
Conclusions
ASSERTdemonstrates how theory refinement techniques
developed in machine learning can be used to effec-
tively build student models for intelligent tutoring sys-
tems. This application is unique since it inverts the
normal goal of theory refinement fromcorrecting errors
in a knowledge base tointroducing them. A comprehen-
sive experiment involving a large number of students
interacting with an automated tutor for teaching con-
cepts in C++ programming was used to evaluate the
approach. This experiment demonstrated the ability of
theory refinement to generate more accurate student
models than raw induction, as well as the ability of the
resulting models to support individualized feedback that
actually improves students’ subsequent performance.
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group.
Since the four groups of students each had a different

average accuracy on the pre-test and post-test, they were
compared using the averageimprovement in accuracy
between pre-test and post-test. Also because each group
consisted of different students with no pairing between
groups, significance was measured using an ANOVA
test. As the only variable between groups was the feed-
back received, the significance test used was a 1-way
unpaired ANOVA test at the 0.05 level of confidence.
The average improvement in performance for the four
groups is shown in Table 1. As predicted, the average
performance decreased as the feedback varied from
ASSERT to reteaching to nothing and the ASSERTgroup
performed significantly better than the other two groups.

Accuracy of Student Models
To test the accuracy of the learned models at predicting
subsequent student behavior, the data from the No Feed-
back group was used. This is because no remediation
occurred between the pre-test and post-test for the stu-
dents in this group; thus, their 20 questions could be
treated as a single unit from which training set and test
set examples could be drawn. Training-test splits were
generated so as to be equivalently representative across
both data sets. The 20 examples from the pre-test and
post-test were grouped into 10 pairs, where each pair
consisted of the two examples (one from the pre-test and
one from the post-test) which covered the same domain
rule. Then, training and test set splits were generated by
randomly dividing each pair.

The result was 210 possible training-test set splits. For
each of the 25 No Feedback students, 25 training-test
splits were generated, yielding 625 samples. For com-
parison purposes, we also measured the accuracy of
both an inductive learner, using the same training and
test set splits, and the correct domain rules. The induc-
tive learner was run by starting NEITHER with no initial
theory, in which case NEITHER builds rules by induction
over the training examples using a propositional version
of the FOIL algorithm (Quinlan, 1990). Each system was
trained with the training set and accuracy was measured
on the test set by comparing what the system predicted

Group
Average

Pre-test Score
Average

Post-test Score
Average
Increase

ASSERT 44.4 67.6 23.2
Reteaching 50.8 58.0 7.2
No Feedback 54.8 56.8 2.0

Table 1: C++ Tutor remediation test. Scores are percentage of
post-test problems answered correctly. Increase is significant

between ASSERT and the other two groups with what the student from the No Feedback group actu-
ally answered. For the correct theory, no learning was
performed, i.e. the correct domain rules were used with-
out modification to predict the students’ answers. The
results are shown in Table 2. Statistical significance was
measured using a two-tailed Student t-test for paired
difference of means at the 0.05 level of confidence. As
predicted, ASSERT produced more accurate models.
Note that induction was even less accurate than simply
assuming the student possessed totally correct knowl-
edge, clearly indicating the problems with this approach
in the typical, limited-data situation.

Future Work
The form of reteaching used in the current experiment is
very simple and does not employ any knowledge about
the individual student or any knowledge of common
mistakes or misconceptions. It does not even consider
which questions were answered incorrectly. The experi-
ment was designed to test if models constructed by
ASSERT were better than no model at all. Experiments
comparing ASSERT’s approach to alternative model-
based methods are needed to evaluate the specific
advantages of the refinement-based approach with
respect to remediation.

Unlike previous modeling efforts which focus on pro-
cedural tasks, ASSERT is designed for classification
domains. As an example of this difference, several pre-
vious student modeling efforts have focused on the
domain of writing computer programs (Soloway et al.,
1983), whereas this research was tested using a classifi-
cation task where students were asked to judge the cor-
rectness of program segments. This tie to classification
domains is largely due to the fact that the most mature
theory-refinement algorithms developed thus far are
designed for classification and is not a limitation of the
general framework of ASSERT per se. As first-order
logic refinement methods are enhanced (Richards and
Mooney, 1995), ASSERT can be updated accordingly,
enabling it to address a wider range of applications.
However, note that it is not immediately clear how easy
it would be to map ASSERT to a procedural domain.

