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Abstr act

A critical conponent of nodel-based intelligent tutoring systens is a mech
capturing the conceptual state of the student, which enables the systemto tail
to suit individual strengths and weaknesses. To be useful such a nodeling tecl
bepracticalin the sense that nodels are easy ¢fof eonistierudthe esghse t hat
using the nmodel actually inpacts student learning. This research presents a
nmodel i ng techni que which can automatically capture novel student errors using c
domai n knowl edge, and can automatically compile trends across nultiple studeni
Thi s approach has been inplemented as a conp8$eRT, pusgngma Anchi ne
| earni ng techni quet lcadl ydr ef i nem@nitch is a method for automatically revising
a knowl edge base to be consistent with a set of exanples. Using a know edge ba:
rectly defines a domain and exanples of a student’s behasErr in that domair
nodel s student errors by collecting any refinenents to the correct know edge
are necessary to account for the student’s behavior. The efficacy of the apprc
denonstrated by eval BBERNQUA Nng 100 students tested on a classification task ¢
ering concepts from an introductory dbupsegoamtieg G anguage. Students
who received feedback based on the nodel s aut omati csHERY pemfesrated] by A
significantly better on a post test than students who received sinple reteachi

1 Intr oduction

Student nodeling has a long and interesting history, dating back well into
to producetel |l igent tutoring Isydt.enBhe best method for constructing and usi
student nodel is still the subject of nuch debate. Most student nodeling t

ever, have a simlar goal, which m ght be defined as foll ows:

G ven A setexyiectati aregardi ng student behavior in some donmain and,
A set olbservati aofs a specific student’s behavi or on one or nore tasks in ti
dommi n,

Fi nd Aepresent ataooounting for any di screpanci es between the expectations an
observations that can be used as a basis for tutoring the student.

I deally, a unique nodel is built for every student who interacts with the
capturing nisconceptions specific tosmdadh asteudestt pre-progranmed into the

tutor Using the student nodel, an ITS would then nodify its feedback to
strengt hs and weaknesses, enabling it to be truly adaptive to the individua
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Unfortunately, the difficulty of constructing and testing student nodels
many researchers from pursuing further investigations into the field. Desp
more than two decades of research has resulted in a wide variety of studen
ni ques, the practical task of incorporating these techniques into a functi
tem has proved to be a mmjor roadbl ock. Furthernore, neither the wutilit
necessity of student nodeling as a conponent of an ITS is a universally acc
to the contrary, an interview of ten well-known |ITS researchers which appes
1993 i ssueAlofConmuni cati asesre to the conclusion that “nmost of the research
| onger believe in on-line student nodelling.” (Sandberg & Barnard, 1993).
on to conclude that ®“instead of becoming nore integrated, the field has
diverged in the last few years. It appears that scientists in the field of e
ogy no longer share a research paradigm”

Thus the current challenge for student nodeling is to show that nodeling
be nade bophacti candeffectiv@éhis is precisely the contribution of this w
enbodi ed in t$ERA al gorit oquir | ngerSeot ypi dalde®tr or s  bgfifng
Theor igs serT was designed to show that student nodeling is a viable tool f
an effective tutoring system By taking advantage of sone of the | ates
machi ne | earni 8ERTAI s able to construct student nodels efficiently and auto
catching both expected and novel student nisconceptions. Also, it is the fi
tem whi ch can construct bug libraries automatically using the interactions
dents, w thout requiring input from the author, and integrate the results
future nodeling efforts. |In SSBRB isersseselA-inproving student nodeler. Fina
ASSERT can be used to significantly inprove student performance, as will be
sections which foll ow

The remaini ng sections are organi zed as follows. Section 2 reviews previc
dent nodeling as a notivation underlyi ngsseRre. desctgnorof3 A hen presents a
descri pti e8e® focusing on the portion of the algorithm which captures ind
dent errors. Next, Section 4 describes how trends across a population of ¢
matically coll ectedugnt obbgargnd how such a library is then incorporated in
nmodel i ng process. Finally, Section 5 presents experinental results foll ow
and conclusions in Sections 6 and 7.

2 Previous Wrk

2.1 Overla y Modeling

The application of artificial intelligence to the task of student nodeling t
progression of techniques for collecting information both about what a sti
does not know, and about explaining the sources of nisconceptions. The eat
student nodels, enbodied in systenms such as SCHOLAR ( Carbonell, 1970), WES]
& Brown, 1976) and WUSOR (Carr & Goldstein, 1977), used a form of nodeling
now general ly referredetloayasmodel i Ag overlay nmodel relies on the assunptio
that a student's know edge is always a subset of the correct domain know e
dent perforns actions which illustrate that he or she understands particu

domai n knowl edge, these are marked in the overlay nodel. Mre sophisticated
el s can express a range of values indicating the extent to which the systen
under stands a given topic using sone formof truth-mintenance schenme (Finn
ray, 1991). However the marking is achieved, typically the unmarked el ement
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are used to focus tutoring on new problem areas for the student, or to ensu
t he domai n.

The advantage of the overlay is its sinplicity; the elenents of the node
directly on to the knowl edge used to engineer the system The di sadvant age,
tational restriction placed on the nodel —enly missing elements of the cor
can be nodel ed. Alternative notions which a student m ght have cannot be ca
cally, this nmeansstbatepti arennot be nodel ed. Thus, overlay nodels can capt
the notion of a student’'s |lack of know edge, but they cannot be used to n
who knows of a topic but m sunderstands it.

2.2 BugLibr aries

To address the limtation of overlay nodels, other researchers focused on c
bases of student m sconceptions tylpugallillyr dreiréised cl assi ¢ bug-1ibrary work
was done by Brown, Burton and VanLehn (Brown & Burton, 1978; Burton, 1982;
VanLehn, 1980), Sleeman and Smith (Sleeman & Smith, 1981), and Young and
(Young & O Shea, 1981), but a nunmber of other systens can be said to incc
form of stored nmisconceptions (Rich, 1989; Lianging & Taotao, 1991; Ml er
1977; Quilici, 1989; Soloway & Johnson, 1984). Wth a bug library, nodels
mat chi ng student behavi or against a catal og of expecdeohdiugsctiwgd ch are
hand t hrough an anal ysis of student errors.

The idea is a very powerful one, especially if specific responses can be
buggy structures are encoded. However, two inmportant problenms remain with
bug-library approach. First, the construction of such catal ogs by hand is a
consum ng task which nmust be repeated for every new dommi n. Second, even if
taken, the resulting library may still fail to cover a w de enough range of
tion successfully. That is, a student nmay exhibit a m sconception which wa:
by the author of the library. As with overlay nodels, the static nature of |
t hem i ncapabl e of nodeling unanticipated student behaviors.

2.3  Dynamic Modeling

To capture novel student mi sconceptions, one nmust turn to sone kind of s
space of possible bugs. Two nethods have been tried to date: one attenpts
library and the other attenpts to infer a nodel of the student from scrat
machi ne—l earni ng techniques. In both cases, novel errors are npdeled by cc
buggy informati on dynami cally, using data froma student’s behavi or to boun

23.1 Extendingab uglibr ary

Sl eeman et al. (Sleeman et al., 1990) describe two extensions to their PIX
| NFER* and MALGEN, both of which can be used to extend a bug library. PIXE
ing system designed for the domain of high-school algebra whose goal is to
priate feedback to inprove student performance. PIXIE s underlying repre:
st at e-space paradigm where the domain theory is a set of operators inplel
M sconceptions which conmprise the bug library are encoded rad -faulty rul e
rul es Both | NFER* and MALGEN attenpt to generate new mal-rules when the

exhi bits a problemthat cannot be npdel ed using the mal-rules already in thi
di fference between the two extensions is that |INFER* attenpts to patch spe
dent sol utions, whereas MALGEN generates and tests new mal-rules by alterir
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domai n theory. INFER* uses the rules it has to work forward fromthe probler
backward fromthe student’s solution as far as gdp canfil Tiee bemainfiengi ng
a new mal -rule. In MALGEN, fornmalized perturbation operators are used to cl
the domain theory to generate new mal-rules for the bug library

The di sadvantage of both systens is their reliance upon a user to decide
rules are appropriate extensions for the bug library. To their credit, the
i ssue and discuss potential filters that m ght be used to cut down on the nt
rules presented to the user. Unfortunately, to this point no general -purpo
ni sm whi ch m ght be usabl e across donmi ns has been found. In the end, the u
with a nunber of proposed mal-rules and nmust decide which ones are the “kee
nmore, since both systens were devel oped to address the problem of extendi
bug library, they remain strongly tied to the arduous task of preconstructi
hand.

2.3.2 Modeling by Induction

In an effort to avoid the cost associated with hand-constructed bug |ibrar
turned to machine learning. Their inspired work on the ACM system (Langl e)
1984; Langley et al., 1990) was the first effort to harness machi ne | earni
di agnosi s of m sconceptions througidudte.arfkeotinderlying idea is to invent a
student nodel on the fly by automatingprbéopobcassal gEewel | & Sinon,
1972) which is used by human instructors as a neans of unearthing student n
ACM uses a domai n-i ndependent induction algorithmto induce control knov
resenting how students apply operators in a given domain. Starting with a s
eral operators, the goal is to induce a set of control rules that will
sequence that produces the sanme solutions as the student. To nodel a par
ACM starts with only general know edge of how the operators can be applied
for a path of operator applications connecting the problem specification to

tion. Gven this “solution path,” induction is performed by noting whet her
ated by an operator application lies on or off the path. The output of in
condi tions which predict when an operator will produce a state which lies

path. The conditions found by induction are then used to specialize the o
result is a procedure that nodels the student’s uni que problem solving beha
By using induction, ACM can operate automatically, constructing nodels
both correct and buggy know edge. However, because the operators nust initi
enough to nmodel many kinds of behavior, both correct and incorrect, the ¢
space is huge. Langley et al. note this, and suggest various “psychol ogi cal
ditions which can be applied to the operators to limt the search. They al si
addi tional wunderlying first principles, representing a deeper |evel know e«
provi de the basis for automated addition of such psychol ogically plausible
ever, the systemis still fundanmentally limted by the conplexity of havi
model conpletely from scratch. This can only be remedied by collecting |ai
data on each student or by inposing further constraints on the search spa
require findi ng such constraints by using the very human-intensive methods t

desi gned to avoi d.

