produceabptbbability estimates
than single PETs for BOTSTRAP-LV; so we used Bagged-PETs for bottoBTSTRAP
LV and BooTSTRARJS. The number of bootstrap samples and the size of ensemble
in ACTIVEDECORATEWaS set to 15.

The performance of each algorithm was averaged over 10 fuf®-fold cross-
validation. In each fold of cross-validation, we generdestning curves as follows.
The set of available training examples was treated as abeieldpool of examples, and
at each iteration the active learner selected a sample ofgtu be labeled and added
to the training set. Each method was allowed to select a 86138 batches of training
examples, measuring performance after each batch in ardenerate a learning curve.
To reduce computation costs, and because of diminishirigna in performance for
different selected examples along the learning curve, weeimentally selected larger
batches at each acquisition phase. The resulting curvdsageehow well an active
learner orders the set of available examples in terms ofyufidr learning CPEs. As a
baseline, we used random sampling, where the examplestiriteaation were selected
randomly.

To the best of our knowledge, there are no publicly-avadlatdtasets that provide
true class probabilities for instances; hence there ismetineasure for the accuracy of
CPEs. Instead, we use two indirect metrics proposed in sthdies for CPEs [16]. The
first metric is squared error, which is defined for an instanges} ., (Pirue(ylz;) —
P(ylz;))% whereP(y|z;) is the predicted probability that; belongs to clasg, and
Py (y|z;) is the true probability that; belongs tay. We compute the Mean Squared
Error (MSE) as the mean of this squared error for each examglee test set. Since
we only know the true class labels and not the probabilities.define P, (y|z;)
to be 1 when the class af; is y and 0 otherwise. Given that we are comparing with
this extreme distribution, squared error tends to favossifeers that produce accurate

7348 is the Weka [15] implementation of C4.5



classification, but with extreme probability estimatesnéls we do not recommend
using this metric by itself.

The second measure we employ is the area under the lift ¢iakt@) [17], which
is computed as follows. First, for each cldsswe take then% of instances with the
highest probability estimates for claésr,, is defined to be the proportion of these
instances actually belonging to classandrig is the proportion of all test instances
that are from clask. The lift /(«), is then computed ag<-. The AULC, is calculated
by numeric integration af(«) from 0 to 100 with a step Size of 5. The overall AULC is
computed as the weighted-average of AULfGr eachk; where AULG,; is weighted by
the prior class probability of according to the training set. AULC is a measure of how
good the probability estimates are for ranking examplesectly, but not how accurate
the estimates are. However, in the absence of a direct negasuexamination of MSE
and AULC in tandem provides a good indication of CPE accurdyalso measured
log-loss or cross-entropy, but these results were highlsetated with MSE, so we do
not report them here.

To effectively summarize the comparison of two algorithme, compute the per-
centage reduction in MSE of one over the other, averagedatenpoints of the learn-
ing curve. We consider the reduction in error todignificantif the difference in the
errors of the two systems, averaged across the points oredneing curve, is deter-
mined to be statistically significant according to paireddts < 0.05). Similarly, we
report the percentagacreasein AULC.8

5.2 Reaults

The results of all our comparisons are presented in TabRdrieach table we present
two active learning methods compared to random samplingedisas to each other.
We present the statisti®@ MSE reductiorand% AULC increaseaveraged across the
learning curves. All statistically significant results aresented in bold font. The bot-
tom of each table presents the win/draw/loss (w/d/l) recattere a win or loss is only
counted if the improved performance is determined to befgignt as defined above.

5.3 Bootstrap-JS, Bootstrap-LV and Bootstrap-LV-EXT

We first examine the performance ooBTSTRARJS for binary-class problems and
compared it with that of BOTSTRAPLV and of random sampling. As shown in Table
1, BOOTSTRARJS often exhibits significant improvements oved®&@rSTRAR-LV, or
is otherwise comparable tod®TSTRARLV. For all data sets, BOTSTRARJS shows
substantial improvements with respect to examples selagtdormly at random on
both MSE and AULC. The effectiveness 0bBTSTRARJS can be clearly seen in Fig-
ure 1. (The plot shows the part of learning curve where theaetive learners diverge
in performance.)

