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Abstract

Student modeling has been identi�ed as an im-

portant component to the long term development

of Intelligent Computer-Aided Instruction (ICAI)

systems. Two basic approaches have evolved to

model student misconceptions. One uses a static,

prede�ned library of user bugs which contains the

misconceptions modeled by the system. The other

uses induction to learn student misconceptions from

scratch. Here, we present a third approach that uses

a machine learning technique called theory revision.

Using theory revision allows the system to automat-

ically construct a bug library for use in modeling

while retaining the 
exibility to address novel er-

rors.

1 Introduction

One of the most important components of an Intel-

ligent Computer-Aided Instruction (ICAI) system

is the student model (Wenger, 1987). Some re-

searchers have argued (Carbonell, 1970; Laubsch,

1975) that the e�ectiveness of an ICAI system de-

pends heavily upon its student modeling compo-

nent. Without the 
exibility to model novel stu-

dent errors, ICAI systems will not progress much

beyond today's electronic page turners with canned

responses tuned to the average student.

Over the last two decades, several techniques

for student modeling have been developed. One

method, called overlay modeling (Carr and Gold-

stein, 1977), assumes a student's knowledge is al-

ways a subset of the correct domain knowledge.

While simple to implement, this method is incapable

of capturing misconceptions, or bugs, that represent

faulty student knowledge.

To capture such misconceptions, other researchers

(Brown and Burton, 1978; Burton, 1982; Brown

and VanLehn, 1980; Sleeman and Smith, 1981) have
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focused on the use of bug libraries. In these ap-

proaches, models are built by matching student be-

havior against a catalog of bugs. Typically, such

catalogs are either di�cult to construct or fail to

cover a wide enough range of behaviors.

A third method of student modeling attempts to

model student misconceptions without overlays or a

bug library (Langley et al., 1984; Ohlsson and Lan-

gley, 1985). Here, induction is used to construct

a student model from examples of student behav-

ior. While this provides more 
exibility, in general

accurate induction requires a large number of such

examples. Moreover, this approach cannot take ad-

vantage of likely misconceptions which could be pre-

programmed.

Here we present a new algorithm for student mod-

eling called Assert (Acquiring Stereotypical Stu-

dent Errors using Revision of Theories). There are

two main contributions of our algorithm. First, As-

sert demonstrates a new method for constructing

student models using a machine learning technique

called theory revision. Theory revision allows As-

sert to build models more accurately with fewer

examples of student behavior. Theory revision also

enables Assert to utilize a complete or partial bug

library. Second, Assert provides a new method for

automatically constructing and extending a bug li-

brary by combining multiple student models into a

stereotypical student model. Thus Assert can can

create and use a bug library, while retaining the


exibility to address novel student errors.

2 Overview of Theory Revision

Theory revision algorithms modify existing rule

bases to make them consistent with a given set of ex-

amples. Unlike induction algorithms which receive

only examples as input, theory revision systems ex-

pect both the examples and a set of rules (theory).

Typically, theory revision algorithms are used under

the assumption that the rules are partially correct

but not yet completely de�ned to cover all examples.

The theory is successively re�ned, by specialization

and generalization, until it is consistent with the

examples. Most theory revision systems attempt to

change the input rules as little as possible to accom-
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modate the examples.

Unfortunately we do not have the space to de-

scribe theory revision in detail. However, note that

theory revision systems have been implemented us-

ing a variety of techniques, including both logic

and connectionist frameworks. Here we use the Ei-

ther system, which revises theories expressed in

an extended propositional logic. In Either, the-

ories consist of rules written as Horn clauses and

examples represented as vectors of observable fea-

tures. Either uses abductive and inductive reason-

ing to a�ect six types of changes. Antecedents can

be specialized, generalized, added or deleted, and

rules may be added or removed from the theory.

For a more detailed overview of theory revision and

the Either algorithm, see (Ourston and Mooney,

1990).