2.4 Tracing Techniques
One final style of student nodel er bears nentioning because it represents a
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i ous techni ques described to this point. In what rirgdi npedhoospies,t er med

t he underlying philosophy is to follow along with the student during his or
i ng, stopping whenever the student deviates from the correct procedure. #
t echni ques must have knowl edge of both correct and incorrect actions like
and nust also have a nechanism for reproducing the steps followed by the
ACM s solution paths. By focusing on the correct path as a bias, tracing sy
very efficiently.

The pioneering efforts in this areavdet Andeithgnoss ( Anderson, 1983;
Anderson et al., 1985; Reiser et al., 1985), which follow student behavi or
interaction with the tutor to occur through nmenu sel ecti on. However, buil di
student is not the primary focus of nodel tracing. Instead, buggy informati
tem acts nostly to support the tracking process, with the goal being to kee
straying too far off the correct path. Other tracing systens utilize a |og
tion (Costa et al., 1988; |keda & M soguchi, 1993; Hoppe, 1994) where the
anal yti cal approach, such as deduction or resolution, to search through a
m ne where a nisconception lies. Essentially, whenever the rule-base fai
“proof” which mimcs the student’s actions, the points where the proof fa
dates for querying the user about his or her beliefs. Again the enphasis is
ations from an expected path of correct student behavior.

Unli ke the previous nethods, tracing techniques do not dynamcally consg
model s. Instead, they rely upon either the assunmption that the student can
|l ow al ong the correct path or querying an oracle whenever a deviation is ¢
they lack the ability to handl e novel student m sconceptions independently.

3 Refinement—-Based Modeling

This previous work on student nodeling has resulted in three inportant ide
research presented here. First, nodeling systens can increase their cove
behavi or by incorporating know edge froma library of expected m sconceptic
be truly adaptive and to avoid the costs of bug |library construction, one
sort of dynamic nodeling or learning algorithm And third, tracing student
pari son to expected correct behavior can be an effective tool for detecti
without requiring a great deabseRT seabthesAt hese ideas by using a relative
new machi ne | earning techni queocyl Ireefinene@tnsberg, 1990; CQurston and
Mooney, 1994; Craw and Sl eeman, 1991; Towell and Shavlik, 1991). Theory r efi
met hod fautomati calrlewi si ng a know edge base to be consistent with a set of
Typically, the know edge base is considered incorrect or inconplete, and the
sent correct behavior which the know edge base should be able to enul ate.
refinenent procedure itself is blind to whether or not the input know edge
in any absolute sense; the theory-refinement process nerely nodifies the kn
until it is consistent with the exanples. Thus, one can al so use theory refir
acorrecknow edge base and examplrememfubehavi or, and theory refinement wll

i ntroduce what ever nodificati ons are necessary to cause the know edge base t
i ncorrect exanpl es.

Theory refinement, then, provides a basis for theefimndmpresgedof a
model er Starting with a representation of the correct know edge of the don
exanpl es of erroneous student behavi or, theory refinement will revise the kn
make it consistent with the student, i.e., introduce “faulty” know edge to
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dent’s mi st AKBse refinenents made to the know edge base then represent a nod
student, and can be used directly to guide tutorial feedback by conparing
with whatever elenments of the correct know edge base they repl aced.

Usi ng theory refinemssERT donbi nes the nmethods used in previous nodeling s
tenms. A theory-refinement | earner conbines the power of both analytic (as in
| NFER) and enpirical (as in ACM learning techniques in an integrated, dol
dent way.ss#RT can nodel any mi sconception consistent within the primtive:
define the domain. And fissERIypr dvi des an extension to theory refinement that
conbine the resuhustiopl et udent nodel s di fderestudents. This nmechani sm
al | owss#erT to construct a bug library automatically, without the necessity
on the part of the author. Section 4 describes this algorithmin detail. Fi
our attention to the nechani smof theory refinement and i ssERTOl € in the desi

3.1  Outline of Theor y Refi nement

Havi ng outlined the phil osoplsgefmehiwed cAn now turn our attention to the thel
refinenment al gorithm aroundsseRt cihs Aconstructed. It is inportant to point out
the start that basic deRrghsofioA tied to a particular theory refinement alg
Ot her theory refinement systenms which differ fromthe one presented here co
provi desgkrRT with di fferent or enhanced capabilities.

ASSERT uses the TMER al gorithm (Baffes, 1994; Baffes & Mwoney, 1993) whic
based on theHeR t heory-refinenent system (Qurston & Mooney, 1990; Qurston, 1
El THER was chosen as a starting point because it was the nost conplete syn
refinenent system avai |l edERei sEdesi gned to work with a propositional Horn-cl
knowl edge representation. It takes two inputs, a propositional Horn-clause
t ha heorywhich is repaired using aexatplds Tinpueéxanpl es are assunmed to be
lists of feature-value pairs chosehsérvoablatosei nof eat ures. Each exanpl e
has an associ ated tabefjorowhi ch shoul d be provabl e using the theory with the
ture values in the exa#pl eanEgeneralize or specialize a theory, w thout use
vention, and is guaranteed to produce a set of refinements which are consi st
exanpl es.

Figure 1 shows an exanple theory and four input exanples. The top of the
part of a rul e-base takessgrromuaor Abuilt for teaching 'd sohseptsf C
(for a conplete |istiihf Taftdrhe Ces, see Appendix A). The rules, nunbered R
consi st of a consequent which is considered true for an exanple only when t
to its right are provable fromthe feature val ues of that exanple. Proposit
represent either internediate concepts or are shorthand for binary feature
as a value. This sinplified theory has only one category, “conpile-error,”
classify exanples. The input exanples, shown in the table below the rules,
classified as compile-errors only if they can satisfy rules Rl or R2 or b
cl osed-world assunption is used to classify the exanple as non conpile-
i nstance, exanple 1 is correctly classified as a conpile-error because it cal
isfying either R6 or R7. Likew se, exanple 2 fails to satisfy any of the rt
rectly classified as non conpile-error.

However, exanples 3 and 4 are m scl assified by the theory in its current ¢

1. Keep in mind that the | anguage used here is highly subjective in nature. One need not tak
actions are “m stakes.” The central point is that theory refinement can be used to detec
actions which are inconsistent with its given know edge base.

6
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R1: compile-errork  constant-not-init

R2: compile-error  constant-assigned

R3: constant-not-inik  (pointer constant) (pointer-init false)

R4: constant-not-ini¢  (integer constant) (integer-init false)

R5: constant-assigned (integer constant) integer-init (integer-set yes)

R6: constant-assigned (integer constant) integer-init (integer-set through-pointer)
R7: constant-assigned (pointer constant) pointer-init pointer-set

Exanple 1 Exanpl e| 2 Exanple 3 Exanpl e 4
conpi |l e-erjor true fal se true true
poi nt er const ant non- constant non-constant | non-«
pointer-ingit true fal se true fals
poi nt er- sgt true tnue rue true
i nt eger const ant non- constant ngn-constant | non-«
integer-init true tirue true true
i nt eger - sgt t hrough- yes no no
poi nt er

Figure 1: A Theory and Exanpl es. The desired classificati
is shown in italics (thus, Exanples 3 and 4 are m scl ass

rule base is “incorrect” since it does not produce the desired classificati
exanpl es. Propositional Horn-clause theories can have four types of erro
Figure 2. An overly-general theory is one that causes an exanple to be cla
ries other than its own, i.e., aThek spauosltiiaes dkisting antecedents, add
new antecedents, and deletes rules to fix such problenms. An overly-specific t
exanple not to be classified in its own category, iTeerR ratfatse amdative. |
general i zes existing antecedents and | earns new rules to fix these probl ens.
ory-refinement systens that are subject taTHecals roudrrent eEd to fix any
arbitrarily incorrect propositional Horn-clause theory (Qurston, 1991).
Symbolic theory-refinement systersErR| aké BETHER use a conbi nation of
three conputations to deternmine howto nodify a theory. Tleeafifstr step is ta
a single failing exanmple by analyzing the rule base to determ ne what ri
changed to fix the theory for the exanple. For a failing positive exanple, i
cedents is found which, if deleted, will fix the theory for that exanple. ¢/
failing negative exanple, a set of rules is conputed which, if deleted, wl
The second steptestatoepair for a single exanple against all the other i1

ples to see if the repair will cause new m scl assifications to occur. If not
be applied to the theory directly. Otherwi se, a tihmductstap ieatakan using
set of additional conditions which will separate the exanples fixed by the

exanpl es for which the repair causes new niscl assificati ons. These additiona
then used to nmodify the repair.
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Incor rec
Theor y
Overly Overly
Specifi ¢ Gener al
Extr a Missing Missing
Antecedent Rule Antecedeny

Figure 2: Theory error taxonony for propositional Horn-

As an example, in Figure 1, notice that both exanple 3 and exanple 4 are
exanpl es since neither is classified as conpile-error. This indicates that t
speci fic and nmust be generalized. One way to repair the theory for exanple
del ete the “(pointer constant)” condition fromrule R7. This allows rule RY
t he exanple, wi thout hindering the classification of exanple 1, and wi t hout
to become so general that it would be satisfied for exanple 2. Testing th
exanples 1, 2 and 4 yields no new m scl assifications, and it can be applie
t heory.