In the absence of an active class probability estimatiomagmh that can be applied
to multi-class problems, we compar@BTSTRAPJS and BOTSTRARLV-EXT with
acquisitions of a representative set of examples selectiédronly at random. Table 2

8 A larger AULC usually implies better probability estimates.



Table 1. BOOTSTRARJS versus BOTSTRARLV on binary datasets

%MSE Reduction %AULC Increase

Dataset LVvs. JSvs. JSvsLVvs. JSvs. JSv
Random Random LV|Random Random LV

breast-w 14.92 1481 -0.12| 0.55 0.52 -0.02
colic | -145 -0.04 139 | -095 -056 041
credit-a] 2.1 398 192| -049 -0.01 048
credit-g| -0.16 0.77 0.93 | -0.01 0.3 0.32
diabetes 1.01 175 075| 0.18 058 0.4
heart-c| 1.68 0.29 -143| 057 -0.08 -0.64
hepatitis 0.19 264 243| 0.19 103 084
ion 1065 1226 182 | 1.13 096 -0.16
kr-vs-kp| 38.97 43 8.07 | 1.64 1.79 0.15
sick | 1997 20.84 1.03| 0.62 041 -021
sonar | 244 132 -1.17| 058 0.74 0.16
vote 6.3 9.14 3.08 | 0.28 046 0.18
w/d/l | 9/2/1 10/2/0 9/1/2 7/3/2  9/2/]1 8/2/2

or

presents results on multi-class datasets fooBSTRAR-JS and BOTSTRAPLV-EXT.
Both active methods acquire particularly informative epés, such that for a given
number of acquisitions, both methods produce significaghicgons in error over ran-
dom sampling. The two active methods perform comparablyatthether for most
data sets, and JSD performs slightly better in some domBiesause JSD success-
fully measures the uncertainty of the distribution estiorabver all classes, we would
recommend using BoTSTRAR-JS for actively learning CPE models in multi-class do-
mains.

Table 2. BOOTSTRARJS versus BOTSTRARLV-EXT on multi-class datasets

% MSE Reduction % AULC Increase

Data set LV-Ext JSvs. JSvs. LV-Ext JSvs. JSvs,
vs. Rand. Rand. LV-Exts. Rand. Rand. LV-Ext

anneal | 12.27 13.06 0.89 0.05 05 045
autos | 096 038 -058| 151 0.83 -066
balance-s 1.39 092 -0.48| 072 058 -0.14
car 721 693 -031| 153 141 -0.12
glass | -055 -0.19 036 | 061 048 -0.11
hypo | 46.62 4641 -0.9 | 049 047 -0.02
iris 6.64 1079 458 | 046 083 0.39
nursery| 14.37 1425 -0.20| 044 042 -0.01
optdigits| 0.35 0.71 0.35 0.9 113 023
segment 11.08 11.19 0.08| 083 079 -0.04
soybearl 15 078 -0.74 | -046 04 087
wine | 1313 1334 036 | 111 108 -0.02
w/d/l 10/1/1 11/1/0 4/5/3 10/1/1 12/0/0 4/6/2
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5.4 ActiveDecorate: JSD versusMargins

Table 3 shows the results of using JSD versus margins fanY®e DECORATE In pre-
vious work, it was shown that @&rivEDECORATE, with both these measures, performs
very well on the task of active learning for classificationur@esults here confirm that
both measures are also effective for active learning for.GRE IVEDECORATEUSINg
margins focuses on picking examples that reduce the umugriaf the classification
boundary. Since having better probability estimates igiraproves accuracy, it is not
surprising that a method focused on improving classificaiocuracy selects exam-
ples that may also improve CPE. However, using JSD direottyges on reducing the
uncertainty in probability estimates and hence performshrhetter on this task than
margins. On the AULC metric both measures seem to perfornpacaily; however, on
MSE, JSD shows clear and significant advantages over usirgjmsaAs noted above,
one needs to analyze a combination of these metrics to iffgcevaluate any active
CPE method. Figure 2 presents the comparison@fIiXeE DECORATEwith JSD versus
margins on the AULC metric oglass The two methods appear to be comparable, with
JSD performing better earlier in the curve and margins perifeg better later. How-
ever, when the two methods are compared on the same datsisetthe MSE metric
(Figure 3), we note that JSD outperforms margins througtimitearning curve. Based
on the combination of these results, we may conclude thaguksD is more likely to
produce accurate CPEs for this dataset. This example reagohe need for examining
multiple metrics.

5.5 ActiveDecorate-JS vs Bootstrap-JS

In addition to demonstrating the effectiveness of JSD, we abmpare the two active
CPE methods that use JSD. The comparison is made in two szerarthefull dataset
scenario, the setting is the same as in previous experimarnteearly stagescenario,
each algorithm is allowed to select 1 example at each iteratiarting from 5 examples
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and going up to 20 examples. This characterizes the perfarenat the beginning of
the learning curve. In the interest of space, we only pretsenivin/draw/loss statistics
(Table 4). For thdull dataset on the AULC metric, the methods perform comparably,
but BOOTSTRARJS outperforms ATIVEDECORATEJS on MSE. However, for most
datasets, ATIVEDECORATEJS shows significant advantages overd@ STRAR-JS in
the early stagesThese results could be explained by the fact that DRATE (used
byAcTIVEDECORATEJS) has a clear advantage over Bagging (used®@yBTRAP
JS) when training sets are small, as explained in [11].

