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The history of computers in education can be characterized by a continuing

effort to construct intelligent tutorial programs which can adapt to the individual needs

of a student in a one-on-one setting. A critical component of these intelligent tutorials

is a mechanism for modeling the conceptual state of the student so that the system is

able to tailor its feedback to suit individual strengths and weaknesses. The primary

contribution of this research is a new student modeling technique which can automati-

cally capture novel student errors using only correct domain knowledge, and can auto-

matically compile trends across multiple student models into bug libraries. This

approach has been implemented as a computer program, A

 

SSERT

 

, using a machine

learning technique called 

 

theory refinement

 

 which is a method for automatically revis-

ing a knowledge base to be consistent with a set of examples. Using a knowledge base

that correctly defines a domain and examples of a student’s behavior in that domain,
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A

 

SSERT

 

 models student errors by collecting any refinements to the correct knowl-

edge base which are necessary to account for the student’s behavior. The efficacy of

the approach has been demonstrated by evaluating A

 

SSERT

 

 using 100 students tested

on a classification task covering concepts from an introductory course on the C

 

++

 

programming language. Students who received feedback based on the models auto-

matically generated by A

 

SSERT

 

 performed significantly better on a post test than stu-

dents who received simple reteaching.
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CHAPTER 1

 

Introduction

 

In the middle of this century when computers burst onto the scene and trans-

formed our lives, educators were quick to recognize the computer’s enormous poten-

tial as an instructional aid. Just as the wide availability of books forever changed the

way we teach and learn, it was felt that cheap access to computation would herald a

renaissance in education that would profoundly impact the classroom. With the cur-

rent trends towards ever smaller, faster and more powerful computers, this vision

seems more realistic now than ever before. In our lifetime, it is not unreasonable to

expect that powerful portable computers will become a standard school supply, just

as paper, pencil and books are today.

There are undoubtedly countless potential applications of computer technology

to education, but one approach in particular has dominated research in the field to

date. This is the view of the computer as an individualized, one-on-one tutor. The

computer tutor model is an extremely rich domain, presenting problems that span a

wide array of research interests from cognitive science to instructional design to

issues involving human-computer communication such as graphical interface design

and natural language generation and understanding. But perhaps the most compel-

ling motivation for the approach is illustrated by studies like the one performed by

Bloom [Bloom, 1984] which show that students receiving one-on-one tutoring con-

sistently experience a performance improvement two standards of deviation above

students receiving traditional lecture-style instruction. By capturing and mass pro-

ducing such individualized attention through the use of computer technology,
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researchers have hoped to provide the benefits of one-on-one tutoring on a scale

which was never before possible.

Early efforts to use computers as educational tools resulted in a paradigm now

generally referred to either as 

 

computer-based training

 

 (CBT) or 

 

computer-aided

instruction

 

 (CAI). Such programs are used to automate the presentation of well-pre-

pared material to a student. In a typical CAI program, this presentation takes on a

form similar to a book, with the additional ability to present different sections of

material or different levels of detail based upon choices made by the user. The con-

struction of an effective CAI program requires the author to anticipate student reac-

tions so that appropriate choices can be encoded in the program. Knowledge of the

educational task is thus 

 

external

 

 to a CAI program; the author uses his or her exper-

tise to predetermine the choices and explanations which will be seen by the student.

In the 1970s criticisms of the CAI approach began to emerge. Several research-

ers, most notably Carbonell [Carbonell, 1970a; Carbonell, 1970b] pointed out that

CAI could not be truly responsive to individual student needs until a knowledge of

the domain similar to that possessed by the educator was encoded 

 

within

 

 the system.

In short, a reactive system needed to be able to draw conclusions based upon interac-

tions with the student similar to those made by a teacher. Since Carbonell's work,

multiple efforts to construct 

 

intelligent

 

 CAI (ICAI), also called 

 

intelligent tutoring

systems

 

 (ITS), have produced a variety of new techniques. A complete survey of the

various approaches is beyond the scope of this work; for an excellent introduction to

the field the reader is referred to [Wenger, 1987]. In general, however, research

efforts have tended to focus on a few components seen as critical to the design of an

ITS. One of these is the method for representing the knowledge of the student. Such

representations are generally referred to as 

 

user models

 

 or 

 

student models

 

. The goal

of student modeling is to produce a representation that accounts for the differences



 

3

 

between the correct knowledge of the domain and the behavior of the student. Ide-

ally, a unique model is built for every student who interacts with the system, includ-

ing capturing misconceptions specific to each student which are not pre-

programmed into the tutor. Using the student model, an ITS can modify its feedback

to suit specific strengths and weaknesses, enabling it to be truly adaptive to the indi-

vidual.

Student modeling has a long and interesting history, dating back well into the

early CAI days. The best method for constructing and using a student model is still

the subject of much debate. Unfortunately, the difficulty of constructing and testing

student models has discouraged many researchers from pursuing further investiga-

tions into the field. Even though a body of truly exceptional research has resulted in

a particularly functional set of student modeling concepts, the practical task of incor-

porating these techniques into a functioning tutoring system has proved to be a

major roadblock. This is yet another instance of the infamous 

 

knowledge-acquisition

bottleneck

 

; the fruits of student modeling research are simply too labor-intensive to

use.

 Coincidently, recent machine learning methods have been developed which can

be used to automate the techniques developed for student modeling. It is this conflu-

ence of student modeling and machine learning which is the subject of this research.

The major contribution of this work is the A

 

SSERT

 

 algorithm (Acquiring Stereotypi-

cal Student Errors by Refining Theories), which collects the ideas developed over

the last two decades of student modeling research under one general machine learn-

ing framework for automatic student modeling in concept learning domains. With

A

 

SSERT

 

, student performance increases significantly; in fact, by nearly one-and-one-

half letter grades (for example, a typical “C” performance on a test would increase to

a “B

 

+

 

” performance on a post-test after exposure to an A

 

SSERT

 

 tutorial). To under-

stand how this is possible, one must have a basic familiarity with the current state-
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of-the-art in student modeling. Explaining A

 

SSERT

 

, then, begins with a history of the

ideas developed for student modeling.

 

1.1  A Brief History of Student Modeling

 

The application of artificial intelligence to student modeling has yielded a

steady progression of techniques for collecting information both about what a stu-

dent knows and does not know, and about explaining the sources of misconceptions.

The earliest AI-based student models, embodied in systems such as SCHOLAR

[Carbonell, 1970a], WEST [Burton and Brown, 1976] and WUSOR [Carr and Gold-

stein, 1977b], used a form of modeling which is now generally referred to as 

 

overlay

modeling

 

. An overlay model relies on the assumption that a student's knowledge is

always a subset of the correct domain knowledge. As the student performs actions

which illustrate that he or she understands particular elements of the domain knowl-

edge, these are marked in the overlay model. More sophisticated overlay models can

express a range of values indicating the extent to which the system believes a student

understands a given topic. Typically, the unmarked elements of the model are used to

student 1

student 2

correct knowledge

marked items

misconceptions

FIGURE  1 Example of an overlay model. Misconceptions occurring outside of the
correct knowledge, such as are shown for student 2, cannot be
modeled.
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focus tutoring on problem areas for the student, or to ensure full coverage of the

domain. A diagram of an overlay model is shown in Figure 1.

While simple to implement, this method is incapable of capturing misconcep-

tions, also called 

 

bugs

 

, that represent faulty student knowledge. Said another way,

overlay models can only capture the notion of a student’s lack of knowledge; they

cannot be used to model the student who knows of a topic but misunderstands it. To

address this shortcoming, other researchers [Brown and Burton, 1978; Burton, 1982;

Brown and VanLehn, 1980; Sleeman and Smith, 1981] focused on constructing data-

bases of student misconceptions typically termed 

 

bug libraries

 

. With a bug library,

models are built by matching student behavior against a catalog of expected bugs

which are preconstructed by hand through an analysis of student errors. Figure 2

depicts bug libraries in general, illustrating how they expand the space of discrepan-

cies which the modeler can address. Though an important extension to the notion of

an overlay, two problems remain with the bug-library approach. First, the construc-

correct knowledge

student 1

student 2

bug library

unanticipated errors

FIGURE  2 Example of bug library. Misconceptions are correctly modeled only if
already present in the bug library.
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tion of such catalogs is a difficult and time-consuming task. Second, even if great

care is taken the resulting library may still fail to cover a wide enough range of

behaviors to function successfully. As with overlay models, the static nature of bug

libraries renders them incapable of modeling unanticipated student behaviors.

A third approach to student modeling, shown in Figure 3, attempts to overcome

this limitation either by patching the bug library dynamically [Sleeman et al., 1990]

or by modeling student misconceptions from scratch [Langley and Ohlsson, 1984;

Langley et al., 1984; Ohlsson and Langley, 1985] using a machine learning tech-

nique called 

 

induction

 

. In both methods, novel misconceptions are modeled by con-

structing new buggy information dynamically. Patching methods use an analytical

approach based on an underlying mechanism of how misconceptions can be formed

to generate candidate extensions for the library. These candidates are then presented

to the author of the tutoring system to determine which new bugs, if any, should be

student
bug-library 

correct knowledge bug library

 extension

student

model induced
 from scratch

FIGURE  3 Dynamic modeling of bugs. The left half of the diagram depicts bug-
library extension, the right half shows induction.
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kept. Induction, by contrast, is an empirical method used to fashion unique elements

of the student model from examples of the student's behavior. Starting with no pre-

conceived notions of a student’s behavior, the system observes how the student

solves problems and builds a complete model for the student, including both correct

and buggy knowledge.

The advantage of the patching methods is that knowledge of the domain can be

brought to bear on the construction of new bugs. The disadvantage is that the system

must still rely upon the author or upon domain-dependent hand-built filters to deter-

mine which bugs to add to the library. Induction has the opposite problem; while it is

a domain-independent technique that can function without human guidance, induc-

tion typically requires a large number of examples to produce accurate results. More

importantly, neither of these approaches takes advantage of any trends that occur

across multiple students which is another important source of knowledge for con-

structing a bug library. To address these issues, one needs a different learning mech-

anism which works with fewer examples than induction, can make use of any

preexisting knowledge about student behavior, and can use the results of previous

modeling efforts to update the bug library and enhance the modeling process. These

capabilities are precisely what A

 

SSERT

 

 provides.

 

1.2  A

 

SSERT

 

 as a Framework for Automatic Student Modeling

 

A

 

SSERT

 

 automates the student modeling ideas presented in the previous section

by using a relatively new machine learning technique called 

 

theory refinement

 

. The-

ory refinement is a method for automatically revising a knowledge base to be consis-

tent with a set of examples. Typically, the knowledge base is considered incorrect or

incomplete, and the examples represent behavior which the knowledge base should

be able to emulate. However, the refinement procedure itself is blind to whether or

not the input knowledge base is “correct” in any absolute sense; the theory-refine-
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ment process merely modifies the knowledge base until it is consistent with the

examples. Thus, one can use theory refinement for diagnosis by inputting a correct

knowledge base and examples of erroneous student actions, and theory refinement

will produce the modifications necessary to cause the knowledge base to simulate the

student.

Theory refinement gives A

 

SSERT

 

 other advantages as well. A theory-refinement

learner combines the power of both analytic and empirical learning methods in an

integrated, domain-independent way. Theory refinement can take advantage of any

preexisting knowledge provided to system and resort to induction when necessary to

extend the model using examples of the student’s behavior. With theory refinement

as its centerpiece, A

 

SSERT

 

 can model any misconception consistent within the primi-

tives used to define the domain. A

 

SSERT

 

 can bring as much knowledge to bear on the

modeling process as the author of the tutoring system is willing to encode. A

 

SSERT

 

can even work with no input knowledge, resorting to induction as previous methods

have done. And most importantly, A

 

SSERT

 

 provides an extension to theory refine-

ment that combines the results of multiple student models to 

 

automatically

 

 construct

new bugs for the bug library, without the necessity of intervention on the part of the

author. Thus A

 

SSERT

 

 encompasses three important student modeling principles: (1)

it can model the differences between the system’s correct domain knowledge and the

student’s behavior (2) it can make use of a bug library to catch known misconcep-

tions and (3) it can extend its capabilities by modeling novel student misconceptions

and by automatically constructing new bug-library entries.

Unlike other student modeling efforts however, which focus on procedural

tasks, A

 

SSERT

 

 is designed for use in classification domains. For example, several

previous student modeling efforts have focused on the domain of writing computer

programs, whereas this research is tested using a classification task where students
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are asked to judge the correctness of program segments. This tie to classification

domains is largely due to the fact that the most mature theory-refinement algorithms

developed thus far are designed for classification and is not a limitation of A

 

SSERT

 

per se. However, shifting the focus of modeling from a procedural to a concept

learning emphasis is not unprecedented. Other researchers, most notably Gilmore

and Self [Gilmore and Self, 1988], have recognized the potential of using machine

learning for tutoring conceptual knowledge. Additionally, a recent trade journal sur-

vey of applications for computer-based training indicated that over 80 commercial

products are currently available for constructing CBT applications [IDS, 1990] in

which concept learning is a primary task. Concept learning also has a fairly well

understood pedagogy [Dick and Carey, 1990] and effective techniques for respond-

ing to incorrect student classifications are already extant in the literature [Tennyson

and Park, 1980]. Thus a general technique for modeling in concept domains has a

wide applicability, a potential for commercial impact, and can be coupled with

instructional techniques shown to be effective in the presentation of conceptual

material [Tennyson, 1971].

 

1.3  To Model or not to Model

 

To place this work in its proper historical context, it is important to point out

that neither the utility nor the necessity of student modeling as a component of an

ITS is a universally accepted fact. Quite to the contrary, an interview of ten well-

known ITS researchers which appears in the March 1993 issue of AI Communica-

tions came to the conclusion that “most of the researchers no longer believe in on-

line student modelling.” [Sandberg and Barnard, 1993]. The article went on to con-

clude that “instead of becoming more integrated, the field has become more diverged

in the last few years. It appears that scientists in the field of education and technol-

ogy no longer share a research paradigm.” 
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And yet, personally I do not feel that this spells the end of student modeling,

though surely research efforts in the area will drop off dramatically. The history of

artificial intelligence reveals a recurring pattern, which seems to have found its way

into the field of AI and education. After starting with a good deal of excitement

(some might say “hype”) a period of ground-breaking, proof-of-concept systems are

constructed which highlight the great potential of the research. Inevitably, however,

the problems are more difficult than they seem at first, and excitement gives way to

despair and, eventually, to disillusionment and calls for a new direction. This phe-

nomenon is compounded for AI and education by the recent merging of technologies

which heretofore were difficult to integrate. Nowadays it is a relatively simple matter

to combine video, text, sound, graphical interfaces, database technology and access

to a world-wide network into a hypermedia presentation with impressive potential. It

is only natural for educators to explore these technologies; indeed, we would be

remiss as a community if we did not do so. 

None of this, however, changes the intrinsic value of an effective student model,

as long as one can define what “an effective student model” actually is. The simplest

definition is one based on performance; using a student model should help improve a

student’s proficiency. Furthermore, it is important to point out that very little conclu-

sive evidence either for or against the utility of student models has actually been col-

lected. One of the principal results of this research, in fact, is the presentation of

empirical evidence showing that the use of A

 

SSERT

 

 student models to generate feed-

back leads to improved student performance.

In a wonderfully eloquent article [Self, 1990], John Self address the generally

negative perception of student modeling and makes suggestions for future student

modeling research. He also points out the practical objections typically leveled at

student modeling techniques; namely, that methods for modeling are too difficult to
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employ and have little impact on the learning process. Both of these concerns have

been taken into account in the design of A

 

SSERT

 

.

 

Objection 1: Practical student models are too difficult to construct

 

. The argu-

ment made here is that effective models, defined as ones which can have a discern-

ibly positive impact on the learner, are simply too complex to build. This is an

effective argument and the history of student modeling does support this claim since

most bug libraries have required many man-hours to construct. A

 

SSERT

 

 was

designed in direct response to this problem, and its solution bears emphasizing even

at the risk of being redundant. A

 

SSERT

 

 requires 

 

only

 

 the correct knowledge of the

domain to construct its models. All bug-library information, as well as any novel bug

modeling, is performed completely automatically, without necessitating feedback

from the author of the tutorial. A

 

SSERT

 

 responds quickly, operating at execution

speeds which are linear in the size of the input knowledge base as will be discussed

in Chapter 3. For any intelligent tutor, the correct knowledge of the domain has to be

encoded in any event, so there is no added expense to construct an A

 

SSERT

 

-style

tutorial. 

 

Objection 2: Student modeling doesn’t work

 

. Here the complaint is that even the

most accurate, most autonomous modeling algorithm is useless because modeling in

general does not contribute to significantly improved student performance. As indi-

cated above, the scientific evidence supporting this position is thin at best; there are

relatively few complete studies of the effects of student modeling [Sleeman, 1987;

Nicolson, 1992]. Moreover, recent results [Nicolson, 1992] indicate a positive bene-

fit from the use of student models. Furthermore, results presented in Chapter 6 sup-

port the claim that student models are useful, showing that students who received the

benefits of A

 

SSERT

 

 modeling 

 

significantly

 

 improved their performance over students

who were not modeled. In a study involving the classification of C

 

++

 

 program seg-

ments, 100 students from an introductory C

 

++

 

 class were given a test followed by
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feedback and a post-test. One group of students received feedback based on a model

generated using their pre-test answers, whereas a control group received simple

reteaching of the correct concepts. Though both groups were given the same amount

and type of feedback, students who received targeted feedback based on their student

models increased their performance on the post-test an average of 15 percentage

points more than students in the control group.

The remaining chapters are organized as follows. Chapter 2 presents an over-

view of A

 

SSERT

 

. The next three chapters describe the details of the A

 

SSERT

 

 algo-

rithm: Chapter 3 covers the theory refinement algorithm used to simulate the student,

Chapter 4 describes A

 

SSERT

 

’s method for automatically constructing bug libraries to

enhance its modeling capabilities and Chapter 5 describes how feedback is generated

for the student. In Chapter 6, the empirical results are presented, and Chapters 7, 8

and 9 discuss related work, future work and conclusions.

 

1.4  Summary

 

A

 

SSERT

 

 is a shell for constructing student modeling tutors which operate in con-

cept learning domains. It is able to construct student models efficiently and automat-

ically, catching both expected and novel student misconceptions. It is the first

modeling system which can construct bug libraries automatically using the interac-

tions of multiple students, without requiring input from the author, and integrate the

results so as to improve future modeling efforts. In this sense, A

 

SSERT

 

 is a self-

improving student modeler which unifies the ideas of two decades of student model-

ing research under a single paradigm. Finally, A

 

SSERT

 

 can be used to significantly

improve student performance, as will be shown in the chapters which follow.
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CHAPTER 2

 

Overview

 

As discussed in Chapter 1, A

 

SSERT

 

 is a generic program for building tutoring

systems using the idea of refinement-based modeling and refinement-based remedia-

tion. Internal to the system is a knowledge base, provided by the author of the tutor-

ing system, which can be refined so as to simulate the behavior of the student. These

refinements are then used as the basis for generating feedback. In essence, A

 

SSERT

 

views tutoring as a process of communicating knowledge to a student, where the

contribution of the modeling subsystem is to pinpoint elements of the internal

knowledge base to be communicated.

The purpose of this chapter is to provide an overview of the A

 

SSERT

 

 algorithm.

Before diving into the details, however, it is important to describe the philosophical

approach taken by A

 

SSERT

 

. This will provide the right context for understanding the

decisions made in designing the algorithm, and will help the reader to understand

how A

 

SSERT

 

 compares with other intelligent tutoring systems research.

 

2.1  Tutoring as a Dialog

 

To begin, the left half of Figure 4 shows what might be the simplest possible

view of a tutoring system. At its most abstract level, a tutorial can be seen as a dialog

between student and system. From a research perspective a great many details are

left out of this diagram and different researchers have chosen to emphasize different

parts of the dialog. The first design decision then is one of emphasis: A

 

SSERT

 

 focuses

on the question of how to construct a useful interpretation of the student’s actions.

This decision is depicted as a new component inserted into the diagram as shown in
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the right half of Figure 4. The implication is that A

 

SSERT

 

 will translate the actions

taken by the student into some internal format useful for determining a response.

There are other implications as well. First, it is assumed that building an inter-

pretation of the student is a useful thing to do. Strong arguments in favor of this

approach have already been stated in Chapter 1. Second, the name of the new com-

ponent, a 

 

student simulation model

 

, implies that the system contains a knowledge

base that can be used to solve problems in the same context as the student must, and

that this knowledge base can be modified to replicate the solutions furnished by the

student. This is a fairly standard set of assumptions for modeling systems. However,

A

 

SSERT

 

 purports to be a generic system which relies only on correct domain knowl-

edge. This means it will be essential to show how a generic system can construct

misconceptions tailored to an individual student without the benefit of any pre-

defined information about likely student errors.

 

2.2  The Student as a Classifier

 

Figure 5 depicts how A

 

SSERT

 

 views student behavior. It is assumed that all

actions taken by a student can be broken down to a set of 

 

classification

 

 

 

decisions

 

.

That is, given a set of inputs, which for lack of a better term we shall call 

 

problems

 

,

the student will produce a set of 

 

labeled examples

 

 which classify each of the prob-

Student

System
Response

Student
Simulation

Model
⇒

Behavior
Student

Behavior

System
Response

FIGURE  4 Abstract view of student-tutor interaction.
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lems into a set of 

 

categories

 

. Each problem consists of one or more 

 

feature vectors

 

describing some aspect of the problem. The task of the student is to produce a label

for each feature vector, selected from among some predetermined set of legal labels

given to the student. The resulting set of labeled examples pairs each feature vector

with the label selected by the student.

In its simplest form, a problem consists of a single feature vector presented to

the student in a multiple-choice format, where the answers available to the student

are taken from among a list of possible categories. Thus, for example, the classic

diagnosis problem would present a patient’s symptoms (the feature vector) and ask

the student to select a diagnosis from a list of diseases (the label). This allows

A

 

SSERT

 

 to be used in concept learning domains which are common applications for

tutoring systems. In fact, Chapter 6 describes a test using A

 

SSERT

 

 in a concept learn-

ing domain.

 

2.3  Modeling by Theory Refinement

 

The labeled examples generated by the student are passed to the student simula-

tion component of A

 

SSERT

 

 depicted in Figure 6. The goal of this component is to

produce a model of the student which accurately reproduces the behavior found in

the labeled examples. As mentioned above, this component is generic and relies only

upon correct domain knowledge to produce an individualized model of the student.

A

 

SSERT

 

 accomplishes this using a general machine learning technique called 

 

theory

refinement

 

. When given two inputs, one in the form of labeled examples and the

other in the form of a propositional Horn-clause rule base, theory refinement will

LabeledProblems Student Examples

FIGURE  5 Student behavior diagram.
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modify the rule base until it can reproduce the labels found in the examples. This is

done by refining rules, removing rules, or adding new rules to the correct rule base.

A

 

SSERT

 

 uses the N

 

EITHER

 

 theory refinement system, which is explained in more

detail in Chapter 3.

The use of a propositional theory refinement algorithm for modeling carries

with it the assumption that the author of the tutoring system will be able to provide a

correct representation of the domain using propositional Horn-clauses. The resulting

rule base is the “theory” which N

 

EITHER

 

 refines to produce a model of the student.

Note that this places a good deal of emphasis on how the correct rule base is con-

structed since it becomes the language through which A

 

SSERT

 

 interprets the stu-

dent’s actions. If the correct rules are expressed at too high or too low a level of

detail, the ability of the system to form accurate models will be diminished. Of

course, this type of knowledge representation problem exists for all tutoring systems.

However, A

 

SSERT

 

 gains an advantage by purposely isolating the correct domain

knowledge as a separate component: the author can easily change the focus of the

tutor by altering the correct rule base. Moreover, if students possessing different lev-

els of understanding will use the tutor, multiple rule bases can be written to give the

system more flexibility.

Labeled

Theory

Correct

Rule Changes

Examples

Refinement

Rule Base
Model

FIGURE  6 The student simulation model.



 

17

 

Again, it must be emphasized that both the correct rule base and the model are

functional, in that both can be used directly to solve the same problems given to the

student. Specifically, by applying the rule changes of the model to the correct theory,

one creates a rule base that replicates the answers furnished by the student. This goes

to the core of the philosophy used to design A

 

SSERT

 

. Since the goal is to communi-

cate its internal knowledge, there must be some mechanism for A

 

SSERT

 

 to decide

what is to be communicated. Theory refinement is this mechanism, acting like a

search over the correct rule base, guided by the labels taken from the student. By

refining the correct rule base until it mimics the student, N

 

EITHER

 

 focuses attention

on the applicable portions of the knowledge. Furthermore, note that A

 

SSERT

 

 incor-

porates any assumptions implicit to N

 

EITHER

 

 about how such a search for refine-

ments should be conducted. Specifically, when faced with a choice, N

 

EITHER

 

 will

select the smallest refinement that accounts for the largest portion of the student’s

behavior.

Finally, it should be noted that theory refinement is purposely treated as a black

box by A

 

SSERT

 

. Such modularity allows for incremental improvement as new refine-

ment algorithms are developed. So, for instance, as first order logic refinement meth-

ods are enhanced, A

 

SSERT

 

 can be updated accordingly, enabling it to address a wider

range of applications than is currently possible using N

 

EITHER

 

’s propositional Horn-

clause representation. Or, if refinement algorithms are designed using entirely differ-

ent knowledge representations, the approach taken by A

 

SSERT

 

 can be applied to

those domains as well.

 

2.4  Refinement-Based Remediation

 

The last component of A

 

SSERT

 

, the system response, is outlined in Figure 7.

Using the refinements produced by N

 

EITHER

 

, A

 

SSERT

 

 generates explanations and

examples to reinforce the correct form of the rule or rules modified. The underlying
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approach, called 

 

refinement-based remediation

 

, is again based upon the notion that

the model highlights areas of the correct knowledge to be addressed. The output

from N

 

EITHER

 

 points out which rules were modified to account for the student’s

behavior, and the system remediates each refinement in turn.

Note, however, that rather than implementing any particular pedagogy A

 

SSERT

 

instead produces fundamental units of explanation called 

 

units of remediation

 

. There

are many possible ways to give feedback to the student, and determining which

method is most appropriate is itself an open research question. Additionally, different

domains are likely to require different instructional methods. In an attempt to sup-

port any number of these different approaches, A

 

SSERT

 

 supplies the most elementary

information required: an 

 

explanation

 

 with one or more 

 

examples

 

. For each refine-

ment detected by N

 

EITHER

 

, A

 

SSERT

 

 provides two capabilities: the ability to explain a

correct use of the rule which was changed, and the ability to generate an example

which uses the rule. The designer of a tutoring system using A

 

SSERT

 

 certainly has

the option to generate multiple explanations or examples, to determine the circum-

stances when such feedback is given, and to decide whether the system or the student

controls which explanations and examples are generated. By providing such expla-

nation-example units, A

 

SSERT

 

 supplies the raw materials for a variety of remediation

techniques.

Rule Changes Refinement-Based Explanation
& ExamplesRemediation

Pedagogical
Knowledge

FIGURE  7 System response diagram.
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Figure 8 combines the previous three diagrams, showing how the dialog flows

between the student and the system. Problems given to the student are translated into

labeled examples, which are passed to N

 

EITHER

 

. N

 

EITHER

 

 uses these to refine a rule

base representing correct knowledge of the domain to produce a modified rule base

that simulates the student. The refinements are then used to generate explanations

and examples for remediation which gets passed back to the student.

 

2.5  Extending A

 

SSERT

 

’s Modeler

 

The previous sections have described the core of the A

 

SSERT

 

 algorithm, show-

ing how the flow of information between student and system can be implemented as

a search for refinements that highlight the differences between how the system and

the student evaluate the same set of problems. One of the benefits of using a theory

refinement learner such as N

 

EITHER

 

 is that it can modify the correct rule base to cap-

ture any labeling generated by the student. Thus one might wonder why any further

Labeled

Theory

Correct

Rule Changes

Student

Refinement-Based

Explanation
& Examples Examples

Refinement

Rule Base

Remediation

FIGURE  8 Basic design of the ASSERT algorithm.
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extensions to A

 

SSERT

 

 are necessary. There are two basic reasons. First, it may be the

case that the author of a tutoring system built with A

 

SSERT

 

 has additional informa-

tion about difficulties students are likely to have. This is often true for teachers pos-

sessing a great deal of experience in a given domain. The ability to incorporate such

information can enhance the modeling process, especially when only a small amount

of student behavior is observable. Second, after modeling multiple students A

 

SSERT

 

has accumulated a good deal of information about those elements of the correct rule

base that are problematic. Such information can be vital to the author of the system,

who may want to redesign the rules or enhance the remediation to emphasize the dif-

ficult concepts.

A

 

SSERT

 

 can be extended to address both of these concerns. By taking advantage

of the by-products of the dialog between student and system, one can 

 

automatically

 

construct a 

 

bug library

 

 listing the various student errors detected by N

 

EITHER

 

. This

library can then be used during modeling by searching it for any bugs applicable to

the current student. 

 

2.5.1  Building a Bug Library

 

The bug library represents a collection of data gleaned from the interaction of

multiple students with the tutoring system. Referring back to Figure 8 on page 19,

note that there are three by-products of the dialog between the student and the sys-

tem. The students actions are translated into labeled examples from which N

 

EITHER

 

builds a set of rule changes to the correct theory. These are then handed to the reme-

diation algorithm which selects explanations and examples to feed back to the stu-

dent. Each of these by-products is essentially equivalent since the cycle between

student and system translates one into another. The question is to select the form

most appropriate for constructing the bug library.
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A

 

SSERT

 

 uses the rule changes, as depicted in Figure 9, for two reasons. First, the

rule changes are most closely related to the type of input generated by the author of

the tutoring system. Since a rule base must be supplied as input, expressing the bug

library in terms of changes to that rule base is an effective way to communicate

buggy information back to the author. Second, the rule change format is precisely

what N

 

EITHER

 

 uses to simulate the behavior of the student. A bug library built of

rule changes is thus already in a form which can be incorporated into the modeling

process. Rule changes, then, satisfy two important criteria: they can be easily com-

municated to the author and they can be used directly to enhance modeling.

Chapter 4 describes in detail how A

 

SSERT

 

 automatically constructs and uses its

bug library. Without getting into specifics, there are two general points which can be

made about this process. First, after collecting the rule refinements from all the stu-

dent models together, A

 

SSERT

 

 will search for 

 

subsets

 

 of the refinements which can

Student 1

Rule Changes 1

Student 2

Rule Changes 2

Student N

Rule Changes N

•
•
•

Stereotypical
Bug

Detection 

Bug
Library

FIGURE  9 Bug library construction diagram.
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also be added to the bug library. These subsets capture information common to

refinements which are similar but not identical. Second, all the refinements or sub-

sets of refinements which end up in the bug library are ranked by their 

 

stereotypical-

ity

 

, which is essentially a measure of how frequently the refinement occurs. The final

bug library is thus a list of refinements to the correct rule base ordered by how prev-

alent each refinement is in the student population.

 

2.5.2  Using the Bug Library for Modeling

 

Once the library is built the question becomes how to use its information to

enhance the modeling process. Because A

 

SSERT

 

 treats theory refinement as a sepa-

rate module, the only way to influence modeling is to alter the inputs given to N

 

EI-

THER

 

. Recall from Figure 6 on page 16 that there are two inputs to theory

refinement: labeled examples from the student and the correct rule base written by

the author. Since the labeled examples come directly from the student, the only

option left is to modify the rule base. Specifically, the input rules must incorporate

the elements of the bug library that are relevant to the current student.

Modified
Rule Base

Correct
Rule Base

Bug
Library

Bug
Selection

Selected Rule Changes

Labeled
Examples

FIGURE  10 The bug selection module. Note that the correct rule base combined
with the selected rule changes is equivalent to the modified rule base.



 

23

Figure 10 shows a schematic for how this is accomplished. The bug library, the

correct rule base, and the student’s labeled examples are input to a process which

selects bugs from the library to be added to the rule base. Any bug which improves

upon the predictive accuracy of the correct rule base is kept. The result is a modified

rule base which resembles the student’s behavior more closely than the correct rules

but may still be incomplete. Note that the bugs which were selected are also returned

as a separate item since they must be included with the final model of the student as

shown in Figure 11. Once the modified rule base in constructed, it is passed to theory

refinement along with the labeled examples to determine any additional refinements

necessary for reproducing the behavior of the student. All rule changes, whether

selected from the library or constructed by theory refinement, are returned as the

final student model.