Finding a repair for exanple 4, however, yields a different result. The
to delete the “(pointer constant)” condition fromrule R3. However, when th
agai nst exanples 1, 2 and 3, exanple 2 is erroneously classified as conpile
way to fix the repair is to renove the “(pointer constant)” condition fror
exanple 4, plus add a new condition to the rule which keeps exanple 2 fron
rule. Passing exanples 2 and 4 to an induction algorithmwould return “(in
the condition which can discrinnate between the exanples. The final revi:
which correctly classifies all four exanples, is shown in Figure 3.

Notice that the repairs chosen for exanples 3 and 4 in Figure 3 are not
repairs for these exanples. For instance, exanple 3 could have been cl ass
error by removing the conditions “(integer constant)” and “(integer-set t
fromrule R6, or by renoving the conditions “(integer constant)” and *“(i
fromrule R5. For that matter, renoving all of the antecedents from any on
t hrough R4 woul d al so have repaired the theory for exanple 3, by nmaking ei
pile-error” or “constant-not-init” concepts provable by default. In fact, ¢
ble repairs for an exanple in the general case is exponential in the si
Consequently, the way in which repairs are calculated, as well as when a re
the theory in relation to conmputing repairs for other exanples, can have a
on the accuracy and performance of the theory refinenent al gorithm

NEI THER and IEHER differ in the way the repair, testing, and induction cont
t heory refinement are conmbined. While a detail ed conmpari son between the two
scope of this article (see Baffes, 1994, chapter 3; Baffes & Mooney, 1993),
NEl THER al gorithm is provided inEeFgpR @epds Nor speed in conputing repairs,
focusing on quickly finding one good repair for each exanple. The goal is t¢
est repair in the deepest possible part of the theory. After converting the
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R1: compile-error constant-not-init

R2: compile-error  constant-assigned

R3: constant-not-inik  (pointer constant) (pointer-init false)

R4: constant-not-inik  (integer constant) (integer-init false)

R5: constant-assigned (integer constant) integer-init (integer-set yes)

R6: constant-assigned (integer constant) integer-init (integer-set through-pointer)
R7: constant-assigned (pointer constant) pointer-init pointer-set

R1: compile-errork constant-not-init
R2: compile-errox  constant-assigned

R3: constant-not-init < (pointeeerstant) (pointer-init false) (integer-set no)

R4: constant-not-ini¢  (integer constant) (integer-init false)

R5: constant-assigned (integer constant) integer-init (integer-set yes)

R6: constant-assigned (integer constant) integer-init (integer-set through-pointer)
R7: constant-assigned (pointeseomStant) pointer-init  pointer-set

Fi gure 3: Exanpl el ™ERN ef i nenment. Above the dashed |ine
base before refinement; below are the rules after refinene
shown i n bol df ace.

NEI THER uses a recursive routine which starts at the leaf rules of the thec
tions are collected at each rule and passed up to parent rul esl- When a choi
THER al ways chooses the smaller repair, picking randomy to break ties. Eac
only once, making the repair conputation linear in the size of the theory
Once a repair has been calcul ated for eeaerR eehmpts, oNe repair from

anmong the set to apply to the theory. A selection is made by temporarily m
ory with each repair, calculating how many exanples it fixes and how many ne
cations it causes. These results are conmbined with the size of the repair
repair which fixes the nost exanples with the fewest new m scl assificati ons

repair is then tested against the rest of the exanples, and induction is pe

foreac he xamples coveredb yr Epai r epair using inductign

computeoner epaljr r emove e xamples update theor ywi
select best r pair if necessar vy

Criter ionf orcomputingar epairf or ONE e xample

Find the dee  pest, shor test, r epairw hic hcauses thef ewestne w
Criter ionf or selecting bestr epair fr om AMONG &amples

Select the shor testr epairfi xing the moste xamples with the f ew

Fi gure 4 T™NER mai n | oop.
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Student Student
Behavior Behavior

Figure 5: Abstract view of student-tutor interac

to nodify the repair to avoid new nisclassifications. The whole process is
| oop which continues until all msclassified exanpl es have been accounted fc
t hat ENTHER runs nore than an order of magnitudeHdrasid éhoubhahoBi ng accu-

racy (Baffes & Mooney, 1993), giving response tines that are on the order o
This is critical to an interactive tutoring environment where feedback mnust
the student in a tinmely fashion.

3.2 Over vie w ofSERT

Havi ng revi ewed the basics of theory refinement, we can nowssgRTn to the det:
ASSERT views tutoring as a process of conmunicating know edge to a student
contribution of the nodeling subsystemis to pinpoint elements of the int
base to be comrunicated. At its npbst abstract |evel, such a tutorial can b
bet ween the student and the system as shown in Figure 5. Many details are
di agram and di fferent researchers have chosen to enphasize different parts
first design decision then is onessfrrefplasies: oA t he questi on of how to con-
struct a useful interpretation of the student’s actions. This decision is d
ponent inserted into the diagramas shown in the right half of Figure 5. Th
conponent ,staudent sinul ati on mogéli es that the system contains a know edge

that can be used to solve problens in the sanme context as the student nu
knowl edge base can be nodified to replicate the solutions furnished by the s

3.2.1 The Student as a Classifi er

Figure 6 depictsséamw A ews student behavior. It is assumed that all actions
a student can be broken down ¢tloassidietatdda si onsThat is, given a set of
i nputs, capdaa ens the student will producabel exsetexanpieisch cl assify
each of the problens categamngach problem consists of dreatarenvee-
torsdescri bing some aspect of the problem The task of the student is to pr
each feature vector, selected from anong some predeterm ned set of legal |la
student. The resulting set of |abeled exanmples pairs each feature vecto
sel ected by the student.

In its sinplest form a problemconsists of a single feature vector prese
in a multiple-choice format, where the answers available to the student are
a list of possible categories. Thus, for exanple, the classic diagnosis prc

10
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Labeled
Pr oblem's—>.(—> Examples

Figure 6: Student behavi or diagram

a patient’'s synptons (the feature vector) and ask the student to select a d
of diseases (the |abel). Hserr dld dves used in concept |earning domains, whi
are commmon applications for automated training systens. It also nmeans that
will translate directly into a form usable by theory refinement, which requi
pl es as one of its inputs.

3.2.2 Modelingb y Theor y Refi nement

Once collected, the | abeled exanples generated by the student are passed
refinenment conponent ssdRT,A depicted in Figure 7. As discussed previously,

refinement will take an inconing knowl edge base, plus an incom ng set of €
refine the knowl edge base until it is consistent wi tehTHERet Bganpl es. The N
refinenment systemis used to add or renove rules or parts of rules until th
duces the sane answers as the student, i.e., will classify each feature ve

category |l abel as the student. The resulting refined rule base is thus able
dent’s behavi or.

The use of a propositional theory-refinenent algorithm for nodeling carri
assunption that the author of the tutoring systemwll be able to provide a
tion of the domain using propositional Horn-clauses. This places a good dea
how the correct rule base is constructed since it beconmes the | anguage
ASSERT interprets the student’s actions. |If the correct rules are expressed
low a | evel of detail, the ability of the systemto formaccurate nodels wi
course, this type of know edge representati on problem exists for all tutori
ever, S$ERT gai ns an advantage by purposely isolating the correct donmain kno
separate conponent: the author can easily change the focus of the tutor by
rect rule base. Moireover, if students possessing different |evels of unders
tutor, nmultiple rule bases can be witten to give the system nore flexibilit

3.2.3 Refinement-Based Remedia tion
The | ast conponentssedT, At he system response, is outlined in Figure 8. Us

\ Theor y
/ Rule Chang es

Corr ect Model
Rule Base

Labeled
Examples

Figure 7: The student sinulation nodel.
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. Refinement-Based Explana tiop
Rule Chang Remediation & Examples
r=— - =" 7
| PedagoglcaII, -
Knowledg e

Figure 8: System response di agram

refinement s produced byeRN ASERT gener ates expl anati ons and exanples to reinfo
the correct form of the rule or rules nodified. The undeefipengneapproach, ce
based renedi atiion based on fundanental units of expl&satfomeczldi @di on

Rat her than inplementing any particul aseErRpedagpbiyesAt he nost el ementary
information requiredpl aaratiamth one or ewaspl es For each refinement

det ected lyTINR, ASERT provides two functions: the ability to explain a corr
the rule which was changed, and the ability to generate an exanple which us
designer of a tutoring SysISerT usdasig e option to generate nultiple expl anat
or exanples, to determne the circunstances when such feedback is given,
whet her the system or the student controls which explanations and exanpl es
By providing such explanati on-exaspdrg soppsj ed the raw materials for a vari
ety of renedi ation techniques.

The specifics of generating explanations and exanpl es for each refinement
in detail in (Baffes, 1994), but the underlying idea is straightforward. Ex
describing how the correct formof the rule (not the revised version) fits
correct rule base. Each rule has an associ ated piece of stored text, descr
rule base. A full explanation is generated by chaining together the storec
lying on the proof path for the correct |abel (not the student’'s |abel) for
| abel which is produced by the correct rule base for the given feature vect

Generating exanples is a bit nmore conplicated sincedyhayi @alel yonstructe
rat her than being drawn from storage. Recall that each THefimersnitt stade by N
in the addition or deletion of propositional literals froma rule in the th
be added or deleted as well, but this is the sane as adding or removing k
Usi ng normal deductive nethods, the added and renpved literals can be trac
feature vector. The result is a set of conditions in the feature vector \
ignoring or a set of extra conditions not present in the feature vector whi:«
are necessasgerRTAcan thus generate an exanple which is coexeepton every way
the added or missing conditions in the refinement. The result is then be
counter exanple to the student, and the various added or mssing conditic
Note that this corresponds very closely to tutorial methods outlined for c
(Tennyson, 1971).

Fi gure 9 shows an expl anati on and exanple pair, corresponding to one of t
depicted previously in Figure 3. Recall that the last rule of Figure 3 was
one of its antecedents. Figure 9 is the feedback generated for this m ssini
trating how the condition represented by the antecedent is essential to dra
clusion. The top half of Figure 9 shows the text which explains how the r
overall rule base. As part of the explanation, the three conditions of the
its three correct antecedents, are item zed at the end of the expl anation.