3 The Assert Algorithm

3.1 Student Modeling as Theory Revision

Our description of the Assert algorithm begins

with the observation that student modeling can be

viewed as theory revision. Due to the restrictions

imposed by Either, it is assumed that the tutor-

ing task is a categorization problem (multiple con-

cept lesson). While categorization problems have

not been a major focus of ICAI modeling e�orts,

concept lessons have a well understood pedagogy

(Dick and Carey, 1990) and are common CAI appli-

cations. Furthermore, as Gilmore and Self (Gilmore

and Self, 1988) have pointed out, machine learning

has been successfully applied in categorization do-

mains making it natural to explore its potential in

concept tutorials. Other tasks, speci�cally proce-

dural ones, in general cannot be represented using

propositional Horn clauses. It is important to point

out, however, that the basic technique of using the-

ory revision for student modeling is not limited to

categorization domains since other theory revision

algorithms may use di�erent underlying representa-

tions.

Given this assumption, the correct knowledge for

the task can be represented in a straightforward

manner using Horn clause rules. Each concept is

represented as the head of a Horn clause, and the

components of that concept make up the predicates

that form the body of the clause. Disjunctive con-

cepts are represented using multiple clauses. Fig-

ure 1 shows part of a theory for animal classi�ca-

tion.

The full theory classi�es examples as one of twelve

di�erent animals. The rules form a hierarchy where

the consequents of some rules are referenced as

antecedents in others. Disjunctive concepts (e.g.

\mammal") are represented by multiple rules. Ex-

amples are classi�ed by the theory via rule chaining.

For instance, the following example

mammal  birth=live

mammal  feed-young=milk

ungulate  mammal & ruminate

giraffe  ungulate & neck=long &

pattern=spots

Figure 1: Animal classi�cation rules.

(birth=live & ruminate & neck=long &

feed-young=milk & pattern=spots)

is classi�ed by the rules in Figure 1 as a gira�e.

Either birth=live or feed-young=milk su�ces to

prove mammal which, when combined with ruminate

proves ungulate. The rest of the facts combine for

the �nal categorization as a gira�e.

3.2 Constructing Student Models

Modeling faulty student knowledge now becomes a

matter of modifying the theory to make it consis-

tent with responses generated by the student. In

other words, the correct theory modeling a perfect

student is altered using theory revision to match ac-

tual student behavior. This is contrary to the typ-

ical use of theory revision, but in principle there is

no di�erence. We are simply reversing the notion of

\goodness": instead of �xing incorrect theories, we

use theory revision to introduce faults to model the

incorrect knowledge of the student.

As an example, consider again the gira�e example

above. If the feature pattern=spots were absent

and the student still classi�ed the example as a gi-

ra�e, there would be an inconsistency between the

rules and the student's observed behavior. Either

would modify the rules to account for the discrep-

ancy by removing the pattern=spots antecedent

from the gira�e rule, as long as this change re-

mained consistent with other classi�cations made

by the student.

Assert begins with a correct theory of perfect

student behavior and a list of examples as catego-

rized by a particular student. These student catego-

rizations could be collected in any number of ways

including a multiple choice test where the student

classi�es examples represented as lists of features

(such tests are common in the instructional design

of CAI systems). Here we assume that a multi-

ple choice test can be constructed from a pool of

examples and the results given to Either as ex-

amples of a particular student's behavior. Either

then changes the correct input theory to match the

student's erroneous classi�cations.

3.3 Building the Stereotypical Model

For many tutoring domains, it is possible to out-

line typical misconceptions that a student might ex-

hibit. This is one of the justi�cations for the bug

library approach described earlier. Assuming that



such errors will be common, it makes sense to collect

several student models and note the commonalities

that exist across students. Using these commonal-

ities one can form a representative student model

which we call a stereotypical student model. Con-

struction of the stereotypical student model pro-

ceeds in four phases as follows.

Phase 1: Collection of student models. First, sev-

eral student models must be generated from the

same input theory using the process already de-

scribed.

Phase 2: Sorting of rule changes. Next, all

changes from all the student models are grouped

by the rule altered and the type of change made.

As mentioned earlier, there are six types of changes

or deviations that Either can make to a rule.

Each deviation may consist of multiple component

changes to the rule. The result of this sorting is a

list of proposed deviations to each rule, grouped by

type. The size of the group equals the number of

di�erent student models that proposed a deviation

to the given rule.