System
Average
Accuracy

ASSERT 62.4
Correct Theory 55.8
Induction 49.4

Table 2: Results of accuracy test. All differences significant



C++ Tutor Tests
The C++ Tutor was developed in conjunction with an
introductory C++ course at the University of Texas. The
tutorial covered two concepts historically difficult for
beginning C++ students: ambiguity involving statements
with lazy operators and the proper declaration and use
of constants. These two concepts plus examples of cor-
rect programs formed three categories into which exam-
ple programs could be classified. A set of 27 domain
rules was developed to classify problems, using a set of
14 domain features, as being eitherambiguous, a com-
pile error (for incorrectly declared or used constants) or
correct. The latter category was the default category
assumed for any example which could not be proved as
ambiguous or a compile error.

Students who used the tutorial did so on a voluntary
basis and received extra credit for their participation. As
an added incentive, the material in the tutorial reviewed
subjects which would be present on the course final
exam. This established a high level of motivation among
the students who participated in the test. Due to the
large number of students involved (75), the tutorial was
made available over a period of four days and students
were encouraged to reserve time slots to use the pro-
gram.

Three major questions were the focus of the test.
First, it was important to establish whether or not
ASSERT could be an effective modeler for students in a
realistic setting. This was measured by testing the model
produced for a student on a set of examples taken from
the student which had not been given to ASSERT. The
predictive accuracy of the model on such novel exam-
ples was expected to be higher than simply using the
correct rule base or one induced from scratch from stu-
dent behavior. Second, even with a perfect model one
may not see any increase in student performance. Our
hypothesis was that remediation generated using models
built by ASSERT would result in increased student per-
formance over a control group which received no feed-
back. Third, as in previous student modeling studies, we
wanted to test how students receiving feedback based on
student models would compare against students receiv-
ing a simple form of reteaching feedback. The expecta-
tion was that remediation based on modeling would
result in greater post-test performance. Testing these
hypotheses was accomplished with two experiments:
one to measure the effects of remediation and another to
measure the accuracy of modeling.

Effect of Remediation on Student Performance
For the remediation test, students who used the C++

Tutor were divided into three groups. One group
received the benefits of ASSERT, the second received a

very simple form of reteaching, and the third was a con-
trol group given no feedback.

To test whether ASSERT can impact student perfor-
mance, one needs to collect information for each student
that has certain characteristics. To begin with, data must
be collected both before and after any feedback given to
the student to detect any change in performance. Thus
the C++ Tutor was constructed as a series of two tests
with a remediation session in between. Secondly, the
data from the two tests must be equally representative of
the student’s capability and must be collected in similar
ways.

To that end, a program was written to generate 10
example questions as follows. The questions were
divided equally among the categories: three questions
were correctly labeled as compilation errors, four were
examples of ambiguous programs, and three were ques-
tions with no errors. This process was used to generate
two sets of 10 questions, both of which covered the
same subset of the correct rule base. This ensured that
the two sets of questions covered the same concepts at
the same level of difficulty, though no two questions
were identical. These two sets of questions represented
the pre-test and post-test to be given to each student.
One set of questions was used as the pre-test for all the
students, the other as the post-test, thus the same pre-
test and post-test was given to every student. To dis-
courage cheating, the order in which the 10 questions
were presented was randomized. Thus every student
answered the same questions, and the only difference
was the feedback given between the pre-test and post-
test.

Students were randomly assigned to three groups of
25, each of which received a different kind of feedback
from the C++ Tutor. One group of 25 received no feed-
back, acting as the control group. The other two groups
were given feedback using explanations and examples
as described previously. To ensure that the only differ-
ence between feedback groups was the type of feedback
received, both groups were given the same amount of
feedback; specifically, four examples and four explana-
tions for each student.