12
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EXPLANATION

One way to detect a compilation error is to look for an identifier which is
declared constant and initialized, then later assigned a new value.

A constant identifier is erroneously assigned when it is declared as a constant
pointer to an integer, initialized to the address of some integer, and later

set to the address of another integer. It does not matter if the identifier

is a pointer declared to point to an constant integer or a non-constant integer;
once a constant pointer is initialized it cannot be reset to the address of
another integer.

Specifically, note the following which contribute to this type

of error:

* There must be a pointer declared to be constant (but not necessarily
pointing to a constant object).

* A pointer declared to be constant must be initialized.

* A pointer declared a constant and initialized must be set after its
initialization.

Here is an example to illustrate these points:

Example

Here is an example which might appear to be a compile error
but is actually CORRECT:

void main()

constintx =5,y, w, *z = &x;
Z=&w;
cin >>w>>y;

cout << ((y *=x) || (y > w)); cout << (w -= Xx);

This example is NOT a compile error because:
* The pointer 'Z' is declared as a NON-CONSTANT pointer to a constant
integer, so it does not have to be initialized and it can be reset.

Figure 9: Exanple renediation given to a studeni

generated which highlights how the “(pointer constant)” condition bears
answer to the exanple, showing howthe truth or falsity of the condition le
concl usi on.

Finally, Figure 10 conbines the conponents from Figures 6, 7and 8, show
di al og flows between the student and the system Problens given to the studel
into | abel ed exanpl es, which areTpessddTHER Nses these to refine a rul e base
representing correct know edge of the domain to produce a nodified rul e base
the student. The refinenments are then used to generate expl anati ons and exam
ati on which gets passed back to the student.

4 Extending SZRT s Modeler
The previous three sections have descri bedsekRe adaar idthnmy heshdwi ng how

13
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Explana tio
& Examples

Labeled
Examples

Corr ect
Rule Base

=

A

Theor y
Refinemen

Y
Rule Chang gs

Refinement-Based
Remedia tion

Fi gure 10: Basic desi gssedT ghgoAit hm

the flow of information between student and system can be inplenmented as
refinements that highlight the differences between how the system and the s
the sanme set of problens. As such thi sssexplcinmst rumw sAst udent nodel s by
tracing the student’s behavi or agai nst a known standard rul e base. Not hing,
said about how multiple student nodels are mned to construct a bug library
library is incorporated back into the nodeling process.

4.1 Building a Bug Libr ary

A bug library represents a collection of data gleaned fromthe interactio
dents with the tutoringssErsteses A he rul e changes out put from theory refinen
for each student as the basis for constructing itss&ry tiwbradyanThis gives
tages. First, the rule changes are closely related to the type of input ge
of the tutoring system Since a rule base nust be supplied as input, express
in terms of changes to that rule base is an effective way to communi cate bi
back to the author. Second, the rul e-change fornmaEtTHER psesi tel gi what N

| ate the behavior of the student. A bug library built of rule changes is tt
whi ch can be incorporated directly into the nodeling process.

ASSERT constructs a bug library in three stages. First, it collects copi
changes from all the student nodels together, elinm nating any duplicates.
each rule change by a neasure of how frequently it occurs anong the variou
el s, call edt eheot ypi cadfi ttyhe rul e change. Third, in the process of ranking
change, s#RT tests generalizations of the change to see if they result in b
cality. If a generalization is found which has superior stereotypicality, tl
replaced by the generalization. The final bug library contains the best gene
rul e change with any duplicates renoved.

Figures 11 through 14 illustrate how a bug library is constructed for a «
generated for illustration purposes. Figure 11 shows how stereotypicality
nodel s are shown at the top of the diagram each of which changes only one
rect rule base. All the nobdels alter the sane rule, but in different ways.
first nmodel changes tdhe rlule d b&yf deleting the set of fntecdddrd s

14
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Corr ect Rules (CR) Model M Model M, Model M3
a< bcdef ac< ef a< be a< cdefgh
B;=b ugfr oprMelete{b ,c ,d}
Bo,=b ugfr ogrMelete{c d f}
B3;=b ugfr ogrMelete{b}ad d{g ,h}

Distance fr om Cor r ect Rules to Models:
distance(CR, ;) Mdelete{b ,c,d}=3
distance(CR, ,) Mdelete{c d.,f}=3 total=9
distance(CR, 3) Mdelete{b} ad d{g ,h}=3

Distance fr  om Cor r ect Rules with b ; to Mpételsom M
distance(CR+B, M) =0
distance(CR+B, M) = delete{f} ad d{b}tetdl = 6
distance(CR+B, M) =ad d{c .d ,g ,h}=4

Distance fr  om Cor r ect Rules with b 5, to Mpételsom M
distance(CR+B, M) = delete{b} ad dffy =2
distance(CR+B, M) =0 total = 8
distance(CR+B, M) = delete{b} ad d{c d,f ,g,h}=6

Distance fr  om Cor r ect Rules with b 5 to Mpitelsom M
distance(CR+B, M) = delete{c d.,9,h}=4
distance(CR+B, M) = delete{c ,d.f ,g,h}ad tdfh} =60
distance(CR+B, M) =0

Ster eotypicality(B=9 - 6
Ster eotypicalityfB=9 - 8
1

Ster eotypicalitygp=9 - -1

Figure 11: Stereotypicality conputation.

refinement for niddell abelBgd i s tdwelset e{b,.c,B@¢l ow the nodels are the cal cul a-
tions for determ ning the stereotypicality of each of the three bugs by col
each bug decreasdsst hacdset ween the nodel s and the correct rule base. The di
bet wee€R and the student nodels is shown foll owed by the distances to the
each of the three bugs i €Raddwad cubating the distance between two rule
armounts to counting the nunber of literal changes required to convert one t
changi n@R+B; i ntM, requires changing ahe eulm@o the auleb evhich is

done by del et iamgl addibngThe bottom of the figure has the stereotypicality va
each of the bugs.

Note that a bug may have a negative stereotypicality. Unless a bug is pre
hal f of the student nodels, it is likely to have a negati ve stereotypicality
overla p between the bug and the majority of the nodels. Thus even a bug that
30% frequency in the student popul ation may have a negati ve st er eotypicality
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B1
delete{b

B3
delete{b} ad

d{g ,h}

LGG(By, B)
B, B, =delete{c
ster eotypicality =

LGG(B;, B)
B,  Bs=delete{b}
ster eotypicality =

LGG(B, B)
Bz. B3:U

Figure 12: Bug generalization using the LGG opera

isther elati vedif ferencebetw een ster ?eotypicality v alues.

Figure 12 illustratssrhdwrs generalizations anong the bugs from Figure
Si nce any refinenent to a propositional theory can be expressed as a logic
conpute generalizations Usiasy woeaeral general(ilZz®)i omper at or (Pl ot ki n,
1970). When two propositional |ogic clauses are not identical, one can forn
of the two by dropping literals fromthe clauses. Any nunmber of literals ne
t he nost specific (i.e., least general) way to generalize the two clauses i:
literals which appear in just one of the two clauses. This is the same as
tion between the two clauses. Since EefHEen@néscolnl &cti ons of propositional
logic literals, the LGG of two refinements is sinply their intersection.

As m ght be expected , the LGGw Il often forma generaliza tion that has bett
than a refinenent fromwhic h it was taken. BgrBj)nbseanset heGEBuaioh
is 1. Likewise BB is betterBsthbone. This will be the result whenever the
oper ati on captur es nore of what is common anong the nodels, and avoids nor
uncommon. However, note that the LGG is not beneficial in all cases; the sane
ti oned above are both wor 43 tbkinetbet al one, even thoudh bstanusaput.
Since the result of formng the LGG of two refinenents is also a refinenent,

be contin  ued, f orming LGG’ sfr om LGG’sw hic hcanalsor esult in better or w or st
Fi gure 13 shows the pseudocode for constructing a bug library. The fundan
perf orma hill-clinbing search using successive LGG operations. Starting with

a seed, nmultiple calls are made to the LGG operator to conbine the seed with
ments fromthe nodels. As long as this continues to result in a better gener
passes are nade over all the refinements. The process halts when no gener aliza

whic h will inmprove upon the seed, whic h nust eventuall y happen since continu

2. As a conputational note it should be pointed out that it is not necessary to conpute the
rule bases to calculate stereotypicality. Instead, the difference between di stances can be
of tidefferendeken. So, for exabDjethd eli stance between the correct rule base and a nodel.
ing a bug to the correct rul eDbbgeakhangeg a si ngl etlrarigei mhBD, can be cal cul at ed
by finding the overlap between the refinenents of the bug and anyamefinehents trhde to the
model . Whatever is in the bug that overl apecwebbetlhe diositehnce to the nodel because it
means those literal changes already exist in the nodel. Anything in thereagesshich does nc
the di stance because those literal changes are not in the nmodel. The conputational conpl ex
rithmis linear in the nunber of literals in the refinements of the nodels.
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function Buil dBugLi brary (M 1list of student nodels): bug library;

begin
R= 7,
form , M do add refinements of m to R avoiding duplicates;
forr . R dobegin
Best =r;

S = Stereotypicality(Best);

repeat while S continues to increase begin
Temp= " ;
forr . Rdo add Intersection(Best,r) to Temp;
G = member of Temp with highest stereotypicality;
if Stereotypicality(G) > S then begin

Best = G;
S = Stereotypicality(G);
end;
end;
add Best to bug library;
end;
return bug library sorted by greatest stereotypicality;
end
Fi gure 13: Pseudocode for bug library constructi
betw een refinenents will eventuall y produce no change or the null set. The be
found starting with each refinement as the initial seed is kept and inserted in
duplica tions in the libr aryar eelimina tedandther esults sor tedb yster eotypic

Finally, Figure 14 shows a conplete exanple for constructing a bug libr
bugs from Figure 11 plus one extra bug to highlight the hill-climbing naturce
Bel ow the four bugs are a series of boxes, each representing one iteration
Thus the first box is the iteration which conputes the bug to be added to tl
witB; as a seed, the second Bf ast $ hwi Sleed, et cetera. After saving the ster
icalityBpfthe inner loop is entered and an LGG i 8,fandetdhéebireen t hree
bugs. Note that there is no need tB;®ppsi ecleGthe result B;swhi oply
obvi ously cannot be an inprovenent. Once the LGG s are conputed, the best
this case Bg®B,), which has a stereotypicality of 4. This is conpared with
best stereotypicality, and since there is no inprovenent thB,itmer |oop ha
the bug library. The second Bgx,alfsar youd ds no i nprovenment from generali zati
resul ti n@,i bei ng added unchanged to the bug library.