There are several advantages to this method of using a bug library. First, a wide

variety of refinements including rare bugs or even parts of bugs can be present in the

library. If a bug does not apply to a given student, then it will not influence the mod-

eling of that student. Second, the bug library is incremental in nature. Thus, as more

Modified
Rule Base

Labeled

Theory
Rule Changes

Examples

Refinement

Model

Correct
Rule Base

Bug
Library

Bug
Selection

Selected Rule Changes All Changes

FIGURE  11 Extended modeling. Bug selection combined with theory refinement.
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data is collected on students, better libraries can be built to continuously improve the

modeling process. Third, because any subset of a bug library can be applied in this

way, one can imagine constructing a hierarchy of bug libraries, each of which might

have a particular instructional value. This could be useful, for instance, in forming an

initial impression of a student’s ability by determining where he or she lies in a hier-

archy of likely mistakes. But perhaps the most important feature of ASSERT’s bug

library algorithm lies in its ability to model both common and unique misconcep-

tions. As with other bug-library based modeling methods, the ability to use a cache

of expected errors gives the modeler an edge, especially in domains where a large

amount of data would otherwise be required for an accurate diagnosis. And because

the bug library is used as a precursor to theory refinement, ASSERT is not restricted to

using only those bugs present in the library. Any specific student problem not in the

bug library can still be captured by the theory refinement component of the algo-

rithm.

2.6  An Example: The C++ Tutor

Figure 12 shows the entire ASSERT algorithm. As a concrete illustration, the

remainder of the chapter will present the C++ Tutor, which is an implementation of

the ASSERT paradigm for tutoring college-level students taking an introductory C++

course at the University of Texas at Austin. The tutorial was built in conjunction with

the instructor for the class, and tests concepts which are present on the exams for the

course. To make the tutor realistic, the same format used for exam questions was

used for the questions posed to students in the tutorial, and the subjects covered were

the subjects which students encounter on the final exam for the course. Unlike previ-

ous tutoring systems which have focused on programming languages, the C++ Tutor

tests a student’s ability to classify faulty program segments, rather than his or her

ability to actually compose a program.
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The tutorial consists of two problem sessions, each of which may be followed

by remediation designed to address errors detected during the problem session. This

two problem-session format has the advantage of giving students a chance to solve

problems before getting feedback, and then test their new skills immediately in a

second problem-solving session after the feedback. Unlike other tutorial programs

which present material to the student and then test the student’s understanding, the

C++ Tutor instead assumes its users have received outside instruction. The focus is to

give students practice answering questions similar to what they will see on exams,

and provide feedback when they make mistakes. In this sense, the C++ Tutor resem-

bles the “exercise” section typically found at the end of textbook chapters, aug-

Labeled
Examples

Theory

Correct

Rule Changes

Student

Refinement-Based

Explanation
& Examples

Refinement

Rule Base

Remediation

Modified
Rule Base

Bug
Library

Bug
Selection

All Changes

Selected Rule Changes

FIGURE  12 Overview of extended ASSERT algorithm. The shaded area represents
the theory refinement component.
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mented with tutorial feedback. Thus the C++ Tutor is more like an intelligent testing

system than a full-fledged intelligent tutoring system, since the tutorial information

is presented only in response to the student’s answers on an exam.

One advantage of this approach is that it illustrates how ASSERT can be used to

supplement standard teaching methods. Rather than trying to reproduce an entire

curriculum, one can focus on building tutorials for a few difficult concepts. This was

the technique used to construct the C++ Tutor. Analysis of past final exams, plus con-

sultations with the course professor, revealed two concepts historically problematic

across a range of students. Specifically, these are the notions of ambiguity in C++

statements involving lazy operators and the proper declaration and use of integer and

pointer constants. Of course, there is no reason why a larger ASSERT-style tutorial

could not be built to cover the rest of the curriculum. However, narrowing the scope

allowed for the construction of a complete tutorial which was then tested using the

students actually enrolled in the course.

Figure 13 shows an example question taken from a trace of one student’s inter-

action with the C++ Tutor. The question is presented with the corresponding feature

vector which is the internal representation for that question. Thus note how the

pointer “h” in the code segment is set to the address of the integer “j” in the expres-

sion “h = &j” which corresponds to the feature-value pair “(pointer-set true)” in the

second line of the feature vector. After the code segment, the student is given a

choice between three alternatives which represent three different labels for the prob-

lem. By selecting choice “A”, the student labels this example as belonging to the

“compiler error” category. That category is paired with the feature vector, and the

pair becomes one of the labeled examples passed to the NEITHER theory refinement

algorithm.
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Recall that NEITHER takes a second input in the form of a propositional Horn-

clause rule base. The first seven rules for the correct domain knowledge in the C++

Tutor are shown in Figure 14 (the complete rule base is shown in Appendix B).

Taken together, they represent the knowledge for detecting whether or not a compile

error will result from an illegal declaration or use of a constant integer or pointer.

The first two rules indicate that an error will occur if a constant is not initialized or if

it is assigned after its initial declaration. Following these are two rules to detect a

constant which is not initialized and then three rules for catching an assignment to a

constant. 

+---------------+
|  Question 1  |
+---------------+

void main()
{
  const int j = 3, *h;  
  int i, k;  
  h = &j;
  cin >> k >> i;

  cout << (k % j);  cout << (i %= j);  
}

Is the above
(B) ambiguous (i.e., different outputs from different compilers) or
(C) neither A nor B ?

answer: A

(A) a compile error, 

((pointer non-constant) (integer constant) (pointer-init false) (integer-init true)
(multiple-operands false) (position-a normal)

(operator-a-lazy ?) (lazy-a-left-value ?) (on-operator-a-side right) 
(operator-b mathematical))(operator-a modify-assign) 

(pointer-set true) (integer-set no) 

(on-operator-b-side right)

C++ Test Question

Feature Vector

FIGURE  13 Example C++ problem with corresponding feature vector.
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Looking at the feature vector of Figure 13 reveals that the student made a mis-

take labeling the question as a compile error. No constant is uninitialized since the

only constant in the example is the integer “j” which is properly initialized to a value

of 3. Also, while the pointer “h” is assigned, it is not a constant, and though the con-

stant “j” is used in the expression “i %= j,” it is never assigned. Consequently,

nowhere in the code is there a constant which is uninitalized or assigned, making

“A” an incorrect answer for this problem. In fact, it turns out there are no errors in

this question which makes “C” the correct choice.

Given the labeled examples from the student, and the correct rule base, the goal

of modeling is to produce a revised rule base that will simulate the student’s behav-

ior. Specifically, the final rule base should produce the same labels for the examples

that the student does. For the current example, this means the rules of Figure 14 must

be modified to conclude “compile-error” for the question in Figure 13 as the student

does. Recall from Section 2.5 that ASSERT models the student in two steps, first by

adding useful bugs from the bug library to the correct rules, and then by passing the

modified rule base to NEITHER for further refinements. The top of Figure 15 shows

three bugs selected for the student from a bug library which was automatically con-

structed from the models of 45 students who used the C++ Tutor (the complete bug

library is shown in Appendix C). Each bug consists of the rule changed, the type of

compile-error ← constant-not-init
compile-error ← constant-assigned
constant-not-init ← (pointer constant) ∧  (pointer-init false)
constant-not-init ← (integer constant) ∧  (integer-init false)
constant-assigned ← (integer constant) ∧  integer-init ∧  (integer-set yes)
constant-assigned ← (integer constant) ∧  integer-init ∧

constant-assigned ← (pointer constant) ∧  pointer-init ∧  pointer-set
(integer-set through-pointer)

FIGURE  14 NEITHER rule base. Propositions without values are intermediate con-
cepts or are shorthand for binary features requiring “true” as a value.
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change made, and the stereotypicality value used to rank the bugs in the library. The

first two bugs apply to the rules shown in Figure 14. In general, bugs selected from

the library or changes made by NEITHER can apply to any number of mislabeled stu-

dent examples. However, note specifically how the first bug in Figure 15 applies

directly to the student’s mislabeling of the question in Figure 13. The pointer in that

question is not initialized nor is it constant, both of which are conditions for the last

rule of Figure 14. The first bug from the library removes one condition from this rule

which the feature vector for the question cannot satisfy. After the additional changes

made by NEITHER, shown in the bottom half of Figure 15, note that only one condi-

tion remains in the rule. This condition can be met by the feature vector of Figure 13.

Thus the final rule base, shown in Figure 16, can now successfully classify the ques-

tion as a compile error.

bug type: 

bug type: 

refinement type: 

rule: 
antecedents: 
stereotypicality: 

rule: 
antecedents: 
stereotypicality: 

rule: 
antecedents: 

-38
(integer-set no)
compile-error ← constant-assigned
add-ante 

-32 
(pointer constant)
constant-assigned ← (pointer constant) pointer-init pointer-set
del-ante 

pointer-init
constant-assigned <- pointer-init pointer-set
del-ante

Bugs Selected from Bug Library

Additional NEITHER Refinement

FIGURE  15 C++ bug library and modeling example.

bug type: 
rule: 
stereotypicality: -72

operator-b-sets ← (operator-b auto-increment)
del-rule 
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Finally, Figure 17 shows a segment of the remediation taken from the trace for

this same student.  Note that the text consists of an initial explanation followed by an

example, as discussed in Section 2.4. The text represents the C++ Tutor’s remediation

for the first bug of Figure 15 which deleted the “(pointer constant)” antecedent from

the last rule of Figure 14. In the example portion of the text of Figure 17, note how

the pointer “z” is both initialized and assigned, thus satisfying the last two conditions

of the rule. The only condition of the rule not satisfied is the “(pointer constant)”

antecedent, and it is this alone which keeps the example from being a compile error.

In this fashion, the remediation highlights the exact details of the refinement, show-

ing how the condition is essential to the rule.

2.7  Summary

 Obviously, a great many details as to how ASSERT builds the bug library, selects

the appropriate bugs, refines the rules, and generates the remediation have been left

unstated. Hopefully, however, this early look at the C++ Tutor helps to frame the dis-

cussion for the algorithms presented in the chapters which follow. Before wrapping

up the overview of ASSERT, several key features of its design bear repeating. First,

note that the correct rule base is the only input which need be generated by an author

who builds an ASSERT tutor. Everything else is constructed automatically from infor-

mation drawn from student interactions with the system.This greatly reduces the

compile-error ← constant-not-init
compile-error ← constant-assigned ∧ (integer-set no)
constant-not-init ← (pointer constant) ∧  (pointer-init false)
constant-not-init ← (integer constant) ∧  (integer-init false)
constant-assigned ← (integer constant) ∧  integer-init ∧  (integer-set yes)
constant-assigned ← (integer constant) ∧  integer-init ∧

constant-assigned ← pointer-set
(integer-set through-pointer)

FIGURE  16 Refined NEITHER rule base. Boldface represents modified rules.
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EXPLANATION

One way to detect a compilation error is to look for an identifier which is
declared constant and initialized, then later assigned a new value.

A constant identifier is erroneously assigned when it is declared as a constant
pointer to an integer, initialized to the address of some integer, and later
set to the address of another integer. It does not matter if the identifier
is a pointer declared to point to an constant integer or a non-constant integer;
once a constant pointer is initialized it cannot be reset to the address of

Specifically, note the following which contribute to this type
of error:
* There must be a pointer declared to be constant (but not necessarily 

pointing to a constant object).
* A pointer declared to be constant must be initialized.
* A pointer declared a constant and initialized must be set after its 

initialization.

Here is an example to illustrate these points:

Example
-----------
Here is an example which might appear to be a compile error
but is actually CORRECT:

void main()
{
  const int x = 5, y, w, *z = &x;  
  z = &w;
  cin >> w >> y;

  cout << ((y *= x) || (y > w));  cout << (w -= x);  
}

This example is NOT a compile error because:
* The pointer 'z' is declared as a NON-CONSTANT pointer to a constant

another integer.

integer, so it does not have to be initialized and it can be reset.

FIGURE  17 Example remediation given to a student.



32

time required to construct the tutoring system, especially when it comes to building a

bug library. Instead of performing a laborious protocol analysis to uncover bugs one

can let ASSERT find them gradually by analyzing student models over time. Second,

ASSERT is purposely kept modular. Of particular note is the theory refinement mod-

ule, shown in the shaded area of Figure 12, which can be replaced with improved

refinement algorithms as they become available. And lastly, we have tried to keep

ASSERT as generic as possible. Thus, for instance, the number and kinds of bug

libraries used is not limited, nor does ASSERT dictate how explanations and examples

are generated to remediate the student. And while ASSERT currently requires its input

in the form of propositional Horn-clause rules, such a representation still provides

the author with a fair amount of representational power. The result is a system which

allows authors to experiment with different instructional methods and various levels

of representational detail.
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CHAPTER 3

 

The N

 

EITHER

 

 Theory-Refinement Algorithm

 

The N

 

EITHER

 

 theory-refinement algorithm forms the backbone of A

 

SSERT

 

’s

modeling capabilities. It is the means by which individual student misconceptions

are modeled, and its outputs are the raw materials for bug-library construction. Fur-

thermore, the choice of theory-refinement algorithm has a profound impact on the

implementation of any A

 

SSERT

 

-type tutoring system because the knowledge repre-

sentation used by the theory-refinement module becomes the de facto representation

of the tutoring system. It is important, then, to defend the choice of N

 

EITHER

 

 as

A

 

SSERT

 

’s theory-refinement component. To that end, this chapter begins with a brief

history motivating the genesis of theory-refinement algorithms, followed by an over-

view of how theory refinement is used for student modeling and a description of the

N

 

EITHER

 

 algorithm.

 

3.1  Machine Learning and Theory Refinement

 

Over the past decade, a number of machine learning algorithms have been

developed which can induce a classification system from a set of 

 

training examples

 

[Quinlan, 1986; Michalski, 1983; Mitchell, 1982; Rumelhart et al., 1986]. These

examples are labeled feature vectors presented in the form of input-output pairs,

where the input is a collection of values for features of the domain and the output

represents the category corresponding to the input. In the typical classification prob-

lem, the task of the induction algorithm is to learn, from the examples, some function

which will produce the correct output category for any given set of inputs. The

learned system can be thought of as a function which maps inputs to outputs corre-
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sponding to the pattern implicit in the training examples. Unfortunately, induction

techniques typically require a large number of examples to produce accurate results.

Recently, a new generation of more effective machine learning algorithms have

been developed which combine induction with other machine learning techniques.

These methods use two inputs, labeled examples plus an initial domain theory [Gins-

berg, 1990; Ourston and Mooney, 1990; Craw and Sleeman, 1991; Towell and Shav-

lik, 1991]. Such learners are termed 

 

theory

 

-

 

refinement

 

 systems since they take an

input knowledge base (called the domain 

 

theory

 

) and produce a revised version

which is consistent with the examples. The idea is one of incremental change; the

learner starts with an initial theory that is imperfect and modifies it to fit a set of data.

For example, the E

 

ITHER

 

 system [Ourston and Mooney, 1990] alters an initially

incorrect or incomplete rule base by modifying or deleting existing rules or by add-

ing new rules until the rule base is consistent with the input examples. Like other

theory-refinement systems, E

 

ITHER

 

 has been shown to be more effective at learning

concepts than induction alone when given an approximately correct theory. In gen-

eral, this is because theory refinement need only infer the 

 

differences

 

 between its

input theory and the correct theory, whereas induction must learn everything from

scratch. The closer the original theory is to the desired target, the easier it is for sys-

tems like E

 

ITHER

 

 to produce accurate results. Said another way, the information

stored in the initial theory allows theory refinement to be more accurate with fewer

examples [Mooney, 1994].

 

3.2  Student Modeling by Theory Refinement

 

Casting student modeling as a general machine learning problem is straightfor-

ward enough. Given examples of student behavior, the goal is to produce a system

which can simulate the student. From an induction perspective, this amounts to

translating the student’s behavior into labeled examples. For instance, examples can
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be constructed by linking inputs taken as test problem specifications with the corre-

sponding label provided by the student’s solution. When given to an inductive

learner, the resulting system produced is a simulation of the student's problem solv-

ing ability. Given new test problems, the induced system will tend to produce the

same answers as the student.

Using theory refinement to model a student is only slightly more complicated.

Normally, theory refinement is presented as a technique for 

 

fixing

 

 errors present in

an 

 

incorrect

 

 theory by evaluating example data. In principle, however, there is no

reason why one cannot use theory refinement “backwards;” i.e., to purposely 

 

intro-

duce

 

 errors into a 

 

correct

 

 theory. This is precisely how theory refinement can be used

to model students as shown in Figure 18. Starting with a theory representing correct

knowledge of a domain, one models the student by introducing errors until the sys-

tem matches the examples illustrating the student's performance. If the initial theory

is a model of ideal student behavior (i.e., the knowledge the tutoring system wants to

impart to the student), then the transformations made in creating the student model

show where the student has misconceptions that caused him or her to deviate from

the correct knowledge. Using this strategy, the initial theory provides a focus for the

modeling task which becomes a search for refinements that will transform the input

theory to a theory which mimics the student's behavior.

N

 

EITHER

 

 (New E

 

ITHER

 

) is a modification of the E

 

ITHER

 

 propositional Horn-

clause theory-refinement algorithm [Ourston and Mooney, 1990; Ourston, 1991].

The E

 

ITHER

 

 system was chosen as a starting point for two reasons: its was essential

that a symbolic refinement system be used and E

 

ITHER

 

 was the most complete sym-

bolic theory-refinement system available. Non-symbolic refinement algorithms

based upon distributed representations can be difficult to use as student modelers

because the refinements are not localized. Without distinct knowledge of a bug it can

be difficult to generate precise feedback. E

 

ITHER

 

 is a symbolic refiner that can gener-
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alize or specialize a theory, and is guaranteed to produce a set of refinements which

are consistent with the input examples. Unfortunately, E

 

ITHER

 

’s worst case run-time

is exponential in the size of the theory, making it too slow for use as an interactive

modeler.

The remainder of this chapter, then, focuses on the E

 

ITHER

 

 algorithm and the

changes made in N

 

EITHER

 

 which speed up the refinement process. After an introduc-

tion to E

 

ITHER

 

, N

 

EITHER

 

 is described followed by a brief empirical comparison of

the two systems.

 

3.3  The E

 

ITHER

 

 Algorithm

 

E

 

ITHER

 

 was designed to repair propositional Horn-clause theories that are either

overly-general or overly-specific or both using a set of input examples. The exam-

ples are assumed to be lists of feature-value pairs chosen from a set of 

 

observable

 

domain features. Each example has an associated label or 

 

category

 

 which should be

provable using the theory with the feature values in the example. Imperfect proposi-

tional Horn-clause theories can have four types of errors as shown in Figure 19. An

overly-general theory is one that causes an example to be classified in categories

other than its own (i.e., a false positive, also called a 

 

failing negative

 

). E

 

ITHER

 

 spe-

deletion refinements

no refinements needed

addition refinements

correct theory refined theory = student model

FIGURE  18 Overview of theory-refinement modeling.



 

37

 

cializes existing antecedents, adds new antecedents, and deletes rules to fix such

problems. An overly-specific theory causes an example not to be classified in its own

category (i.e., a false negative, also called a 

 

failing positive

 

). E

 

ITHER

 

 retracts and

generalizes existing antecedents and learns new rules to fix these problems. Unlike

other theory-refinement systems that are subject to local maxima, E

 

ITHER

 

 is guaran-

teed to fix any arbitrarily incorrect propositional Horn-clause theory [Ourston,

1991].

E

 

ITHER

 

 uses a combination of techniques including deduction, abduction and

induction to revise a theory. Deduction is used to determine which examples are the

failing positives and failing negatives needing attention, and to identify potential

changes for each example that will repair the theory for that example. Abduction is

used to find a set of assumptions, corresponding to rule antecedents, which, if gener-

alized or deleted, will fix a failing positive. A rule retraction method is used to find a

set of rules which, if deleted or specialized, will repair a failing negative. When

these simple techniques do not work, induction is used as a last resort to learn new

Incorrect

Overly Overly

Extra Missing Extra Missing
Antecedent

Theory

Rule Antecedent

General

Rule

Specific

FIGURE  19 Theory error taxonomy for propositional Horn-clause theories.
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rules to repair failing positives or to add antecedents to existing rules to repair failing

negatives. Figure 20 shows an overview of the architecture of E

 

ITHER

 

.

E

 

ITHER

 

 works by finding 

 

covers

 

 to fix the failing examples. A cover is a set of

deletions which will fix one or more failing examples. Two types of covers are com-

puted: an 

 

antecedent cover

 

 and a 

 

rule cover

 

. An antecedent cover is a set of anteced-

ents which, if deleted from the theory, will allow all the failing positives to prove

their correct category. A rule cover is a set of rules which, if deleted from the theory,

will prevent all the failing negatives from proving an incorrect category. The prob-

Deduction

Abduction
Minimal Cover

and
Rule Retractor

Minimal Cover
and

Antecedent Retractor
Induction

Initial Theory Examples

Unprovable
Positive
Examples
(failing positives)

Proofs of
Negative
Examples
(failing negatives)

Partial Proofs

Deleted Rules

Undeletable
Rules

Ungeneralizable
Rules

New Rules Specialized RulesGeneralized Rules

FIGURE  20 EITHER architecture.
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lem faced by E

 

ITHER

 

 is to find the minimum antecedent and rule covers. As this

problem is NP-hard [Ourston, 1991], E

 

ITHER

 

 instead uses a greedy approach to hill

climb towards the ideal antecedent and rule covers.

Antecedent and rule covers are computed separately, but each calculation uses

the same three-step process depicted in the left half of Figure 21. First all the possi-

ble 

 

leaf-rule

 

 deletions which will fix a failing example are computed. This is done

for each failing example. A leaf-rule deletion is one which occurs at a leaf rule of the

theory, which is a rule whose antecedents are either observable features or interme-

diate concepts which are not the consequent of any existing rule. Next, E

 

ITHER

 

enters a loop to select repairs to be added to the cover. On each iteration, the best

compute all leaf-rule

more

add best repair

remove examples

compute one repair

select best repair

update theoryupdate theory with

repairs for each example

with repair

for each example

to cover

covered by repair

repairs in cover

examples
?

more
examples

?

remove examples
covered by repair

done

done

yes

no yes

no

EITHER NEITHER

FIGURE  21 Comparison of EITHER and NEITHER main loops.
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repair from among all the repairs for all the examples is selected based upon a 

 

bene-

fit-to-cost

 

 ratio that trades off the number of failing examples fixed by the repair

against the size of the repair. After selecting the best repair, all failing examples

which it fixes are removed from the set of failing examples before starting the next

iteration. This greedy selection is repeated until all the failing examples are fixed by

the deletions in the cover. In the final step after the loop, the repairs in the cover are

applied to the theory. If the application of a repair over-compensates by creating new

failing examples, E

 

ITHER

 

 passes the covered examples and the new failing examples

to an induction component based upon a version of ID3 [Quinlan, 1986]. The results

of the induction are added as a new rule when generalizing or as additional anteced-

ents when specializing.

The time consuming part of this process is the first step which computes all leaf-

rule repairs for each failing example. As an illustration, Figure 22 shows the leaf-rule

repairs for a failing positive example. The upper part of the diagram shows an input

theory both as rules (on the left) and as an AND-OR graph. The middle of the dia-

gram shows two failing positive examples which cannot prove category 

 

a

 

 at the top

of the tree. The lower part of the diagram shows the 

 

partial proofs

 

 for example 

 

E2

 

. A

partial proof is one in which some antecedents cannot be satisfied. These antecedents

become the contents of a repair for a failing positive example. Thus the proofs in

Figure 22 yield four possible repairs which will fix 

 

E2

 

: 

 

delete{P, R, V}

 

; 

 

delete{P, R,

Y, Z}

 

; 

 

delete{S, V}

 

; 

 

delete{S, Y, Z}

 

. The combinatorial nature of computing all possi-

ble leaf-rule repairs is what makes E

 

ITHER

 

’s run-time performance too slow for

interactive modeling.

 

3.4  Building N

 

EITHER

 

 from E

 

ITHER

 

The main loop of N

 

EITHER

 

, shown in the right half of Figure 21, is quite differ-

ent from E

 

ITHER

 

. Two new algorithms enable the remodeling. First, the calculation
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of repairs is now achieved in 

 

linear

 

 time. Second, all searches through the theory

(for deduction, antecedent retraction and rule retraction) are optimized in N

 

EITHER

 

to operate also in linear time by marking the theory to avoid redundant subproofs.

The combination gives N

 

EITHER

 

 the ability to compute a repair for a failing example

much more quickly than E

 

ITHER

 

. Consequently, N

 

EITHER

 

 can compute repairs on a

a ← b ∧ c
b ← d
b ← e
c ← f
c ← g
d ← P ∧ Q ∧ R
e ← S ∧ U
f ← V ∧ W
g ← X ∧ Y ∧ Z

a

b c

d e f g

P Q R S U V W YX Z

E1

P Q R S U V W YX ZExample

F F F F F F F FT T

F T F F T F T FT FE2

Feature Vector

Theory AND-OR Graph

a

b c

d f

P W X U UQ P Y V XR Q Z W YV R S S Z

d g e f e g

b b bc c c

a a a

Partial Proofs for Example E2

FIGURE  22 Partial proofs for an unprovable positive example. Both “E1” and “E2”
are unprovable in category “a”. Capital letters indicate operational
features. Dotted lines indicate unprovable antecedents.
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trial basis and throw away undesirable results because the computation of repairs is

cheap.

NEITHER abandons the notion of searching for all leaf-rule deletions, opting

instead for a method which rapidly selects a single repair for each example. The

three steps of the EITHER algorithm can then be moved inside the loop which per-

forms the greedy search. On each iteration, one repair is computed for each failing

example. The best of the repairs is selected using the benefit-to-cost ratio and applied

to the theory. As with EITHER, if new failing examples result from applying the

repair, induction is used instead of the repair to add new antecedents or new rules to

the theory. Therefore, the precise benefit-to-cost ratio used in NEITHER is to divide

the number of failing examples fixed by the repair or induction by the size of the

repair or the induction. 

Note that the iteration must eventually halt since each circuit is guaranteed to

reduce the number of failing examples by at least one. As a side benefit, NEITHER

can take advantage of interactions among repairs for different failing examples since

the theory is modified each time through the loop. Thus subsequent repairs are com-

puted in light of any previous changes made to the theory including any inductions

which may expand the rule base. This is a new feature not present in EITHER.

3.4.1  Finding Repairs in Linear Time

To illustrate how repairs are computed in linear time, refer again to Figure 22.

Rather than computing all partial proofs, NEITHER follows a recursive bottom-up

procedure to construct a single set of retractions. Starting at the leaves of the AND-

OR graph, NEITHER collects the set of unprovable antecedents and passes them up to

the parent node. At each parent, the best option from among its children is computed

and passed up again. When multiple options exist at a parent node, NEITHER alter-
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nates between returning the smallest option and returning the union of the options,

depending whether the choice involves an AND or OR node. For generalization,

deletions are unioned at AND nodes because all unprovable antecedents must be

removed to make the rule provable. At OR nodes, only the smallest set of deletions

is kept since only one rule need be satisfied. For specialization, these choices are

reversed. Results are unioned at OR nodes to disable all rules which fire for a faulty

concept. At AND nodes, the smallest set of rule retractions is selected since any sin-

gle unsatisfied antecedent will disable a rule.

As an example, in Figure 22 the antecedent retraction calculations made by NEI-

THER would begin at the root of the graph, recursively calling nodes b and c. Retrac-

tion for node b would then recurse on nodes d and e. Since P, R and S are false, node

d returns {P, R} and node e returns {S}. When the recursion returns back to node b a

choice must be made between the results from nodes d and e because the theory is

being generalized and node b is an OR node. Since node e requires fewer retractions,

its retractions are chosen as the return value for node b. Recursion for node c follows

a similar pattern: node f returns {V}, node g returns {Y, Z} and node c chooses the

smaller results from node f as its return value. Finally, nodes b and c return their val-

ues to node a. Since node a is an AND node and the theory is being generalized, the

results from b and c are combined. The final repair returned from node a is delete{S,

V}. 

This algorithm is linear in the size of the theory. No node is visited more than

once, and the computation for choosing among potential retractions must traverse

the length of each rule at most once. The final repair is also minimum with respect to

the various choices made along the way; it is not possible to find a smaller leaf-rule

repair that will satisfy the example. This new algorithm thus trades the multiple

repair options available in EITHER for speed in computation and the additional capa-

bility of computing repairs in light of previous changes made to the theory.
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3.4.2  A NEITHER Example

Figure 23 illustrates a more complete example of how NEITHER revises a theory

to be consistent with a set of examples. The figure is separated into three parts. Part

(a) shows an original theory consisting of two rules which define the concept a. Part

(b) shows four examples given as input to NEITHER. The first three of these are fail-

ing positives; i.e., the original theory is unable to prove a true for any of these three

examples. The fourth example is a negative example that the original theory cor-

rectly classifies. Though such correct examples initially pose no problem, they must

be considered when selecting the best repair to apply to the theory.

Original Theory

a ← P ∧ Q ∧ R ∧ S
a ← U ∧ V ∧ W ∧ X ∧  Y

S VP Q R U W X YExample
Desired

Category

T FF F F F T T T
F FF F F F F T T
T FF F T T F F T
T FT F T F F F F

E1
E2
E3
E4

a
a
a

¬ a

repair benefit cost

E1
E2
E3

Iteration 1

delete{U,V}
delete{U,V,W}
delete{P,Q}

1
2
1

2
3
3

repair benefit cost
Iteration 2

n/a
n/a

delete{X}

n/a
n/a
1

n/a
n/a
1

Theory after Iteration 1

a ← P ∧ Q ∧ R ∧ S
a ← X ∧  Y

Final Theory

a ← P ∧ Q ∧ R ∧ S
a ← Y

(a) (b)

(c)

FIGURE  23 Example of NEITHER refinement algorithm. Part (a) shows original
theory, part (b) input examples, part (c) the refinements selected by
NEITHER.
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Part (c) shows the effects of two iterations through the main loop of NEITHER.

On the first iteration, NEITHER computes a repair for each of the three failing positive

examples as outlined in the previous section. Recall that a theory must be general-

ized to fix failing positives, and that a concept with multiple rules is defined as an

OR node in the AND-OR graph representation of a theory. Thus during calculation

of repairs, NEITHER will select the smaller of the fixes proposed for the two rules.

For example E1, the repair delete{U, V} is smaller than delete{P, Q, R}, for E2

delete{U, V, W} is smaller than delete{P, Q, R, S}, and for E3 delete{P, Q} is smaller

than delete{V, W, X}. Since E4 is correctly classified, it requires no repair.

Having found the three repairs, NEITHER must then choose the best among them

to apply to the theory before moving to the second iteration. To rank each repair,

NEITHER computes a benefit-to-cost ratio by temporarily applying each repair to the

theory in turn. The benefit is measured in terms of how many failing examples will

be fixed by applying the repair. The cost is the sum of the size of the repair plus the

number of any new failing examples created. Applying delete{U, V} to the original

theory will only fix example E1, giving it a benefit value of 1. Since no new failures

are created by this fix, the cost for it is just the size of the repair or 2. E2's repair will

fix both E1 and E2, giving it a benefit of 2 at a cost of 3 since it also avoids any new

failures. E3's repair only covers E3, but does so at the expense of causing E4 to be

incorrectly classified. Thus an additional penalty of one (for one new failing exam-

ple) is added to the cost of E3's repair. Since E2's repair has the best benefit-to-cost

ratio, it is selected and applied to the original theory.

NEITHER then enters the second iteration of its main loop. Note however that the

original theory has been modified by the application of the repair from the first itera-

tion. The new theory is shown at the bottom of the first iteration of part (c). At this

point, only one example, E3, remains a problem. The repair from the last iteration

fixed E1 and E2 without disrupting the classification of E4. The repair computation
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for E3 is now different from the last iteration due to the change made in the theory.