For the “Reteaching” group, ASSERT selected four
rules at random from the rule base, and an explanation
and example was generated for each rule. The ASSERT

group received feedback based on the models con-
structed for the student from his or her answers to the
pre-test questions. Bugs were selected for remediation
based on the order they were found by NEITHER.2 If
fewer than four bugs were found, the remainder of the
feedback was selected at random as with the Reteaching

2. NEITHER orders its refinements by preferring those which
increase accuracy the most with the smallest change.



feature vector presented to the student in a multiple-
choice format, where the answers available to the stu-
dent are taken from among a list of possible categories.
This allows ASSERT to be used in concept learning
domains, which are common applications for automated
training systems. It also means that student actions will
translate directly into a form usable by theory refine-
ment. Once collected, the labeled examples generated
by the student are passed to the NEITHER theory-refine-
ment system which modifies the rule base until it repro-
duces the same answers as the student.

Using the refinements produced by NEITHER, ASSERT

generates explanations and examples to reinforce the
correct form of the rule or rules modified. The underly-
ing approach, calledrefinement-based remediation, is
based on fundamental units of explanation calledunits
of remediation. Rather than implementing any particular
pedagogy, ASSERT supplies the most elementary infor-
mation required: anexplanation with one or moreexam-
ples. For each refinement detected by NEITHER, ASSERT

provides two functions: the ability to explain a correct
use of the rule which was changed, and the ability to
generate an example which uses the rule. The designer
of a tutoring system using ASSERT has the option to gen-
erate multiple explanations or examples, to determine
the circumstances when such feedback is given, and to
decide whether the system or the student controls which
explanations and examples are generated.

Explanations focus on describing how the correct
form of the rule (not the revised version) fits into the
originally correct rule base. Each rule has an associated
piece of stored text, describing its role in the rule base.
A full explanation is generated by chaining together the
stored text for the rules lying on the proof path for the
correct label (not the student’s label) for the example,
i.e., the label which is produced by the correct rule base
for the given feature vector.

Examples are constructeddynamically rather than
being drawn from storage. Recall that each refinement
made by NEITHER results in the addition or deletion of
literals from a rule in the theory. Using normal deduc-
tive methods, the added and removed literals can be
traced down to the feature vector. The result is a set of
conditions in the feature vector which the student is
ignoring or a set of extra conditions not present in the
feature vector which the student thinks are necessary.
ASSERT can thus generate an example which is correct
in every wayexceptfor the added or missing conditions
in the refinement. The result is then presented as a
counter example to the student, and the various added or
missing conditions highlighted. Note that this corre-
sponds very closely to tutorial methods outlined for

conceptual domains by (Tennyson and Park 1980). An
explanation and example pair is shown in Figure 3. This
is the explanation generated for the deleted antecedent
of the last rule of Figure 1.

Experimental Results
The ultimate test of any tutoring system design is
whether or not it enhances student performance. This is
especially true for student modeling; if the use of a
model cannot significantly impact the educational expe-
rience, then there is little reason to construct one. Fur-
thermore, this evidence must come from experiments
involving large numbers of students in a realistic setting
so that the significance of the data can be determined.
The importance of student modeling is currently a con-
troversial issue (Sandberg & Barnard, 1993); however
there are very few controlled studies, with somewhat
contradictory results (Sleeman, 1987; Nicolson, 1992).
In this section, we presented evidence supporting the
claim that ASSERT can be used to construct tutorials
which significantly impact student performance.

EXPLANATION

One way to detect a compilation error is to look for an identifier
which is declared constant and initialized, then later assigned.

A constant identifier is erroneously assigned when it is declared
as a constant pointer to an integer, initialized to the address of
some integer, and later set to the address of another integer. It
does not matter if the identifier is a pointer declared to point to
a constant integer or a non-constant integer; once a constant
pointer is initialized it cannot be reset to another address.