Phase 3 Thresholding. Each group of deviations

associated with a rule is discarded if the size of that

group does not exceed a desired threshold . This en-

sures that only those changes which are common to

multiple students are incorporated into the stereo-

typical student model. The threshold can be mod-

i�ed to make the system more or less conservative

about what deviations are considered stereotypical.

Phase 4: Extraction of common changes. After

thresholding, all the deviations within a group rep-

resent a particular type of change to the rule. How-

ever, since these changes come from di�erent stu-

dent models, they will not necessarily be the same.

To pull out only what is common among all the devi-

ations, Assert uses the common component extrac-

tion algorithm shown in Figure 2. This algorithm

measures commonality using two metrics: (1) the

number of student models that contain the compo-

nent and (2) the size of the component, where larger

components represent more speci�c changes. Large

frequent changes are preferred. The algorithm is it-

erative; as each common component is selected, that

component is removed from all the deviations of the

group before selecting the next component.

To illustrate the steps for constructing a stereo-

typical student model, refer again to Figure 1. As-

sume that three student models have been gener-

ated, and all have proposed changes to the last rule

of the theory as shown in Figure 3. Assume further

that the value of the threshold is 2. Since there are

two di�erent types of changes, two groups of devi-

ations will be formed. The �rst, for adding rules,

will contain all the giraffe rules from each student

model. The second, for generalizing the mammal

1. Compare all components of all deviations.

2. For each component-component comparison,

�nd the common subcomponent.

3. Store each subcomponent with a count of the

number of di�erent student models in which it

was present. Call this count \N".

4. Select the \best" subcomponent based on the

formula \L*N" where \L" is the length of the

subcomponent. Add the subcomponent to the

common deviations to be returned.

5. Remove all components from all deviations that

are subsumed by the \best" subcomponent of

step 4.

6. Repeat steps 1-5 until there are no common

subcomponents (i.e., step 2 produces the empty

set). Return the subcomponents collected in

step 4.

Figure 2: Common component extraction algorithm.

Student Model 1: 2 rules added

giraffe  foot-type=hoof & ungulate

giraffe  color=tawny

Student Model 2: 1 rules added, 1 rule changed

giraffe  color=tawny & ungulate

mammal  birth=live or egg

Student Model 3: 2 rules added

giraffe  foot-type=hoof & ungulate

giraffe  color=tawny & ruminate

Figure 3: Example student models.

rule, will contain only the mammal rule from student

model 2. This second group will be thrown out dur-

ing thresholding since only one deviation is in the

group and the threshold is set at 2.

This leaves the three student models propos-

ing added rules. Table 1 shows how each

of the components of these deviations is mea-

sured by the common component extraction al-

gorithm. While color=tawny and ungulate ap-

pear the most frequently (N = 3), the conjunct

foot-type=hoof & ungulate has a larger prod-

uct (L �N = 4) and is thus selected �rst.

Next, all of the rules that are subsumed by

foot-type=hoof & ungulate, are removed from

the student models. This leaves the second rule

from model 1, the �rst rule from model 2, and the

second rule from model 3. The only remaining com-

mon element is color=tawny which is extracted as

the second component of the stereotypical model.

This last extraction covers the rest of the remaining



Subconjunct L N L �N

foot-type=hoof 1 2 2

ungulate 1 3 3

color=tawny 1 3 3

foot-type=hoof & ungulate 2 2 4

Table 1: Subconjunct comparison table.

rules. The �nal stereotypical model is

giraffe  foot-type=hoof & ungulate

giraffe  color=tawny

3.4 Using the Stereotypical Model

Once the stereotypical student model has been gen-

erated, it can be used directly as a bug library.

However there are two di�erent ways of incorporat-

ing its information into the modeling process. One

method would be to modify the search mechanisms

employed by Either to prefer bugs in the stereo-

typical model over the normal theory revision pro-

cess. This would mirror the traditional use of bug

libraries; bugs would be tried singly or combined in

groups to predict student behavior. If no bug com-

bination produced an accurate model, the normal

theory revision process would be invoked.

A second method for incorporating the stereotyp-

ical model relies on the fact that theory revision is

input/output compatible. Speci�cally, the input to

theory revision (a theory) is identical in form to the

output (a revised theory). Thus the bugs stored

in the stereotypical student model can be used by

simply incorporating them into the theory used to

model subsequent students. Due to its simplicity,

this was the approach taken here for our initial test

of Assert.