Since U, V and W have been removed from the second rule, NEITHER selects

delete{X} as the repair for E3 since it is smaller than delete{P, Q}. Note also that this

new repair for E3 will not cause E4 to fail. Since there are no other repairs, NEITHER

applies this fix to the theory resulting in the final theory shown after the second itera-

tion. If the four examples had represented categorizations generated by a student,

and if the original theory represented the correct domain knowledge, then the differ-

ence between the original theory and the final theory would represent the student

model. Specifically, the student would be modeled as missing the first four condi-

tions of the second rule of the theory.

3.4.3  Refining Rules at Higher Levels

One of the disadvantages of early versions of EITHER, which was fixed in the

final EITHER algorithm, was its bias towards changing the lower level rules in a the-

ory. This was a result of focusing changes at leaf-rule deletions when computing

repairs. As described thus far, NEITHER shares the same problem; even though

repairs are computed more quickly, they are still biased towards leaf-rule deletions.

In terms of student modeling this is problematic since there is no a priori reason to

assume that student errors are more likely to occur at leaf rules.

However, leaf-rule bias is used for a good reason: without it, changes would

tend to occur at the other extreme of the theory. Keep in mind that EITHER and NEI-

THER also attempt to find the smallest change to fix a failing example. Without the

leaf-rule bias, most repairs would consist of a few deletions at the top-level rules of

the theory as opposed to multiple changes at lower-level rules. In effect, this would

amount to throwing out the theory except for the top-level rules, which is little better

than inducing a set of rules from scratch. The leaf-rule bias forces both refinement

algorithms to use more of the theory to compute repairs.
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The general solution to this dilemma is to find a mechanism for comparing leaf-

rule deletions with their corresponding higher-level changes. Thus, for example E2

of Figure 22, the change delete{P, R} from rule d ← P ∧  Q ∧  R is comparable to the

change delete{d} from the rule b ← d, which is comparable to the change delete{b}

from the rule a ← b ∧ c. To find the minimum repair by comparing all possible level

changes corresponding to all leaf-rule deletions again results in a combinatorial

search which is exponential in the size of the theory. Of course, this is precisely the

kind of time sink that NEITHER is trying to avoid.

NEITHER adopts a compromise solution to this problem which is similar to that

used by EITHER; specifically, NEITHER uses a parent-child comparison (PCC) tech-

nique. The PCC algorithm maintains the linear time, bottom-up strategy for building

repairs, and adds an extra check which compares corresponding changes between

parent and child nodes and keeps only the better of the two. The pseudocode for this

algorithm is shown in Figure 24. The Repair-PCC routine recurses down towards

the leaf rules of the theory. When at a leaf rule, the appropriate deletions for that rule

are determined and returned to the caller as before. At a parent rule, Repair-PCC is

invoked on each of the children and the results collected into the candidates vari-

function Repair-PCC (E:example, T:theory): deletions;
begin

if LeafRule(T) then return LeafDeletions(T);
else begin

candidates = ∅ ;
for c ∈  Children(T) add Repair-PCC(E, c) to candidates;
best = choose repair(s) from candidates based on whether T is at

an AND or OR node, and whether E is a failing positive
or failing negative;

if BenefitCost(best) <= BenefitCost(ParentChange(best)) then
return best;

else return ParentChange(best);
end;

end

FIGURE  24 Pseudocode for repair comparison at different levels of the theory.
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able. As described in Section 3.4.1, either the smallest member of candidates or the

union of all the members in candidates is selected and set to best. However now,

instead of just returning best as before, NEITHER uses the benefit-to-cost measure to

compare making the changes designated in best versus any corresponding changes to

the parent rule at node T. If changing the parent is the same or worse, then the

changes in best are returned. If not, the parent change is returned in place of the cor-

responding child changes in best. This maintains a bias towards leaf-rule deletions

unless the corresponding parent change is better.

As an example, refer again to Figure 22, but this time focus on example E1.

Without level comparisons, the repair for this example would be delete{S, U, Y}

since the e rule requires fewer deletions than the d rule, and the g rule requires fewer

deletions than the f rule. With level comparisons the repair is much different. After

recursing on the d and e nodes as children of node b, the candidates variable would

consist of delete{P, Q, R} for rule d and delete{S, U} for rule e. Since E1 is a failing

positive and b is an OR node, the smaller repair delete{S, U} is selected as the value

for best. Now, however, instead of simply returning best, the corresponding change

delete{e}, from the rule b ← e, is compared to delete{S, U}. Both have the same ben-

efit since neither one completely fixes example E1 or E2, but delete{e} is the smaller

change. Thus delete{e} is returned as the value for the recursion of node b. 

On the other side of the theory, delete{Y} is chosen over delete{V, W} and com-

pared against the corresponding change delete{g}, from the rule c ← g. Again, there

are equal benefits because neither change completely fixes example E1 or E2. But

since both deletions are the same size, they also have the same cost, so delete{Y} is

returned based on the bias towards leaf rules. Finally, delete{e} and delete{Y} are

returned to node a and combined in best since a is an AND node. The last compari-

son is thus a check of delete{e, Y} against the corresponding change of delete{b, c}
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from the rule a ← b ∧  c. Both changes fix one example, E1, and are of the same size.

Based on the bias towards lower-level changes, delete{e, Y} is returned as the final

repair.

Figure 25 shows additional examples of the PCC algorithm. In general, a

change at the parent rule can be better, worse or the same as the corresponding

change at a child rule. Typically, higher-level changes require fewer deletions,

resulting in a lower cost. However, most often they also create new failing examples,

as is the case for all the parent rule changes in Figure 25, resulting in a higher cost.

As long as these forces balance out, preference is given to the lower level changes.

Only when the parent change can fix more examples at lower cost without creating

too many new failing examples is it preferred. As a final point, note that level

changes are not just an academic curiosity. Figure 16 on page 30 illustrates a model

Theory

a ← b ∧ c ∧ W
b ← P ∧ Q ∧ R ∧ S

S VP Q R U WExample
Desired

Category

T TF F TT T
F TF F TT T
T FT T FT T
T TT T TF T

E1
E2
E3
E4

a
a
a

¬ a

(a) (b)

(c)

FIGURE  25 Examples of level comparison algorithm. Part (a) shows theory, part (b)
input examples, part (c) the refinements at different levels of the theory.

c ← U ∧ V
F TF F TF TE5
T FT T TT FE6

¬ a
¬ a

E1

repair benefit cost

Parent betterdelete{P,Q} delete{b}

benefit cost Resultrepair

E2
E3

delete{P,Q,R}
delete{U,W}

1
2
1

2
3
2

delete{b}
delete{c,W}

2
2
1

3
3
3

Tie, use child
Parent worse

Child Rule Parent Rule
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for a student interacting with the C++ Tutor which required changes to different lev-

els of the theory.

A complete example of the results of NEITHER operating in the C++ Tutor

domain was shown in Figure 15 on page 29 of the overview. Those refinements fix

all the mistakes in the first 10 questions made by the student whose complete interac-

tion is shown in Appendix E.

3.5  Comparison of NEITHER and EITHER

To illustrate how EITHER and NEITHER compare, two tests were run. One com-

pared the running times and accuracies of the two systems to test whether NEITHER

could maintain the predictive accuracy of EITHER while reducing execution time.

The other test compared NEITHER against NEITHER with PCC enabled (NEITHER-

PCC) to determine whether the level-refinement algorithm was indeed better at

detecting changes in the theory. For a more complete comparison of EITHER and

NEITHER see [Baffes and Mooney, 1993].

3.5.1  Run Time and Accuracy

The DNA promoter sequences data set [Towell and Shavlik, 1990] was used to

compare the running times and accuracies of EITHER and NEITHER. This data set

involves 57 features, 106 examples, and 2 categories. The theory provided with the

data set has an initial classification accuracy of 50%. The experiments proceeded as

follows. The 106 examples were randomly divided into training and test sets. Train-

ing sets were further divided into subsets, so that the algorithms could be evaluated

with varying amounts of training data. After training, each system's accuracy was

recorded on the test set. To reduce statistical fluctuations, the results of this process

of dividing the examples, training, and testing were averaged over 25 runs. Training

time and test set accuracy were recorded for each run. Statistical significance was
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measured using a Student t-test for paired difference of means at the 0.05 level of

confidence (i.e., 95% confidence that the differences are not due to random chance). 

The results are shown in Figure 26 and Figure 27. Figure 26 compares the accu-

racy of NEITHER and EITHER on the test set as a function of the number of training

examples. NEITHER's accuracy was lower than EITHER's for small training sets and

higher for large training sets. Figure 27 compares the running times for NEITHER and

EITHER for the same array of training sets. NEITHER consistently ran more than an

order of magnitude faster than EITHER. These timing results were not surprising

since NEITHER uses a linear approach to repair calculation as opposed to EITHER's
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FIGURE  26 Accuracy of EITHER and NEITHER on DNA promoter test.
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potentially exponential method. Since repairs must be computed for every failing

example, faster repair calculation translates into a dramatic overall time savings. 

The most surprising result of the experiment was the difference in accuracy

between EITHER and NEITHER. EITHER was more accurate with fewer training exam-

ples, but its accuracy dropped off relative to NEITHER as the number of examples

increased. One possible explanation for this behavior lies in the difference between

how the two systems compare potential refinements. Recall that EITHER computes

multiple repairs for each example, but does so only once. NEITHER, by contrast,

computes one repair per example each time through its main loop. As a result, with

fewer training examples, EITHER has more potential refinements to examine, appar-

ently giving it an edge over NEITHER. Even though NEITHER computes new repairs
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FIGURE  27 Training time of EITHER and NEITHER on DNA promoter test.
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each time it iterates, there may not be enough iterations in some cases to generate as

rich a set of repairs as is done in one step by EITHER. On the other hand, as the num-

ber of training examples grows, NEITHER undergoes many more iterations, each

computing new repairs in light of any previous refinements. Since EITHER computes

its repairs for each example independently, it can miss some interactions which

might occur when the refinements are applied to the theory in a particular order.

Capturing these interactions may be one reason NEITHER out-performs EITHER with

large numbers of examples. In any event, NEITHER produces results very close to

EITHER's in a fraction of the time, making it much more suitable for use in an inter-

active setting such as tutoring.

3.5.2  Accuracy of Repair Test

To illustrate the difference between NEITHER and NEITHER-PCC, a series of

tests was run in which a modification was made to a correct rule base and the two

systems were trained with a set of examples that were correctly classified by the

unmodified theory. Two data points were collected for each system: whether the the-

ory was restored to its correct original form and whether the repair was at least

attempted at the correct level of the theory. Statistical significance was again mea-

sured using a Student t-test for paired difference of means at the 0.05 level of confi-

dence.

The theory used in this experiment was the rule base for the C++ Tutor (see

Appendix B). That rule base consists of 27 rules which classify examples into one of

3 categories. A corpus of 100 training examples correctly classified by the theory

was generated using the methods outlined in Section 5.2. To ensure relatively com-

plete coverage of the theory, examples were distributed equally among the three cat-

egories.
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A total of 108 modifications to the rules were generated by creating one of each

type of change shown in the taxonomy of propositional Horn-clause errors in

Figure 19 on page 37. Thus four changes were made, one at a time, to each rule of

the theory. Antecedent addition and deletion was performed by randomly adding or

deleting one antecedent. New rules were built by combining one randomly selecting

antecedent with the consequent from the original rule. Deleting a rule was straight-

forward. Each of these four changes was applied to each rule of the theory in turn,

and the resulting modified theory given to NEITHER and NEITHER-PCC with the 100

training examples.

The results of the test are shown in Table 1, listed by the four types of changes

made to the rules. The top half of the table shows the number of exact repairs found

by each system, and the bottom table shows the number of repairs which were at

least attempted at the correct level of the theory. In both cases, NEITHER-PCC signif-

icantly outperforms NEITHER. While these results are by no means comprehensive,

they are certainly a positive indication of the value of the parent-child comparison

algorithm.

3.6  Summary

The NEITHER algorithm has been described as an extension of the EITHER prop-

ositional Horn-clause theory-refinement system. The major revision made to imple-

ment NEITHER is a new method for computing repairs that vastly reduces execution

time without sacrificing accuracy. Second, a new algorithm for finding repairs at dif-

ferent levels of the theory was described and shown to be more effective than the

leaf-rule bias. The result is a modeling algorithm fast enough to be used in an inter-

active setting and capable of detecting errors at any rule in the theory.
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Added Antecedent
Deleted Antecedent
Added Rule
Deleted Rule

27
19
23
18

18
13
17
14

Overall Accuracy 80% 57%

NEITHER-PCC NEITHER
Change Type
(27 of each)

Added Antecedent
Deleted Antecedent
Added Rule
Deleted Rule

23
19
23
10

14
13
16
6

Overall Accuracy 69% 45%

NEITHER-PCC NEITHER
Change Type
(27 of each)

Correct Repairs

Repairs at Correct Level

TABLE  1 Performance of NEITHER with and without the parent-child comparison
algorithm. Values indicate (a) number of repairs exactly correct or (b) at
least at the correct level.

(a)

(b)
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CHAPTER 4

 

Bug Library Generation and Use

 

Perhaps the most unique feature of the A

 

SSERT

 

 algorithm is its facility for auto-

matically constructing a library of misconceptions, typically called a 

 

bug library

 

,

without any previous information about the errors students are likely to make. In

Chapter 2, a brief overview of this process was presented along with a introduction

as to how the library could be used to enhance A

 

SSERT

 

’s student modeling capabili-

ties. In that overview, several basic principles were presented. First, it was noted that

a collection of rule refinements from different student models can be used as the

foundation of a bug library. On top of this, one can add subsets of the refinements

which, though not exact for any single student, might nonetheless represent parts of

bugs which are common across a range of students. It was also suggested that the

bugs can be rated against a hypothetical average or 

 

stereotypical

 

 student, providing a

means for ranking the relative utility of the bugs in the library. And finally, a mecha-

nism was introduced whereby the appropriate elements of the library can be merged

with the correct rule base presented to N

 

EITHER

 

, thereby giving theory refinement a

jump start on the modeling process.

The ability to automatically collect a library of bugs yields several distinct

advantages. It can save the author a great deal of time over building a bug library by

hand, or at least may help in pointing out likely areas in the domain where miscon-

ceptions may occur. It can also help the author to refine the rule base used to repre-

sent the domain by pointing out problem areas common to many students. In

addition, it enhances the overall modeling capability of the system by providing a

uniform mechanism whereby both common misconceptions and those unique to a
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particular student can be captured by the modeler. And finally, since the library can

be built incrementally, the ability of the system to accurately diagnose errors can

continue to improve over time.

The purpose of this chapter to describe precisely how A

 

SSERT

 

 constructs and

uses its bug libraries. To that end, the first sections will describe how the refinements

from N

 

EITHER

 

 are collected and how 

 

generalizations

 

 are formed in the search for

useful subset of refinements. This will include a definition of the notion of the 

 

ste-

reotypicality

 

 of a bug and how that measure is used to rank the entries of the library.

The second half of the chapter will then cover how the bugs which are applicable to

a particular student are selected to be merged with the correct rules before those

rules are passed off to theory refinement for final modeling.

 

4.1  Building the Bug Library

 

As indicated in the overview of Chapter 2, the raw materials for the bug library

are the sets of rule refinements, output from N

 

EITHER

 

, which constitute the various

student models. Having selected this format, the question becomes how to construct

the bug library. The most obvious approach would be to simply list all the rule

changes found across the student population, eliminating any duplicates. There are

two reasons why this is unsatisfactory. First, since one function of the library is to

supply the author with information as to which parts of the rule base are problematic

it is important to provide some notion of which bugs are the most prevalent. Thus

there must be some means for comparing bugs in the library. This can be important

during modeling as well when N

 

EITHER

 

 is faced with a choice among bugs in the

library: the more common bugs are more likely to be correct and should therefore be

preferred. Second, collecting just the rule changes fails to capture any similarities

that might exist among bugs which alter the same portion of the rule base but are not

identical. For that one needs some method of generalizing between rule changes.
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Such generalizations, though not present in any particular student model, could

nonetheless capture parts of rule changes which frequently occur. Section 4.2

describes how such bug generalizations are formed.

In any event, there must be a method for ranking the bugs and bug generaliza-

tions entered into the library. A simple approach would be to use the frequency of a

bug’s occurrence in the student population, but this will not work for bug generaliza-

tions since they never occur in a student model. What is needed is a method for rank-

ing any kind of rule change, regardless of how it is formed. The solution used by

A

 

SSERT

 

 is to measure the extent to which a bug is 

 

stereotypical

 

.

 

4.1.1  Stereotypicality

 

 Recall that a student model is a set of rule changes which, when added to the

correct rule base, will simulate the behavior of the student. Furthermore, each rule

change amounts to a set of literal additions or deletions to a rule. So given a hypo-

thetical space of all possible literal changes which can be made to the correct rule

base, one can plot the various student models based on their number of literal addi-

tions and deletions as shown in the left half of Figure 28. In this figure, the multi-

dimensional space of all possible literal changes is shown compressed into two

dimensions, where the y-axis represents the space of all possible literal deletions and

the x-axis represents the space of all possible literal additions. Given this notion of

plotting rule bases in this multi-dimensional space, one can measure the 

 

distance

 

between any two models by counting the literal additions and deletions required to

 

transform

 

 one model into another [Wogulis and Pazzani, 1993; Mooney, 1994]. This

is similar to the notion of Hamming distance used to measure the difference between

binary vectors, and accounts for both the number and location of the differences.

Thus in Figure 28, the correct rule base, which has no literal changes, is shown at the

origin denoted 

 

CR

 

. Four different student models are shown plotted at various
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points. Models 

 

M

 

1

 

 and 

 

M

 

2

 

 are fairly close together, indicating that they share many

literal additions and deletions in common, whereas the more solitary 

 

M

 

3

 

 and 

 

M

 

4

 

 are

each quite different from the other models. And finally, since

 

 M

 

3

 

 is the closest to 

 

CR

 

this indicates that it is the model with the fewest changes.

Even without actually plotting the various models, the notion of distance

between models is useful. With it, the 

 

stereotypicality

 

 of a bug can be defined as the

 

change in the sum of the distances

 

 between a hypothetical model containing just that

bug and all the student models under consideration. More precisely, the stereotypi-

cality of a bug can be defined as

where 

 

CR+B

 

 is a model consisting of just the bug in question and 

 

M

 

 is the set of stu-

dent models. What stereotypicality measures is the extent to which a given bug

moves the correct rule base towards a hypothetical 

 

stereotypical

 

 student model. Let

the 

 

stereotypical student model

 

 be defined as that point in the space of all literal

M1

M2

M3

M4SM

CR+bug

space of all possible

M1

M2

M3

M4

CR CR

FIGURE  28 Model distance plot. “M” stands for student model, “CR” is the correct
rule base and “SM” is the stereotypical student model.

sp
ac

e 
of

 a
ll 

po
ss

ib
le

lit
er

al
 d

el
et

io
ns

literal additions

sp
ac

e 
of

 a
ll 

po
ss

ib
le

lit
er

al
 d

el
et

io
ns

space of all possible
literal additions

Σ 
m ∈  M

distance (CR+B, m)Σ 
m ∈  M

distance (CR, m)



 

60

 

additions and deletions which is the minimum total distance away from all the stu-

dent models. The right half of Figure 28 shows where the stereotypical student

model would occur for the models 

 

M

 

1

 

, 

 

M

 

2

 

, 

 

M

 

3

 

 and 

 

M

 

4

 

. 

The more frequently a bug occurs in the models the greater its stereotypicality.

This is because the distance between 

 

CR+B

 

 and another model containing the bug 

 

B

 

is guaranteed to be smaller than the distance between 

 

CR

 

 and the same model. In

fact, it is smaller by the number of literals in the bug 

 

B

 

. Thus the right hand summa-

tion decreases in proportion to how frequently the bug 

 

overlaps

 

 with the models. Of

course, the opposite is true for less common bugs. Any model in which the bug 

 

B

 

does not occur will increase the distance between 

 

CR+B

 

 and that model. Stereotypi-

cality, then, is a measure of how much a bug moves the correct rule base towards the

stereotypical model when it is applied to the correct rule base. The right half of

Figure 28 depicts a bug with positive stereotypicality. The lines between points indi-

cate distance and the arcs show which distances are summed together. Note that the

distance between 

 

CR+bug

 

 and 

 

SM

 

 is less than the distance between 

 

CR

 

 and 

 

SM

 

.

 

4.1.2  Computing Stereotypicality

 

An example of the computation for computing bug stereotypicality is shown in

Figure 29. Three models are shown at the top of the diagram, each of which changes

only one rule of the correct rule base. All the models alter the same rule, but in differ-

ent ways. So, for example, the first model changes the rule 

 

a 

 

←

 

 b c d e f

 

 by deleting

the set of antecedents 

 

{b,c,d}

 

. The refinement for model 

 

M

 

1

 

, labeled 

 

B

 

1

 

, is thus

 

delete{b,c,d}

 

. Below the models are the calculations for determining the stereotypi-

cality of each of the three bugs from the three models. The distance between 

 

CR

 

 and

the student models is shown followed by the distances to the models when each of

the three bugs is added to 

 

CR

 

. Calculating the distance between two rule sets

amounts to counting the number of literal changes required to convert one to the
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other. Thus, changing 

 

CR+B

 

1

 

 into 

 

M

 

2

 

 required changing the rule 

 

a 

 

←

 

 e f

 

 into the

rule 

 

a 

 

←

 

 b e

 

 which is done by deleting 

 

f

 

 and adding 

 

b

 

. At the bottom of the figure are

the stereotypicality values for each of the bugs. Note that a bug may have a negative

stereotypicality, indicating that adding it to the correct rules moves away from the

stereotypical student model. This is not as bad as it may appear. Unless a bug is

Correct Rules (CR) Model M1 Model M2 Model M3

a ← b c d e f

•••

•••

a ← e f

•••

•••

a ← b e

•••

•••

a ← c d e f g h

•••

•••

distance(CR, M1) = delete{b,c,d} = 3
distance(CR, M2) = delete{c,d,f} = 3
distance(CR, M3) = delete{b} add{g,h} = 3

total = 9

distance(CR+B1, M1) = 0
distance(CR+B1, M2) = delete{f} add{b} = 2
distance(CR+B1, M3) = add{c,d,g,h} = 4

total = 6

Stereotypicality(B1) = 9 - 6 = 3

distance(CR+B2, M1) = delete{b} add{f} = 2
distance(CR+B2, M2) = 0
distance(CR+B2, M3) = delete{b} add{c,d,f,g,h} = 6

total = 8

Stereotypicality(B3) = 9 - 10 = -1













Distance from Correct Rules to Models:

Distance from Correct Rules with bug from M1 to Models:

Distance from Correct Rules with bug from M2 to Models:

distance(CR+B3, M1) = delete{c,d,g,h} = 4
distance(CR+B3, M2) = delete{c,d,f,g,h} add{b} = 6
distance(CR+B3, M3) = 0

total = 10




Distance from Correct Rules with bug from M3 to Models:

Stereotypicality(B2) = 9 - 8 = 1

B1 = bug from M1 = delete{b,c,d}
B2 = bug from M2 = delete{c,d,f}
B3 = bug from M3 = delete{b} add{g,h}

FIGURE  29 Stereotypicality computation.
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present in more than half of the student models, it is likely to have a negative stereo-

typicality since there will be no overlap between the bug and the majority of the

models. Thus even a bug that occurs with, say, 30% frequency in the student popula-

tion may have a negative stereotypicality. What is important is the relative difference

between stereotypicality values.

As a computational note it should be pointed out that, strictly speaking, it is not

necessary to compute the actual distance between rule bases to calculate stereotypi-

cality. Instead, the difference between distances can be calculated and the sum of the

differences taken. This is an easier calculation since adding a single refinement to a

rule base changes only one rule. So, for example, let D be the distance between the

correct rule base and a model. Adding a bug to the correct rule base changes D by

altering a single rule. The change in D, ∆D, can be calculated by finding the overlap

between the refinements of the bug and any refinements made to the same rule in the

model. Whatever is in the bug that overlaps with the model decreases the distance to

the model because it means those literal changes already exist in the model. Any-

thing in the bug which does not overlap increases the distance because those literal

changes are not in the model. So, for example, the ∆D between CR+B1 and M1 is -3

because all of B1 overlaps with M1. The ∆D between CR+B1 and M2 is -1 because c

and d overlap (-2) but b does not (+1). The fact that f is deleted in M2 is irrelevant

since it has to be deleted from both CR and CR+B1 to yield M2. Finally, the ∆D

between CR+B1 and M3 is 1 because b overlaps (-1) but c and d do not (+2). The

total ∆D is thus -3 + -1 + 1 = -3. Multiplying by -1 yields the stereotypicality of B1.

The computational complexity of this algorithm is linear in the number of literals in

the refinements of the models.

Using stereotypicality as a metric has two important advantages. It can be used

as an indication of how commonly a rule change occurs in the student population,
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and it is a measure of how much work it would take NEITHER to convert between

models. This makes it ideal for ranking the bugs in the library for use by the author

or by NEITHER. Bugs which occur frequently among the students will result in

higher stereotypicality since there is no cost to add a bug to a model which already

contains it. By contrast, rare bugs will incur higher costs since the literals of the bug

have to be accounted for in the target model. High stereotypicality bugs are also

preferable in modeling because they indicate changes which are more likely to occur

in the average student. Additionally, because stereotypicality is measured in literals

it is directly related to how much work NEITHER might save by adding the bug to the

correct rule base.

4.2  Generalizing Across Bugs

As mentioned above, constructing a bug library should have a facility for find-

ing generalizations among the rule refinements of the student models. Generalization

is important for finding commonalities among refinements which may be similar, but

not identical. For example, in Figure 29, both B1 and B2 delete a common subset of

antecedents from the same rule; namely, the subset {c,d}. Without the ability to

extract such a subset, ASSERT would be severely limited in its ability to extract

trends in student behavior.

Fortunately, a straightforward technique exists for forming generalizations

among refinements. Since any refinement to a propositional theory can be expressed

as a logic clause, one can compute generalizations using the least general generali-

zation (LGG) operator [Plotkin, 1970]. When two propositional logic clauses are not

identical, one can form a generalization of the two by dropping literals from the

clauses. Any number of literals may be omitted, but the most specific (i.e., least gen-

eral) way to generalize the two clauses is to drop only those literals which appear in

just one of the two clauses. This is the same thing as taking the intersection between
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the two clauses. Since refinements in NEITHER are collections of propositional logic

literals, the LGG of two refinements is simply their intersection. Note that the result

of forming the LGG of two refinements is also a refinement, which can be used in

subsequent LGG operations.

Figure 30 shows the LGG’s formed among the bugs from Figure 29. Listed with

each is the stereotypicality of the resulting subset, if any is formed. Thus the inter-

section of bugs B1 and B2 is the refinement delete{c,d} which has a stereotypicality

of 2. As might be expected, the LGG will often form a generalization that has better

stereotypicality than a refinement from which it was taken. For instance, LGG(B1,

B2) beats the value for B2 which is 1. Likewise, LGG(B1, B3) is better than B3 alone.

This will be the result whenever the LGG operation captures more of what is com-

mon among the models, and avoids more of what is uncommon, than the refinement

used as its input. Often times, the intersection operator accomplishes just this trick.

However, note that the LGG is not beneficial in all cases; the same two LGG’s men-

tioned above are both worse than the B1 refinement alone, even though both use B1

as an input. The process can even be continued, forming LGG’s from LGG’s, which

can also result in better or worse refinements. Consequently, searching for the best

set of generalizations to add to the bug library can quickly explode into a combinato-

rial problem.

4.3  The Bug Library Algorithm

ASSERT collects the refinements from multiple student models, combines them

together using the LGG operator, and avoids combinatorial search by concentrating

on finding a the best generalization it can for each refinement. The algorithm used by

ASSERT borrows ideas presented in the GOLEM system for learning logic programs

from examples [Muggelton and Feng, 1990]. The fundamental idea is to perform a

hill climbing search using successive LGG operations. Starting with each refinement
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as a seed, multiple calls are made to the LGG operator to combine the seed with all

the other refinements from the models. As long as this continues to result in a better

generalization, successive passes are made over all the refinements. After each pass

of the iteration, the best generalization is kept and used as the seed for the next loop.

The process halts when no generalization can be found which will improve upon the

seed, which must eventually happen since continued intersections between refine-

ments will eventually produce no change or the null set. The best generalization

found starting with each refinement as the initial seed is kept and inserted into the

bug library. Any duplications in the library are eliminated and the results sorted by

stereotypicality. The pseudocode for this algorithm is shown in Figure 31.

The BuildBugLibrary routine essentially consists of two nested loops. The outer

loop executes once for each unique refinement from a student model, and the inner

loop continues as long as an LGG can be constructed which improves upon the best

LGG found to that point. Figure 32 illustrates how a complete bug library is con-

structed. The top of the diagram shows the three bugs from the three models of

Figure 29 plus a fourth bug from another hypothetical model which also makes a

B1
delete{b,c,d}

B2
delete{c,d,f}

B3
delete{b} add{g,h}

LGG(B1, B2)
B1 ∩ B2 = delete{c,d}
stereotypicality = 2

LGG(B1, B3)
B1 ∩ B3 = delete{b}
stereotypicality = 1

LGG(B2, B3)
B2 ∩ B3 = ∅

FIGURE  30 Bug generalization using the LGG operator.
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change to the same rule of the theory. This fourth bug was added to illustrate some of

the subtleties of BuildBugLibrary.

Below the four bugs are a series of boxes, each representing one iteration of the

outer loop of BuildBugLibrary. Thus the first box is the iteration which computes the

bug to be added to the library starting with B1 as a seed, the second starts with B2 as

the seed, et cetera. After saving the stereotypicality of B1 in the temporary variable S,

the inner loop is entered and an LGG is formed between B1 and the other three bugs.

Note that there is no need to compute LGG(B1, B1) since the result is simply B1

which obviously cannot be an improvement. Once the LGG’s are computed,

BestLGG is found, in this case LGG(B1, B4), which has a stereotypicality of 4. This

is compared with the current value of S, and since there is no improvement the inner

loop halts and adds B1 to the bug library. The second box, for bug B2, also yields no

function BuildBugLibrary (M:list of student models): bug library;
begin

R = ∅ ;
for m ∈  M do add refinements of m to R avoiding duplicates;
for r ∈  R do begin

best = r;
S = Stereotypicality(best);
repeat while S continues to increase begin

B = r;
for r ∈  R do add LGG(B, r) to B;
BestLGG = b ∈  B with greatest stereotypicality;
if Stereotypicality(BestLGG) > S then begin

best = BestLGG;
S = Stereotypicality(best);

end;
end;
add best to bug library;

end;
return bug library sorted by greatest stereotypicality;

end

FIGURE  31 Pseudocode for bug library construction.
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B1 = delete{b,c,d}
B2 = delete{c,d,f}

B3 = delete{b} add{g,h}
B4 = delete{b,c,e,f}

S = -2
S = 2
S = 4

S =  2

delete{c,d}
S = 2

delete{b}
S = 2

delete{b,c}
S = 4

B1 B2 B3 B4
B1 • • •

S = 4 ⇒
B1

S = 4

delete{c,d}
S = 2

∅ delete{c,f}
S = 2

B1 B2 B3 B4
B2 • • •S = 2 ⇒

B2
S = 2

delete{b}
S = 2

∅ delete{b}
S = 2

B1 B2 B3 B4
B3 • • •S = -2

delete{b}
S = 2

∅ delete{b}
S = 2

B1 B2 B3 B4

• • • ⇒delete{b}
S = 2

delete{b}
S = 2

delete{b,c}
S = 4

delete{b}
S = 2

B1 B2 B3 B4
B4 • • •S = 2

delete{b,c}
S = 4

delete{c} delete{b}
S = 2

B1 B2 B3 B4

• • • ⇒
delete{b,c}

S = 4
delete{b,c}

S = 4

delete{c,f}
S = 2

S = 2

FIGURE  32 Bug library construction example. “S” stands for stereotypicality.
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improvement from generalization, resulting in B2 being added unchanged to the bug

library.

The next two boxes representing the iterations of the outer loop for B3 and B4

are more interesting. For B3, BestLGG results from combining B3 and B1. The gener-

alization is delete{b} whose stereotypicality value of 2 is an improvement of 4 points

over the value for B3 alone. Consequently, the inner loop repeats, after setting best to

delete{b} and updating S to 2. A second round of LGG’s produces no further

improvement, resulting in the addition of the generalization delete{b} to the bug

library. For bug B4 the process is similar. A first round of LGG’s produces an

improvement which cannot be surpassed by a second iteration of the inner loop. 