Specifically, note the following which contribute to this error:
* There must be a pointer declared to be constant.
* A pointer declared constant must be initialized.
* A pointer declared constant and initialized must be set after its

initialization.

Here is an example to illustrate these points:

Example
Here is an example which might appear to be a compile error
but is actually CORRECT:

void main() {
const int x = 5, y, w, *z = &x;
z = &w;
cin>>w>>y;

cout<<((y *= x) || (y > w)); cout<<(w -= x);
}

This example is NOT a compile error because:
* The pointer ‘z’ is declared as a NON-CONSTANT pointer to a

constant integer, so it does not have to be initialized and can
be reset.

Figure 3: Example remediation given to a student



require user interaction to determine which new bugs to
add to an initial hand-constructed library (Sleeman et
al., 1990). By contrast, the theory-refinement approach
implemented in ASSERT is completely automatic, and by
taking advantage of existing correct domain knowledge,
it is able to learn more accurate models from limited
training data compared to inducing a complete model
from scratch.

Background on Theory Refinement
For its theory refinement component, ASSERT uses NEI-

THER (Baffes & Mooney, 1993) a successor to the
EITHER system developed by Ourston & Mooney (1990,
1994). NEITHER employs a propositional Horn-clause
knowledge representation. It takes two inputs, a propo-
sitional rule base called thetheory, which is repaired
using a set of inputexamples. The examples are lists of
feature-value pairs chosen from a set ofobservable
domain features. Each example has an associated label
or category which should be provable using the theory
given the feature values in the example. NEITHER can
generalize or specialize a theory, without user interven-
tion, and is guaranteed to produce a set of refinements
that are consistent with the training examples.

Although space limitations prevent us from providing
details on theory refinement (see Baffes, 1994), a sum-
mary of the technique is as follows. Propositional Horn-
clause theories can have four types of errors. An overly-
general theory is one that causes an example to be
proven in an incorrect category, i.e. a false positive.
NEITHER adds new antecedents and deletes rules to fix
such problems. An overly-specific theory causes an
example not to be proven in its own category, i.e., a
false negative. NEITHER deletes existing antecedents
and learns new rules to fix these problems. By making
these four kinds of syntactic rule changes, NEITHER can
correct the semantics of the theory by altering the condi-

tions under which rules are satisfied.1 A sample theory
and examples are shown in Figure 1.

Description of ASSERT

ASSERT views tutoring as a process of communicating
knowledge to a student, where the contribution of the
modeling subsystem is to pinpoint elements of the inter-
nal knowledge base to be communicated. Figure 2
shows a schematic of the ASSERT algorithm. It is
assumed that all actions taken by a student can be bro-
ken down to a set ofclassification decisions. That is,
given a set of inputs, calledproblems, the student will
produce a set oflabeled examples which classify each of
the problems into one category. Each problem consists
of one or more feature vectors describing some aspect of
the problem. The task of the student is to produce a
label for each feature vector, selected from among some
predetermined set of legal labels given to the student.

In its simplest form, a problem consists of a single

1. NEITHER’s running time is linear in the size of the theory.

Student

Labeled Correct

Theory

Rule ChangesRefinement-Based

Explanation
& Examples Rule BaseExamples

Refinement

Remediation

Figure 2: Basic design of the ASSERT algorithm

Example 1 Example 2 Example 3 Example 4

category compile-
error

not compile-
error

compile-
error

compile-
error

pointer constant non-
constant

non-
constant

non-
constant

pointer-
init

true false true false

pointer-
set

true true true true

integer constant non-
constant

non-
constant

non-
constant

integer-
init

true true true true

integer-
set

by-pointer yes no no

Figure 1: Sample theory and examples. The original theory,
shown in plain text, misclassifies examples 3 and 4. The
corrected theory is shown with two deleted antecedents

underlined and an added antecedent in boldface.