Of course, it is unlikely that any one student will

exhibit exactly the bugs of the stereotypical student

model. The result is that the theory revision algo-

rithm may be forced to repair bugs just introduced.

On the other hand, it is rare to �nd a student who

has no misconceptions in common with the average

bugs. On the average, it was hoped that revising a

stereotypical set of rules would be superior to revis-

ing a correct theory.

4 Empirical Results

4.1 Experimental Design

Two hypotheses formed the basis of our testing

methodology. First, we expected theory revision to

be more accurate at student modeling than induc-

tive modelers due to the extra information available

in the input rules. Second, we expected revising

stereotypical theories to be more e�ective than re-

vising correct theories since common student errors

are part of the stereotypical model.

For the preliminary experiments presented here,

we chose to work with arti�cial data for the ani-

mal classi�cation domain referenced earlier (see Fig-

ure 1). We are currently planning experiments us-

ing actual student data collected with a CAI system

for more realistic testing. As an initial domain, the

animal classi�cation rules represent a rich enough

task to test our hypotheses on a variety of potential

student misconceptions.

Our tests were run from a pool of 180 examples

randomly generated using the correct animal classi-

�cation rules (15 examples for each of the 12 cate-

gories). Arti�cial students were generated by mak-

ing modi�cations to the correct theory. As each stu-

dent theory was formed, it was used to relabel the

180 examples to simulate the behavior of that stu-

dent. These relabeled examples act as \answers" the

student would generate to the 180 \multiple choice

questions."

Modi�cations made to the correct theory to cre-

ate students were of two types. One set of mod-

i�cations was prede�ned, with a given probability

of occurrence. These simulated common errors that

occurred in the student population. We used four

common deviations, each with a 0:75 probability of

occurrence. Two of these deleted antecedents from

rules, one added an antecedent, and one changed an

antecedent. To simulate individual student di�er-

ences, each student theory was further subjected to

random antecedent modi�cations with a probability

of 0:10.

Assert was tested against both normal theory

revision and induction using a two-phased approach.

The �rst phase was used to build a stereotypical

model for the second phase as follows:

1. First, 20 arti�cial students were created using

the methods described above.

2. For each student, all 180 examples were rela-

beled using the student's buggy theory.

3. From these 20 students, 20 student models were

generated using Either on all 180 relabeled

examples.

4. A stereotypical student model was then built

from the 20 student models using the algorithm

from section 3.3 with a threshold of 10 (i.e., half

the students had to exhibit a bug for it to be

considered \common").

Three of the four common prede�ned bugs ended

up in the stereotypical student model. The fourth

was more di�cult for Either to generate, since it

required a deletion of an antecedent followed by an

addition of a di�erent antecedent. This fourth bug

ended up as two di�erent rules in the stereotypical

student model. All four resulting deviations were



modeling test set

Initial Rules time (sec.) accuracy

stereotypical 72 96%

correct 124 84%

stereotypical,

no revision n/a 67%

correct,

no revision n/a 61%

none (induction) 12 52%

Table 2: E�ect of initial rules on modeling.

applied to the correct rules to form a stereotypical

student theory.

For the second phase, additional arti�cial stu-

dents were generated to test Either using vari-

ous initial theories. A series of experiments were

run starting Either with (1) the correct animal

rules, (2) the stereotypical student rules from phase

1 above, or (3) no initial theory. With no initial the-

ory, Either defaults to an inductive learning pro-

cess which uses the ID3 (Quinlan, 1986) algorithm.

This phase ran as follows:

1. First, 10 new arti�cial students were generated

using the same techniques used in phase 1. For

each, the 180 examples were relabeled using the

student's buggy theory.

2. 50 examples were randomly chosen from the

180 relabeled by the student as training exam-

ples. Each new student was modeled using Ei-

ther with the same 50 examples and one of

the three initial theories described above.

3. The other 130 examples were reserved for test-

ing the accuracy of each student model as fol-

lows. Recall that the output of Either is a

revised theory representing the student model.

This theory was used to label each of the 130

test examples. These labels were compared to

those generated using the student's buggy the-

ory from step 1 to compute a percentage accu-

racy.