However, two interesting LGG’s are formed during the computation for bug B4.

One is LGG(B4, B1), which was computed and rejected in the top box where B1 was

the seed, but turns out to be a useful improvement over B4 alone. The other is an

LGG formed in the second iteration of the inner loop that cannot be constructed

directly from the initial set of bugs. After best is set to LGG(B4, B1), the second

round of LGG’s produces the generalization delete{c} which is the same thing as

LGG(LGG(B4, B1), B2). Note that there is no binary combination of these three bugs

that will yield this generalization. Thus the compounding effects of successive LGG

operations are essential for finding common refinements across the student models.

The final bug library consists of the following four bugs sorted in the following

order: B1, delete{b,c}, B2, and delete{c}.

Of course, the hill climbing heuristic used in BuildBugLibrary is not the only

way to form generalizations, nor is stereotypicality the only useful statistic that can

be collected in a bug library. For example, the number of different models which

exhibit a bug can also be important, especially to an author trying to refine the tutor

to address the most urgent misconceptions. On the other hand, it is not immediately
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obvious how one would calculate the frequency of occurrence for a bug generaliza-

tion. The main advantage of stereotypicality is that it combines the prevalence of a

bug with a measure of how much work might be saved by using the bug during mod-

eling. Any bug with a positive stereotypicality will, if added to the correct rule base,

reduce the average cost of converting the rules to a student model by theory refine-

ment.

4.4  Using the Bug Library

Recall that because ASSERT is designed to use theory refinement as a black box,

the only means for influencing modeling is to modify the rule base given to NEITHER

as input. Using the bug library, then, amounts to determining which bugs from the

library should be added to the rules. Since all the bugs are in the form of rule refine-

ments, adding them to the rules is easy. However, the best method for selecting the

right combination of bugs for a particular student is not immediately apparent.

A simple approach would be add all the bugs from the library which have a pos-

itive stereotypicality to the correct rule base, perhaps by using a hill climbing algo-

rithm similar to that used in BuildBugLibrary. As discussed above, this has the

advantage of decreasing the average distance between the rules and a student model.

The result would be an updated rule base which roughly approximates the perfor-

mance of the average student; in the ideal case, the updated rules would in fact be the

stereotypical student model. An algorithm similar to this was used in previous ver-

sions of ASSERT [Baffes and Mooney, 1992; Baffes, 1994]. 

There are several problems with this strategy. First, only a single starting point

is constructed for all students, meaning that for some students the modified rule base

will actually be a worse input for NEITHER than the correct rules would have been.

An obvious example of this is the student who makes no errors; starting with a
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buggy rule base forces NEITHER into making unnecessary repairs. Second, it may be

the case that no bugs in the library have a positive stereotypicality, rendering the

information in the library totally useless. The only way to avoid these problems is to

pick bugs from the library based on the data collected for a given student. Only then

is there any assurance that the bugs selected are related to the needs of the individual.

A better criterion for evaluating the bugs in the library as they relate to a partic-

ular student can be drawn from an analysis of the goals of modeling. After all, since

the bug library is used to enhance the modeling process, the metric used by NEITHER

to evaluate a refinement can be applied when selecting a bug from the library. Since

the overall goal of modeling is to produce an accurate reflection of the student’s

behavior, predictive accuracy is the most important measure of any change to the

rule base. Thus, if adding a bug from the library increases the accuracy of the rule

base in predicting the student’s answers, then that bug is useful for modeling the stu-

dent. If two bugs from the library increase accuracy by the same amount, then stereo-

typicality can be used as a secondary method for preferring one bug over another.

Specifically, for each bug in the library, ASSERT computes an accuracy value by

adding the bug to the correct theory and counting how many of the labeled examples

are correctly predicted by the modified rule base. The resulting accuracy is then

compared to the accuracy of the correct rule base alone to see if adding the bug was

an improvement. Since the overall goal of modeling is to produce a set of rules with

perfect accuracy, all the bugs which result in improved accuracy are candidates for

insertion into the correct rule base. Bugs yielding the same improvement in accuracy

are distinguished by using their stereotypicality values.

There is still a question, however, as to what order the bugs should be added to

the rules. For example, once a bug is added to the correct rule base, the accuracy val-

ues for the other bugs are no longer valid since they measure the accuracy of the bug
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when added to the correct rules alone, not with other bugs added in. In fact, a bug

which appears promising can result in a decreased accuracy if added to the correct

rule base after another bug. So again, there is a combinatorial problem of selecting

the best set of bugs to be added to the rules to achieve the best accuracy. ASSERT’s

solution to this problem is to again turn to a hill climbing algorithm, adding one bug

at a time to the rules. On each iteration, a new accuracy value is computed for all the

bugs in the library, and the bug with the most improvement is added to the rules. The

iteration halts when no bugs result in an improvement.

There is one additional wrinkle to the algorithm which arises from the notion of

statistical significance. Given that the data collected for the student is, by definition,

incomplete, the accuracy values for the bugs are only approximate. In fact, any dif-

ference between the accuracy values of any two bugs may not be significant, making

the bugs in question statistically equivalent. Since the accuracy values for all the

bugs are computed using the same set of labeled examples from the student, one can

use a paired Student t-test to estimate if the difference in accuracy between any two

bugs is statistically significant (using the standard 0.05 level of confidence to indi-

cate significance). Given this estimate, one can select a set of bugs from the library

starting with the bug which improves the accuracy of the correct rules the most, and

adding any other bugs which also improve the accuracy of the correct rules and are

not statistically significantly more accurate than the best bug. From this set, one can

then choose the bug with the highest stereotypicality for addition to the correct rule

base. This allows the stereotypicality measure to have an influence on which bugs

are selected, which is preferable to breaking ties by random selection.

Figure 33 puts all these ideas together into the pseudocode used by ASSERT to

add bugs to the correct rule base. The goal of this function is to build the modified

rule base used as input to the NEITHER algorithm (see Figure 11 on page 23). Modi-

fyRules starts with the correct rule base, and loops as long as a bug can be found
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which will increase the accuracy on the labeled examples. The first step of each loop

is to find the accuracy of each bug when added to the current set of rules. All those

bugs which improve accuracy are saved. Next, the bug which increases accuracy the

most is found, and an inner loop is entered to pare down the list to only those bugs

whose improvement in accuracy is statistically equivalent to the best bug. Finally, if

there are still multiple bugs left, then the one with the greatest stereotypicality value

is picked to be added to the current rule base (random selection is used as a final tie

breaker). When no bugs can be found that increase the accuracy of the rule base the

routine quits returning the most current version of the rules. Once the modified rule

base is constructed, it is passed to NEITHER for additional refinement, since the bug

library may not contain everything necessary for modeling the student.

As an example of bug library selection, refer to a trace of the execution of the

“pre-model-student” routine shown in Figure 34. This function is the implementa-

function ModifyRules (CR:correct rule base,
E:labeled student examples,
L: bug library): modified rule base;

begin
R = CR;
repeat as long as R is updated do begin

A = ∅ ;
for b ∈  L do begin

if Accuracy(R+b, E) > Accuracy(R, E) then add b to A;
end;

best = x ∈  A with best accuracy value;
A′ = best;
for x ∈  A do begin

if Paired-t-Test best, x) not significant then add x to A′;
end;

if A ≠ ∅ then update R with x ∈  A′ with highest stereotypicality;
end;
return R;

end

if A ≠ ∅ then begin

end;

FIGURE  33 Pseudocode for bug library use.



73

tion of the ModifyRules routine used by the C++ Tutor. The trace shown is for the

same student used as an example in the overview of Chapter 2 (see Section 2.6 on

> (pre-model-student *student-examples* *correct-theory*)

Trying to beat accuracy = 80.00
bug 10, Accuracy: 85.00, Stereotypicality:  -38
bug 11, Accuracy: 85.00, Stereotypicality:  -38
bug 12, Accuracy: 85.00, Stereotypicality:  -38

bug 29, Accuracy: 85.00, Stereotypicality:  -72
bug 34, Accuracy: 85.00, Stereotypicality:  -128

Picked bug 20
  type:  add-ante
  rule:  compile-error <- constant-assigned
  antes: (integer-set no)

Trying to beat accuracy = 85.00
bug 5, Accuracy: 90.00, Stereotypicality:  -32
bug 11, Accuracy: 90.00, Stereotypicality:  -38
bug 12, Accuracy: 90.00, Stereotypicality:  -38
bug 29, Accuracy: 90.00, Stereotypicality:  -72

Picked bug 5
  type:  del-ante
  rule:  constant-assigned <- (pointer constant) pointer-init pointer-set
  antes: (pointer constant)

Trying to beat accuracy = 90.00
bug 29, Accuracy: 95.00, Stereotypicality:  -72

Picked bug 29
  type:  del-rule
  rule:  operator-b-sets <- (operator-b auto-incr)
  antes: nil

Trying to beat accuracy = 95.00

bug 20, Accuracy: 85.00, Stereotypicality:  -38

done

-----------------------------iteration 1--------------------------------

FIGURE  34 Trace of bug selection from the bug library.

-----------------------------iteration 2--------------------------------

-----------------------------iteration 4--------------------------------

-----------------------------iteration 3--------------------------------
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page 24). The complete bug library, not shown in the trace, consists of 34 bugs taken

from the models of 45 students who used the C++ Tutor. Each iteration correspond-

ing to the outer loop of ModifyRules is separated in the trace by a dotted line. For the

first iteration, the original accuracy of the correct rule base is shown as 80%. Each

bug in the library is added to the correct rules, and the six bugs which result in an

increased accuracy are printed out with their stereotypicality values. Since all the

bugs increase the accuracy of the correct rules by the same amount, all are candi-

dates for addition to the rule base (i.e., the paired t-test yields no statistical difference

in accuracy among the bugs). Using stereotypicality to break the tie eliminates the

last two bugs, but still leaves the first four which have equal stereotypicality values.

As a last resort, random selection is used to pick bug 20 as the first to be added to the

rule base. Referring back to Figure 15 on page 29, note that bug 20 is the second bug

shown in that figure.

Having selected bug 20, its refinement is added to the rule base which now has

an accuracy of 85% as shown at the top of the second iteration. Next, all the bugs of

the library are applied to this updated theory to check for any further improvement in

accuracy. This time only four bugs are found, all of which again result in the same

increase in accuracy. Bug 5 is a clear winner based on stereotypicality so it is

selected as the bug for this iteration (bug 5 corresponds to the first bug of Figure 15

on page 29). Note that bugs 10 and 34, both of which resulted in improvements dur-

ing the first iteration, are no longer useful for increasing accuracy. Also notice that

bug 5 did not increase accuracy during the first iteration, meaning the addition of bug

20 enabled bug 5 to have its effect. This is a beautiful example of the ordering effects

inherent in selecting bugs from the library.

At the beginning of the third iteration, the updated rule base, which now con-

tains the refinements from both bug 20 and bug 5, has an accuracy of 90%. Only bug
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29 can still improve upon this accuracy so it is selected as the third bug to be added

to the rules. Note that while bug 29 continually resulted in improvements in accu-

racy, its relatively low stereotypicality prevented its addition to the rule base before

this point. Finally, the fourth iteration results in no further improvement.

ModifyRules solves the two important problems discussed above which were

present in earlier versions of ASSERT. First, by tying bug selection to the labeled

examples taken from the student, ModifyRules uses only those bugs which are rele-

vant to modeling the student. Second, using improved accuracy as an additional met-

ric, ModifyRules can incorporate even rare bugs with low stereotypicality values.

Additionally, using this two tiered method for evaluating bugs means that ASSERT

can be readily altered to incorporate other preferences which the author may wish to

introduce to the modeling process. By setting stereotypicality values, the author can

directly influence which bugs are given preference during modeling.

4.5  Summary

ASSERT’s technique for automatically constructing and using bug libraries com-

bines some of the best ideas used in student modeling systems to date. The knowl-

edge inherent in a library of common misconceptions allows the system to track

student errors more quickly and more accurately, especially when the library is con-

structed from a large pool of data and when the amount of input from any single stu-

dent is relatively low. The presence of a bug library essentially leverages the trends

across a large number of students, allowing the system to make an educated guess

about a particular student’s error. Furthermore, the ability to construct a bug library

automatically is a huge advantage over methods which require the library be con-

structed by hand. Like any other knowledge acquisition technique, the ability to

extract useful information automatically can save the author of the system a great

deal of time. And yet, there is nothing intrinsic to the format of ASSERT bug libraries
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which would prohibit an author from modifying the bugs or adding additional bugs

if he or she so desired. Finally, by integrating the use of the bug library with theory

refinement, ASSERT can use common bugs when appropriate and yet still model any

problems unique to an individual. And since the bug library can be updated as more

students interact with the system, the performance of the modeler can continue to

improve. No other system combines the ability to construct a bug library automati-

cally with a method for updating the library incrementally and a method for model-

ing unique errors not already present in the library.
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CHAPTER 5

 

Remediation

 

The task of remediation, as outlined in Chapter 2, has two objectives: (1) to pro-

vide an 

 

explanation

 

 of the correct knowledge related to the errors made by the stu-

dent along with (2) one or more 

 

examples

 

 as an illustration. Taken together, the

explanation and examples are units of remediation which the author of the tutoring

system is free to combine as he or she sees fit. The question for A

 

SSERT

 

, and the sub-

ject of this chapter, becomes how to select the explanation to be communicated and

how to generate appropriate examples. Since A

 

SSERT

 

 uses the N

 

EITHER

 

 theory-

refinement algorithm to perform student modeling, A

 

SSERT

 

 must generate an expla-

nation and one or more examples for each rule modification made by N

 

EITHER

 

.

A review of the kinds of changes made by N

 

EITHER

 

 reveals two important

points. First, each change is made to a single rule of the rule base. Even if N

 

EITHER

 

must alter several rules to account for one mislabeled student example, all the modi-

fications occur at the rule level. Consequently, generating an explanation of the cor-

rect knowledge related to a student error amounts to explaining the correct form of

the rules which were modified to account for that error. Second, there are four differ-

ent types of changes that N

 

EITHER

 

 can make: it can delete antecedents from a rule, it

can add antecedents to a rule, it can delete rules, and it can add new rules. Since each

type of change alters a rule in a different way, each will require a different example

to illustrate the change. For instance, an example showing why a condition should

not be removed from a rule is necessarily different from an example showing why a

condition should not be added to a rule.
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Consequently, A

 

SSERT

 

’s remediation consists of two pieces of information gen-

erated for each rule changed in the student model: an explanation of the correct form

of the rule, and an example illustrating its use. These processes are described in turn

below.

 

5.1  Explaining a Rule

 

When a rule base is used to express knowledge about a particular domain, the

choice of that representation embodies certain assumptions about how the knowl-

edge is structured (indeed, this is true of any knowledge representation). Given that

the object of remediation is to 

 

communicate

 

 this knowledge implies that these

assumptions must either be made plain or else are already understood by the recipi-

ent to whom the communication is directed. For a rule based representation, this

means something about the 

 

deductive

 

 nature of the knowledge may need elucidating.

That is, the remediation program must either assume or explain the notion of rule

satisfaction and show how a rule’s satisfaction leads to a particular category being

concluded.

 

5.1.1  Components of a Rule Explanation

 

For A

 

SSERT

 

, this means the task of explanation boils down to stating what

makes the given rule true and how the rule can be used to prove a particular category.

A

 

SSERT

 

 accomplishes this in two ways. First, it explains how the conditions of the

rule lead to the conclusion of the rule. For a propositional Horn-clause this is simple,

and amounts to a straightforward English transcription of all the conditions in the

rule. Second, the chain of deductions which leads from the rule to the category is

explained by showing how the category is 

 

supported

 

 by each rule of a linear chain of

rules taken from the proof tree connecting the rule to the category. Each rule in this

chain is explained 

 

backwards

 

, indicating how the conclusion relies upon each of the
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antecedents. Starting with the category, A

 

SSERT

 

 proceeds back along the chain, from

the category to the rule in question, illustrating how the final category depends on

the conditions of the rule being explained.

An example may help to make this process clear. Figure 35 shows the first three

entries of the C

 

++

 

 Tutor rule base that embodies part of the definition of how con-

stants can be used in the language. Each entry includes a rule, an explanation of how

the conclusion of the rule relies upon the antecedents, and an explanation for each

antecedent (for a complete listing of the C

 

++

 

 Tutor rule base, see Appendix B).

Hence the third entry contains one more piece of text because its rule has two ante-

cedents, whereas the first two rules have only a single antecedent. Boldface entries

indicate rules which define a category in the domain; non-bold rule consequents are

intermediate concepts. Taken as a group, these first three entries indicate that one

may conclude that an example program contains a compile error if it has a pointer

which is constant and not initialized. An example of such a program is shown in

Figure 36.

rule 1: compile-error ← constant-not-init

rule 2: compile-error ← constant-assigned

rule 3: constant-not-init ← (pointer constant) ∧  (pointer-init false)

• “One way to detect a compilation error is to look for an identifier which is
constant but not initialized.”

° “There must be a constant which is not initialized.” 

• “One way to detect a compilation error is to look for an identified which is
declared constant and initialized, then later assigned a new value.”

° “There must be a constant which is initialized and later assigned.”

• “A constant identifier is uninitialized if it is declared as a constant pointer
to an integer but not initialized to the address of any integer.”

° “There must be a pointer to a constant or non-constant integer, and the 
pointer must ITSELF be constant.”

° “A pointer declared constant must not be initialized.”

FIGURE  35 Text for rule explanation. Boldface entries are category names.
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Assume that a student fails to label the program of Figure 36 as a compile error,

and that the modeling process determines that a modification to rule 3 of Figure 35

can account for the student’s mistake. A

 

SSERT

 

 explains the correct use of rule 3 as

follows. First, the series of deductions leading from rule 3 to the correct category is

be computed yielding the chain of rules 

 

rule 3

 

 

 

→

 

 

 

rule 1

 

 

 

→ 

 

compile-error

 

. This cal-

culation can be performed using a simple recursive descent algorithm, keeping track

of the chain of rules until the rule in question is reached. In most cases, all chains

leading from each rule to each category can easily be precomputed and saved before

the tutorial begins. Next, the chain is traversed in reverse order, printing out the

explanation associated with each rule. Lastly, the explanations for each of the ante-

cedents of rule 3 are output. Along with some other canned text for padding, the

entire explanation is generated as shown in Figure 37.

 

5.1.2  Selecting among multiple rule chains

 

As the experienced reader may have noted, it is possible for a rule to yield mul-

tiple chains leading to the same category, or to have more than one category which it

supports. A

 

SSERT

 

’s solution to this problem is to select randomly from among the

possible alternatives. Of course this is not the only solution; one could just as easily

justify the notion that all possible alternatives should be explained to the student so

void main()
{
  const int w = 4, const *y;  
  int x, z;  
  y = &w;
  cin >>  z >> x;

  cout << ((z = 6) || (x - w));  cout << (z--);
  }

constant integer “w,” initialized to a
value of 4.

constant pointer “y”, uninitialized.

FIGURE  36 Compile error example. Constant pointer is not initialized.
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that he or she will fully understand the complete range of uses for the rule in ques-

tion. It is important, then, to spell out the reasons for using random selection.

As discussed at the beginning of this chapter and in the overview of Chapter 2,

A

 

SSERT

 

’s feedback is based on the notion of a unit of remediation. A

 

SSERT

 

 provides

the most elementary information required, an explanation and an example, which the

designer uses to implement his or her own remediation strategy. Hence, the main

emphasis of A

 

SSERT

 

 is not on how to generate feedback, but rather on how to model

the student’s actions. Yet, one still needs to generate some form of remediation as a

default to test whether the modeling has an impact upon student performance. In

fact, in order to test the modeler effectively, one needs a standardized, 

 

quantifiable

 

unit of remediation. Then, two tests can be run, one with the modeler and one with-

out, both of which generate the same 

 

amount

 

 of remediation. The only difference

between such tests is the 

 

kind

 

 of feedback selected, which is determined by the

model. If a difference is detected, the cause can be attributed directly to the model.

One way to detect a compilation error is to look for an identifier which is
constant but not initialized.
A constant identifier is uninitialized if it is declared as a constant pointer
to an integer but not initialized to the address of any integer.

* There must be a pointer to a constant or non-constant integer, and the 
pointer must ITSELF be constant.

* A pointer declared constant must not be initialized.

Before proceeding with the rest of the test, let’s stop to review some
correctly answered examples.

In what follows, you will be shown a set of examples, one at a time. Unlike
the test questions, each will be shown with its correct answer. After these 
examples are presented, the test will be resumed.
------------------------------------------------------------------------------------------
EXPLANATION

Specifically, note the following which contribute to this type of error:

FIGURE  37 Example of a rule explanation.
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Random selection is just the simplest strategy for which a controlled amount of

remediation can be generated.

 

5.2  Generating an example

 

Having generated an explanation for the modified rule, the second objective of

A

 

SSERT

 

’s remediation algorithm can be addressed: generating an appropriate exam-

ple to illustrate the rule just explained. As already discussed, this depends upon

which of the four types of changes used by N

 

EITHER

 

 was made to the rule. Before

getting into each of these types, however, it is important to describe the basics of

generating an example. While each of the four types of rule changes made by N

 

EI-

THER

 

 requires a slightly different form of example, there are several common param-

eters that can be used to define an interface for example generation. Once the

interface for example generation is defined, and the general algorithm for building an

example is described, the specifics of generating an example for each type of N

 

EI-

THER

 

 refinement can be disclosed.

 

5.2.1  An Interface for Example Generation

 

To begin with, note that each example is accompanied by an explanation of the

rule which is refined. As discussed above in Section 5.1.2, a rule may be used in the

proof of more than one category, and may even participate in multiple different

chains of deductions supporting a given category. Since the explanation for the rule

selects only a single category supported by a particular chain of rules, it is important

for the generated example to match these selections as closely as possible. It makes

no sense, for instance, to follow an explanation of how a rule supports one category

with an example of that rule proving another category. It would be equally confusing

to generate an example that proved the same category but used an entirely different

chain of rules. The example generation algorithm must therefore accept the follow-
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ing two parameters: the category which the example is to prove and the chain of

rules that the example must satisfy.

Furthermore, note that each of the four refinements made by N

 

EITHER

 

 alters the

rule base by either adding or removing something. Viewed from a Horn-clause per-

spective, what gets added or deleted is a set of literals. Since A

 

SSERT

 

 uses a proposi-

tion Horn-clause representation, the literals which are added or deleted are

propositions. Consequently, the implication for example generation is that when an

example is constructed, certain propositions may have required truth values related

to whether they were added or deleted from the rule. Of course each type of refine-

ment is different, and will be explained in detail below, but consider the following

example. Suppose a rule were changed by the addition of an antecedent. A simple

way to generate an example illustrating why the extra antecedent is superfluous is to

construct an example which satisfies the original rule 

 

but not the extra antecedent

 

.

To do this, the example generation algorithm must also receive information as to

which propositions are to be constrained to true or false values.

The interface for example generation thus has four parameters: the category

which the example must prove, the rules which must be satisfied, the propositions

which must be true and the propositions which must be false. The next section

describes the general example generation algorithm followed by sections outlining

how each type of refinement uses the algorithm to construct an appropriate example.

 

5.2.2  The Basic Example Generation Algorithm

 

At the simplest level, example generation is an inherently recursive process

whose goal is to find a set of feature-value pairs that will guarantee the proof of a

particular category. During the selection of feature values there can be many points

where the algorithm may pick among several possible alternatives. For example, to
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guarantee a rule will be unsatisfiable, one need only force a single antecedent of the

rule to be false. There are at least two ways to deal with choosing among such alter-

natives. One way is to exhaustively check all possible combinations of feature-value

assignments until a correct feature vector is found. The disadvantage of this

approach is that it can take a very long time to conclude that there is no possible

combination of feature-value pairs which will prove the category since checking all

combinations can be exponential in the size of the theory.

A simpler approach is to select randomly when choosing among alternatives,

and check for compliance after a feature vector is found. If this check fails, the selec-

tion process is repeated until success or until some predetermined number of itera-

tions is exceeded. While this latter technique is not guaranteed to find a correct

feature vector when one exists, in practice a solution is typically found within a

small number of iterations. Furthermore, because random selection is used in place

of checking all possible combinations, the time required to select a feature vector is

linear in the size of the theory (instead of exponential). One can thus control how

long the algorithm should take trying to find a solution before giving up. This

becomes essential when response time is an issue.

A

 

SSERT

 

 uses this iterative method for generating example feature vectors, pick-

ing randomly when faced with alternatives and defaulting to failure after a fixed

number of attempts. The four subroutines which comprise the bulk of the algorithm

are outlined in Figure 38 and Figure 39. The 

 

TrueProp

 

 and 

 

FalseProp

 

 routines are

each passed a 

 

proposition

 

 that the caller wants to be true or false, respectively. The

proposition can be either an antecedent from a rule in the theory or a category. The

task of these two routines is to select feature-value pairs which will cause that propo-

sition to have the desired truth value. The 

 

TrueProp

 

 routine also takes a second argu-

ment, 

 

SR

 

, which is a list of all the rules that must be satisfied in addition to the
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proposition being true. When faced with a choice, 

 

TrueProp

 

 will preferentially use

these rules to select feature values.

 

TrueProp

 

 works as follows. If the proposition is operational, i.e. a given feature

for an example rather than one defined by rules in the theory, then the feature-value

pair of the proposition is simply returned. Thus, for example, the first antecedent in

rule 3 of Figure 35 uses the feature 

 

pointer

 

 which can take on the values 

 

constant

 

,

 

non-constant

 

 or 

 

absent

 

 (the latter meaning no pointer is used). To make the proposi-

tion 

 

(pointer constant)

 

 true the feature value pair 

 

〈

 

pointer, constant

 

〉

 

 is selected. 

If, on the other hand, the proposition is non-operational, then it must be defined

by one or more rules in the theory. To select among the possible rules, the list of

rules 

 

SR

 

, which must be satisfied in the example, is scanned. If none of the defining

function TrueRule (R:rule, SR:satisfied rules):feature-values;
begin

FV = ∅ ;
for p ∈  R do add TrueProp(p,SR) to FV;
return FV;

end

function TrueProp (p:proposition, SR:satisfied rules): feature-values;
begin

FV = ∅ ;
if p is operational then FV = p;
else begin

R = set of rules which define p;
if  ∃  r ∈  R and r ∈  SR then begin

FV = TrueRule(r);
for  r´ ∈  R, r´ ≠  r  do add FalseRule(r´) to FV;

end
else begin

randomly select r ∈  R; FV = TrueRule(r);
end

end
return FV;

end

FIGURE  38 Pseudocode for setting a proposition true.
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rules is a member of SR, then a rule is selected at random and a call is made to

TrueRule to recursively select feature-values to make the antecedents of that rule

true. If, however, one of the rules defining the proposition is a member of SR, then it

is used in the call to TrueRule and all the other rules which could be used to prove

the proposition are recursively set to be unsatisfied by calling the FalseRule routine.

Doing this guarantees that only those rules which are designated, and none of their

siblings, will be satisfied for the example.

As an example, consider again the misclassified program of Figure 36. Assume

that the rules to be satisfied are taken from the chain of rules used to explain rule 3:

rule 3 → rule 1 → compile-error. The value of SR is thus the list (rule 3, rule 1).

Assume also that TrueProp is invoked to prove the proposition compile-error true.

First, TrueProp would determine that compile-error is non-operational and defined

function FalseRule (R:rule):feature-vector;
begin

for p ∈ R do begin
if (¬p) already selected return (¬p);

end
for p ∈  R do begin

FV = FalseProp(p);
if FV ≠ ∅   then return FV;

end
return ∅ ;  /* failure*/

end

function FalseProp (p:proposition):feature-vector;
begin

FV = ∅ ;
if p is operational then return (¬p);
else begin

R = set of rules which define p;
for  r ∈  R do add FalseRule(r) to FV;

end
return FV;

end

FIGURE  39 Pseudocode for setting a proposition false.
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by rules 1 and 2 of Figure 35. Since rule 1 is also on the list SR, it is selected to be

satisfied by a call to TrueRule. Rule 2, as a sibling of rule 1, is set to be unsatisfied

via a call to FalseRule. To satisfy rule 1, TrueRule must make all its antecedents true,

in this case, the single antecedent constant-not-init. A recursive call to TrueProp for

constant-not-init reveals that constant-not-init is also non-operational and defined by

rule 3. Since rule 3 is on SR, another recursive call is made to TrueRule for rule 3

which then selects the feature value pairs 〈pointer, constant〉  and 〈pointer-init, false〉

to satisfy rule 3. This process continues until the final feature vector shown in

Figure 40 is constructed.

The FalseProp routine is similar in structure to TrueProp, in that a check is first

made to see if the proposition passed in is operational. If so, then a feature-value pair

is selected to make the proposition false. Thus to make the (pointer constant) propo-

sition false, either the non-constant or absent value would be selected at random,

yielding either 〈height non-constant〉  or 〈height absent〉  as the feature-value pair

returned. When the proposition is non-operational, again the list of rules which

Feature vector:
((integer constant) (pointer constant) (integer-init true) (pointer-init false)
 (pointer-set true) (integer-set no) (multiple-operands false)
 (position-a left-lazy) (operator-a-lazy OR) (lazy-a-left-value non-zero) 
 (on-operator-a-side left) (on-operator-b-side left) 
 (operator-b auto-incr))

void main()
{
  const int w = 4, const *y;  
  int x, z;  
  y = &w;
  cin >> z >> x;

  cout << ((z = 6) || (x - w));  cout << (z--);
  }

(operator-a assign) 

Corresponding C++ example:

constant pointer “y”, 
uninitialized.

FIGURE  40 Example of automatic feature vector selection.
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define the proposition are found. However, this time all the rules which define the

proposition must remain unsatisfied to make the proposition false, which is done by

passing each in turn to the FalseRule routine. To make a rule unsatisfiable, FalseRule

need only ensure that one of the antecedents of the rule is false. Since the feature

vector is constructed incrementally, it is possible that a value may have already been

selected for a feature which will render the rule unsatisfiable. Thus FalseRule first

checks to see if any such feature exists and quits if one can be found. Otherwise, a

second loop is entered which will terminate as soon as an antecedent can be found

which can be made false (though shown as a normal “for” loop, ASSERT actually

selects randomly from among the antecedents of the rule). If no antecedent can be

made false, the routine returns the empty set indicating failure.

Figure 41 puts it all together, showing how a complete feature vector example is

generated to prove a given category while satisfying a given set of rules. The Gener-

ateExample routine takes the four arguments discussed in Section 5.2.1: a category

which the example should prove, a list of rules which should be satisfied, a list of

function GenerateExample (C:category, 

TP:true propositions):feature-vector;
begin

add TrueProp(C, SR) to FV;
for  C´ ∈  categories, C´ ≠  C do add FalseProp(C´) to FV;
FleshOutExample(FV);
if CheckProof(FV, C) then return FV;

end

for  p ∈  FP do  add ¬p to FV;
for  p ∈  TP do  add p to FV;

FV = ∅ ;

return ∅ ;

repeat for some predetermined number of iterations

end /* repeat */

FP:false propositions,
SR: satisfied rules,

FIGURE  41 Pseudocode for the general example generation algorithm.
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propositions which should be false for the example, and a list of propositions which

should be true for the example. GenerateExample starts by adding the propositions

which must be true and false to the feature vector. Next, an attempt is made to create

an example which will be true in only one category and false for all others. Conse-

quently, one call is made to TrueProp for the selected category and all other catego-

ries are set false using FalseProp. Once completed, all the necessary feature-value

pairs have been selected. However, there may be other features yet unassigned. The

FleshOutExample routine randomly assigns values to any unassigned features.

Finally, a call to CheckProof runs the example through the theory to verify that,

indeed, the example leads to a proof of only the desired category. If successful, the

feature vector is returned. If not, then the process is repeated some predetermined

number of times until a successful feature vector is found or a failure is returned.

5.2.3  When Example Generation Fails

Recall that the discussion of example generation at the beginning of

Section 5.2.2 specifically noted that the process was designed as iterative rather than

exhaustive. While the reasons for this approach are well motivated, it still leaves

open the question of what happens when an example cannot be found. The solution

used by ASSERT is to call GenerateExample again after easing some of the con-

straints which may have caused the failure. The trick is to show what these con-

straints are and how they can be reduced enough to guaranty that a solution can be

generated.