The next two boxes representing the iterations By andg autemoreop for
i nterestingBsFarhe best LGG results fronBgarBpi rnihe resulting generali -
zat i ondes et e{ hose stereotypicality value of 2 is an inprovenent of 4 poin
val ue fBy al one. Consequently, the inner |oop repeats. A second round of LGC
no further inprovenment, resulting in the additiordafetididi}gemniee abugati on
l'ibrary. FomBsbube process is simlar. A first round of LGG s produces an im
whi ch cannot be surpassed by a second iteration of the irByB;)0op. Note tt
whi ch was conputed and rejected in theBf oyasbdhensereel, turns out to be a use
ful inprovenent Byvex one. The final bug library consists of the follow ng 1
sorted in the foll owBygdel dee{h B} andel etef{c}
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Additionally, because stereotypicality is nmeasured in litera
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B, = delete{b ,c,d}iS=4 B3 = delete{b} ad d{g ,h} S=-2
B, = delete{c d.,f}sS=2 B, = delete{b ,c ,e f} S=2
B, B, B3 B,

By | | . B1
S=4 S=4

delete{c ,d} delete{b} delete{b ,c}
S=2 S=2 S=14
B, B, Bs By
B2 | | L B,
S=2 v S=2
delete{c ,d} - delete{c ,f}
S=2 S=2
B, B, Bs By
B3 | | .
S=-2 ;
delete{b} - delete{b}
/ S=2 S=2
B, B, B3 B,
delete{b} \ \ \ delete{b}
S=2 v ; S=2
delete{b} - delete{b}
S=2 S=2
B B, B3 B,
B4 | | .
S=2
delete{b ,c} delete{c ,f} delete{b}
S=4 S=2 S=2
B, B, B3 By
delete{b ,c} \ \ \ delete{fb ¢
S=4 " S=4
delete{b ,c} delete{c} delete{b}
S=4 S=2 S=2
Figure 14: Bug library construction exanple. “S” stands -

Using the Bug Libr

aryf or Modeling
Once the library is built,

Havi ng the bugs

First,

in the
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Labeled

Exampleg
Modifi ed
Rule Baseg]

Bug Bug
Libr arly Selection

Selected Rule Chang es

Correct
Rule Baseg]

Figure 15: The bug sel ection nodule. Note that the correc
with the selected rule changes is equivalent to the nu

it is directly related to howm meERhmMghk Blave by integrating the bug with t
correct rule base.

Per haps the npst obvious way to incorporate the bugs in the library is tc
refinement algorithmto use the bugs as a neans for selecting repairs to fix
a student. So, for examptHER @snpNited a repair for a failing exanple its s
m ght include any bug in the library which applied to any rule which could
the failing exanple. The di sadvantage of this approach is that it would des
ity ofsserT’s design. Theory refinenent would no | onger be an interchangeabl e
whi ch could be swapped out for different refinenment algorithnms. A sinpler apj
one used iSSE®, is to nodify one of the i nmUBER) Veravi mgNt he refinement
algorithmintact. Specifically, the correct rule base is nodified before the
begi ns by incorporating elements of the bug library which are relevant to t

Figure 15 shows a schematic for how this is acconplished. The bug libra
rul e base, and the student’'s | abel ed exanples are input to a process which
the library to be added to the rule base using a hill-climbing search. Bu
upon the predictive accuracy of the rule base are added increnentally. The
fied rul e base which resenbles the student’s behavior nmore closely than the
which may still be inconplete. Note that the bugs which were selected are

r—— " -" - - - - - -—"=-—=- - = !

| | Labeled |

| | Examples I

Bug Bug | Theor y X
Libr ar Selection Refinemen Rule Chang =
| |

Modifi ed 7 I

I Rule Base¢] I

Correct L e e e e e e e _ =

Rule Base] v

Selected Rule Chang €5 » AllChang 4gs

Figure 16: Extended nobdeling. Bug sel ection conmbined with t
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Labeled
Examples

=)

Explana tio
& Examples

A

Corr ect Bug
Rule Base Libr arly

Bug
Selection

' |
Modifi ed
Rule Basq| |
r— — — — -
| Y
Rule Chang ¢ Selected Rule Chang es

U |

|
All Chang ¢gs

Refinement-Base
Remedia tion

Figure 17: Overvi ew of ezsErtdadgérithm The shaded area re|
the theory refinement conponent.

with the nodified rul e base since they nust be included with the final npdel «
shown in Figure 16. Once the nodified rule base in constructed, it is passed
ment along with the | abel ed exanples to determ ne any additional refinements
reproduci ng the behavior of the student. All rule changes, whether sel ectec
or constructed by theory refinenent, are returned as the final student nodel.
the entisgERX al gorithm

The pseudocode for nodifying a rule base is skodifyRulessigartes M.t h
the correct rule base, and |l oops as long as a bug can be found whic h will incr
the rule base on the set of |abeled exanples. The first step of each loop is t
the rule base when the bug in question is added to the set of rules. Al thos
impr oved accuracy are saved. Next, the bug whic h i ncreases accuracy the nost
inner loop is entered to pare down the list to only those bugs whose inprover
“sta tisticall y e&utmamhé best bug, using a pairédFGnaUéyt iftedtere are still
mul ti ple bugs left, then the one with the greatest stereotypicality value i
to the current rule base (random selection is used as a final tie breaker). \
found that increase the accuracy of the rule base, the routine quits return
version of the rules.

As an exanple of bug library selection, refer to a trace of the execution ol

3. nore precisely, whose inprovenent in accuracy is less, but not statistically significantly
4. Since the accuracy values for all the bugs are conputed using the same set of |abeled e
dent, one can use a paired Student t-test to estimate if the difference in accuracy betwe
tistically significant (using the standard 0.05 | evel of confidence to indicate significance)
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function ModifyRules (CR:correct rule base,
E:labeled student examples,
L:bug library): modified rule base;
begin
R =CR;
repeat as long as R is updated do begin
A= 7
forb ., L do begin
if Accuracy(R+b, E) > Accuracy(R, E) then add b to A,

end;

if A, 7 then begin
best = x . A with best accuracy value;
A¢= best;

forx ., Ado begin
if Paired-t-Test(best, x) not significant then add x to A§
end;
end;
if A,  thenupdate Rwith x  , A¢tw th hi ghest stereotypicality;
end;
return R;
end;

Fi gure 18: Pseudocode for bug library use.

dent” routine shown in Figure 19. This function is thé&lodiigReesentati on of
pseudocode used by *tet & nentioned in Section 3.1 . The trace shown is taken f
dent who interacted with the system as partsseRT § deaicgébetdestn afetAil below in
Section 5). The bug library used in this trace consisted of 34 bugs taken from
dents who used*th®&utor. However, only a portion of the bug library is actually
tr ace, corresponding to those bugs whic h were applica ble to the nistakes nade
student. For a conplete listing of the bug library, as well as an entire trace
tion with the system, see (Baf fes, 1994).

Each iteration corresponding to tMhodiyRetediocopsepfar ated in Figur e 19 by a
dotted line. For the first iteration, the original accuracy of the correct rul
Each bug in the library is added to the correct rules, and the six bugs whic h
accur acy are printed out with their stereotypicality values. Since all the bug
of the correct rules by the sane anount, all are candidates for addition to t
pair ed t-test yields no statistical difference in accuracy anong the bugs). Us
break the tie elinmnates the last two bugs, but still |eaves the first four whic
icality values. As a |last resort, randomselection is used to pick bug 20 as tt
r ule base

Havi ng sel ected bug 20, its refinement is added to the rule base which no
racy of 85% because of the addition of bug 20, as shown at the top of the
All the bugs of the library are now applied to this updated theory to che
i nprovenent in accuracy. This tine only four bugs are found, all of which a
same increase in accuracy. Bug 5 is a clear wi nner based on stereotypicalit
as the bug for this iteration. Note that bugs 10 and 34, both of which re
ments during the first iteration, are no longer useful for increasing accur
iteration. Also notice that bug 5 did not increase accuracy during the first
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> (pre-model-student *student-examples* *correct-theory*)

iteration 1
Trying to beat accuracy = 80.00
bug 10, Accuracy: 85.00, Stereotypicality: -38
bug 11, Accuracy: 85.00, Stereotypicality: -38
bug 12, Accuracy: 85.00, Stereotypicality: -38
bug 20, Accuracy: 85.00, Stereotypicality: -38
bug 29, Accuracy: 85.00, Stereotypicality: -72
bug 34, Accuracy: 85.00, Stereotypicality: -128

Picked bug 20. Bug is:
type: add antecedent to rule
rule: compile-error <- constant-assigned
antes: (integer-set no)

iteration 2
Trying to beat accuracy = 85.00
bug 5, Accuracy: 90.00, Stereotypicality: -32

bug 11, Accuracy: 90.00, Stereotypicality: -38
bug 12, Accuracy: 90.00, Stereotypicality: -38
bug 29, Accuracy: 90.00, Stereotypicality: -72

Picked bug 5. Bug is:
type: delete antecedent from rule
rule: constant-assigned <- (pointer constant) pointer-init pointer-set
antes: (pointer constant)

iteration 3
Trying to beat accuracy = 90.00
bug 29, Accuracy: 95.00, Stereotypicality: -72

Picked bug 29. Bug is:
type: delete rule
rule: operator-b-sets <- (operator-b auto-incr)

antes: nil
iteration 4
Trying to beat accuracy = 95.00
done

Figure 19: Trace of bug selection fromthe bug lik

the addition of bug 20 enabled bug 5 to have its effect. This is a beauti
ordering effects inherent in selecting bugs fromthe library.