R1: compile-error← constant-not-init
R2: compile-error← constant-assigned
R3: constant-not-init← (pointer constant)∧ (pointer-init false)∧

R4: constant-not-init← (integer constant)∧ (integer-init false)
R5: constant-assigned← (integer constant)∧ integer-init∧ (integer-set yes)
R6: constant-assigned← (integer constant)∧ integer-init ∧

R7: constant-assigned← (pointer constant) ∧ pointer-init∧ pointer-set
(integer-set by-pointer)

 (integer-set no)
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Abstract
Theory refinement systems developed in machine learn-
ing automatically modify a knowledge base to render it
consistent with a set of classified training examples. We
illustrate a novel application of these techniques to the
problem of constructing astudent modelfor an intelli-
gent tutoring system (ITS). Our approach is
implemented in an ITS authoring system called ASSERT

which uses theory refinement tointroduce errors into an
initially correct knowledge base so that it modelsincor-
rect student behavior. The efficacy of the approach has
been demonstrated by evaluating a tutor developed with
ASSERT with 75 students tested on a classification task
covering concepts from an introductory course on the
C++ programming language. The system produced rea-
sonably accurate models and students who received
feedback based on these models performed significantly
better on a post test than students who received simple
reteaching.

Introduction
Theory refinementmethods developed in machine learn-
ing were designed to aid knowledge acquisition by
using a database of classified examples to automatically
make revisions that improve the accuracy of a knowl-
edge base (Ginsberg, 1990; Ourston & Mooney, 1990
Towell & Shavlik, 1990). These learning techniques
have been used to correct errors in an imperfect rule
base elicited from an expert and thereby produce a more
accurate knowledge base than purely inductive learning
methods. In this paper, we present a particularly novel
application of theory refinement to a very different
problem, that of producing astudent model for an intel-
ligent tutoring system (ITS). By inverting the standard
goal of theory refinement, we show how it can be used
to produce a model of a student’s knowledge that is use-
ful for automated tutoring.

Typically, the knowledge base in theory refinement is
considered incorrect or incomplete and the examples
represent correct behavior which the knowledge base
should be able to emulate. However, the refinement pro-
cedure itself is blind to whether or not the initial knowl-
edge base is “correct” in any absolute sense; the theory-
refinement process merely modifies the knowledge until
it is consistent with the examples. Thus, one can also
start with acorrect knowledge base and examples of

erroneous conclusions, and use theory refinement to
introduce errors that cause the knowledge base to model
the incorrect conclusions illustrated in the examples. In
this way, theory refinement provides a basis forrefine-
ment-based student modeling. Starting with a represen-
tation of the correct knowledge of the domain, and
examples of erroneous student behavior, theory refine-
ment can introduce “faulty” knowledge that accounts
for the student’s mistakes. The resulting changes consti-
tute a model of the student which can be used directly to
guide tutorial feedback by comparing the refinements
with the elements of correct knowledge they replaced.

We have implemented this approach in an ITS author-
ing system called ASSERT, which was then used to
develop a tutor for teaching concepts in C++ program-
ming. A controlled experiment with 75 students was
conducted to evaluate the resulting tutor. The system
produced reasonably accurate models, and students who
received directed feedback based on these models per-
formed significantly better on a post test than students
who received simple reteaching.

Background on Student modeling
In order to tailor instruction to individual students, one
of the primary tasks of most intelligent tutoring systems
is to construct a model of the student’s knowledge
which is then used to guide the feedback and informa-
tion presented. The simplest type of model is anoverlay
model (Carbonell, 1970; Carr & Goldstein, 1977) which
assumes that a student's knowledge is a subset of the
correct domain knowledge. Unfortunately, this approach
is unable to model incorrect student knowledge. Other
researchers have focused on constructing databases of
student misconceptions typically termedbug libraries
(Brown & Burton, 1978; Sleeman & Smith, 1981).
However, hand-constructing such libraries by analyzing
student protocols is a difficult, time-consuming task and
the result is incapable of modeling unanticipated student
behavior. More recent work has focussed on using
machine learning techniques to automate the construc-
tion of student models. However, existing methods
require inducing a complete model of student knowl-
edge (both correct and incorrect) from limited training
data (Langley & Ohlsson, 1984; Langley et al., 1990) or