There are basically two types of constraints that can cause example generation

to fail. First, it may be the case that the true propositions or false propositions passed

to GenerateExample interfere with finding a solution for which the given rule is true.

A simple illustration of this is the following. Suppose GenerateExample is passed

these four arguments:
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category: category-1
rules satisfied: {category-1 ← A ∧  B ∧  C} (i.e., just one rule)
true propositions: ∅
false propositions: {C}

Obviously, there is no way for both the rule to be true and the proposition C to be

false, since the rule requires the truth of C. One can imagine other similar circum-

stances where the specification of true and false propositions either kept the rule

from being proved or ensured the satisfaction of sibling rules, either of which would

cause GenerateExample to fail. In both cases, the straightforward solution to the

problem is to remove all constraints on true and false propositions. Then, as long as

the rule can lead to a solution which proves a single category without using any sib-

lings of the rule, GenerateExample will work.

However, it may also be the case that the rule in question cannot be made true

without also making one or more of its siblings true, regardless of whether any prop-

ositions are preset true or false. Or it may be the case that the given rule, when true,

will always support the truth of more than one category. For example, in the follow-

ing rules:

category-1 ← A
category-2 ← A
A ← B ∧  C
A ← C ∧  B

both problems exist; namely, the third rule cannot be true while its sibling rule is

false, and it cannot be used to prove only a single category. In such an event, there is

no possible setting of truth values for propositions which will have the desired effect

because the theory itself violates the constraints GenerateExample is trying to sat-

isfy. ASSERT avoids this problem by making the assumption that the theory does not

violate these constraints. While this may seem like an unsatisfactory solution, keep

in mind that the theory used by ASSERT is provided by the author designing the tutor-
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ing system. Thus any extra time required to ensure that the theory is free of these

violations does not effect the tutorial experience of the student. Furthermore, it is rel-

atively simple to write a set of utilities which the author can use to automatically

check if either of these two constraints has been violated.

To address a failure by GenerateExample, then, ASSERT just calls the routine

again, leaving out any true or false propositions. This can be done as many times as

needed until a solution is found since it is assumed that a solution must exist. In

practice, there has never been an instance where GenerateExample was called more

than twice, though it is possible due the random selection used in the routine. If

stronger guarantees are required, one can simply run GenerateExample off-line

before any tutoring begins and store one or more examples for each rule in the the-

ory. Then, in the very unlikely event that the second call also results in failure, this

list of precomputed examples can be tapped to return the final solution.

5.2.4  Completing the Example Generation

It is important to point out that even a complete feature vector which assures a

proof using the desired rule may not be a complete example. This is because the fea-

ture vector may not be in a form conducive to communicating with the student.

Depending upon the domain, more work may be required to translate the feature

vector into a form appropriate for the user. This was the case for the C++ Tutor used

to test ASSERT. In that domain, a feature vector returned by GenerateExample was

underspecified, meaning it did not fully outline all the elements for the C++ example.

Another look at Figure 40 on page 87 shows the difference. The first five feature-

value pairs of the feature vector indicate that the example has a constant, initialized

integer; a constant, uninitialized pointer; and that the pointer is eventually set to the

address of an integer. However, note that the number of integers and pointers is not

specified, nor are the variable names selected. Thus among other things, the transla-
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tion process from feature vector to C++ example must pick the number and names of

the variables, determine which are initialized and set, ensure that at least one con-

stant integer is declared, and that a constant pointer is set to the address of an integer

after its declaration (which is done in the statement “y = &w;”).

While the details of how the C++ Tutor maps its feature vectors to full C++

examples will not necessarily apply to other domains, it may be useful to point out a

few general principles. The first and most important is that the same iterative

approach used by GenerateExample can be used in translation. Starting with the fea-

ture vector as input, one can randomly select among the various options left unspeci-

fied. If contradictions are detected, the translation can be thrown away and the

process repeated. This was the approach used by the C++ Tutor. Secondly, it is often

the case that one can purposely limit the available options in order to generate a

more effective translation. In the C++ Tutor, for example, arithmetic expressions

were initially used as one of the options available for setting integer values. Later,

however, it was decided that students might spend too much time performing mental

calculations to determine integer values which, in fact, were irrelevant to solving the

problems. Consequently, the arithmetic expressions were dropped and all integer

values were set using either a constant or a simple input statement.

5.2.5  Generating Examples for Deleted Antecedents

Having explained example construction in general, we can now focus on how an

example is built for each specific rule change made by NEITHER. Refer again to the

partial list of rules for the C++ Tutor shown in Figure 35 on page 79. Assume that the

model produced by NEITHER determined that the first antecedent of rule 3 needed to

be deleted to account for an error made by the student. After printing an explanation

for the rule, the question becomes how to construct an appropriate example. The

obvious solution might be to simply generate an example which uses the correct
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form of the rule, to go along with the explanation just given to the student. This is

readily enough done by making a call to GenerateExample passing it compile-error

as the category and (rule3, rule 1) as the list of rules to be satisfied. The drawback of

this approach is that it fails to emphasize the nature of the change to the rule. In fact,

there is no reason to expect that such an example would make any differentiation at

all between the antecedents of the rule. What’s needed instead is something that

illustrates why the first antecedent is important.

To see how this can be done using GenerateExample, recall what it means when

NEITHER deletes an antecedent from a rule. By making such a change, NEITHER gen-

eralizes the rule, making it more likely that the rule will be satisfied because fewer

conditions are required. If such a change is made to model a student’s behavior, then

it means the student is also generalizing. Specifically, it means the student is labeling

some example in a category to which it does not belong. If one can create an exam-

ple that looks like something the student might generalize, and make the only mis-

take be the condition missing from the rule, the result will effectively illustrate the

necessity of the antecedent which was deleted by NEITHER. What is needed, then, is

an example which cannot be proved as a compile error only because the antecedent

deleted by NEITHER is false.

Again, an example will help to clarify this process. Assuming the first anteced-

ent is recommended for deletion from rule 3, ASSERT starts by temporarily removing

this antecedent from the rule. This will allow the construction of an example that sat-

isfies rule 3 without meeting this condition. Next, a call is made to GenerateExample

leaving the modified rule in the rule base and passing the deleted antecedent as a

false proposition. This forces the antecedent to be false in the example. The result

will meet the conditions for membership in the category in every way except for sat-

isfying the antecedent in question. If the student model is correct, this error precisely

duplicates the kind of generalization made by the student. The two possible labelings
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for the example can then be contrasted in a presentation to the student which illus-

trates why the antecedent is required. The text of such a presentation for rule 3 is

shown in Figure 42.

The text that surrounds the example is stored in a fashion similar to that used for

rule explanations. For each feature-value pair of the domain, ASSERT needs text for

explaining when the pair is true in an example and when it is false. Any randomly

generated elements such as variable names are pulled from the example. When gen-

erating text to go with the example, ASSERT retrieves the text for those antecedents

being highlighted. Thus in Figure 42, a canned message contrasting the two label-

ings for the example is printed followed by the text of the example. Then, since the

first antecedent of rule 3 is false, text describing how (pointer constant) is false (i.e.,

the pointer is non-constant) is printed out. The variable name n is taken from the

generated example, as is the fact that the integer to which n points is a constant. In

this way, the precise error detected by NEITHER is illustrated directly by the example.

Here is an example which might appear to be a compile error
but is actually CORRECT:

void main()
{
  const int m = 5, p, q, *n;  
  n = &m;
  cin >> m >> q >> p;

  cout << ((p | m) && (p <= q));  cout << (--m);  
}

This example is NOT a compile error because

* The pointer 'n' is declared as a non-constant pointer to a constant 
  integer, so it does not have to be initialized.

FIGURE  42 Deleted antecedent remediation.
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Recall that if GenerateExample fails in its first attempt, another call is made

without setting any antecedents to a particular truth value. As discussed in

Section 5.2.3, this second call can be guaranteed to return a value as long as a cor-

rect rule base is assumed before calling GenerateExample. So if an example could

not be generated for the modified form of rule 3 with its first antecedent set false,

ASSERT restores the original form of rule 3 and calls GenerateExample again. The

text for such a case is shown in Figure 43. Here, instead of highlighting only one

antecedent the text following the example explains how both antecedents of the rule

are true. While this is not as targeted an example as Figure 42, at least the correct

knowledge is communicated to the student at the level of detail where the error was

detected.

5.2.6  Generating Examples for Deleted Rules

When NEITHER models a student’s mistake by deleting a rule, it means the stu-

dent has made an specialization error of omission by failing to label an example in

void main()
{
  int q = 1, m, n, *const p;  
  p = &q;
  cin >> n >> m;

  cout << (++n);  cout << (m = n);  
}

This example is a COMPILE ERROR because:
* The identifier 'p' is declared as a constant pointer (to a non-constant
  integer).

* The constant pointer 'p' is not initialized.

Here is an example which might appear to be correct
but is actually a COMPILE ERROR:

FIGURE  43 Deleted rule remediation. Acts as the default form of remediation if a
second call is made to GenerateExample.
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its proper category. By deleting the rule, NEITHER accounts for all examples which

could have used the rule to prove the correct category but were not so labeled by the

student. Constructing an example for this kind of error is straightforward. Since no

added or missing conditions are relevant, ASSERT simply calls GenerateExample,

and retrieves text explaining why each of the antecedents of the rule is true. An

example of the type of printout generated is shown in Figure 43.

The pseudocode for generating examples for deleted antecedent changes or

deleted rule changes is shown in Figure 44. Note that the two routines take different

arguments since DeletedAntes must have additional information as to which anteced-

ents were deleted form the rule. Each routine also specifies the antecedents that are

highlighted in the explanation accompanying the text, indicating whether the truth or

falsity of the antecedent is explained. Thus for the explanation of Figure 42, the

DeletedAntes routine shows how the example is printed first, followed by an expla-

nation of the falsity of the deleted antecedent. Finally, note that the DeletedRule rou-

tine is called from DeletedAntes if its call to GenerateExample fails. This is because

the default action after such a failure is to generate an example for the rule in its nor-

mal form, which is precisely what DeletedRule does.

5.2.7  Generating Examples for Added Antecedents

 Adding antecedents to a rule is another technique used by NEITHER to model

specialization errors made by the student. Here, the student has failed to label an

example in its proper category because of an expectation that the extra conditions

added to the rule must also be true. Creating an effective counter example is done by

generating an example which is true in spite of the fact that the extra conditions are

false. ASSERT does this by calling GenerateExample, passing the list of extra ante-

cedents as the third argument which ensures the antecedents will be false. In the text

after the example the extra antecedents are highlighted, showing that they can be
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false without effecting the proof of the example in the given category. The correct

antecedents values are printed as well, indicating that their truth is all that is required

to satisfy the example. Figure 45 shows the text generated for rule 3 when the extra

antecedent (integer constant) is added to the rule, modeling the erroneous notion that

both the pointer and integer must be constant to generate a compile error. As with

deleted antecedents, if GenerateExample fails on its first try, then a call is made to

DeletedRule to illustrate the correct use of the rule instead. The pseudocode for

remediating added antecedents is shown in Figure 46.

5.2.8  Generating Examples for Added Rules

The final type of change made by NEITHER is to add one or more rules to the

theory. As one might expect, this has the opposite effect of deleting rules and is used

to model over-generalization errors on the part of the student. Recall that when

removing antecedents fails to account for how a student has labeled an example in a

procedure DeletedRule  (C:category, SR:satisfied rules,

begin
E = GenerateExample (C, SR, ∅ , ∅ );
print out E;
for x ∈  antecedents of R do print text stating why x is true;

end

procedure DeletedAntes  (C:category, SR:satisfied rules,

begin
for x ∈  DA do temporarily remove x from R;
E = GenerateExample (C, SR, DA, ∅ );
if E ≠ ∅  then begin

print out E;
for x ∈  DA do print text stating why x if false;

end;
for x ∈  DA do put x back in R;
if E = ∅  then DeletedRule (C, SR, R);

end

DA:list of deleted antecedents);
R:rule modified,

R:rule modified);

FIGURE  44 Pseudocode for remediating deleted rules and deleted antecedents.
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particular category, NEITHER induces new rules to account for the error and adds

them to the rule base. Unlike the other three types of changes, however, it may not be

immediately clear how ASSERT can remediate an added rule. After all, if a rule is

new to the rule base, then the author of the tutoring system did not anticipate its

existence. Thus, there is no stored text showing how the rule supports a particular

category, and GenerateExample cannot be used to construct an example since it

depends upon a chain of rules connecting the new rule to a category.

ASSERT solves this problem by taking advantage of the manner in which new

rules are added to the rule base. Specifically, NEITHER only adds new rules when

deleting antecedents is unsuccessful. Therefore, each added rule is essentially linked

to an already existing rule; namely, the one where NEITHER initially tries to delete

antecedents. In fact, when a new rule is induced, NEITHER uses the consequent of the

existing rule as the consequent for the new rule. Hence, there is an overlap between

Here is an example which might appear to be correct
but is actually a COMPILE ERROR:

void main()
{
  int m, p, q, *const n;  
  n = &m;
  cin >> *n >> q >> p;

  cout << ((m | q) || (p %= m));  cout << (p & q);  
}

The following points BY THEMSELVES are enough to make this example
a COMPILE ERROR:
* The identifier 'n' is declared as a constant pointer (to a non-constant
  integer).

* The constant pointer 'n' is not initialized.

Note that this example is a compile error IN SPITE OF the 
following:
* The  integer 'm' is declared as a non-constant.

FIGURE  45 Added antecedent remediation.
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the new rule and the original, and this can be used to generate an explanation and as

the basis for setting up a call to GenerateExample.

ASSERT starts by finding three sets of antecedents: those common to both rules,

C; those which belong only to the original rule, O; and those which belong only to

the new rule, N. Next, the original rule is modified by temporarily removing any

antecedents not in C. Then GenerateExample is called with the false propositions set

to O and the true propositions set to N. This forces GenerateExample to construct a

feature vector that satisfies the common antecedents in C plus those in N, which is

equivalent to the new rule, but not the antecedents of O, which forces the original

rule to be false. So, given the following two rules:

original rule: A ← B ∧  D ∧  E
added rule: A ← D ∧ F ∧ B ∧ G

the sets C, O and N would be:

C = {B, D}, O = {E}, N = {F, G}

which will generate an example where B, D, F and G are true and E is false.

Printing the text to go with the example emphasizes the antecedents in both set

O and set N. First, text is retrieved for each antecedent in O, explaining why it is

procedure AddedAntes  (C:category, SR:satisfied rules, 

begin
E = GenerateExample (C, SR, ∅ , AA);
if E ≠ ∅  then begin

print out E;

for x ∈  AA do print text stating why x is false;
for x ∈  antecedents of R do print text stating why x is true;

end;
if E = ∅  then DeletedRule (C, SR, R);

end

AA:list of added antecedents);
R:rule modified,

FIGURE  46 Pseudocode for remediating added antecedents.
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false in the example thus keeping the correct rule from firing. Then, each antecedent

of N is highlighted, indicating that its truth is irrelevant to the proof of the example.

Figure 47 shows such a printout for the added rule

constant-not-init ← (pointer-init false) ∧  (pointer-set true)

which, compared to rule 3 of the preceding examples, has one antecedent in common

with rule 3, (pointer-init false), and one new antecedent, (pointer-set true). The

pseudocode for remediating added antecedents appears in Figure 48. Just as with

DeletedAntes, in the event of a failure to generate an example, the AddedRule routine

must restore the original rule in the theory before making its default call to Delete-

dRule.

Here is an example which might appear to be a compile error
but is actually CORRECT:

void main()
{
  const int a = 1, *d;  
  int b, c;  
  d = &a;
  cin >> c >> b;

  cout << (c = a);  cout << (b - a);  
}

This example is NOT a compile error because:
* The pointer 'd' is declared as a NON-CONSTANT pointer to a CONSTANT 

  Thus it can be reassigned to point to different integers, but it 
  dereferenced and set.

Note that this example is NOT a compile error IN SPITE OF the
following:
* The pointer 'd' is assigned.

integer.
cannot be

FIGURE  47 Added rule remediation.
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5.3  Putting it all together

The Remediate procedure, which combines explanation and example genera-

tion, is shown in Figure 49. It works in two stages. Initially, all the changes made to

the rule base are divided into groups such that all changes made to the same rule are

bundled together. Then two nested loops are used to print out the explanation for

each rule followed by examples which highlight the errors detected by NEITHER. The

outer loop cycles through each rule, printing out the explanation of that rule using

the sequence of rules leading from the rule to the category. The inner loop then gen-

erates examples for each type of change made to the rule and prints each in turn,

using the four routines of Figure 44, Figure 46 and Figure 48. Hence the two goals

of remediation outlined at the beginning of this chapter are satisfied: an explanation

of the correct knowledge is provided by explaining the path leading from the cate-

gory back to the rule, and examples illustrating the use of that knowledge are pro-

vided.

procedure AddedRule  (C:category, SR:satisfied rules,

begin
O = set of antecedents only in R-orig;
N = set of antecedents only in R-new;
for x ∈  O do temporarily remove x from R-orig;
E = GenerateExample (C, SR, O, N);
if E ≠ ∅  then begin

print out E;
for x ∈  O do print text stating why x is false;
for x ∈ N do print text stating why x is true;

end;
for x ∈ O do replace x in R-orig;
if E = ∅  then DeletedRule(C, SR, R-orig);

end

R-orig:original rule, R-new:new rule);

FIGURE  48 Pseudocode for remediating added rules.
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5.3.1  Coherence versus Importance

Before wrapping up the description of refinement-based remediation, it is

important to examine one part of the algorithm of Figure 49. The method of group-

ing changes by the rule changed deserves further scrutiny because it touches upon

some interesting questions regarding how to generate text for human consumption.

This is by no means a new issue in intelligent tutoring systems research [Clancey,

1979; Carbonnel, 1970b; Brown et al., 1975] and has been widely studied by other

researchers as well. Even within the context of a relatively straightforward knowl-

edge representation such as a rule base, a variety of questions can arise as to how

best to organize the output generated for the student. For example, since ASSERT

simulates student misconceptions using four types of changes, one could imagine

grouping the output along these four lines. Or, because two of the changes are gener-

alizations and two are specializations, one might organize the output as two groups.

Another valid technique is to explain all changes to the same rule together since they

relate to the same portion of the knowledge base. And finally, one could use addi-

procedure Remediate  (RC:rule changes);
begin
G = changes of RC grouped by rule changed and sorted;
for x ∈  G do begin

C = select a category which can be proved for rule in x;
SR = linear chain of rules from proof tree connecting rule in x to C;

for y ∈  x by importance do
case (type of change in y)
deleted antecedents : DeletedAntes(C, SR, rule in y, antecedents deleted);
added antecedents : AddedAntes (C, SR, rule in y, antecedents added);
deleted rule : DeletedRule (C, SR, rule in y);
added rule : AddedRule (C, SR, original rule in y, added rule in y);

end;
end;

end

Explain rules of SR in reverse order;

FIGURE  49 Pseudocode for the complete remediation algorithm.
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tional information from NEITHER indicating which changes are the most important in

an attempt to explain more serious errors before addressing peripheral ones. Regard-

less of the approach taken, one must use some form of presentation knowledge

[Acker et al., 1991] to guide the selection and organization of the output text. Since

this crosses into the domain of instructional design, ASSERT does not attempt to dic-

tate which method to use.

However, ASSERT does provide a default method of presentation based on the

principles of coherence and importance. A coherent presentation can be defined as

one which groups together explanations that are relevant to the same portion of the

knowledge base. This means that changes made to the same rule should be explained

together. Thus ASSERT uses knowledge about the fact that the unit of remediation is

at the rule level to organize its presentation. One benefit of this approach is that the

explanation of a rule, i.e. the text indicating how the category is supported by the

rule, need only be explained once. Thus a rule altered by both adding and deleting

antecedents would be explained one time and then followed by two examples, one to

illustrate the importance of the deleted antecedents and another to show why the

extra antecedents are irrelevant. If these two examples were separated, with a change

to another rule explained in between, the explanation of how the rule supports the

category would be repeated. The result would be a meandering presentation full of

redundancies.

The second bit of knowledge used by ASSERT to organize its default presenta-

tion is the fact that NEITHER uses a ranking system in determining the changes it

makes to the rule base. While the details of this ranking are not important here, it is

important to know that the order in which the changes are listed is significant. Recall

that NEITHER works iteratively, finding the most effective change it can at each step

to account for as much of the student behavior as possible. When complete, the list

of changes made to the rules is ordered from most to least effective. The most effec-
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tive changes account for more of the student’s behavior and are therefore the most

important changes to explain. This is especially salient when the resources for reme-

diation are restricted. For instance, given a limited attention span on the part of the

student, the tutoring system must be sure to explain the most important changes

regardless of the rules which are changed.

As one might expect, importance and coherence can conflict. The question is

how to effectively combine these two principles into a method for generating text.

The approach taken by ASSERT is implicit in the Remediate algorithm of Figure 49.

First, the changes are grouped by the rule which is changed. Each rule will have one

or more changes, and each change can be assigned an integer based on importance as

determined by NEITHER. Consequently, each cluster of changes to a single rule can

be given an average importance by summing the importance integers and dividing by

the number of changes. Sorting the rule-change groups based on average importance

provides the basis for combining coherence and importance: all changes to a rule are

still explained together, but the rules with the most important average change are

explained first. Furthermore, within a given cluster of changes to a rule, examples for

the most important changes are generated first. The first step of Remediate groups

the changes by rule and sorts the groups by average importance of the changes made

to the rule. The outer loop enforces coherence by ensuring that all changes to a rule

are explained at the same time. And finally, the inner loop guarantees that the exam-

ples are generated in order of most important change first.

5.4  Summary

A number of details have been covered in this chapter to describe how ASSERT

generates remediation. Yet, it is important to emphasize that remediation is not the

main focus of this research. In fact, ASSERT has been purposely designed to avoid

the difficult questions of remediation relating to pedagogy, leaving them instead to
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the author of the tutorial. The mountain of material just explained is just the support

mechanism for a very simple idea: that ASSERT can generate an explanation and an

example for every refinement found in the student model. It is up to the author of the

tutorial to determine the most effective method for using this information.
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CHAPTER 6

 

Experimental Results

 

It can be argued that the ultimate test of any tutoring system design is whether or

not it results in enhanced student performance. This is especially true for student

modeling; if the use of a model cannot significantly impact the educational experi-

ence then there is little reason to construct one. As a community we can argue about

various designs, but the discussion is largely vacuous without empirical evidence.

Furthermore, this evidence must come from experiments involving real students,

preferably large numbers of students, so that we can assess the significance of the

data.

In this chapter, evidence is presented in support of the claim that the A

 

SSERT

 

design can be used to construct tutorials which 

 

significantly

 

 impact student perfor-

mance. The bulk of this evidence comes from a test using 100 students who inter-

acted with the C

 

++

 

 Tutor briefly outlined in Chapter 2 (see Section 2.6 on page 24).

In addition to this evidence, experiments are presented from an artificial domain in

which student responses were simulated. The advantage of this simulation domain is

that it can be used to substantiate hypotheses about the results of the C

 

++

 

 Tutor test.

The rest of the chapter is organized as follows. First the simulation domain is

described and an initial test is run to illustrate A

 

SSERT

 

’s capabilities and set the con-

text for the results expected from C

 

++

 

 Tutor test. Then the data from the C

 

++

 

 Tutor

test is presented. Lastly, additional experiments are discussed using the simulation

domain to illuminate the finer points of using an A

 

SSERT

 

-style tutorial.
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6.1  Student Simulation Test

 

The first simulated student test explores one issue: whether or not the various

aspects of an A

 

SSERT

 

 system, namely the bug library and the N

 

EITHER

 

 theory-refine-

ment component, contribute to accurate student modeling. This is an important

“proof-of-concept” issue, since the output of the modeling process is the basis for

remediation. An accurate model directly influences the impact of an A

 

SSERT

 

-style

tutor on the student; if A

 

SSERT

 

 is unable to produce more accurate models than sim-

ple techniques such as guessing what the student will do or assuming the student will

always be correct, then there is no chance that remediation based on an A

 

SSERT

 

model will have any impact. The expectation is that A

 

SSERT

 

 will produce signifi-

cantly more accurate models.

To test this hypothesis, an ablation test format was used, successively leaving

out parts of the A

 

SSERT

 

 algorithm to determine their effect on the accuracy of the

model produced. There are three different configurations in which A

 

SSERT

 

 can be

used for modeling. The first, which we label simply “A

 

SSERT

 

,” is to use everything

available to construct the model. This means referencing a bug library to create a

modified theory which is then fed to N

 

EITHER

 

 for further refinement. One would

expect this method to produce the most accurate models. The second technique,

labeled “A

 

SSERT

 

-BugOnly,” is to use only the bugs in the library to build the model,

and the third method, labeled “A

 

SSERT

 

-NoBugs,” is to skip the bug library and use

only N

 

EITHER

 

. One would expect A

 

SSERT

 

-BugOnly to outperform A

 

SSERT

 

-NoBugs

in those cases where a fairly complete bug library is available and relatively few

examples are extracted from the student.

To run an ablation test comparing these three configurations requires four types

of data: a rule base defining the correct domain knowledge, a corpus of test problems

large enough to serve as both training and test examples for modeling, a set of simu-
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lated students to provide “answers” to the test problems, and a bug library. The need

for a bug library implies that the test must take place in two phases, where the first

phase consists of simulating students solely for the purpose of constructing the bug

library. Given the library and a new batch of simulated students, the second phase of

the test can perform the actual comparison.

The rule base used for this test comes from an artificial domain which classifies

examples into one of twelve types of animal. The full animal theory, shown in

Appendix A, is an extension of a set of rules given in [Winston and Horn, 1989]. We

chose to work in this domain for historical reasons; earlier versions of A

 

SSERT

 

 were

tested on these rules using simulated data [Baffes and Mooney, 1992]. Since that

time, A

 

SSERT

 

 has undergone fundamental changes in its design, making it important

to show that the previous results can still be achieved with the new system. Further-

more, the animal classification rule base is rich enough to provide a good test of the

three configurations of A

 

SSERT

 

 on a variety of potential student misconceptions.

The tests were run from a pool of 180 examples randomly generated using the

correct animal classification rules (15 examples for each of the 12 categories). Artifi-

cial students were generated by making modifications to the correct theory. As each

student theory was formed, it was used to relabel the 180 examples to simulate the

behavior of that student. These relabeled examples act as the “answers” the student

would furnish for the 180 “multiple choice questions.”

Two types of modifications made to the correct theory to create students. One

set of modifications was predefined, with a given probability of occurrence. These

simulated common errors that occurred in the student population. Six common devi-

ations were used, each with a 0.75 probability of occurrence. Two of these deleted a

rule from the theory, two added antecedents to rules in the theory, one added a rule to

the theory and one deleted an antecedent from the theory. Note that this covers the
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full range of possible modifications that can be made to a propositional Horn-clause

theory (see Figure 19 on page 37). To simulate individual student differences, each

student theory was further subjected to random antecedent deletions with a probabil-

ity of 0.10 for each antecedent in every rule.

The first phase of the test, for constructing a bug library, then proceeded as fol-

lows. First, 20 artificial students were created using the methods described above.

For each student, all 180 examples were relabeled using the student's buggy theory.

From these 20 students, 20 student models were generated using N

 

EITHER

 

 on all 180

relabeled examples. Finally, bug library was built from the 20 student models using

the algorithm from Chapter 4. All of the six common predefined bugs ended up in

the bug library. The total size of the bug library was 29 bugs.

For the second phase, 20 new artificial students were generated using the same

techniques used in phase one. For each new student, the 180 examples were rela-

beled using the student's modified theory. Next, 50 examples were randomly chosen

from the 180 relabeled by the student to serve as training examples for A

 

SSERT

 

,

A

 

SSERT

 

-BugOnly and A

 

SSERT

 

-NoBugs. Each new student was modeled using the

same 50 examples as input to each of the three systems. The other 130 examples

were reserved for testing the accuracy of each student model. Recall that the output

of N

 

EITHER

 

 is a revised theory representing the model. This output theory was used

to label each of the 130 test examples. These labels were compared to those gener-

ated using the student's modified theory to compute a percentage accuracy.

Table 2 shows the results of the simulated student test. For comparison pur-

poses, we also measured the accuracy of both an inductive learner and the correct

domain rules. The inductive learner was run by starting N

 

EITHER

 

 with no initial the-

ory, in which case N

 

EITHER

 

 builds rules by induction over the input examples using

a propositional version of the FOIL algorithm [Quinlan, 1990]. For the correct the-
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ory no learning was performed, i.e., the correct domain rules were used without

modification to predict the student’s labelings. Statistical significance was measured

using a two-tailed Student t-test for paired difference of means at the 0.05 level of

confidence. All the differences shown are statistically significant.

All the predictions are substantiated by the results of Table 2. The A

 

SSERT

 

 sys-

tem performed the best, coming close to perfect accuracy in predicting the student’s

answers on the 130 test examples. It’s not surprising that A

 

SSERT

 

 beats A

 

SSERT

 

-

NoBugs either, given the fact that the starting theory for A

 

SSERT

 

 is the output of

A

 

SSERT

 

-BugOnly which is nearly 30 percentage points more accurate than the cor-

rect theory serving as A

 

SSERT

 

-NoBugs’s starting point. Also, A

 

SSERT

 

-BugOnly is

more accurate than A

 

SSERT

 

-NoBugs in this case, indicating that the information in

the bug library was complete enough to model the student more accurately than was

possible using the 50 examples for the student. That is, on average the input exam-

ples for each student were not enough information for N

 

EITHER

 

 to overcome the

head start in the bug library. Note that this does not mean the 50 input examples were

useless; without them A

 

SSERT

 

 would not have been more accurate than A

 

SSERT

 

-

BugOnly. And finally, notice that induction performs quite poorly in comparison to

the other systems and even worse than using the correct theory without learning.

This echos the results of other research; namely, when the target concept to be

Average

ASSERT
ASSERT-BugOnly
ASSERT-NoBugs
Correct Theory
Induction

System Accuracy

93.7
90.9
86.2
62.2
40.8

TABLE 2 Results of simulated student test. Accuracies represent the
performance of each modeling system averaged over all 20 “students.”
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learned is fairly close to the input rules, theory-refinement algorithms have a definite

advantage over induction alone.

The results from Table 2 also set the context for what might be expected from a

test involving real students using an A

 

SSERT

 

-style tutor. Ideally, similar results

would occur in terms of increases in student performance; that is, the students who

received remediation based on a model built by A

 

SSERT

 

 should benefit more than

students who received feedback based on a model built by A

 

SSERT

 

-NoBugs. Evalu-

ating this hypothesis was the main motivation behind the C

 

++

 

 Tutor test.

 

6.2  C

 

++

 

 Tutor Tests

 

As described at the end of Chapter 2 the C

 

++

 

 Tutor was developed in conjunc-

tion with an introductory C

 

++

 

 course at the University of Texas at Austin. The tuto-

rial covered two concepts historically difficult for beginning C

 

++

 

 students:

ambiguity involving statements with lazy operators and the proper declaration and

use of constants. These two concepts plus examples of correct programs formed

three categories into which example programs could be classified (for an example of

a C

 

++

 

 Tutor problem, see Figure 13 on page 27). A set of 27 domain rules was devel-

oped to classify problems, using a set of 14 domain features, as being either 

 

ambigu-

ous

 

, a 

 

compile error

 

 (for incorrectly declared or used constants) or 

 

correct

 

. The latter

category was the default category assumed for any example which could not be

proved as ambiguous or a compile error. For the complete listing of the C

 

++

 

 Tutor

rule base see Appendix B.

Students who used the tutorial did so on a voluntary basis and received extra

credit for their participation. As an added incentive, the material in the tutorial cov-

ered subjects which would be present in the course final exam. This established a

high level of motivation among the students who participated in the test. Due to the
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large number of students involved, the tutorial was made available over a period of

four days and students were encouraged to reserve time slots to use the program. In

total, 100 students participated in the study.