At the beginning of the third iteration, the updated rule base, which
refinenents from both bug 20 and bug 5, has an accuracy of 90% Only bug
i nprove upon this accuracy so it is selected as the third bug to be added
that while bug 29 continually resulted in inprovenents in accuracy, its rel
typicality prevented its addition to the rule base before this point. Final
results in no further inprovenent.

Per haps the nost inportant fseermusebaly Ai brary algorithmlies in its abil
nmodel both conmon and uni que misconceptions. As with other bug-library bas:
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met hods, the ability to use a cache of expected errors gives the nodeler a
in domai ns where a | arge ampunt of data would otherwi se be required for an
nosi s. But because the bug library here is used as a precwsssar it® theory rel
not restricted to using only those bugs present in the library. Any specif
not in the bug library can still be captured by the theory refinement conpo
rithm Thus the final theory of Figure 19 has partially accounted for the st
the rest gets domaHby N
This conpl etes the descrigseRnn A¥ has been sheserT Aan nodel both

expected student errors as well as nistakes unique to an individual. Furthe
fully automated scheme for bug library construction, and by integrating the
its automatic nodeling algserRrtban Aontinue to inprove its nodeling accura
over time.

5 Exper imental Results

It can be argued that the ultimate test of any tutoring system design is
results in enhanced student performance. This is especially true for studet
use of a nodel cannot significantly inpact the educational experience then t
son to construct one. Furthernmore, this evidence nust cone from experine
| arge numbers of students in a realistic setting so that the significance
det er m ned.

In this section, evidence is presented in supportssedT desi ghaicant hat t he
be used to construct tutosighsfiedmtligpact student performance. The bul k of
this evidence comes froma test using 100 students wWhoTutrdrerkadtlead ot h a C
tutoring college-level freshmen taking ‘dncootsedatt bhg Oniversity of Texas
at Austin. In addition to this evidence, experinents are presented from an
whi ch student responses were sinmulated. The advantage of this simulation d
can be used to anal yze the reSulfusoofteke C

5.1 ¢* Tutor Tests

The €' Tutor was devel oped in conjunction with &h cioursedatt are C©ni ver -

sity of Texas at Austin. The tutorial covered two concepts historically dif
C** students: ambiguity involving statements with |azy operators and the pr
and use of constants. These two concepts plus exanples of correct program
categories into which exanple progranms could be classified. A set of 27 dor
devel oped to classify problens, using a set of 14 donmmi nahbagures, as beir
ous aonpile errndror incorrectly declared or usedrcensfTapet $pt ber cate-

gory was the default category assuned for any exanple which could not b
anmbi guous or a conpile error. Figure 20 shows an exanpl'é Tutest i ©hof rom t he
the conplete listindg oTutdie 1Qul e base see Appendi x A).

Students who used the tutorial did so on a voluntary basis and received
their participation. As an added incentive, the material in the tutorial co
woul d be present on the course final exam This established a high |Ievel of 1
t he students who participated in the test. Due to the |arge number of stuc
tutorial was made avail able over a period of four days and students were
reserve tinme slots to use the program In total, 100 students partici pated

Three major questions were the foOCuRut@r tthestC First, it was inportant
establ i sh whet her sgsERTotoAl d be an effective nodeler for students in a rea
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void main()

constintj=3, *h;

inti, k;

h = &;

cin >> k >> i;

cout << (k % j); cout << (i %=j);

}

Is the aboveg/A) a compile error,
(B) ambiguous (i.e., different outputs from different compilers) or
(C) neither AnorB ?

Fi gure 20: Exanpl er@®bl em

ting. This was measured by testing the nodel produced for a student on a
taken from the student which had not ¢sEen dgivenptediActi ve accuracy of the
nodel on such novel exanples was expected to be higher than sinply using tl
base with no nodificati ons. Second, even with a perfect nodel one may not se
in student performance. Though a nodel nmay be accwhabea ist ysreadi atiilig
reach a faulty conclusion, it may not Hoaw abla¢ tongl edi on was reached. The
only way to determne the utility of a nodel is to provide the student with
that nodel and measure any change in the student’s performance. QOur hypott
remedi ati on generated using nodebkserRsumbul dyrAsult in increased student per
formance over a control group which received no feedback. Additionally, i
that students who were nodeled with the benefit of a bug library would see
mance i ncreases over students who were nodeled without a library. Third, as
dent nodeling studies (Sleeman, 1987; Nicolson, 1992) we wanted to test
receiving feedback based on student nodels would conpare against students:¢
sinple form of reteaching feedback. In this case, the expectation was that
on nmodeling would result in greater post-test performance than sinple retea
Testing these three hypot heses was acconplished with three experinments: ¢
the effects of remediation, another to neasure the accuracy of nodeling ar
the utility of the bug library. In the next three sections each of these tes

5.1.1 Remedia tion with thé* TutoC

For the renmediati on test, students whot asedet @ediOsi ded into four groups. One
group received the full I==eefits ld fecond used nodel s forned wi thout the ber
fit of a bug library, the third received reteaching and the fourth was a c¢
had no feedback. The expectation was that these four groups would exhibit
formance on a post-test as the renediati on ssErgetdofnombéiglliBrary to
reteaching to no feedback

To test whetssertAcan i npact student performance, one needs to collect i
tion for each student that has certain characteristics. To begin with, dat
both before and after any feedback given to the student to detect any chang
Thus the™CTutor was constructed as a series of two tests with a renediati
bet ween. Secondly, the data from the two tests nust be equally representa
dent’'s capability and nust be collected in simlar ways. The only way to de
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information from the tutoring programto the student is to have both test
topics fromthe domain at simlar degrees of difficulty

To that end, a programwas witten to generate 10 exanpl e questions usin
format as follows. Since each questT dfutfaromarnédeCcl assified into one of thre
categories, the 10 questions were divided equally anong the categories: thr:
correctly labeled as conpilation errors, four were exanples of anbiguous
three were questions with no errors. This process was used to generate two
tions, both of which covered the same subset of the correct rule base. Thi
two sets of questions covered the sane concepts at the sane |evel of diffi
two questions were identical. These two sets of questions represented the
test to be given to each student. One set of questions was used as the pre-
dents, the other as the post-test, thus the same pre-test and post-test wa
dent. To discourage cheating, the order in which the 10 questions were
random zed. This neant every student answered the same two sets of question
difference was the feedback given between the pre-test and post-test.

Students were randomy assigned to four groups of 25, each of which rece
kind of feedback frdi TheolC One group of 25 received no feedback, acting
control group. This group was |abeled the “No Feedback” group. The other
were given feedback using explanations and exanples as described in Sect
ensure that the only difference between feedhagkear duigedbsak trlexei ved,
each group was given theogmatmef feedback; specifically, four exanples and f
expl anations for each student.

One feedback group received a form of automated reteaching. Specifying p
is meant by “reteaching” is extrenely inportant, as it can have a profoun
results of the experinent. Furthernore, reteaching nmethods vary, making it i
ify the exact approach used. For this experinment, the essential point was t
f eedback based on nodeling made any difference over feedback based on no no
To that end, we chose an automated form of reteaching which used no inform
student, not even which answers the student got right or wong. In such ¢
vacuum the option left for reteaching is to select at random from the rul ¢
tion. Thus, for the “Reteachissght gredgrt e four rules at random from the rt
base, and an explanation and exanpl e was generated for each rule.

The other two groups received feedback based on the nodels constructed f
fromhis or her answers to the pre-test questi onsss#ror Fohke” ggoapp)lthe “A
t he fuldseAr al gorithm was used to build the nodel and for the&Rrither group (t
NoBugs” group) orH yHER was used, i.e., no bug library informtion was givel
system For both these groups, bugs were selected for renediation based or
were found bmiER5 For thesekT- Full group, bugs fromthe bug library were g
preference to those faumaRbyi N order of their stereotypicality value. In
ASSERT- Ful | ansseRT- NoBugs groups, if fewer than four bugs were found, the re
of the feedback was selected at randomas with the Reteaching group.

Students were assigned to the four groups randsekty.Fubl nggotthe A
required a bug library, the first 45 students to take the tutorial were rand
AsSSERT- NoBugs, Reteaching and No Feedback groups. The nodels from these firs
dents were then used to construct a bug library. The renmaining 55 students

5. BNTHER orders its refinenments by preferring those which increase accuracy the nost with the
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Grou Aver age Aver age Aver age
P Pre-test Scor Eost-test Scor lacr easq
ASSERTFFuUIl 44 .4 67.6 23.2
ASSERF NoBugs 47.6 67.2 19.6
Reteac hing 50.8 58.0 7.2
No F eedbac k 54.8 56.8 2.0

Table 1¥*Qutor renediation test. Scores indicate percenta
swered correctly. ANOVA anal ysis on average increase resu
between all groups except dsekmwdan | A angseRT- NoBugs and

bet ween Reteaching and No Feedback

assigned to all four groups but at three tisErs Flld rgrt@up auithe A he num
ber of students assigned to all groups was even (25 students in each group)

Since the four groups of students each had a different average accuracy
and post-test, they were conpared usingrbhemaméenagecuracy between pre-
test and post-test. Also because each group consisted of different student
bet ween groups, significance was neasured using an ANOVA test. As the onl
bet ween groups was the feedback received, the significance test used was a
ANOVA test at the 0.05 level of confidence using Tukey's nultiple conpari
(Tukey, 1953). The average inmprovenent in performance for the four groups
Tabl e 1.