For DECORATE, we only specify the desired ensemble size; the ensemhiestb
could be smaller depending on the maximum number of classifies permitted to ex-
plore. In our experiments, the desired size was set to 15 arakanum of 50 classifiers
were explored. On averageERORATE ensembles formed by @&IVEDECORATEJS
are much smaller than those formed by Bagging moBSTRARJS. Having larger
ensembles generally increases classification accuraggfitomay improve CPE. This



Table 3. ACTIVEDECORATE-JS versus Margins

% MSE Reduction % AULC Increase

Data set Margin JSvs. JSvg.Margin JSvs. JSvs.
vs. Rand. Rand. Margjas. Rand. Rand. Marg

breast-w 9.32 2391 1273 | 029 -0.50 -0.79
colic 865 17.99 10.17 4 244 -1.47
credit-a| 15.83 21.97 7.08 285 298 0.07
credit-g| 7.06 891 202 698 7.79 075
diabeteg -3.11 0.07 29 498 084 -394
heart-c| 4.66 6.3 172 154 053 -0.99
hepatitisy 4.49 7.34 299 193 014 -1.95
ion 2923 36,51 1001 | 573 553 -0.2
kr-vs-kp| 34 65.27 50.77 | 6.46 219 -3.99
sick 3918 64.38 4224 | 1049 911 -124
sonar 9.3 931 0.15| 584 537 -0.41
vote 1215 4579 3812 | 081 -051 -1.31
anneal | 4551 638 321 762 1114 327
autos | 832 11.38 357 | 1534 1152 -3.34
balance-s 14.1 24.63 1205| 524 6.14 086
car 29 5332 5227 | 556 16.23 103
glass 7.62 1231 5.02 8.62 1051 1.82
hypo | 31.37 89.87 86.34 | 4.03 47 0.65
iris -1.32 3432 327 | -156 152 316
nursery| 2.62 69.99 6952 | 056 643 59
optdigits| 32.56 39.8 10.67 | 19.38 17.79 -14
segment 56.95 7112 2727 | 611 685 071
soybean 1582 21.84 7.42 211 3435 10.89
wine 17.09 2885 1381 | 166 117 -05
wi/d/I 22/0/2 23/1/0 23/1/0 23/0/1 22/2/0 10/3/11

>

Table4. BOOTSTRARJS vs. ATIVEDECORATEJS: Win/Draw/Loss records

% MSE Reductior® AULC Increasg

Full dataset 18/0/6 13/0/11
Early stages 8/2/14 2/5/17

may account for the weaker overall performance off A/EDECORATE-JS to BOOTSTRAP
JS; and may be significantly improved by increasing the eb&ergize.

6 Conclusionsand Future Work

In this paper, we propose the use of Jensen-Shannon divergsa measure of the util-
ity of acquiring labeled examples for learning accuratsslarobability estimates. Ex-
tensive experiments have demonstrated that JSD effectiepitures the uncertainty of
class probability estimation and allows us to identify matarly informative examples
that significantly improve the model’s class distributicstimation. In particular, we
show that, for binary-class problemspBTSTRARJS which employs JSD to acquire
training examples is either comparable or significantlyesigqr to BOOTSTRARLV, an
existing active CPE learner for binary class problemeoBSTRARJS maintains its
effectiveness for multi-class domains as well: it acquinfsrmative examples which
result in significantly more accurate models as comparedtiets induced from exam-
ples selected uniformly at random. We have also demondttat¢ when JSD is used



with ACTIVEDECORATE, an active learner for classification, it produces subgthint-
provements over using margins, which focuses on classificatcuracy. Furthermore,
our results indicate that, in generalpBTSTRARJS with Bagged-PETs is a preferable
method for active CPE compared tacANVEDECORATEJS. However, if one is con-
cerned primarily with the early stages of learning, thetT/AVEDECORATEJS has a
significant advantage.

Our study uses standard metrics for evaluating CPE emplioyexisting research.
However, we have shown that JSD is a good measure for sejestmmples for im-
proving CPE; and therefore it should also be a good measusy&tuating CPE. When
the true class probabilities are known, we propose to alatuate CPEs by computing
the JSD between the estimated and the true class distrilsutio
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