Three major questions were the focus of the C

 

++

 

 Tutor test. First, although sim-

ulations like the one described in the previous section indicated that N

 

EITHER

 

 is an

effective modeler, there was still no proof that this would be the case for real stu-

dents. In particular, all the simulations manufactured 

 

consistent

 

 answers for the sim-

ulated students which is probably not be the case for real students. Thus it was

important to establish that A

 

SSERT

 

 could make a significant difference in construct-

ing an accurate student model for real students. The expectation here was that

A

 

SSERT

 

 using a bug library and N

 

EITHER

 

 would produce more accurate models than

A

 

SSERT

 

 with N

 

EITHER

 

 alone which, in turn, would be more accurate than simply

guessing that the student was always correct. Additionally, models built using the

full version of A

 

SSERT

 

 should have a significant portion of the model contributed

from the bug library if the library had any utility.

Second, even with a perfect model one may not see any increase in student per-

formance. Though a model may be accurate in predicting 

 

when

 

 a student will reach a

faulty conclusion, it may not be able to predict 

 

how

 

 that conclusion was reached. The

only way to determine the efficacy of a model is to provide the student with feedback

based on that model and measure any change in performance. Our hypothesis was

that remediation generated using models built by A

 

SSERT

 

 would result in increased

student performance over a control group which received no feedback. Additionally,

it was expected that students who were modeled with the benefit of a bug library

would see greater performance increases over students who were modeled without a

library. 
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Third, as a comparison against previous student modeling studies [Sleeman,

1987; Nicolson, 1992] we wanted to test how students receiving feedback based on

student models would compare against students receiving a simple form of reteach-

ing feedback. In this case the expectation was that remediation based on modeling

would result in greater post-test performance than simple reteaching.

Testing these three hypotheses was accomplished with three experiments: one to

measure the effects of remediation, another to test the utility of the bug library and a

third to measure the accuracy of modeling. In the next three sections each of these

tests is described in turn.

 

6.2.1  Remediation with the C

 

++

 

 Tutor

 

For the remediation test, students who used the C

 

++

 

 Tutor were divided into four

groups. One group received the full benefits of A

 

SSERT

 

, the second used models

formed without the benefit of a bug library, the third received reteaching and the

fourth was a control group which had no feedback. The expectation was that these

four groups would exhibit decreasing performance on a post-test as the remediation

ranged from full A

 

SSERT

 

 to no bug library to reteaching to nothing.

To test whether A

 

SSERT

 

 can impact student performance, one needs to collect

information for each student that has certain characteristics. To begin with, data must

be collected both before and after any feedback given to the student to detect any

change in performance. Thus the C

 

++

 

 Tutor was constructed as a series of two tests

with a remediation session in between. Secondly, the data from the two tests must be

equally representative of the student’s capability and must be collected in similar

ways. The only way to detect a transfer of information from the tutoring program to

the student is to have both tests address similar topics from the domain at similar

degrees of difficulty. One also needs to take into account the physical limits of the
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student to construct tests which the student can be reasonably expected to complete

during a session with the tutorial.

To that end, a program was written to generate 10 example questions using a

prescribed format. Since each question from the C

 

++

 

 Tutor can be classified into one

of three categories, the 10 questions were divided equally among the categories:

three questions were correctly labeled as compilation errors, four were examples of

ambiguous programs, and three were questions with no errors. For the ambiguous

and compile error categories, example questions were constructed using the 

 

Genera-

teExample

 

 routine described in Section 5.2 on page 82 with a specific rule from the

theory. The four ambiguous questions were generated using rules 13, 14, 16 and 17.

The compile error questions were generated using rules 3, 4 and 6. For the three cor-

rect examples, a different technique was used since, as the default category, there are

no rules to conclude an example question is correct. Instead, 

 

GenerateExample

 

 was

called without reference to any particular rule, but with feature values selected so as

to keep the example “close” to the other categories. Thus two correct examples were

generated which failed to be ambiguous because of one missing condition from rules

16 and 17, and the third had missing one condition from rules 3 and 4. Note that this

still leaves quite a few features unassigned for each of the 10 examples. These fea-

ture values were filled in randomly.

This process was used to generate two sets of 10 questions representing the pre-

test and post-test to be given to each student. The 

 

same

 

 pre-test and post-test was

given to every student, but the order in which the 10 questions was presented was

randomized. This was done to discourage any sharing of information among students

as they used the tutorial. This meant every student answered the same questions, and

the only difference was the feedback given between the pre-test and post-test.
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Students were randomly assigned to four groups of 25, each of which received a

different kind of feedback from the C

 

++

 

 Tutor. One group of 25 received no feed-

back until after the post-test, acting as the control group. This group was labeled the

“No Feedback” group. The other three groups were remediated using the methods

outlined in Chapter 5. To ensure that the only difference between feedback groups

was the 

 

type

 

 of feedback received, each group was given the same 

 

amount

 

 of feed-

back; specifically, four examples and four explanations for each student. 

One feedback group received a form of reteaching. Specifying precisely what is

meant by “reteaching” is extremely important, as it can have a profound impact on

the results of the experiment. Furthermore, there are many valid approaches to

reteaching, making it important to clarify the exact approach used. For this experi-

ment, one overriding concern drove the design. The essential point of the experiment

was to illustrate whether feedback based on modeling made any difference over

feedback based on no modeling at all. To that end, we chose to isolate all informa-

tion about the student from the form of reteaching used. Thus, no information about

the student was given to the reteaching method, not even which answers the student

got right or wrong. In such an informational vacuum, the option left for reteaching is

to select information at random from the rule base for remediation. Thus, for the

“Reteaching” group, four rules were selected at random from the rule base, and an

explanation and example was generated for each.The explanation and example were

generated using the 

 

DeletedRule

 

 routine on each rule selected because this routine

explains the rule in full and generates an example of its use (see Section 5.2.6 on

page 95). 

The other two groups received feedback based on the models constructed for the

student from his or her answers to the pre-test questions. For one group (the

“A

 

SSERT

 

” group) the full A

 

SSERT

 

 algorithm was used to build the model and for the

other group (the “A

 

SSERT-NoBugs” group) only NEITHER was used as in the
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ASSERT-NoBugs technique described in Section 6.1 above; i.e., no bug library was

used to modify the correct rule base before passing it to NEITHER. For both modeling

groups, bugs were selected for remediation based on the priority assigned them by

NEITHER. For the ASSERT group, bugs from the bug library were selected before

those found by NEITHER in order of their stereotypicality value. In both the ASSERT

and ASSERT-NoBugs groups, if fewer than four bugs were found, the remainder of

the feedback was selected at random as with the reteaching group.

Students were assigned to the four groups randomly. Since the ASSERT group

required a bug library, the first 45 students to take the tutorial were randomly

assigned to the ASSERT-NoBugs, Reteaching and No Feedback groups. All of these

students were modeled using NEITHER with the parent-child level-comparison algo-

rithm enabled and the results used to construct a bug library. The remaining 55 stu-

dents were randomly assigned to all four groups but at three times the rate to the

ASSERT group until the number of students assigned to all groups was even.

Since the four groups of students each had a different average accuracy on the

pre-test and post-test, they were compared using the average improvement in accu-

racy between pre-test and post-test. Also because each group consisted of different

students with no pairing between groups, significance was measured using an

ANOVA test. As the only variable between groups was the feedback received, the

significance test used was a 1-way unpaired ANOVA test at the 0.05 level of confi-

dence using Tukey’s multiple comparison method [Tukey, 1953]. The average

improvement in performance for the four groups is shown in Table 3.

The results of the experiment confirmed most of our expectations. As predicted,

the average performance decreased as the feedback varied from full ASSERT to no

bug library to reteaching to nothing. Moreover, both the ASSERT and the ASSERT-

NoBugs students improved significantly more than students in the Reteaching group.
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For ASSERT-NoBugs, the improvement over Reteaching is more that 10 percentage

points, which typically corresponds to an entire letter-grade improvement. For the

ASSERT group, the average improvement is even greater. More importantly, in both

cases nothing beyond the correct domain knowledge was required from the author of

the tutorial. No prior information as to likely misconceptions was available to the

system. Both modeling and bug library construction were completely automatic.

It is important to be clear about the results in Table 3. Note that there is a great

deal of variance among the mean pre-test scores in the four groups, though these dif-

ferences are not significant. However, this is precisely why the ANOVA test was run

to compare the significance. What can be concluded from Table 3 is that ASSERT-

style feedback based on a model of the student can significantly increase perfor-

mance. There are no claims, however, as to how much increase one will get, whether

the increase will always arise for every domain, nor what the performance will be for

other forms of modeling or reteaching. What has been illustrated is that the auto-

matic modeling and feedback performed by ASSERT can lead to significant perfor-

mance improvements over feedback using no modeling at all.

This is the most important empirical result from this research. It illustrates that

ASSERT can be used to build a tutorial that significantly impacts student performance

Group

ASSERT
ASSERT-NoBugs
Reteaching
No Feedback

23.2
19.6
7.2
2.0

TABLE 3 C++ Tutor remediation test. Scores indicate percentage of problems an-
swered correctly. ANOVA analysis on average increase results in
significance between all groups except between ASSERT and ASSERT-
NoBugs and between Reteaching and No Feedback.

Average 
Pre-test Score

Average
Post-test Score

Average
Increase

67.6
67.2
58.0
56.8

44.4
47.6
50.8
54.8
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where both models and bug libraries are automatically constructed using only correct

knowledge of the domain. Furthermore, it is another argument in favor of the use of

student models since it shows (1) that they can have significant impact over not mod-

eling at all and (2) that they can be constructed generically without resorting to hand

crafting a library of bugs.

6.2.2  Bug Library Utility Test

However, note that the difference in Table 3 between ASSERT and ASSERT-

NoBugs is not significant. This means the use of the bug library did not significantly

impact the performance of the student as expected, casting doubts as its utility. Cer-

tainly having a bug library did no harm to post-test performance, and perhaps with

more data the difference between the two groups would indeed have been signifi-

cant. Thus it would be useful to know whether the bug library had any impact at all

on the modeling process.

In an attempt to understand why ASSERT did not significantly outperform

ASSERT-NoBugs, a utility test was run to determine if the contents of the bug library

made any difference in the modeling process. Our hypothesis was that if the bug

library were useful, the average size of the overall student models from the two

groups would not change but the models which were formed using the bug library

would require a significantly smaller contribution from NEITHER. If this were not the

case, then clearly the bug library could be said to be irrelevant to improved student

modeling.

To get at this issue, one simple test is to measure the average contribution which

the bug library made to the student models in the ASSERT group. This is easily done

by subtracting the bugs selected from the library from the overall model built for the

student. What remains are the refinements which NEITHER contributed to the model.
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The size of these NEITHER refinements, measured as the total number of literals, can

be compared to the models formed for the students in the ASSERT-NoBugs group.

This results of such a comparison are shown in Table 4. 

Apparently, the bug library is making a significant contribution to the overall

model constructed for the students in the ASSERT group. In fact, considering the

average total model size for the ASSERT group was 9.08 literals, nearly 60 percent of

the average model comes from bugs in the library. This result, taken together with

the results of the remediation test, implies that although the bugs in the library are

effective at modeling the student, they are not any more effective than what NEITHER

alone can glean from the 10 pre-test questions.

6.2.3  Modeling Performance using the C++ Tutor

To verify that this was the case requires testing the modeling performance of

ASSERT in the C++ domain, checking how the various features of the algorithm

impact the predictive accuracy of the resulting models. This is identical to the abla-

tion test used in Section 6.1 which analyzed ASSERT in the simulated student

domain. Recall that the hypothesis for that test was that ASSERT models would be

more accurate than ASSERT-BugOnly models which are formed using only the

refinements stored in the bug library. Furthermore, ASSERT-BugOnly models should

be more accurate than ASSERT-NoBugs models only when the bug library can pro-

Group

ASSERT
ASSERT-NOBUGS

3.72
8.48

Average Total Literal
Changes by NEITHER

TABLE 4 Results of bug-library utility test. Values indicate average size of model
measured in literal changes to the theory. Differences in changes made
by NEITHER are significant; total model size differences are not.

Average Total
Model Size

9.08
8.48
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vide information which NEITHER cannot get from the pre-test. And finally, ASSERT,

ASSERT-BugOnly and ASSERT-NoBugs should all outperform the correct theory,

which predicts the student is always right, and induction, which must model the stu-

dent from scratch.

Running this ablation test in the C++ domain necessitated using only the data

from the No Feedback group. Because no remediation occurred between the pre-test

and post-test for the students in this group, their 20 questions could be treated as a

single unit from which training set and test set examples can be drawn. However,

these training-test splits were generated differently that what was done in the simu-

lated student test. Recall that the examples for the pre-test and post-test in the C++

domain were constructed so as to be representative across a given set of domain

rules. This representative quality is important to maintain so that any effects from

modeling with the training set are manifested in the test set. Therefore, the 20 exam-

ples from the pre-test and post-test were grouped into 10 pairs, where each pair con-

sisted of the two examples (one from the pre-test and one from the post-test) which

were generated for the same C++ Tutor domain rule. Then, training and test set splits

were generated by randomly dividing each pair.

The result was 210 possible training-test set splits. For each of the 25 No Feed-

back students, 25 training-test splits were generated, yielding 625 samples for com-

paring ASSERT, ASSERT-BugOnly, ASSERT-NoBugs, induction and the correct

theory. Each system was trained with the training set (except for the correct theory)

and accuracy was measured on the test set by comparing what the system predicted

with what the student from the No Feedback group actually answered. Significance

was measured using a 2-tailed paired t-test at the 0.05 level of confidence. The

results are shown in Table 5.
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These results highlight why the students in the ASSERT feedback group did not

fare significantly better than those from the ASSERT-NoBugs feedback group. The

modeling accuracies for the two groups are largely the same. Note also how the

order of the systems in decreasing accuracy is different from that of the simulated

student test. Here, ASSERT-BugOnly does significantly worse than ASSERT-NoBugs

whereas before the bug-library models were significantly better. This is at least part

of the explanation why the post-test improvement for the ASSERT group of the reme-

diation test was not significantly better than that of the ASSERT-NoBugs group. On

the positive side, it does illustrate that the groups with significantly better models,

ASSERT and ASSERT-NoBugs, are precisely the groups which performed best after

remediation. This is further evidence in support of the fact that more accurate stu-

dent modeling can translate directly to improved student performance via more

directed remediation.

6.3  Additional Simulation Tests

Of course, this leaves open the question of why the bug library did not improve

modeling over NEITHER alone. There are at least three possible reasons. First, it may

be the case that there simply are no bugs common across the student population. If

Average

ASSERT
ASSERT-NoBugs
ASSERT-BugOnly
Correct Theory
Induction

System Accuracy

62.4
62.0
56.9
55.8
49.4

TABLE 5 Results for C++ Tutor modeling test. The differences between ASSERT
and ASSERT-NoBugs and between ASSERT-BugOnly and the Correct
Theory are not significant (all others are significant).
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this happens, then a bug library is of little use since there would be no reason to

expect that anything stored in the library was likely to apply to a new student. The

utility test of Section 6.2.2 seems to have discounted this possibility since it showed

that the bugs in the library accounted for nearly 60% of the content of models built

using the bug library. Second, it may be the case that not enough student models

were used to construct the library, resulting in poor estimate of the true stereotypical-

ity values. In such a case, the bugs applied from the library would be tried in the

wrong order, possibly resulting in the mistaken application of a bug. This is unlikely

for the C++ Tutor tests since 45 student models were used to build the bug library

whereas only 20 models proved sufficient for the simulated student test. Unless the

common bugs for the domain of the C++ Tutor are extremely rare, in which case their

value is questionable anyway, it is likely that the bugs found among the 45 students

were ranked correctly.

A third possibility is that the range of examples used to model students may be

insufficient to produce a wide enough variety of bugs for the library. Without enough

examples, the common bugs may not even be detected, let alone ranked correctly.

Compare, for instance, the 180 examples generated from across all 21 of the domain

rules of the animal classification theory to the 10 examples generated for only 7 of

the 27 rules of the C++ Tutor domain theory. Having more examples per student not

only leads to more accurate models, it also means that a misconception for any given

rule is more likely to be detected and added to the bug library. It also means that the

bug library, over time, can accumulate data on a wider variety of examples than one

could reasonably expect to extract from a single student.

The advantage of simulating student responses is that this technique can be used

to explore some of these issues related to bug-library construction. In particular, it is

easy to vary the number of examples which a simulated student must answer. By
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contrast, it is unreasonable to expect a real student to patiently answer 180 questions

to test what effect that might have on a bug library.

To that end, three more simulated student tests were run to investigate the

hypothesis that the bug library formed for the C++ domain had a limited utility

because it contained a limited variety of bugs. The first of these tests explores the

effect of small student models on bug-library construction. The second examines the

impact of a bug library when the data for modeling a student is scarce. The third tests

whether a useful bug library can be constructed from a large number of small student

models.

6.3.1  Simulating a Bug Library Constructed with Small Models

If the bug library from the C++ Tutor tests did indeed suffer from a low variety

of bugs, one way this could happen is if the models used to form the bug library were

small. A small student model is defined as one which is formed with a scarce amount

of data from the student. Small amounts of input mean that only a small potential

number of misconceptions are detectable by NEITHER. If a bug library is built from

small student models, it in turn is likely to contain fewer of the potential number of

common misconceptions which exist in the student population. The hypothesis is

that this condition can be simulated by building a bug library using simulated stu-

dent models built with small amounts of input data. When the resulting bug library is

compared with the bug library from the first simulated student test, one should see a

drop in the number of common misconceptions which are present in the library. 

Recall that the original simulated student test used 20 simulated students

answering 180 questions. Each student was simulated using a method which modi-

fied the correct rule base with six common misconceptions that occurred with a high

probability and additional random changes to make each student unique. To approx-
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imate the conditions of the C++ Tutor tests, the simulated student test was rerun with

the same 20 students but using only 12 of the 180 examples to build small student

models that were used to construct a bug library. This number of examples was used

to ensure that at least one example per category of the animal domain was present.

As before, the first 20 students were modeled with the 12 examples, and a bug

library built from their models. For comparison purposes, the total size of the bug

library, as well as the number of common bugs which ended up in the library, were

compared against the bug library built in the first simulated student experiment. The

results are shown in Table 6.

The bug library built with the smaller student models contains less information

which is useful to modeling than the large-model library. Notice how both the total

number of bugs as well as the number of common misconceptions has dropped.

Given that the common misconceptions were actually quite likely to occur in any

given student (recall that they had a 0.75 probability of occurrence) it is rather inter-

esting that the majority of the common bugs were not detected. These results clearly

show that even though a common misconception may be present in the population,

receiving only a small amount of data on each student can mean the misconception

may not be detected.

TABLE 6 Results of the small-model simulation test.

Total Examples Common Total Bugs
Students per Student Bugs Found in Library

20
20

180
12

all 6
2

29
15

Library

20-180 library
20-12 library



125

6.3.2  Bug Libraries and Scarce Data

Having established the effects of narrowing the variety of examples on the bug

library, the next question is whether or not a large bug library can still make a differ-

ence even when input from the student is scarce. There are many situations where

one can imagine a tutoring system having to make a decision about remediation with

very little input from the student. The hope is that a good bug library can offset such

an eventuality by providing the tutoring system with a mechanism for making an

educated guess. The expectation is that a “good” bug library, i.e., one built from

large student models, should allow ASSERT to construct more accurate models than a

small bug library. Thus if the two libraries from the previous test were tested using

an ablation study, the library built with larger student models should perform better.

Another ablation test was run using the simulated students, and the same model-

ing systems as before; namely, ASSERT, ASSERT-BugOnly, ASSERT-NoBugs, the

correct theory and induction. To approximate scarce input from the students, only 10

of the 180 examples were used for training each system with the remaining 170 used

for testing. Each of the five systems were run twice, once with the large bug library

and again with the smaller bug library. Of course, the only systems which were

impacted by the differing bug libraries were ASSERT and ASSERT-BugOnly since

none of the others uses a bug library. The average modeling accuracy of each system

is shown inTable 7. 

Notice how the predictive accuracy rises dramatically for the ASSERT and

ASSERT-BugOnly systems when the larger library is used. With the smaller library

neither of these two systems is significantly more effective at modeling than

ASSERT-NoBugs. This result is similar to the effects found in the C++ Tutor test; the

accuracy of ASSERT was no better than that of ASSERT-NoBugs in that test either

(see Table 5 on page 121). Also, note how induction performs dismally with small
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amounts of student data, nearly 40 percentage points below just guessing that the

student will answer everything correctly (i.e., the correct theory accuracy). These

results show that even with scarce input, a large bug library can significantly boost

the accuracy of the model.

6.3.3  Incremental Bug-Library Construction

The final question to address is whether an accurate bug library can be con-

structed over time with low amounts of input from each student. The last section

illustrated how a good bug library can have an important impact on the quality of

modeling when student data is scarce. However, if useful bug libraries cannot be

constructed from small student models, then the result is meaningless since one

would still be tied to collecting large amounts of data on some students to construct

the library. While more student data will always result in more accurate individual

models, it is important to show that a good collective bug library can still be built

over time using less accurate models as input. The theory behind this idea is that

with a large enough student population, random selections of questions covering dif-

ferent parts of the correct rule base would eventually result in the detection of what-

ever common misconceptions exist in the population. The assumption is that a large

ASSERT
ASSERT-BugOnly
ASSERT-NoBugs
Correct Theory
Induction

System

68.7
68.6
67.6
63.1
25.4

TABLE 7 Ablation test results for differing bug libraries and scarce student input.
For the small-model library, differences between ASSERT, ASSERT-
BugOnly and ASSERT-NoBugs are not significant. For the large-model
library, ASSERT-NoBugs is significantly smaller.

Small-Model Library
Average Accuracy

Large-Model Library
Average Accuracy

84.8
84.6
68.2
62.6
23.9
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number of students answering a small number of questions will exhibit approxi-

mately the same degree of common misconceptions as a pool of students answering

a large number of questions.

To test this hypothesis, a final student simulation test was run to construct a new

bug library for an ablation test. This time, however, the bug library was constructed

from 100 simulated students modeled with 12 of the 180 possible examples. For

each student, the 12 examples were randomly selected for building that student’s

model. This point is important, since the only way to ensure that all possible miscon-

ceptions could be exhibited in the limit is to allow for complete coverage of the rules

in the correct knowledge base. Thus, over the entire 100 students the 180 examples

were equally represented. Predictive accuracy was again measured using an ablation

test with the same students from the original simulation and training sets of size 10.

The size of the bug library and the number of common bugs it contained were also

determined. The results, combined with those of Table 6 and Table 7 for comparison

purposes, are shown in Table 8.

The bug library built using 100 students with 12 examples per student (the 100-

12 library) compares favorably against the other two libraries. Though all of the

common bugs did not end up in the 100-12 library, 4 of the 6 did, which is much bet-

ter than the 20-12 library. And while constructing a library from less accurate models

cannot replace a library of more accurate models, note how the performances of

ASSERT and ASSERT-BugOnly using the 100-12 library approach the marks using

the 20-180 library. This illustrates that a bug library can be incrementally improved

as more students interact with the system, resulting in more accurate modeling. And

as the data from the C++ Tutor shows, more accurate models lead to better remedia-

tion and improved student performance. Therefore, as more students interact with

the C++ Tutor by taking tests that cover different subsets of the correct domain rules,
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it seems likely that a better bug library could be constructed which would lead to

more accurate modeling and, in turn, better post-test performance.

6.4  Subjective Evaluation

6.4.1  Student Response to the Tutorial

Perhaps the most difficult topic to measure objectively is an evaluation of how

much students enjoyed using the tutorial and whether they felt the experience was

beneficial. For the vast majority of students who used the C++ Tutor the response was

positive. Many students made an unsolicited effort to express an appreciation for the

opportunity to use the tutorial. Several students outside of the experimental group

heard about the experiment and asked to use the tutor to refresh their C++ skills.

20-12 Library

ASSERT
ASSERT-BugOnly
ASSERT-NoBugs
Correct Theory
Induction

System

68.7
68.6
67.6
63.1
25.4

20-180 Library

79.4
79.9
69.8
63.5
26.0

100-12 Library

84.8
84.6
68.2
62.6
23.9

Total Examples Common Total Bugs
Students per Student Bugs Found in Library

20
20

100

180
12
12

all 6
2
4

29
15
48

(a)

(b)

TABLE 8 Comparison of bug libraries. Part (a) compares libraries on size and
total number of bugs, part (b) compares accuracy of modeling with
libraries.

Accuracy using different starting Bug Library

Library

20-180 Library
20-12 Library
100-12 Library
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There were even a few students who expressed disappointment that the tutorial did

not cover more material

On the negative side, students complained about their inability to back up dur-

ing the pre-test and post-test to change answers, which was not allowed by the inter-

face. This was especially true during the early part of the pre-test, when students

were still familiarizing themselves with the interface. Also students expressed a

boredom with redundancies which showed up in the explanations during remedia-

tion. Many students had multiple errors detected in similar parts of the theory. As a

result, the chains of rules used by remediation to generate an explanation over-

lapped, resulting in duplications in explanation. Both of these problems could be

easily fixed to make the interface more robust.

But perhaps the most important factor responsible for the positive response was

the fact that the feedback given to the student avoided negative language as much as

possible. Of course, the student was told which questions he or she got wrong, but

the explanation for the wrong answers did not focus on the student’s mistake.

Instead, the explanation described the correct reasoning, followed by an erroneous

counter example which looked like something the student might misclassify, and

explained why the counter example was wrong. Thus rather than saying something

like “here’s what you did wrong” the system instead said “here’s the right way to do

something and, by the way, here’s an answer which is wrong for the following rea-

sons.” This impersonal style of feedback may have made it easier for the student to

accept the tutor’s evaluation. And finally, by giving the students a second chance to

perform via the post-test, students were able to apply what they’d learned and, in the

average case, achieve a much better score. Such a concrete sense of improvement

probably also contributed a great deal to the positive student response.
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6.4.2  “Correctness” of the Bug Library

In the simulated student tests, the correctness of the contents of a bug library

could be measured directly by counting the number of common misconceptions

which ended up in the library. With the C++ Tutor domain this is not possible, since

there is no a priori information about what the common misconceptions might be.

However, one can perform a subjective evaluation with a domain expert to determine

whether or not the bugs are “reasonable” explanations of why students made their

mistakes. This was done for the C++ bug library (see Appendix C) by consulting the

instructor for the course with the result that the bugs did, in fact, appear to make

sense. For example, several bugs in the library represented missing conditions, criti-

cal to detecting erroneous constant declarations, which the instructor felt students

typically forget. The library also contained bugs capturing the notion that students

failed to understand when the logical operators “AND” and “OR” were fully evalu-

ated, as the instructor suspected. While this is an admittedly weak evaluation, it does

at least illustrate that the bugs which ended up in the library could communicate

information about trends in student behavior which made sense to the instructor.

6.5  Summary

To recap, the main result presented in this chapter was that ASSERT was shown

to significantly improve student performance in a test involving 100 college level

students using a C++ Tutor developed with ASSERT. Furthermore, it was shown that

those students for which ASSERT was able to construct significantly better models

were the students whose performance improved the most. And while the use of a bug

library did not significantly enhance student performance, additional evidence was

presented demonstrating the likelihood that the contents of the library would

improve over time so as to significantly impact on the modeling process. This empir-

ical evidence supports the two principal claims of this research: (1) that theory
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refinement can be used to significantly increase student performance by modeling

students using only correct domain knowledge and (2) that a bug library can be con-

structed automatically over time that can enhance the modeling accuracy of theory

refinement.
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CHAPTER 7

 

Related Work

 

Tutoring systems research has been approached from a wide range of academic

pursuits including epistemology, psychology, cognitive science, education, linguis-

tics, anthropology, human-computer interaction and artificial intelligence. In addi-

tion, because A

 

SSERT

 

 is based on the notion of theory refinement, other theory-

refinement algorithms are also relevant to the ideas presented here. A complete

review of all these fields is, of course, beyond the scope of this work. Instead the

most closely related research from artificial intelligence is compared with A

 

SSERT

 

,

and the reader is referred to other sources for further investigation [Wenger, 1987].

Even so, within artificial intelligence tutoring systems approaches still vary widely.

As a result, this chapter is divided into topics related to the design of A

 

SSERT

 

, and

each is discussed in turn.

 

7.1  Knowledge Representations for Modeling

 

Not surprisingly, the underlying knowledge representation language used for

constructing a student model has a profound effect upon the expressiveness and

capabilities of the system. As a result, a number of approaches have been used, and

each has advantages relating to the goals of the system it supports. There is no single

best representation; to the contrary, there is evidence to suggest that a variety of dif-

ferent viewpoints on the same knowledge base may be desirable within a single tutor

[Stevens and Collins, 1980]. Most systems can be roughly categorized into six styles

of representation; each is described in turn below and compared with the theory-

refinement representation used by A

 

SSERT

 

.
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Overlay Models

 

. This type of model, already discussed in some detail in

Section 1.1 on page 4, essentially focuses on modeling a student as a subset of the

correct domain knowledge. Early systems typical of this approach are SCHOLAR

[Carbonell, 1970b], WEST [Burton and Brown, 1976] and WUSOR [Carr and Gold-

stein, 1977b]. Other systems have added extensions to the overlay idea, using truth-

maintenance to provide a more general mechanism for keeping track of the beliefs

about the student’s knowledge [Finnin, 1989; Murray, 1991]. The overlay concept is

not dependent on any particular knowledge representation per se; nearly every kind

of knowledge base can be extended to include a system of marks to indicate evi-

dence that the student knows a given concept. The advantage of the overlay is its

simplicity; the elements of the model can be mapped directly on to the knowledge

used to engineer the system. The disadvantage, as stated previously, is the restriction

placed on the model. Only missing elements of the correct knowledge can be mod-

eled; alternative notions which a student might have cannot be captured. By contrast,

an A

 

SSERT

 

-style model can model novel behaviors, resorting to induction if it must

to learn new rules to cover previously unseen behavior.

 

Bug Libraries

 

. This second form of modeling has again been discussed previ-

ously, both briefly in Section 1.1 and in more detail in Chapter 3 and Chapter 4. It

can be used to classify a large number of systems, encompassing any which attempt

to store some form of expected or inferred misconceptions. The classic bug-library

work was done by Brown, Burton and VanLehn [Brown and Burton, 1978; Burton,

1982; Brown and VanLehn, 1980], and Sleeman and Smith [Sleeman and Smith,

1981], but a host of other systems can be said to incorporate some form of stored

misconceptions [Anderson et al., 1985; Reiser et al., 1985; Rich, 1989; Goldstein

and Miller, 1976; Ikeda and Misoguchi, 1993; Lianging and Taotao, 1991; Miller

and Goldstein, 1977a; Langley et al., 1984; Quilici, 1989; Soloway and Johnson,

1984]. The idea is a very powerful one, especially if specific responses can be tied to
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whatever buggy structures are encoded. Like overlay models, the disadvantage is an

absence of flexibility in addressing novel student errors, which is one of the principal

contributions of A

 

SSERT

 

.

 

Model Tracing

 

. As less of a knowledge representation and more of an imple-

mentation for the ACT* theory of cognition [Anderson, 1983], model tracing is con-

cerned with the process of keeping track of the cognitive state of the student. John

Anderson and his colleagues have implemented several model-tracing tutorials, most

notably the GEOMETRY tutor [Anderson et al., 1985] and the LISP tutor [Reiser et

al., 1985]. While these systems do contain information which can be used to model

different student conceptions that do not conform to the correct knowledge the tutor

is trying to convey, such information is provided chiefly to support the tracking pro-

cess. In fact, Anderson himself has been recently quoted as saying that modeling

itself is not the emphasis of the system [Sandberg and Barnard, 1994]. Instead, the

goal is to keep the student from straying too far off the correct path by not allowing

faulty concepts to develop in the first place. A

 

SSERT

 

 obviously takes an alternate

view. Though models may well prove to be less useful in situations where the pre-

sentation of material can be carefully monitored and controlled, there are other situa-

tions where tutorial help can be useful where such rigid assumptions do not apply.

One example would be an intelligent help system which must interact with users

possessing a variety of conceptual backgrounds. In fact, such systems can greatly

benefit from the automatic bug-library extensions provided by A

 

SSERT

 

 since the help

environment is one in which trends in user misconceptions are precisely the informa-

tion needed to improve the system over time.