The results of the experinment confirmed nost of our expectations. As predi
age performance decreased as the feedback vssEredt&6roam bubl | Abrary to
reteaching to nothing. Moreoverssekpthult heandl tdserRTA NoBugs students
i mproved significantly nore than students in the ResssrhNo@ugsoupheFor A
i mprovenment over Reteaching is nmore that 12 percentagespertafs) | and for th
group, the average inprovenent is even greater.

It is inportant to be very clear about the results in Table 1. Note that
of variance anpbng the nean pre-test scores in the four groups. Though non
ences anong nmean pre-test scores is significant, their variance is a concerr
the significance of the differences in average increase from pre-test to p
this is precisely why the ANOVA test was run to conpare the significance. Whi
cluded from Tabl e 1 isserRThat yAe feedback based on a nodel oéntshe-student
ni ficantly increase performance. There are no clhowspubbweveeasasone

will get, whether the increase will always arise for every domain, how mu
depends upon the size of the pre-tesstsefata gbdehetpo #or what the perfor-
mance will be for other forms of nodeling or reteaching. What has been il u

aut omati c nodel i ng and feedback pesBermmednby eAd to significant performance
i mprovenents over feedback using no nodeling at all.

This is the nost inportant enpirical result fromthis ressarch. It ill us
can be used to build a tutorial that significantly inpacts student perforr
model s and bug libraries are automatically constructed using only correct
domain. Furthernore, it is another argument in favor of the use of student
shows (1) that they can have significant inpact over not nodeling at all and
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be constructed automatically without resorting to the tine-consumng task o
li brary of bugs.

5.1.2 Modeling P erf or mance using tieitor C

The second inportant question to answer is whether or not there is a corre
ability sdeErfh t 0 produce an accurate nodel and an inprovenent in student per
This requires testing the nodeling psssRorimanclet'o@oAri n, checki ng how

the various features of the algorithminpact the predictive accuracy of the
This can be acconplished using an ablation test format, inssgrrch various p
are disabled and the resulting systens conpared based on the accuracy of t
produce. There are two different configurasirrnsasnuskidchoA nodel i ng. The
first, which is | abstrrd FUAI ,” uses everything available to construct the noc
means referencing a bug library to create a nodified t heoryrHeRifadr i s then fe
further refinement. This nethod should produce the nost accurate nodels. The
ni que, | abel ssERTANOBuUgs,” skips the bug library amdTHeresOoel woil d

expect SgeRT- Ful | to out per$sarm MoBugs because of the additional information
the library.

In the™*Cdomain, only the data from the No Feedback group is useful for
test. This is because no renediation occurred between the pre-test and pos
dents in this group; thus, their 20 questions could be treated as a sing
training set and test set exanples could be drawn. These training-test sp
so as to be equivalently representative across the correct domain rules. Su
quality is inmportant to maintain so that any effects from nodeling with tF
mani fested in the test set. Therefore, the 20 exanples from the pre-test .
grouped into 10 pairs, where each pair consisted of the two exanples (one f
and one fromthe post-test) which covered the sane domain rule. Then, trai
splits were generated by randomy dividing each pair.

The result ﬁBspdSsible training-test set splits. For each of the 25 No F
dents, 25 training-test splits were generated, yielding 635rRyanples for c
Ful | andserT- NoBugs. Each system was trained with the training set and acc
measured on the test set by comparing what the system predicted with what t
the No Feedback group actually answered. The results are shown in Table 2.
pur poses, we al so nmeasured the accuracy of both an inductive |earner, using
ing and test set splits, and the correct domain rules. The inductive |earne
NEITHER wWith no initial theory, inewhkErhbwidsds Nul es by induction over the
training exanples using a propositional version of the FOL algorithm (Quirt
the correct theory no learning was perforned, i.e., the correct domain rul¢
out nodification to predict the student’s answers. Statistical significance w
a two-tailed Student t-test for paired difference of means at the 0.05 | eve

These results illustrate that the groups with signs$erantuyl bahter nodel s
ASSERT- NoBugs, are precisely the groups which perfornmed best after renediati
This is further evidence in support of the fact that npre accurate student
late directly to inmproved student performance via nore directed renediati«
reinforces the finding of other studies (Ourston and Mooney, 1994) that inc
are sinply not as effective as theory refinement in terms of accuracy

27



BAFFes & MonEY

Aver age

System Accur acy|
ASSERFFULL 62.4
AsserRFNoBugs 62.0
Correct Theory 55.8
Induction 49.4

Tabl e 2: Resul t§' flart @ nodeling test. The differ essEs- bet
Ful | andseErT- NoBugs are not significant (all others are

5.1.3 Bug Libr ar y Utility Test

However, note that the differences in Table 1 asgErRTaBlLEl 2absdehEen A

NoBugs are not significant. This means the use of the bug library did not sig¢
the performance of the student as expected, casting doubts as to its utilit:
bug library did no harmto post-test performance, and perhaps with nore dat
bet ween the two groups woul d i ndeed have been significant. Thus it woul d be
nmore about the conditions under which a bug library, as constructed aut
AsSsSerT, m ght be expected to inpact the nodeling process.

A series of tests designed to address this question, described in detail
can be summarized by the results shown in Table 3. This data was generated
abl ation tests like the one described in the previous section. In such at
sinmulated by nodifying a correct theory using six standard bugs selected |
plus additional random rule changes. The nodified theory was then used
“answers” for 180 feature vectors representing a hypothetical “nultiple-cho
answers were then passsRTt boAsee how well it could reproduce the nodified th
Once this was done for 20 students, resulting in 20 student nodels, the m
bined to build a bug library.

Table 3 is a conparison of three libraries constructed using this technic
i ng nunbers of sinulated students and varyi ng amounts of exanple answers pe
first library, denoted 20-180, was fornmed from 20 student nodels built w
exanpl e answers per student. The second library, 20-12, used 20 students
exanpl e answers per student chosen randomy for each student from anong th
bl e. The 100-12 library was built from 100 students answering 12 randomy
tions. Conceptually, these three libraries were designed to conpare t
conditions: a few students answering |lots of questions, a few students answ
tions, and a | arge number of students answering a few questions. This conpa
at answering the follow ng two-part questrRoraug( 1) bamei &s only effective
when students answer a | arge nunber of questions, or (2) can one expect eff«
ies to energe froma large nunber of students answering a nore reasonable n
tions. If wuseful bug libraries cannot be constructed from small student
utility ofssertAbug library is limted since one would still be tied to co
amounts of data on sonme students to construct the library. While npre st
al ways result in noreiadcuiduaddel s, it is inmportant to showltlhet- a good
tiveoug library can still be built over tine using |less accurate nodels as i

Part (a) of Table 3 conpares the three libraries based on size and on hov
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Libr ary Total Exampleg Commdn Total BYgs
Students per Studgnt Bugs|F ound in Libr
20-180 Libr any 20 180 all 6 29
20-12 Libr  ary 20 12 2 15
100-12 Libr afy 100 12 4 48
(a)

Accur acy using dif ferentstar ting Bug Lili)r

System 20-12 Libr  afy 100-12 Libr  afy20-180 Libr  afy
ASSERTFFuUIl 68.7 79.4 84.8
ASSERFBugOnNl y 68.6 79.9 84.6
ASSERFNoBugs 67.6 69.8 68.2
Correct Theory 63.1 63.5 62.6
Induction 254 26.0 23.9

(b)

Tabl e 3: Conparison of bug libraries. Part (a) conpares
total number of bugs found, part (b) conpares accuracy

standard bugs were found. The 20-180 library performed the best, finding a
bugs. By contrast, the 20-12 library, which used the sane nunber of student
data per student, contained only two of the six compn bugs. That result
fied—by drastically reducing the amount of information on each student, i ndi
much less likely to be found and thus much less likely to end up in the bug
note that the 100-12 library contained four of the six common bugs, which
ment over the 20-12 library. Consequently, even though having smaller anour
student reduces the chances that a common bug will be found for any givi
increasing the nunmber of students inmproves the l|ikelihood that the bug w
some student. Again, this is not too surprising when one conpares the tota
pl es used to build the student nodels which served as input to the three I|i
180 library there were 3,600 total exanples, whereas the nodels used for
built with only 240 total exanples. The 100-12 library, with 1,200 exan
bridges the gap in total exanples and in nunber of comon bugs found.

However, note that the total overall size of the 100-12 bug library is |z
three libraries. In fact, the 100-12 library has the | owest ratio of commoi
inthe library. This dilution is a potential problemwhen the bug library
nmodel i ng efforts. Recall from Section 4.2 that the bug library is treated ¢
refinenments which is traversed in an effort to inmprove the accuracy of the r
is passed BIGH®MR Increasing the size of the bug library wi dens the search
potentially less likely that the common bugs will be selected, which could,
t he nmodel i ng accuracy.