Table 2 compares the average accuracy and mod-

eling times of Either started with each of the three

di�erent initial theories. For comparison purposes,

we also measured the accuracy of both the correct

and stereotypical theories. Statistical signi�cance

was measured using a Student t-test for paired dif-

ference of means at the 0.05 level of con�dence (i.e.,

95% certainty that the di�erences were not due to

random chance). All the di�erences shown in table 2

are statistically signi�cant.

4.2 Discussion of Results

Both of our hypotheses were borne out by the re-

sults presented in table 2. First, it is apparent that

theory revision is superior to induction in terms

of accuracy. This is not surprising since induction

must model correct as well as buggy student behav-

ior, whereas theory revision need only alter correct

rules to capture the misconceptions. The di�erence

is even more pronounced when theory revision pro-

ceeds from the stereotypical model. Induction sim-

ply has more work to do.

Second, our results show that theory revision

models students faster and more accurately when

given an initial rule base that approximates typical

student errors. Since all the students were generated

using the same criteria, providing Either with the

stereotypical rules e�ectively gives it a head start

over the correct theory.

Running the correct and stereotypical theories

without revision also produced interesting results.

Both outperformed induction, further illustrating

the disadvantage of trying to model students from

scratch using a small number of examples. It is also

apparent that revision is essential to e�ective mod-

eling, even if the initial rules model buggy student

behavior. Without revision, modeling novel student

errors is simply not possible since a static library of

bugs will not contain the needed information.

5 Related Work

There are two systems directly related to the work

described here. Both make use of machine learning

techniques to dynamically model student behavior.

Sleeman describes an extension to his PIXIE sys-

tem, which models arithmetic errors, called INFER*

(Sleeman et al., 1990) INFER* starts with a library

of known bugs and induces rules to �ll gaps be-

tween one student's solution and the correct rules

known to the system. INFER* also relies heavily

upon domain-dependent heuristics for controlling its

search, and it is not clear that these techniques can

be used for domains other than arithmetic. Fur-

thermore, INFER* does not make any attempt to

generalize across students in an e�ort to extend its

library of bugs.

Like INFER*, the theory revision techniques used

by Assert can be biased with speci�c heuristics

and known bugs, but will operate e�ectively without

them. Furthermore, Assert contains an algorithm

for extracting common elements from multiple stu-

dent models and thus can automatically extend its

library of buggy rules.

Langley et. al. (Langley et al., 1984; Ohls-

son and Langley, 1985) describe the ACM system

which uses induction to generate a production sys-

tem model of an individual student from a problem

space of operators describing the domain. While

ACM is a domain independent algorithm, Langley

et. al. make the assumption that student errors

are only the result of correct actions taken in an



incorrect context. This prohibits ACM from mod-

eling illegal actions. Also, each run of ACM starts

with no knowledge of when operators should be ap-

plied, forcing it to spend time modeling both correct

and buggy student control knowledge that could be

preprogrammed. Finally, there is no facility within

ACM for building in typical student bugs nor for

using the output of one run to aid subsequent mod-

eling e�orts.

6 Future Work

There are two chief disadvantages to the current As-

sert system. First, we have not tested Assert on

real student data. Our current e�orts are focused

on obtaining data to run such tests. Second, as dis-

cussed above (section 3.4), our simple method of

incorporating all bugs from the stereotypical model

should be replaced with a revised theory revision al-

gorithm that is biased towards preferring the bugs.

Commonmisconceptions would be tried before more

general purpose revisions so that bugs would only be

considered for students who actually exhibit prob-

lems. Finally, Assert could also be extended to

use a �rst-order theory revision algorithm (Richards

and Mooney, 1991). This might enable Assert to

model relational and procedural problem domains.

7 Conclusions

This paper has described a new algorithm for stu-

dent modeling called Assert. Assert uses theory

revision to dynamically construct student models.

Multiple student models are combined to automati-

cally construct a bug library of stereotypical student

errors. Theory revision has been shown to be more

e�ective than static bug library approaches as well

as inductive modeling techniques. Revising a rule

base of stereotypical student errors allows Assert

to build and re�ne a bug library while retaining the


exibility to address novel misconceptions.
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