 

Logic-based Methods

 

. Several systems have turned to a logic-based representa-

tion for the student model [Costa et al., 1988; Ikeda and Misoguchi, 1993; Hoppe,

1994]. Here the idea is to use an analytical approach such as deduction or resolution
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to search through a rule-base to determine where a misconception lies. Essentially,

whenever the rule-base fails to produce a “proof” which mimics the student’s

actions, the points where the proof fails become candidates for querying the user

about his or her beliefs. The idea is very closely related to theory refinement, but

with an important distinction. Using theory refinement, A

 

SSERT

 

 can operate autono-

mously, inducing rules by itself when faced with an impasse in following a student’s

actions. Other logic-based approaches are currently hampered by the fact that they

must turn to an oracle to resolve ambiguities. This is not to say that the logic-based

approach is inherently flawed; rather, that theory refinement provides an additional

capability which allows it to resolve ambiguities when querying the user is not an

option. Probably the best approach would be to combine the two methods, querying

the user whenever possible and operating without such input whenever necessary.

And finally, as techniques for first-order theory refinement such as the work by Rich-

ards [Richards, 1992] continue to develop, there is no reason why A

 

SSERT

 

 could not

be updated to these more expressive representations.

 

Modelers for Planning Domains

 

. Several lines of research have addressed the

problem of modeling in planning domains; specifically, the writing of computer pro-

grams [Miller and Goldstein, 1977a; Miller and Goldstein, 1977b; Soloway et al.,

1981; Soloway and Johnson, 1984; Johnson, 1986; Murray, 1986]. Here the problem

is more complex than either the classification or procedural domains, since one must

try to capture information about the student’s planning knowledge in addition to any

misconceptions the student may have about the steps required to carry out a plan.

None of these systems provides the general purpose capabilities available in

A

 

SSERT

 

; on the other hand, A

 

SSERT

 

 does not provide the rich knowledge representa-

tions which are likely to be necessary for modeling students in planning domains. It

remains an open question whether A

 

SSERT

 

 could be used to satisfy at least some of

the modeling requirements for planning problems, or whether theory-refinement
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techniques for these more complex domains will become available to extend the

range of A

 

SSERT

 

’s applicability.

 

Stereotype Modeling

 

. Finally, the last category of modeling techniques is a

knowledge representation generally referred to as 

 

stereotypes

 

, though the alternate

terms 

 

script

 

 and 

 

frame

 

 are equally descriptive [Rich, 1989; Cohen and Jones, 1989;

Huang et al., 1989]. The basic idea here is to engineer clusters of related information

together, so that as any one datum of the cluster is detected the rest of the stereotype

can be incorporated as needed to enhance the response generated for the student. The

advantage of this approach is the depth of knowledge available to the tutor. Unfortu-

nately, the construction of stereotypes remains largely a hand-built and time-con-

suming process. However, it may be possible to use techniques like A

 

SSERT

 

 to make

inroads into the construction of stereotype information. Since A

 

SSERT

 

 already

includes a process for detecting trends across students involving individual bugs,

there is no reason why it could not be extended to look for bugs that occur in tandem.

This way, misconceptions which typically occur together could be detected, and

when one bug was found for particular student the system could be alerted to look

for the related bugs.

The six-way classification discussed above represents only one of many possi-

ble perspectives on student modeling research and is not intended to represent a

complete taxonomy. Indeed, several of the systems mentioned cross the boundaries

between categories, thus the distinctions are not clear-cut. This particular grouping

was selected primarily to highlight the various features of A

 

SSERT

 

 in relation to other

work in the field. As a final summary, Table 9 shows five features of A

 

SSERT

 

, relating

them to the various categories presented above.
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7.2  Novel Bug Detection

 

Recall from Section 1.1 of the introduction that the main disadvantage of mod-

eling with a bug library is that novel student misconceptions are still undetectable by

the system. To avoid this shortcoming one needs some kind of learning algorithm or

bug generation technique so that the space of possible new bugs can be explored to

account for any previously unseen actions. There are three previous approaches

which have dealt with this issue of the genesis of bugs, and they are the work most

closely related to A

 

SSERT

 

.

The first of these approaches is VanLehn's SIERRA system [VanLehn, 1983]

which builds on ideas developed in the DEBUGGY system [Burton, 1982]. In

DEBUGGY, student models are formed by introducing incorrect subskills into a lat-

tice of skills called a 

 

procedural network

 

. When a subskill is missing or incorrect

subskill is substituted for a correct one, the result is faulty behavior. DEBUGGY
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TABLE 9 Comparison of ASSERT and other modeling paradigms. “Self-improving”
indicates the technique analyzes its own output to improve
performance.
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attempts to model incorrect behavior by searching for faulty subskills via a generate-

and-test method using known deviations for the subskills. VanLehn built on these

ideas to develop a theory of how misconceptions are formed. He proposes that faulty

behavior arises from a bad 

 

core procedure

 

 which the student is following. When the

student's procedure fails to work in a given problem, the result is an 

 

impasse

 

 which

the student overcomes by constructing a local 

 

repair

 

. Incorrect core procedures are

assumed to arise from incorrect inductions which occur when the examples given to

the student do not meet a set of 

 

felicity conditions

 

 to ensure proper induction. Van-

Lehn’s 

 

STEP theory

 

 outlines the conditions for instruction which will lead to proper

induction on the part of the student so that he or she may avoid the formation of

incorrect core procedures. While SIERRA is perhaps the most complete theory to

date on how student misconceptions arise, it is intended as a cognitive model of how

bugs arise and is thus a simulation of how the student 

 

forms

 

 misconceptions.

A

 

SSERT

 

, by contrast, is a simulation of how to 

 

diagnose

 

 the presence of misconcep-

tions, which is the opposite perspective on the same problem. No doubt a framework

like STEP theory would enhance the ability of modeling systems like A

 

SSERT

 

 to

construct more plausible bugs, but to date STEP theory has not been used in this

way.

Sleeman et al. [Sleeman et al., 1990] describe two extensions to their PIXIE sys-

tem, called INFER* and MALGEN, both of which can be used to extend a bug

library. PIXIE is a tutoring system designed for the domain of high-school algebra

whose goal is to provide appropriate feedback to improve student performance.

PIXIE’s underlying representation is a state-space paradigm, where the domain the-

ory is a set of operators implemented as rules. Misconceptions which comprise the

bug library are encoded as faulty rules termed 

 

mal-rules

 

. Both INFER* and MAL-

GEN attempt to generate new mal-rules when the student exhibits a problem that

cannot be modeled using the mal-rules already in the bug library. The difference
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between the two extensions is that INFER* attempts to patch specific faulty student

solutions, whereas MALGEN generates and tests new mal-rules by altering rules in

the domain theory. INFER* uses the rules it has to work forward from the problem

statement and backward from the student’s solution as far as it can. The remaining

 

gap

 

 is filled by inferring a new mal-rule. In MALGEN, formalized perturbation

operators are used to change rules in the domain theory. Unlike A

 

SSERT

 

, both sys-

tems require a user to discern which new mal-rules are appropriate extensions for the

bug library. A

 

SSERT

 

 further differs from these two systems in its ability to operate

with no prior knowledge of misconceptions and in its ability to combine results from

multiple students to learn new common bugs.

Langley and Ohlsson [Langley et al., 1984; Langley and Ohlsson, 1984; Ohls-

son and Langley, 1985] describe the ACM system which uses a domain-independent

induction algorithm to induce control knowledge for selecting operators to perform

addition. Given a set of overly-general operators, the goal is to induce a set of con-

trol rules that will generate an operator sequence that produces the same solutions as

the student. Each run of ACM starts without knowledge of when operators should be

applied and induces the conditions for applying the operator from examples of stu-

dent problem solving. A path connecting the problem specification to the student's

solution is found, and induction is then performed by noting whether each operator

lies on or off the solution path. Since ACM starts from scratch, it must spend time

modeling both correct and buggy student control knowledge that could be prepro-

grammed. As illustrated in Chapter 6, this means that ACM will have difficulty pro-

ducing accurate models unless a large number of examples are supplied by the

student. Also, there is no facility within ACM for building in typical student bugs

nor for generalizing across different students.

Thus, none of the three systems provides A

 

SSERT

 

’s ability to self-improve over

time by interacting with multiple students. O’Shea’s quadratic equation tutor
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[O’Shea, 1982] does have such a capability, but it is focused on improving the pre-

sentation of material to the student rather than on enhancing the modeling process. In

fact, none of the systems discussed in this chapter is self-improving, which makes

A

 

SSERT

 

 unique among modeling algorithms. Table 9 shows a comparison of A

 

SSERT

 

with INFER*, MALGEN and ACM.

 

7.3  Empirical Studies

 

Part of what fuels the debate about student modeling is the existence of conflict-

ing empirical evidence regarding the educational value of feedback using student

models. In addition, the lack of a unified approach to testing feedback methods fur-

ther confuses the issue. For example, in a study by White et al. [White, 1991], vari-

ous levels of remediation were provided to students in much the same fashion that

the experiments with A

 

SSERT

 

 altered its feedback. The results showed that changing

the level of feedback had no significant impact on student performance, which

appears to contradict the results presented in Section 6.2.1. However, the White

study did not attempt to provide feedback based on a specific model of the student;

in particular, it only varied the 

 

extent

 

 to which a correct explanation was given to the
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student and did not attempt to generate a corresponding 

 

example

 

. Other studies, such

as one performed by Tennyson [Tennyson, 1971], have shown that explanation cou-

pled with an example beats explanation alone. This might explain why students

receiving feedback from A

 

SSERT

 

 did experience a significant increase in perfor-

mance, contrary to the results found by White et al.

In a more closely related series of experiments, Sleeman [Sleeman, 1987]

reported results from an experiment where human instructors provided either model-

based feedback or simple reteaching in response to student errors. He found no sig-

nificant difference in performance. Yet when Nicolson reran similar tests and used a

machine tutor to provide the modeled feedback and reteaching, a significant differ-

ence was detected [Nicolson, 1992]. Among other observations, Nicolson points out

that the added variation among human tutors might account for the difference in

results between the two studies. On the other hand, it may simply be the case that

what works well for human tutors may not translate to computer tutors and vice

versa. Either way, the results presented here corroborate Nicolson’s findings;

namely, that providing modeling capabilities can significantly impact upon an auto-

mated systems ability to effect student performance.

The important conclusion to draw from these kinds of results is that one must be

careful to understand a modeling experiment before passing judgement on the field

as a total success or failure. It is also incumbent upon the author to make the implica-

tions of the experiment clear. This is especially true for the study of student model-

ing, which is currently undergoing a change in scope and definition. It may be that

the very term “student modeling” is now a misnomer. In any event, the questions

addressed by the A

 

SSERT

 

 approach are as follows: (1) can modeling techniques be

used to build effective systems for communicating a set of concepts to a human user,

(2) can these techniques be unified under one framework; specifically, can a bug

library be automatically constructed and folded into modeling and (3) will the result-
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ing system self-improve over time. As the results from Chapter 6 indicate, the

answers to the first two questions are both “yes” and the answer to the third is “most

likely.”

 

7.4  Use of Synthetic Students

 

The use of synthetic students to test and tune a modeling algorithm predates

A

 

SSERT

 

. One of the earliest examples of a simulated student was the construction of

SYNDIE for developing coaching strategies for the WUMPUS-II project [Carr and

Goldstein, 1977b]. Carr and Goldstein found SYNDIE very helpful in debugging

various coaching principles, much the same way A

 

SSERT

 

 uses simulated students to

explain the strengths and limits of its bug-library construction algorithm as discussed

in Section 6.3. In both cases, the motivation for the simulation was the same; by

altering parameters to modify the simulated student input, one can tune the perfor-

mance of the tutoring system much more quickly than by using real student input

alone.

An alternative approach to student simulation is exemplified by the work done

by VanLehn, Jones and Chi [VanLehn et al., 1992]. Here the goal is not to tune any

particular tutoring system, but to produce a computational model that can reproduce

interesting behaviors observed in real students. Thus rather than using a simulation

to produce a variety of behaviors which can exercise a tutorial, the simulation is used

to “explain” real student behaviors from a computational perspective. The motiva-

tion behind this method comes from at least two sources. First, it enhances the

understanding of cognitive principles through the use of computational models

which can be rigorously tested against real student behavior. Second, once cognitive

principles are codified, it is possible to study ways in which tutoring environments

can benefit from such knowledge, especially in terms of new pedagogical principles

for helping students avoid misconceptions. This approach was not used in A

 

SSERT

 

,
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though it would be interesting to study the mechanisms human tutors use to revise

their own opinions of a student’s knowledge as a means of enhancing the capabilities

of theory refinement.

 

7.5  Other Tutorial Design Issues

 

Several other tutoring systems which influenced the design of A

 

SSERT

 

 in vari-

ous ways should be credited. The SOPHIE system [Brown and Burton, 1975; Brown

et al., 1975; Brown et al., 1976] was the first ITS to make use of a simulator which

could actually perform the tasks which are given to the student. This idea is central

to the means by which A

 

SSERT

 

 detects misconceptions. By being able to alter a

working simulation, theory refinement essentially reprograms its correct knowledge

until it matches the student’s behavior. While this was not done in SOPHIE, the use

of a working simulation is nonetheless of fundamental importance. The ground-

breaking work of GUIDON [Clancey, 1979] illustrated that the rules of an expert

system used for tutoring must be carefully crafted to include the motivations behind

the operations of the rules that will be of principal concern for the student. This is as

true for A

 

SSERT

 

 as for any other rule-based tutor; the feedback presented will only

be useful if the knowledge from which it is drawn is generated at the appropriate

level of detail for the student. 

The pedagogical ideas present in systems such as WHY [Stevens and Collins,

1977; Collins 1977], BIP [Barr et al., 1976] and WEST [Burton and Brown, 1976]

influenced the remediation technique selected for A

 

SSERT

 

, especially in terms of

problem generation. While none of these systems automatically generate examples

from a modified rule base as A

 

SSERT

 

 does, the idea of picking examples based on the

needs of the user is present in all of these systems and in many others as well. What

makes these three particularly relevant to the work here is that each presents exam-

ples in a different way. In WHY, Stevens and Collins go to great lengths to show
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how different examples can be used to implement a Socratic style of feedback,

prompting the user to think about his or her hypotheses. A

 

SSERT

 

’s ability to generate

counter examples could be used directly in such a scheme. The BIP system concen-

trated on selecting problems that would challenge but not overload the student, guid-

ing him or her towards mastery of the subject matter. Again, A

 

SSERT

 

 could be used

in this paradigm by constructing examples that incrementally show the necessity of

conditions in a concept. The fine grained ability to add or remove conditions from

examples generated by A

 

SSERT

 

 seems ideally suited to this method. And finally,

coaching tutors such as WEST often use examples to illustrate concepts or contrast

expert behavior with the actions taken by the student. A

 

SSERT

 

’s general-purpose

techniques for constructing explanations and examples make it suitable for any of

these three approaches.

 

7.6  Theory-Refinement Algorithms

 

Ongoing research in theory-refinement algorithms continues to explore refine-

ment methods for different representation schemes and problem domains. However

N

 

EITHER

 

, like E

 

ITHER

 

, has certain advantages over previous theory-refinement algo-

rithms in that it can revise both overly general and overly specific theories. By con-

trast, some systems can only generalize a theory [Wilkins, 1988; Danyluk, 1989;

Whitehall, 1990; Tecuci and Michalski, 1991] and others can only specialize a the-

ory [Flann and Dietterich, 1989; Cohen, 1990]. Additionally, N

 

EITHER

 

 can revise

intermediate rules in the theory, giving it an advantage over systems like R

 

TLS

 

 [Gins-

berg, 1990] which cannot revise intermediate concepts. Finally, since N

 

EITHER

 

 is a

symbolic refinement process, its outputs are readily interpretable, in contrast to sys-

tems like K

 

BANN

 

 [Towell and Shavlik, 1991] which must rely on a translation pro-

cess to decode refinements.
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However N

 

EITHER

 

 has certain disadvantages which limit its applicability to

other domains. First, N

 

EITHER

 

 has no facility for handling noisy data. Second, N

 

EI-

THER

 

 does not have a facility for representing rule precedence, nor for revising such

ordering relationships among rules as is done in the KRUST system [Craw and Slee-

man, 1991]. Third, N

 

EITHER

 

 cannot revise probabilistic or “evidence summing”

rules in which a partial matching of antecedents are enough to satisfy a rule. Initial

efforts to extend N

 

EITHER

 

 in this direction, resulting in the N

 

EITHER

 

-M-

 

OF

 

-N algo-

rithm [Baffes and Mooney, 1993], have compared favorably with other systems

[Mahoney and Mooney, 1993; Towell and Shavlik, 1990]. However, NEITHER-M-

OF-N does not employ an induction algorithm which can construct evidence-sum-

ming rules, nor have the explanation and example generation elements of ASSERT

been extended to cover this extended representation. And finally, NEITHER’s knowl-

edge representation contains certain limitations, such as the inability to deal with

negation-as-failure and the restriction to propositional Horn-clause rules. Other sys-

tems such as FORTE [Richards, 1992] revise first-order Horn-clause theories, and

Wogulis has outlined an approach for revising first-order theories which employ

negation-as-failure syntax [Wogulis, 1993]. As these line of research mature, the

resulting refinement system can be substituted for NEITHER in ASSERT, with the

resulting increase in representational power.
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CHAPTER 8

 

Future Work

 

Like other tutoring systems, A

 

SSERT

 

 touches on a variety of research interests.

Consequently, there are a number of perspectives from which one can view the work

and make suggestions for improvements. These fall principally under three areas.

First, the theory-refinement component of A

 

SSERT

 

 can be extended to enhance the

knowledge representation of the system and increase its applicability to other prob-

lem domains. Second, further experiments could be conducted to test the utility of

A

 

SSERT

 

 for other modeling problems, most notably, for the types of procedural prob-

lems which have dominated previous research efforts in student modeling. And

finally, A

 

SSERT

 

 could be tested more extensively to determine its ability to self-

improve and its applicability to other domains. The advantage of these perspectives

is that each can be driven empirically, using experimental methods similar to those

outlined in Chapter 6.

 

8.1  Enhancements to N

 

EITHER

 

N

 

EITHER

 

 has several shortcomings which restrict its expressive power and, cor-

respondingly, that of A

 

SSERT

 

 as well. The two most important issues are the limits of

N

 

EITHER

 

’s rule representation and its inability to handle noisy input. Fortunately, on-

going research efforts have resulted in new approaches which can be explored

directly through modification or replacement of N

 

EITHER

 

 as A

 

SSERT

 

’s theory-refine-

ment component.
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8.1.1  Expanding N

 

EITHER

 

’s Knowledge Representation

 

N

 

EITHER

 

’s restriction to propositional Horn-clause rules is perhaps the most sig-

nificant barrier to A

 

SSERT

 

’s long-term acceptance as a modeling system framework.

This is especially true in light of the spread of expert system tools and applications,

many of which include features, such as the use of variables, that go beyond a prop-

ositional rule representation. As mentioned in the previous chapter, some first-order

Horn-clause refinement algorithms have been developed which might prove com-

plete enough to serve as substitutes for N

 

EITHER

 

 in A

 

SSERT

 

 [Richards, 1992; Pazzani

et al., 1991]. Thus an obvious approach to extending A

 

SSERT

 

 is to substitute these

algorithms for N

 

EITHER

 

 and determine what additional changes would be necessary

to generate examples and explanations for first-order rules. In all likelihood, this

approach would have to be limited to non-recursive rules, as refinement of recursive

rules is still an open research question. Also, current first-order Horn-clause refine-

ment algorithms use hill climbing approaches that can lead to local maxima and a

resulting theory which is not consistent with all of the input examples. It remains an

empirical question to test whether or not A

 

SSERT

 

 could produce useful remediation

in such a case.

Negation-as-failure is another limitation of N

 

EITHER

 

; specifically, N

 

EITHER

 

 is

not designed to handle arbitrarily negated propositions. Negated propositions com-

pound the refinement process by inverting the goal of a refinement; generalizations

which are negated become specializations and vice versa. Wogulis [Wogulis, 1993]

has suggested a method which addresses this problem by combining generalizations

and specializations under a unified process that treats all refinements equally instead

of separating rule changes into generalization and specialization phases. Implement-

ing these ideas into N

 

EITHER

 

 could be done using these ideas along with the uniform

NAND graph representation outlined in [Koppel et al., 1994], but it would mean a

major redesign of the algorithm. Since the addition of negation-as-failure provides



 

148

 

no additional representational power the work has not been undertaken to date. How-

ever, the notation convenience of negated propositions is such that any future change

to N

 

EITHER

 

 should incorporate this feature.

 

8.1.2  Allowing for Noise

 

Several colleagues who have criticized earlier presentations of A

 

SSERT

 

 have

pointed out the need for a student modeling algorithm to handle noisy inputs. This is

essential for the simple reason that students are not always consistent in their

answers, particularly when they are unsure of their knowledge. Although A

 

SSERT

 

has been shown to be effective even without this capability, the criticism remains a

valid one. Fortunately, previous work on extending the theory refinement to handle

noise provides a starting point for incorporating these changes into N

 

EITHER

 

 and

thus into A

 

SSERT

 

.

The L

 

ATEX

 

 system [Tangkitvanich and Shimura, 1993] is a theory-refinement

algorithm that employs the minimum description length principle [Rissanen, 1978]

to revise a knowledge base in the presence of noisy examples. L

 

ATEX

 

 uses an MDL

metric to measure the number of bits required to represent changes to the initial the-

ory plus the number of bits required to classify the examples once the theory is

revised. L

 

ATEX

 

 resolves the problem of whether to modify the theory to account for

an example or simply accept the example as noise by attempting to minimize this

sum. These ideas could be incorporated into N

 

EITHER

 

’s metric for selecting and

ranking its refinements. Another technique would be to simply record the number of

examples each refinement fixes and only remediate a student on those which account

for multiple problems. The latter method amounts to simply adding a parameter to

A

 

SSERT

 

, directing it to avoid mentioning the refinements it finds unless there is

enough evidence to suspect they are not due to noise. Experiments could then be run

similar to those of Section 6.2, comparing full remediation of all refinements found
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for the student against a method which only remediated those refinements which

accounted for multiple errors.

 

8.1.3  Refinement using an Oracle

 

Though N

 

EITHER

 

 has been billed as a system which has advantages because it

does not rely upon an oracle to make its revisions, the tutoring domain presents a

unique environment for harnessing the power of input from a human operator for

enhancing the accuracy of modeling. Specifically, one can simply ask the student to

resolve choices during refinement by posing additional questions. This is the

approach used in the logic-based modelers developed by Ikeda and Misoguchi

[Ikeda and Misoguchi, 1993] and Hoppe [Hoppe, 1994]. Moreover, since A

 

SSERT

 

has the ability to generate examples dynamically, it would be a relatively straightfor-

ward change to generate questions during refinement. Some additional planning is

required to ensure that the student is not overloaded, but since N

 

EITHER

 

 can work

without the additional input from the student, this original format for computing

refinements can always be used as a default.

 

8.2  Other Modeling Domains

 

Since the bulk of ITS student modeling has focused on procedural problems, it

would be interesting to apply A

 

SSERT

 

 to such a domain and see how it fares against

previous results. Furthermore, since extensive bug libraries have been constructed

for some procedural domains, one could directly test how well A

 

SSERT

 

 is able to

duplicate such results. As with the C

 

++

 

 Tutor tests, extensive empirical results would

have to be collected before any claims can be made as to whether A

 

SSERT

 

 can be

successfully extended to cover a procedural task.

Given A

 

SSERT

 

’s current design, there are two basic approaches that one might

take as a first step towards applying the architecture to procedural tasks. One method
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is to assume that the interface for the task makes all the intermediate steps of the pro-

cedure clear. Said another way, this means that all the steps taken by the student from

the problem specification to the solution would be made known to the system.

Anderson’s 

 

model-tracing

 

 tutors are examples of such tutorials [Anderson, 1984].

With this assumption, it may be possible to treat each step of the procedure as an

individual concept, where the problem faced by the student is to correctly advance to

the next step of the process. Picking the right next step would amount to the correct

classification.

There are two open questions which could be problematic for such an approach.

First, the domain might not lend itself to revealing the student’s decisions at interme-

diate steps of the procedure. In such a case it is difficult to see how A

 

SSERT

 

 could be

applied, though it seems difficult to model students with such a paucity of informa-

tion using any method. Second, it may prove difficult to detect errors where the stu-

dent performs each step correctly but in the wrong order. It seems likely that the

refinement component of A

 

SSERT

 

 would have to be modified to check the rules asso-

ciated with other steps of the process in addition to refining the rules of the correct

step to catch this eventuality. 

A second method for extending A

 

SSERT

 

 to procedural domains is to focus on

developing another theory refinement technique which is more appropriate to proce-

dural domains, especially for those domains where a rigid, model-tracing interface is

inappropriate and a more open, exploratory method is desirable. One potential theory

refinement method which might be applicable to this situation is first-order theory

refinement [Richards, 1992]. In this approach, the basic architecture of A

 

SSERT

 

could be used, but much of the internals would need reworking to be compatible

with first-order logic rules as opposed to propositional rules.
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8.3  Other Empirical Tests

 

Finally, there are many additional tests that could be run to test A

 

SSERT

 

. Other

tests using the C

 

++

 

 Tutor could be run to collect more empirical evidence to support

the results reported in Chapter 6. Specifically, larger numbers of students could be

tested under more stringently controlled conditions, especially time allowed to per-

form the pre-test and post-test. Also, it would be interesting to test A

 

SSERT

 

 against

different styles of reteaching such as those used in previous studies [Sleeman, 1987].

Specifically, one might try a weak form of “modeling” whereby students are given

feedback on the questions they got wrong. For example, one could take the questions

the student answered incorrectly and explain the rules of the proof for the correct

answer to the question. Or, one could simply explain the most common bugs in the

bug library. Such tests could illuminate other kinds of modeling which compare

favorably with A

 

SSERT

 

. To be fair test, however, it would be important to ensure that

any such test generated its models automatically as A

 

SSERT

 

 does.

Also, additional classification tutors could be developed to determine if the

results found for the C

 

++

 

 Tutor map to other concept learning domains. Furthermore,

other remediation techniques could be tried such as the Socratic feedback described

in [Stevens and Collins, 1977; Collins, 1977] or the coaching feedback developed

for WEST [Burton and Brown, 1976] to see if these are more effective at enhancing

student performance. And finally, it would be interesting to see if the technique of

constructing bug libraries from large numbers of small student models described in

Section 6.3.3 could be realized using real student data. One way to test this would be

to continue the C

 

++

 

 Tutor tests over multiple semesters, tracking the modeling accu-

racy of A

 

SSERT

 

 and the post-test performance increases.
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CHAPTER 9

 

Conclusions

 

The primary result of this research is a new student modeling technique,

A

 

SSERT

 

, which can automatically capture novel student errors using only correct

domain knowledge, and can automatically compile trends across multiple student

models into bug libraries. Student models built with A

 

SSERT

 

 have been shown to be

an essential component for generating feedback that significantly improves student

performance. This chapter reviews the contributions of A

 

SSERT

 

 in three different

areas: its impact on the student modeling debate, the modular features of the pro-

gram, and an evaluation of the performance of the algorithm.

 

9.1  A

 

SSERT

 

 as an Argument for Student Modeling

 

The recent debate over the utility of student modeling has criticized models as

being too difficult to construct and of limited use in effecting student performance.

The ideas developed for modeling are not the problem per se, it is the techniques

required for bringing these ideas to bear on a real domain that is objectionable. To

overcome these objections, a modeling system must exhibit two essential features.

First, it should be easy to use; specifically, it must be able to successfully model a

student without requiring the author of the tutoring system to perform the laborious

task of encoding all possible misconceptions a student might exhibit. Second, the

models produced should be useful; that is, they should provide information which

plays an essential role in significantly impacting a student’s performance. 

 A

 

SSERT

 

 achieves both of these goals. It requires 

 

only

 

 the correct knowledge of

the domain to construct its models. All bug-library information, as well as any novel
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error modeling, is generated completely automatically without necessitating feed-

back from the author of the tutorial. Since the correct domain knowledge has to be

encoded for a tutorial in any event, there is no added expense to construct an

A

 

SSERT

 

-style tutorial. Furthermore, A

 

SSERT

 

 responds quickly, operating at execu-

tion speeds which are linear in the size of the input knowledge base. This makes it

possible to apply A

 

SSERT

 

 to interactive domains. And finally, while the ultimate util-

ity of student modeling may still be a matter of debate, the results of Chapter 6 illus-

trate that student modeling via A

 

SSERT

 

 can significantly impact student performance

in at least some domains.

A

 

SSERT

 

 illustrates that the process of generating a useful student modeling com-

ponent for an intelligent tutoring system need not be a time consuming task; to the

contrary, modeling can serve as an extra source of input to an instructor about recur-

rent student misconceptions. By combining the ability to construct a bug library

automatically with a method for updating the library incrementally and a method for

modeling novel errors, A

 

SSERT

 

 answers the student modeling critics with a system

that can positively impact student learning without negatively impacting tutorial

design.

 

9.2   Features of A

 

SSERT

 

The structure of A

 

SSERT

 

 incorporates several key features which contribute to

its success and its potential for future enhancement. Chief among these is it modular

design. Separating the various components along well defined interface boundaries

allows components to be used in different ways and updated as new techniques

become available.

The foundation upon which A

 

SSERT

 

 is built is its theory-refinement component.

Using theory refinement, A

 

SSERT

 

 can model any misconception consistent within
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the primitives used to define the domain. A

 

SSERT

 

 can bring as much knowledge to

bear on the modeling process as the author of the tutoring system is willing to

encode. A

 

SSERT

 

 can even work with no input knowledge, resorting to induction as

previous methods have done. And most importantly, the output of theory refinement

is of a form which can be easily fed back into the modeling process to improve the

accuracy of the resulting model. A

 

SSERT

 

 accomplishes this by collecting refinements

from multiple students into a bug library from which bugs can be drawn to improve

the accuracy of the knowledge base before refinement begins. Thus, A

 

SSERT

 

 encom-

passes three important student modeling principles: (1) it can model the differences

between the system’s correct domain knowledge and the student’s behavior (2) it can

make use of a bug library to catch known misconceptions and (3) it can extend its

capabilities by modeling novel student misconceptions and by automatically con-

structing new bug-library entries.

And finally, the remediation component of A

 

SSERT

 

 was purposely designed to

avoid the difficult questions of feedback relating to pedagogy, leaving them instead

to the author of the tutorial. Instead, A

 

SSERT

 

 provides just the support mechanism for

generating an explanation and an example for every refinement found in the student

model. While this simple feedback alone has proved sufficient for improving student

performance in the C

 

++

 

 domain, the ability to generate salient examples is a power-

ful feature that can be used in a variety of ways from altering the style of interaction

to selecting challenging problems.

 

9.3  The Performance of A

 

SSERT

 

Empirical evaluations of A

 

SSERT

 

 highlight the advantages of its approach. To

begin with, Section 3.5 showed that N

 

EITHER

 

 could operate more than an order of

magnitude faster than E

 

ITHER

 

 without sacrificing accuracy. This enables A

 

SSERT

 

 to

be used in an interactive setting which is important in the design of a tutoring sys-
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tem. Next, the subjective evaluation of A

 

SSERT

 

 revealed that students who interacted

with the system found it both enjoyable and informative. This is absolutely critical to

the long term utility of a system since nothing can be accomplished by a tutor which

no one likes to use. Students seemed to especially like the three-part presentation of

a set of problems, followed by an example which highlighted issues rather than dis-

cussing mistakes, followed by a second chance at a similar set of problems. Also, a

subjective evaluation of the bug library formed for the C

 

++

 

 domain indicated that it

captured reasonable misconceptions typically found for students taking that class.

But the most important empirical results were presented in Section 6.2, which

showed that students who received feedback based on A

 

SSERT

 

 models performed

significantly better on a post test than students who received simple reteaching feed-

back based on no information about the student. While not conclusive evidence of

the universal applicability of A

 

SSERT

 

, this result is a clear indication that student

models can be constructed which will result in a net positive influence on student

performance. The fact that these models were built automatically with only the cor-

rect knowledge of the domain as input makes this result the most important finding

of this research. 