This concern is addressed in Part (b) of Table 3 which shows results fro
tests aimed at determining if the ratio of common bugs to library size is d
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of nodeling accuracy. For these tests, a new crop of sinulated students v
each ablation test was run with this same set of students, varying the buc
student only 10 of the 180 exanples were used for training, |leaving the r«
testing. As the nunbers in the table show, the 20-12 library results in alm
for SERT- Ful | andsefT- BugOnly (which used just the |ibreamERM tdsout N
opposed t es#T- NoBugs. By contrast, when the “better” bug libraries are usec
racy ofsserT- Full andsefT-BugOnly is significantly better, with the 20-180 |
perform ng the best. Even the 100-12 library, with its low ratio of conmor
size, resulted in a significant performnce s$sgr-oveinentnd&sErT-A
BugOnl'y

This inmplies that a bug library can be increnentally inmproved as nore st
with the system even if the student interaction is noderate, resulting in
eling. And as the data from Table 1 and Table 2 shows, nore accurate nodel ¢
renedi ati on and i nproved student performance. Recall, also, that in the rer
Section 5.1.1 the bug library was constructed using data fromonly 45 stude
more students interact Wi fTutbheb@ taking tests that cover different subset
correct domain rules, it seenms likely that a better bug library could be
woul d lead to nore accurate nodeling and, in turn, better post-test perforn

5.2  Subjecti ve Ev alua tion

Student Response to the Tutor ia

Perhaps the nost difficult topic to neasure objectively is an evaluation o
dents enjoyed using the tutorial and whether they felt the experience was t
vast majority of students whd' Usedrt hdeCresponse was positive. Many studen
made an unsolicited effort to express an appreciation for the opportunity |
Several students outside of the experinmental group heard about the experine
use the tutor to refr'ésbki hesr There were even a few students who expressed
poi ntnent that the tutorial did not cover nore materi al

On the negative side, students conpl ai ned about their inability to back t
test and post-test to change answers, which was not allowed by the interfac
cially true during the early part of the pre-test, when students were sti
selves with the interface. Also students expressed a boredom with redun
showed up in the explanations during renediation. Many students had nul
detected in sinmlar parts of the rule base. As a result, the chains of rule
to generate an expl anati on overlapped, resulting in duplications in explana
probl ems could be easily fixed to make the interface nore robust.

But perhaps the nost inmportant factor responsible for the positive respo
that the feedback given to the student avoi ded negative |anguage as much
course, the student was told which questions he or she got wong, but the e
wrong answers did not focus on the student’s m stake. Instead, the expl anat
correct reasoning, followed by an erroneous counter exanple which | ooked I
the student might msclassify, and explained why the counter exanple was
rat her than saying sonething like “here’'s what you did wong” the syster
“here’s the right way to do sonething and, by the way, here’s an answer whi
the follow ng reasons.” This inpersonal style of feedback may have made it
student to accept the tutor’s evaluation. And finally, by giving the student
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to performvia the post-test, students were able to apply what they had |
average case, achieve a nuch better score. Such a concrete sense of inprov
al so contributed a great deal to the positive student response.

“Cor r ectness” of the Bug Libr ary

In the sinulated student tests, the correctness of the contents of a bug |
sured directly by counting how many of the six commopn misconceptions ende
library. Wth"tAat@Gr domain this is not possible, since there is no a prior
about what the common nisconceptions night be. However, one can perform a
evaluation with a domain expert to determ ne whether or not the bugs ar«
expl anati ons of why students made their nistakes. This was done by consulti
tor for the course with the result that sone of the bugs did, in fact, app
For exanple, several bugs in the library represented m ssing conditions, cr
erroneous constant declarations, which the instructor felt students typi
l'i brary al so contai ned bugs capturing the notion that students failed to u
| ogi cal operators “AND’ and “OR’ were full{, ewsl udteed rist rQct or suspect ed.
While this is an adnmittedly weak evaluation, it does at least illustrate
ended up in the library could comunicate information about trends in st
whi ch made sense to the instructor.

5.3 Summaty of Results

To recap, the main result presented in thi Ssedraptesr swaswnt at shAgni fi-
cantly inmprove student performance in a test involving 100 coll ege |eve
C** Tutor devel oped s#ERh. AFurthernore, it was shown that those students for
ASSERT was able to construct significantly better nodels were the students
mance i nproved the nost. And while the use of a bug library did not signifi
student performance, additional evidence was presented denonstrating the
the contents of the library could inprove over tinme so as to significantly
eling process. This enpirical evidence supports the two principal clains of
that automatically constructed refinenment-based nodel s can be used to signifi
student performance and (2) that a bug library can be constructed autonati
that can enhance refinenent - based nodel i ng.

6 Discussion

Several inportant issues have been raised by this research that nust be em
pl ace the work into a proper context. The first issue concerns the type of
nmodel ed. Unlike the previous nodeling efforts, which focussesm ipsocedural t:
desi gned for use in classificati on domains. As an exanple of this difference
student nodeling efforts have focused on the domain of witing conputer pri
and Gol dstein, 1977; Soloway et al., 1983; Soloway and Johnson, 1984),
research was tested using a classification task where students were asked t
rectness of program segnments. This tie to classification domains is largely
the nost mature theory-refinenent al gorithns devel oped thus far are designed
tion and is not a limtation of the genesakr fpeamsmar kKSmf fAr instance, as
first order |logic refinement nethods arsserenttancelne updated accordingly
enabling it to address a w der range of applications than iB-currently pt
THER'S propositional Horn-clause representation. O, if refinement algorithr
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using entirely different know edge representations, tdserRaparoacd t aken by
applied to those domains as well. However, it is not imediately clear how
to mapSBERT to a procedural domain.

Shifting the focus of nodeling to a concept-learning enphasis is not |
O her researchers, nost notably G lnmore and Self (Glnore & Self, 1988), h
the potential of using machine learning for tutoring conceptual know edge.
recent trade journal survey of applications for conputer-based training ind
commerci al products are currently available for constructing conputer-basec
cations (IDS, 1990) in which concept learning is a primary task. Concept |e
fairly well explored pedagogy (Dick & Carey, 1990) and effective techni ques
to incorrect student classifications are already extant in the literature
1980). Thus a general technique for nodeling in concept donmains has a w de
potential for comrercial inpact, and can be coupled with instructional tect
be effective in the presentation of conceptual material (Tennyson, 1971).

The second issue of inportance is the cofipduit®soneaperheeGts to previ-
ous studies performed on the utility of student nodeling. Mich of the conti
dent nodeling stens from a popular belief that detailed student nodels ¢
difficult to build and yet result in little or no practical value. In tru
studies are few in nunber and have reached di sparate concl usi ons: one shows
ing to be ineffective (Sl eeman, 1987), another shows that nodeling can ind
tive effect (Nicolson, 1992). Both of these studies used a bug library app
extensive library was built by hand rather than saerromurddidrynoae,in A
bot h previ ous studies conpared reteaching and nodel i ng using the questions
answered incorrectly, whefeadmittone réteachi ng method was divorced fromall ¢
dent input to isolate the effects of the automati’¢ Twel i cgnndhubethe C
seen as a direct conparison to previous experinments. In can and shoul d, hov
evi dence that effective student nodels can be constructed automatically w
tively inpact student performance.

Which leads to the third inportant issue; nanmely, the kind of nodeling dc
in which it is used. The enpirical results here show sinply that automatic
a significant inmpact on student performance. This says nothing, however, at
model s one ought to build nor about the best way to use them For exanpl e,
equal l'y significant results could be achieved by using a far sinpler nodel
that far better results coulsderr inedirsomfAt he student were all owed nore cor
trol over the nunber or type of counter exanples presented as feedback. |
si gni ficant featursssrofark that it is a general - purpose nmethod, that it work:
ically, and that it can enhance student performance.

7 Conclusions

I n concl usi a8ERTAi S a general - purpose nethod for constructing student nodel
whi ch operate in concept learning domains. It is able to construct student
and automatically, catching both expected and novel student behavior. It is
system whi ch can construct bug libraries automatically using the interactio
dents, without requiring input fromthe author, and integrate the results

efforts. Finally, the enpirical evidence presented supports the two princi
research: (1) that automatically constructed refinenent-based nodels can be
cantly increase student performance and (2) that a bug library can also be
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Appendi x A. "€ Tut or Domai n

Domain F eatur es:

poi nter:
i nt eger:
pointer-init:
integer-init:
poi nter-set:
i nt eger-set:
mul ti pl e- oper ands:
position-A:
operator-A-|azy:
| azy- A-1 eft-val ue:
on- oper at or - A- si de:
on- oper at or - B- si de:
operator-A:

aut
oper at or - B:

aut

(const ant
(const ant

(nor mal

non- const ant absent)
non- const ant)

(true false)
(true fal se)
(true fal se)
(yes no through-pointer)
(true false)

(AND OR)

(non-zero zero)
(left
(left

right)
right)

left-lazy right-1azy)

(assign nodify-assign mat hemati cal | ogical conparison

o-incr)

(assign nodi fy-assign mat hematical |ogical conparison

o-incr)

Correct Domain  Theor y

constant-not-init
const ant - assi gned

conpil e-error <
conpil e-error <
constant-not-ini4¢
constant-not-ini4¢
const ant - assi gned
const ant - assi gned
const ant - assi gned
anmbi guous <
oper ands- 1| i nked <
oper ands-Iinked <
oper and- A-uses <
operand- A-sets «

oper and- A- eval uat¢ ed posi ti on- A normal )

(poi nter
(i nteger
(i nteger
(i nteger
(poi nter

const ant)
const ant)
const ant)
const ant)
const ant)

(pointer-init fal se)

(integer-init false)

integer-init (integer-set yes)
integer-init (integer-set through-poir
pointer-init pointer-set

mul ti pl e-operands operands-1|inked
oper and- A-uses operator-B-sets
oper and- A-sets operator-B-uses

oper and- A- eval uat ed oper at or- A-uses
oper and- A- eval uat ed operator-A-sets

operand- A-eval uat ed position-A |left-1azy)

oper and- A-eval uat ed position-A right-lazy) |lazy-A-full-eva
(operator-A-l1azy AND) (lazy-A-left-value non-zero)
(operator-A-lazy OR) (lazy-A-left-value zero)
(on-operator-A-side right)

(on-operator-A-side left) (not (operator-A assign))
(operator-A auto-incr)

(on-operator-A-side left) (operator-A nodify-assign)
(on-operator-A-side left) (operator-A assign)
(on-operator-B-side right)

| azy- A-full - evalc«
| azy- A-full - evalc«
oper at or - A-uses «
oper at or- A-uses
operator-A-sets
operator-A-sets
operator-A-sets
oper at or - B-uses

A A A A A
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oper at or- B-uses
operator-B-sets
operator-B-sets
operator-B-sets

(on-operator-B-side left) (not (operator-B assign))
(operator-B auto-incr)

(on-operator-B-side |eft) (operator-B nodify-assign)
(on-operator-B-side | eft) (operator-B assign)

A A A A
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