Other results from Chapter 6 indicate that theory-refinement systems such as

N

 

EITHER

 

 are clearly more effective than inductive techniques, with N

 

EITHER

 

 posting

a modeling accuracy improvement of 12 percentage points over induction for the

C

 

++

 

 domain. And while the bug library did not significantly impact overall modeling

accuracy, the presence of a bug library did significantly reduce the average number

of refinements which N

 

EITHER

 

 had to find to model student behavior. Furthermore,

additional evidence was presented demonstrating the likelihood that the contents of

the library would improve over time so as to significantly improve the modeling pro-

cess and, correspondingly, the impact of the system’s remediation and the perfor-

mance of the students on a post test.
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9.4  Summary

 

In summary, A

 

SSERT

 

 is a shell for constructing student modeling tutors which

operate in concept learning domains. It is able to construct student models efficiently

and automatically, catching both expected and novel student behavior. It is the first

modeling system which can construct bug libraries automatically using the interac-

tions of multiple students, without requiring input from the author, and integrate the

results so as to improve future modeling efforts. Finally, the empirical evidence pre-

sented supports the two principal claims of this research: (1) that theory refinement

can be used to significantly increase student performance by modeling students using

only correct domain knowledge and (2) that a bug library can be constructed auto-

matically in an incremental fashion using multiple student models as input.
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APPENDIX A

 

Animal Classification Domain

 

Domain Features

 

:

feed-young: (milk regurgitate bring none)
body-covering: (scales hair feathers moist-skin)
birth: (live egg)
eat-meat: (true false)
fly: (true false)
teeth: (pointed flat none) 
fore-appendage: (wing leg fin)     
foot-type: (hoof clawed webbed none)
neck-length: (short medium long extra-long) 
body-length: (small medium large huge)
color: (white black gray tawny)
pattern: (spots stripes patch none)
pattern-color: (black white none)
ruminate: (true false)

 

Correct Domain Theory

 

:

mammal 

 

←

 

(body-covering hair)
mammal 

 

←

 

(feed-young milk)
mammal 

 

←

 

(birth live)
bird

 

←

 

(body-covering feathers)
bird 

 

←

 

(birth egg) fly)
ungulate 

 

←

 

mammal (foot-type hoof)
ungulate 

 

←

 

mammal ruminate 
carnivore 

 

←

 

eat-meat
carnivore

 

←

 

(teeth pointed) (foot-type clawed) 
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giraffe 

 

←

 

ungulate (neck-length extra-long) (color tawny) (pattern spots) 
(pattern-color black)

zebra

 

←

 

ungulate (color white) (pattern stripes) (pattern-color black)
cheetah 

 

←

 

mammal carnivore (color tawny) (pattern spots) (pattern-color black)
tiger 

 

←

 

mammal carnivore (color tawny) (pattern stripes) 
(pattern-color black)

dolphin 

 

←

 

mammal (fore-appendage fin) (color gray) 
(body-covering moist-skin) (body-length medium)

whale 

 

←

 

mammal (fore-appendage fin) (color gray) 
(body-covering moist-skin) (body-length huge)

bat 

 

←

 

mammal (color black) (pattern none) (pattern-color none) fly
platypus 

 

←

 

mammal (birth egg) (foot-type webbed)
ostrich 

 

←

 

bird (not fly) (neck-length medium) (color white) (pattern patch)
(pattern-color black)

penguin 

 

←

 

bird (not fly) (color white) (pattern patch) (pattern-color black)
(foot-type webbed)

duck 

 

←

 

bird (foot-type webbed) fly
grackle 

 

←

 

bird (color black) (pattern none) (pattern-color none) fly
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APPENDIX B

 

C

 

++

 

 Tutor Domain

 

Domain Features

 

:

pointer: (constant non-constant absent)
integer: (constant non-constant)
pointer-init: (true false)
integer-init: (true false)
pointer-set: (true false)
integer-set: (yes no through-pointer)
multiple-operands: (true false)
position-A: (normal left-lazy right-lazy)
operator-A-lazy: (AND OR)
lazy-A-left-value: (non-zero zero)
on-operator-A-side: (left right) 
on-operator-B-side: (left right) 
operator-A: (assign modify-assign mathematical logical comparison 

auto-incr) 
operator-B: (assign modify-assign mathematical logical comparison 

auto-incr) 
 

 

Correct Domain Theory

 

:

compile-error 

 

←

 

constant-not-init
compile-error 

 

←

 

constant-assigned
constant-not-init 

 

←

 

(pointer constant) (pointer-init false)
constant-not-init 

 

←

 

(integer constant) (integer-init false)
constant-assigned 

 

←

 

(integer constant) integer-init (integer-set yes)
constant-assigned 

 

←

 

(integer constant) integer-init (integer-set through-pointer)
constant-assigned 

 

←

 

(pointer constant) pointer-init pointer-set
ambiguous 

 

←

 

multiple-operands operands-linked
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operands-linked 

 

←

 

operand-A-uses operator-B-sets
operands-linked 

 

←

 

operand-A-sets operator-B-uses
operand-A-uses 

 

←

 

operand-A-evaluated operator-A-uses
operand-A-sets 

 

←

 

operand-A-evaluated operator-A-sets
operand-A-evaluated 

 

←

 

(position-A normal)
operand-A-evaluated 

 

←

 

(position-A left-lazy)
operand-A-evaluated 

 

←

 

(position-A right-lazy) lazy-A-full-eval
lazy-A-full-eval 

 

←

 

(operator-A-lazy AND) (lazy-A-left-value non-zero)
lazy-A-full-eval 

 

←

 

(operator-A-lazy OR)  (lazy-A-left-value zero)
operator-A-uses 

 

←

 

(on-operator-A-side right)
operator-A-uses 

 

←

 

(on-operator-A-side left) (not (operator-A assign))
operator-A-sets 

 

←

 

(operator-A auto-incr)
operator-A-sets

 

←

 

(on-operator-A-side left) (operator-A modify-assign)
operator-A-sets 

 

←

 

(on-operator-A-side left) (operator-A assign)
operator-B-uses 

 

←

 

(on-operator-B-side right)
operator-B-uses 

 

←

 

(on-operator-B-side left) (not (operator-B assign))
operator-B-sets 

 

←

 

(operator-B auto-incr)
operator-B-sets 

 

←

 

(on-operator-B-side left) (operator-B modify-assign)
operator-B-sets 

 

←

 

(on-operator-B-side left) (operator-B assign)
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APPENDIX C

 

C

 

++

 

 Tutor Bug Library

 

The following is a library of 34 bugs, automatically constructed using the stu-

dent models of 45 students who interacted with the C

 

++

 

 Tutor. These students were

evenly drawn from the three groups which received no feedback: A

 

SSERT

 

-NoBugs,

Remediation, and No Feedback. The first 15 students of each group were used.

bug type: del-ante
rule: constant-assigned <- (pointer constant) pointer-init pointer-set
antecedents: (pointer-set)
stereotypicality: -26

bug type: del-ante
rule: lazy-a-full-eval <- (operator-a-lazy or) (lazy-a-left-value zero)
antecedents: ((operator-a-lazy or))
stereotypicality: -30

bug type: add-rule
rule: constant-assigned <- (pointer constant) pointer-init pointer-set
antecedents: (pointer-init)
stereotypicality: -30

bug type: del-ante
rule: operand-a-evaluated <- (position-a right-lazy) lazy-a-full-eval
antecedents: (lazy-a-full-eval)
stereotypicality: -32

bug type: del-ante
rule: constant-assigned <- (pointer constant) pointer-init pointer-set
antecedents: ((pointer constant))
stereotypicality: -32
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bug type: add-ante
rule: operand-a-evaluated <- (position-a left-lazy)
antecedents: ((integer non-constant))
stereotypicality: -32

bug type: add-rule
rule: compile-error <- constant-assigned
antecedents: ((position-a left-lazy))
stereotypicality: -34

bug type: del-ante
rule: lazy-a-full-eval <- (operator-a-lazy or) (lazy-a-left-value zero)
antecedents: ((lazy-a-left-value zero))
stereotypicality: -36

bug type: add-rule
rule: ambiguous <- multiple-operands operands-linked
antecedents: ((operator-b mathematical))
stereotypicality: -38

bug type: add-rule
rule: compile-error <- constant-not-init
antecedents: ((not multiple-operands))
stereotypicality: -38

bug type: add-rule
rule: compile-error <- constant-not-init
antecedents: ((lazy-a-left-value non-zero))
stereotypicality: -38

bug type: add-rule
rule: compile-error <- constant-assigned
antecedents: ((lazy-a-left-value non-zero))
stereotypicality: -38
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bug type: add-ante
rule: operator-b-uses <- (on-operator-b-side right)
antecedents: ((integer non-constant))
stereotypicality: -38

bug type: add-rule
rule: ambiguous <- multiple-operands operands-linked
antecedents: (operands-linked)
stereotypicality: -38

bug type: add-rule
rule: compile-error <- constant-assigned
antecedents: ((integer non-constant))
stereotypicality: -38

bug type: add-rule
rule: compile-error <- constant-assigned
antecedents: (operator-b-uses)
stereotypicality: -38

bug type: add-ante
rule: operator-a-uses <- (on-operator-a-side right)
antecedents: ((pointer constant))
stereotypicality: -38

bug type: del-ante
rule: operator-a-sets <- (operator-a auto-incr)
antecedents: ((operator-a auto-incr))
stereotypicality: -38

bug type: add-ante
rule: ambiguous <- multiple-operands operands-linked
antecedents: ((pointer constant))
stereotypicality: -38
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bug type: add-ante
rule: compile-error <- constant-assigned
antecedents: ((integer-set no))
stereotypicality: -38

bug type: add-rule
rule: ambiguous <- multiple-operands operands-linked
antecedents: ((integer-set no))
stereotypicality: -38

bug type: del-rule
rule: operand-a-evaluated <- (position-a normal)
antecedents: nil
stereotypicality: -44

bug type: del-rule
rule: operand-a-evaluated <- (position-a left-lazy)
antecedents: nil
stereotypicality: -52

bug type: add-rule
rule: constant-assigned <- (integer constant) integer-init 

(integer-set through-pointer)
antecedents: (integer-init (integer constant))
stereotypicality: -52

bug type: del-rule
rule: operator-a-uses <- (on-operator-a-side right)
antecedents: nil
stereotypicality: -60

bug type: del-rule
rule: ambiguous <- multiple-operands operands-linked
antecedents: nil
stereotypicality: -66
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bug type: del-rule
rule: compile-error <- constant-not-init
antecedents: nil
stereotypicality: -68

bug type: add-rule
rule: constant-not-init <- (integer constant) (not integer-init)
antecedents: ((not integer-init) operator-b-sets)
stereotypicality: -72

bug type: del-rule
rule: operator-b-sets <- (operator-b auto-incr)
antecedents: nil
stereotypicality: -72

bug type: del-rule
rule: constant-not-init <- (pointer constant) (not pointer-init)
antecedents: nil
stereotypicality: -78

bug type: del-rule
rule: operand-a-uses <- operand-a-evaluated operator-a-uses
antecedents: nil
stereotypicality: -102

bug type: del-rule
rule: constant-not-init <- (integer constant) (not integer-init)
antecedents: nil
stereotypicality: -102

bug type: del-rule
rule: lazy-a-full-eval <- (operator-a-lazy or) (lazy-a-left-value zero)
antecedents: nil
stereotypicality: -114
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bug type: del-rule
rule: constant-assigned <- (integer constant) integer-init 

(integer-set through-pointer)
antecedents: nil
stereotypicality: -128
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APPENDIX D

 

C

 

++

 

 Tutor Raw Student Data

 

The following lists of numbers represent the raw data collected for the 100 students
who participated in the C

 

++

 

 Tutor test. Each group is listed separately, and the data
for each student is listed on a separate line.

Each student entry consists of 5 pieces of information listed left to right as follows:
pre-test accuracy, post-test accuracy, pre-test answers, post-test answers, size of the
bugs used from the bug library (see Appendix C) measured in literals, and the size of
the model for the student, also measured in literals.

The correct answers for both the pre-test and post-test are "(C C B B C A A A B B)"
which corresponds to the pre-randomization order of both the pre-test and post-test.

 

"A

 

SSERT

 

" Group

 

: Feedback based on the full A

 

SSERT

 

 algorithm.

60 80 (A C B B A C A A C B) (C C A C C A A A B B) 4 1
50 60 (C B A A C A A A C A) (C C C A A A A A C B) 4 6
50 90 (C C C A A A A A C C) (C C B B A A A A B B) 6 4
40 60 (A B C A C A A A C C) (B C C B C A A A A C) 7 4
40 80 (C A A B A C A A C C) (C C C C C A A A B B) 5 4
50 90 (C C A C C A C A C C) (C C B B C A A A B A) 4 3
40 80 (C C C C A A A C C C) (C B B B A A A A B B) 6 4
20 60 (A A A A A A C A C A) (B C B B A A C A C B) 1 0
50 80 (A C C C C A A A C A) (C B B B C C A A B B) 5 0
50 80 (C A C C C A C B C C) (B C B B C A A C C A) 6 4
60 80 (C B B B C B A C B C) (B B B B C A A A B B) 3 5
40 40 (A C C C C A C A C A) (B B C A A A A A B C) 5 3
40 40 (C C C C C C A C A C) (B B C C A A A A C B) 5 4
50 50 (A C C B A A A C B A) (B B B B A A A C A B) 2 8
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50 70 (C B A B A C A A B A) (B C B B A A A A C B) 5 5
40 40 (B C C C B A A B B C) (B B B B C C B C B C) 6 5
50 50 (B C A B A A A A C C) (B C A A A A A A B C) 7 0
30 60 (A A C C A A A A C C) (C B B B A B A B B B) 8 2
40 80 (A C A A C C A A C C) (B C C B C A A A B B) 7 0
20 60 (A A A A A A A C A A) (A B C B A A A A B B) 5 7
60 90 (C B C A A A A A B B) (C C B B A A A A B B) 6 4
50 70 (C C C C C A C A C C) (B B B B A A A A B B) 4 3
30 80 (B A A B A C A A C A) (C C B C C C A A B B) 6 4
40 70 (A A C B C B A C B C) (C C C C A A A A B B) 4 7
60 50 (C C A A C A A C B A) (B B C A C C A A B B) 4 6

 

"A

 

SSERT

 

-NoBugs" Group

 

: Feedback based on models built with N

 

EITHER

 

 only.

30 60 (B A C A C A C A A A) (B B B B C C C A B B) 0 15
10 40 (A A A A A B A C C C) (C C C C C C C A C C) 0 10
70 10  (C C C C C A A A C B  (C C B B C A A A B B) 0 4
40 70 (B B C C B A A A C B) (B C B A C A A A B C) 0 9
50 50 (C C C C A C A A B C) (B B C B C C A C B B) 0 8
40 50 (A C C A A A A A C A) (C B C B C C A B C B) 0 8
20 40 (A C B A A C B C C A) (C A C A C C A A C C) 0 11
60 90 (C C C B C C C A A B) (C C B B C C A A B B) 0 15
50 70 (A C C B A C A A B A) (C C C B C C C A B B) 0 8
50 60 (C C C A A C A A B C) (B B C B C A C A B B) 0 8
40 80 (C C C C A A A B A A) (B B B B C A A A B B) 0 10
80 90 (B C C B C A A A B B) (C C B B C A A A B C) 0 3
70 70 (B B A B C A A A B B) (C B B B A A A A B C) 0 4
40 70 (C C A C A A A C C C) (B B B B C A A C B B) 0 10
60 70 (C C C C C A C A B C) (B B B B C A A C B B) 0 6
70 90 (C C B C A A A A B C) (C C B B C A C A B B) 0 6
30 60 (A C C C C C C A C C) (B C C B C A C C B B) 0 14
60 70 (A C A C C A A A B C) (C C B B A A C C B B) 0 7
40 50 (A C B B B A B C A A) (C C C A A A B C B B) 0 11
40 60 (A C A A A A A A C A) (B B B A A A A A B B) 0 5
50 70 (C C C C C A A C C C) (B B B B C C A A B B) 0 6
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60 80 (A B B B A A A A B C) (C C B C C A A A B C) 0 6
50 90 (C C A C A A A A C C) (B C B B C A A A B B) 0 7
60 60 (C C A B B A B A B C) (B C B A C C A A A B) 0 12
20 40 (A B A B A A C C A A) (B B B A A A A A C C) 0 9

 

"Remediate" Group

 

: Random reteaching feedback.

90 80 (B C B B C A A A B B) (C B B B A A A A B B) 0 1
40 50 (C C C C A C A A C A) (B B B A C C A B B B) 0 10
50 50 (C C B B C B C C C A) (B A B B C A C B B C) 0 13
50 60 (B C C C A A A A B A) (B C B C A A A A C B) 0 9
60 50 (A A C B C A C A B B) (B A C A C A A A C B) 0 8
40 80 (A C B C A A A C A C) (C C B B C A B A B C) 0 13
60 40 (C C A A A A B A B B) (B B C C C A C A C B) 0 6
70 30 (C B B B B A A B B B) (B C C C C C A C C C) 0 6
20 50 (A B C A C B B C B A) (B B B B A B A C B B) 0 20
60 70 (C B A A C A A A C B) (B B B B A A A A B B) 0 9
40 60 (A C A B A B A C B C) (C C C C C A A A C C) 0 12
50 50 (C C C C C C A A C C) (B B B C C C C A B B) 0 7
50 70 (A C C B A A C A B C) (C B B B C C A C B B) 0 9
40 70 (C B C A C C A A A C) (B C C B B A A A B B) 0 13
60 70 (C B C B B A A A B A) (B C B B C C B A B B) 0 6
50 40 (A C C A C C A A A B) (B B C C A A A C B B) 0 13
50 70 (B B B A C A A C B A) (B C B B A A A A B C) 0 11
50 70 (C C C A C A A C A C) (C C B C C A A C C B) 0 8
30 50 (A C C A A A C C C B) (B B B A C A C C B B) 0 9
60 40 (C C C A C A A A A C) (B B A C A A B A B B) 0 5
60 50 (B B B B A A A A A B) (B B B B A C A C B B) 0 4
30 70 (A C C A C A C C C C) (C B B C C A A A C B) 0 8
60 50 (C B C A C A C A B B) (C C C C A A A A C C) 0 9
70 80 (C C A B C A A A A C) (C B B B C A A C B B) 0 7
30 50 (B C A A A C A A C C) (C C C C A A A A C C) 0 8
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"No Feedback" Group

 

:

70 80 (C B C B C A A A B C) (C B B C C A A A B B) 0 4
50 60 (B B C C C A A A C B) (C C C C C A A A C C) 0 6
60 40 (C C C C C A A A C C) (C C C C B A A C C C) 0 4
80 90 (C B B B C A A A B C) (C B B B C A A A B B) 0 3
40 50 (A C A C C C A A C C) (C C C C A A A A A C) 0 12
30 40 (A A A B A A C A C C) (C C A C C C C C B C) 0 12
60 60 (C C A C C A A A A C) (C C A A C A A A C C) 0 8
90 80 (C C A B C A A A B B) (C C B A A A A A B B) 0 4
50 40 (C C C A A A A A C C) (B B C C A A A A B C) 0 8
50 20 (C C A C C B A A A C) (A C C A C C C C A C) 0 11
50 60 (B A A C C A A A C B) (C B C A C A A A C B) 0 10
40 50 (C C C C A A C A C C) (C C C C A A A A C C) 0 11
60 50 (A C A A C A A A B A) (B A C C C A A A A B) 0 8
40 60 (B B B A C A C C B C) (B B A A C A A A B B) 0 10
90 70 (C C B B C A A A B C) (B B B B C A A A B A) 0 4
70 60 (C C C B C A A A C C) (B B B C C C A A B B) 0 4
60 50 (C C C C C A A A C C) (C C C C A A A A C C) 0 4
70 60 (C C A B C A A A A C) (C B C C A A A A B B) 0 8
60 80 (C C C C C A A A C C) (C B B C C A A A B B) 0 4
50 60 (A C C B B A A A A A) (A A B A C A A A A B) 0 10
50 50 (C B C C C A A A C C) (B C C C C A A A C C) 0 7
20 20 (A A C C A A C C B A) (C A C C A C A C A C) 0 18
40 60 (A C C A B A A A A A) (C C B A A A A C A B) 0 9
50 70 (A C C C C A A A C C) (C C B C C A C A C B) 0 8
40 60 (B B C C C A C A C B) (C B B B C C A C C B) 0 9
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APPENDIX E

 

Student Interaction Trace

 

The following is a screen dump of an interaction for one of the students who

used the C

 

++

 

 Tutor. This student was from the "A

 

SSERT

 

" group, and thus received

feedback based on the full A

 

SSERT

 

 algorithm.

 

Welcome to the C++ Adaptive Tutorial

Please enter your initials (up to 3 letters) followed by the last 4 digits
of your student ID (example: ptb9971):ah2914

---------------------------------------------------------------------------

This homework assignment is part of an ongoing research project to build 
adaptive tutoring systems. The idea is that the program will watch how you 
interact with the system and adjust its output to fit your needs. 

To keep things simple, the program is built around a standard multiple 
choice test format. The system will present you with a series of multiple 
choice questions, each in the same format. Your job is simply to pick the 
single best answer for each question.

At some point during the test, the program may interrupt the test to give 
you feedback before proceeding with the rest of the questions. This feedback
will consist of examples in the same format as the test questions, but with
the CORRECT answers provided. YOU SHOULD STUDY THESE EXAMPLES CAREFULLY as 
they will help you better understand the material (which will be on your 
final exam!).

When you have completed the test, you will be given a printout of all your 
answers, the feedback created by the system for you, and a set of the 
correct answers to all the test questions. You will also be given full 
credit for the homework.

Your help with this research is greatly appreciated. Thanks.

press RETURN to continue...

---------------------------------------------------------------------------
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+------------+
| Question 1 |
+------------+

void main()
{
  const int j = 3, *h;  
  int i, k;  
  h = &j;
  cin >> k >> i;

  cout << (k % j);  cout << (i %= j);  
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: a

+------------+
| Question 2 |
+------------+

void main()
{
  const int d = 1, *const b = &d;  
  int a, c;  
  cin >> c >> a;

  cout << (c % a) << (a += c);
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: b

+------------+
| Question 3 |
+------------+

void main()
{
  int i, j, k, *h;  
  h = &i;
  cin >> *h >> k >> j;
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  cout << ((i >= j) && (k & j)) << (i++);
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: c

+------------+
| Question 4 |
+------------+

void main()
{
  const int p = 1, *n;  
  int m, q;  
  n = &p;
  cin >> *n >> q >> m;

  cout << (q *= p);  cout << ((m -= q) && (p * m));  
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: c

+------------+
| Question 5 |
+------------+

void main()
{
  int x = 2, y, w, *const z;  
  z = &x;
  cin >> *z >> w >> y;

  cout << (w = x) << ((y * x) && (y + 10));
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: a
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+------------+
| Question 6 |
+------------+

void main()
{
  const int d = 2, *a = &d;  
  int b, c;  
  cin >> c >> b;

  cout << (--b) << ((b += c) || (*a != d));
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: b

+------------+
| Question 7 |
+------------+

void main()
{
  int w, x, y, *z = &w;  
  cin >> w >> y >> x;

  cout << (w == y) << ((w - w) && (y += w));
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: c

+------------+
| Question 8 |
+------------+

void main()
{
  const int d;  
  int a, b, c;  
  cin >> d >> c >> b >> a;

  cout << (c = 9);  cout << (c = 10);  
}
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Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: a

+------------+
| Question 9 |
+------------+

void main()
{
  int b = 2, c, d, *a = &b;  
  a = &d;
  cin >> d >> c;

  cout << (6 & d) << ((c == c) || (d = b));
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: a

+-------------+
| Question 10 |
+-------------+

void main()
{
  int j = 5, h, k, *i = &j;  
  i = &h;
  cin >> j >> k >> h;

  cout << (j *= 7) << ((k - k) || (h + j));
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: b

-------------------------------------------------------------------------

Before proceeding with the rest of the test, let's stop a minute to review
some important points from lecture.



 

176

 

In what follows, you will be shown a set of examples, one at a time. Before
each example, a quick review of your lecture material will be presented in
textual form. Crucial elements of this explanation will be highlighted. One
or more examples will then be presented to illustrate the explanation.

STUDY THESE EXAMPLES CAREFULLY. They are aimed at providing you detailed
feedback that should help you sort out some of the more subtle points from
lecture which will be on the final exam.

System working; please wait...
;;; Loading source file "/u/baffes/thesis/results/cpp/all-bug-lib.lisp"
done

press RETURN to continue...

---------------------------------------------------------------------------
EXPLANATION

One way to detect a compilation error is to look for an identifier which is
declared constant and initialized, then later assigned a new value.

Specifically, note the following which contribute to this type
of error:
* There must be a constant which is initialized and later assigned.

Here is an example to illustrate this point.

press RETURN to continue...

Example
-------
Here is an example which might appear to be correct
but is actually a COMPILE ERROR:

void main()
{
  const int x = 2, *const w = &x;  
  int y, z;  
  w = &z;
  cin >> x >> z >> y;

  cout << ((x == z) && (y <= *w));  cout << (x % 8);  
}

The following points BY THEMSELVES are enough to make this example
a COMPILE ERROR:
* The identifier 'w' is declared constant and initialized to the address of 'x',
  and then later set in the expression 'w = &z;'.

Note that this example is a compile error IN SPITE OF the 
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following:
* The integer 'x' is assigned in the expression 'cin >> x >> z >> y;'.

press RETURN to continue...

---------------------------------------------------------------------------
EXPLANATION

One way to detect a compilation error is to look for an identifier which is
declared constant and initialized, then later assigned a new value.

A constant identifier is erroneously assigned when it is declared as a constant
pointer to an integer, initialized to the address of some integer, and later
set to the address of another integer. It does not matter if the identifier
is a pointer declared to point to an constant integer or a non-constant integer;
once a constant pointer is initialized it cannot be reset to the address of
another integer.

Specifically, note the following which contribute to this type
of error:
* There must be a pointer declared to be constant (but not necessarily 
  pointing to a constant object).
* A pointer declared to be constant must be initialized.
* A pointer declared a constant and initialized must be set after its 
  initialization.

Here is an example to illustrate these points.

press RETURN to continue...

Example
-------
Here is an example which might appear to be a compile error
but is actually CORRECT:

void main()
{
  int x = 5, y, w, *z = &x;  
  z = &w;
  cin >> w >> y;

  cout << ((y *= x) || (y > w));  cout << (w -= x);  
}

This example is NOT a compile error because:
* The pointer 'z' is declared as a non-constant pointer to a non-constant 
  integer, so it does not have to be initialized.

press RETURN to continue...
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---------------------------------------------------------------------------
EXPLANATION

Ambiguous statements arise in C++ when an operator has multiple operand
expressions that are LINKED. Two operands are linked if they refer to the
same variable (call it the LINKING VARIABLE), and one operand uses the variable 
and the other is an expression that alters it. Remember that in C++ operands
are evaluated before an operator is executed. Since operands can be evaluated
in ANY ORDER, this means the operand which uses the linking variable can have
a different value depending upon the order in which the operands are evaluated.

A linking variable is SET in an operation if the operator is auto increment
or auto decrement (++ or --).

Specifically, note the following which contribute to this type
of error:
* The operator used is '++' or '--'.

Here is an example to illustrate this point.

press RETURN to continue...

Example
-------
Here is an example which might appear to be correct
but is actually AMBIGUOUS:

void main()
{
  int w, x, y, *z = &w;  
  cin >> w >> y >> x;
  z = &x;

  cout << ((x * y) || (*z %= w)) << (--y);
}

This example is AMBIGUOUS because:
* The operator used in the expression '(--y)' is an auto-increment/
  auto-decrement operator which USES AND SETS the variable.
* Two of the operands are linked in the output statement through variable 'y'
  which is used and set in the expression '(--y)' and used in the
  left half of a lazy '||' operator in the subexpression '(x * y)'.

press RETURN to continue...

---------------------------------------------------------------------------
EXPLANATION

One way to detect a compilation error is to look for an identifier which is
declared constant and initialized, then later assigned a new value.
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A constant identifier is erroneously assigned when it is declared as a constant
pointer to an integer, initialized to the address of some integer, and later
set to the address of another integer. It does not matter if the identifier
is a pointer declared to point to an constant integer or a non-constant integer;
once a constant pointer is initialized it cannot be reset to the address of
another integer.

Specifically, note the following which contribute to this type
of error:
* There must be a pointer declared to be constant (but not necessarily 
  pointing to a constant object).
* A pointer declared to be constant must be initialized.
* A pointer declared a constant and initialized must be set after its 
  initialization.

Here is an example to illustrate these points.

press RETURN to continue...

Example
-------
Here is an example which might appear to be correct
but is actually a COMPILE ERROR:

void main()
{
  int w, x, y, *const z = &w;  
  cin >> *z >> y >> x;
  z = &y;

  cout << ((w == w) && (6 & x));  cout << (x %= 8);  
}

This example is a COMPILE ERROR because:
* The identifier 'z' is declared as a constant pointer (to a non-constant
  integer).
* The constant pointer 'z' is initialized to the address of 'w'.
* The pointer 'z' is set in the expression 'z = &y;'.

press RETURN to continue...

-------------------------------------------------------------------------

The system will now resume the test. Try using whatever you may have gleaned 
from the examples to answer the rest of the questions.

press RETURN to continue...

---------------------------------------------------------------------------
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+-------------+
| Question 11 |
+-------------+

void main()
{
  const int p = 3, *q;  
  int m, n;  
  q = &p;
  cin >> n >> m;

  cout << (p & n);  cout << (p > 9);  
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: c

+-------------+
| Question 12 |
+-------------+

void main()
{
  const int p = 3, *const m = &p;  
  int n, q;  
  cin >> q >> n;

  cout << (q - p) << (q++);
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: a

+-------------+
| Question 13 |
+-------------+

void main()
{
  const int w;  
  int x, y, z;  
  cin >> w >> z >> y >> x;
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  cout << ((x = w) && (y | z)) << (10 % w);
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: a

+-------------+
| Question 14 |
+-------------+

void main()
{
  const int x = 1, *y;  
  int z, w;  
  y = &x;
  cin >> *y >> w >> z;

  cout << (x < z);  cout << (w *= x);  
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: a

+-------------+
| Question 15 |
+-------------+

void main()
{
  int c, a, d, *const b;  
  b = &c;
  cin >> *b >> d >> a;

  cout << (d <= c) << (10 | d);
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: a
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+-------------+
| Question 16 |
+-------------+

void main()
{
  int k = 1, h, i, j;  
  cin >> j >> i >> h;

  cout << (i | h) << ((1 | j) || (h = j));
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: c

+-------------+
| Question 17 |
+-------------+

void main()
{
  const int h = 2, *const i = &h;  
  int j, k;  
  cin >> k >> j;

  cout << (j - h) << ((j += 7) || (*i != h));
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: c

+-------------+
| Question 18 |
+-------------+

void main()
{
  int k = 5, h, j, *i = &k;  
  i = &h;
  cin >> j >> h;

  cout << ((k % h) && (*i >= j)) << (h -= k);
}
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Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: b

+-------------+
| Question 19 |
+-------------+

void main()
{
  int p = 4, n, q, *m = &p;  
  cin >> q >> n;

  cout << (7 <= n) << ((p > p) && (n -= q));
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: c

+-------------+
| Question 20 |
+-------------+

void main()
{
  int h, i, j, k;  
  cin >> h >> k >> j >> i;

  cout << (6 >= j) << ((i == i) && (--j));
}

Is the above (A) a compile error, 
             (B) ambiguous (i.e., different outputs from different compilers) or
             (C) neither A nor B ?

answer: b

Congratulations! The test is over, and you have completed the homework. However,
the system has collected a good deal of data from your answers and can give you
some feedback which you may find helpful.

Would you like the additional feedback? (Yes or No) No
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---------------------------------------------------------------------------

The tutorial is over. Contact Paul and he will generate
a final printout for you to take with you. 

Thanks again for your help, and good luck on the final.
NIL
> (answers)
;;; Loading source file "/u/baffes/thesis/results/cpp/Cah2914"
;;; Loading source file "/u/baffes/thesis/assert/cpp/exam-data.lisp"

Question    Your    Correct
 Number    Answer   Answer
*  1         A        C
   2         B        B
*  3         C        B
*  4         C        A
   5         A        A
   6         B        B
   7         C        C
   8         A        A
*  9         A        C
  10         B        B
  11         C        C
* 12         A        B
  13         A        A
  14         A        A
  15         A        A
  16         C        C
* 17         C        B
  18         B        B
  19         C        C
  20         B        B
NIL
> 
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