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Abstract

Learning Bayesian networks inductively in the presence of hidden variables is still
an open problem. Even the simpler task of learning just the conditional probabilities
on a Bayesian network with hidden variables is not completely solved. In this paper,
we present an approach that learns the parameters of a Bayesian network composed of
noisy-or and noisy-and nodes by using a gradient descent back-propagation approach
similar to that used to train neural networks. For the task of causal inference, it has
the advantage of being able to learn in the presence of hidden variables. We compare
the performance of this approach with the adaptive probabilistic networks technique on
a real-world classification problem in molecular biology, and show that our approach
trains faster and learns networks with higher classification accuracy.

1 Introduction

Specification of a Bayesian network requires both the specification of the structure of the network,
as well as a set of parameters associated with the variables in the network. Thus, the task of
learning a Bayesian network can be divided into two subtasks: one of learning the structure of the
network, and the second of determining the parameters. Within the general framework of inducing
Bayesian networks, we can envision the following scenarios.



1. Known structure, fully observable: In this scenario, the structure of the network is given and
assumed to be completely correct, and the data includes observations of all the variables in
the network. The task here is to learn the parameters of the network from data.

2. Known structure, hidden variables: Here again, the structure of the network is given and
assumed to be correct. The data, however, does not include observations of every variable in
the network. The variables whose observations are not specified in the data are called hidden
variables. Again, the task is to induce the parameters of the network. However, the task is
more complicated in this case due to the presence of hidden variables.

3. Unknown structure, fully observable: In this case, neither the structure, nor the parameters
of the network are known. We can, however, assume that the only variables in the network
are those that are included in the data. The task here is to learn both the structure and the
parameters of the network.

4. Unknown structure, hidden variables: This is the most general learning problem where the
structure of the network is unknown and there are hidden variables.

The first of these is fairly straightforward. A common approach is to use the maximum likelihood
estimates for the parameters, which in the case of no hidden variables, reduces to a function of the
relative frequencies of occurrences of the values of the variable (Spiegelhalter & Lauritzen, 1990).

The problem of learning the parameters for a network with a given structure, in the presence
of hidden variables, has also received some attention. Many statistical techniques like Gibbs sam-
pling (Geman & Geman, 1984) and EM (Dempster, Laird, & Rubin, 1977; Lauritzen, 1995) can be
used in the context of Bayesian networks. APEM (Thiesson, 1995) is a statistical technique that
combines EM and gradient descent approaches to learn the parameters of a network. APN (Russell,
Binder, Koller, & Kanazawa, 1995) is an approach that optimizes the probability of the data given
the network using a gradient descent algorithm.

The learning problem addressed by Cooper and Herskovits (1992) falls in the third category.
Their technique is to use a scoring metric to hill climb through a space of possible Bayesian networks
to find one that is the most probable given the data. A number of variations and improvements to
this approach have since been proposed (Buntine, 1991; Heckerman, Geiger, & Chikering, 1994;
Provan & Singh, 1994).

The fourth scenario above, namely that of learning a Bayesian network with hidden variables
and an unknown structure, is by far the most difficult and the least studied. Most of the above
techniques could be adapted to discover hidden variables, but at a great cost involving brute force
search. Connolly (1993) has proposed using clustering techniques (Fisher, 1987) to discover hidden
variables. However, this technique can only learn tree structured networks. Iigure 1 summarizes
these learning scenarios and the techniques that handle them. (Heckerman, 1995) provides a good
tutorial on the state-of-the-art with respect to learning Bayesian networks.

Thus, while researchers have a grasp on some aspects of learning Bayesian networks, the problem
of inducing Bayesian networks with unknown structures and hidden variables still poses a tough
challenge. Within the field of machine learning, theory revision techniques like those proposed
by Ourston and Mooney (1990), Towell, Shavlik, and Noordewier (1990), Mahoney and Mooney
(1993) have been successful in addressing similar issues for learning various kinds of traditional rule
bases. Theory revision is based on the idea that, when only limited data is available, biasing an
inductive learner with an existing imperfect knowledge base can improve learning by focusing the
search through the hypothesis space. The more complex the domain, the more the advantage of such
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Figure 1: Bayes-Net Learning Scenarios

a bias. There has been some research on revising Bayesian networks. Lam and Bacchus (1994)
have a technique for incrementally refining a Bayesian network using the Minimum Description
Length principle (Rissanen, 1978). Buntine (1991) has proposed a technique for revising a Bayesian
network efficiently, using scoring metrics similar to that proposed by Cooper and Herskovits (1992).
However, neither of these techniques can revise networks with hidden variables.

The larger goal of our research is to use a theory revision approach to learn Bayesian networks
with hidden variables. From the perspective of the four learning scenarios outlined earlier, this
problem lies somewhere between scenarios 2 and 4. Thus, we assume that the learner is given a
Bayesian network that may be incomplete or incorrect. We also assume that the learner is provided
with data that may not include all of the variables in the network. The task is to use the data
to improve the predictive accuracy of the network, modifying both it’s parameters and structure

(adding hidden variables if needed).

Since general Bayesian networks are impractical for many large problems because the size of the
conditional probability tables grows exponentially in the fan-in of a node, we focus on the problem
of learning networks with noisy-or and noisy-and nodes (Pearl, 1988; Pradhan, Provan, Middleton,
& Henrion, 1994). These are specialized models for representing dependencies that only require a
linear number of parameters. We specifically chose these models because they are close to logical
ors and logical ands, thus making it possible to use knowledge expressed in the form of logical
rules as an initial theory. Using such nodes, a knowledge base originally expressed as rules can
be mapped to an analogous Bayesian network and refined to improve its accuracy. Many existing
knowledge bases are written in the form of rules, and many experts have become comfortable with
this formalism. However, results in theory revision show that the accuracy of such rule bases can be
dramatically improved by mapping them to a representation that employs some form of uncertain
reasoning or numerical summing of evidence (Towell et al., 1990; Baffes & Mooney, 1993; Mahoney
& Mooney, 1993). This approach also provides a very straight-forward way of biasing a Bayesian
network learner with some prior knowledge.



An essential component of such a theory revision approach is an efficient technique that can
revise the parameters of a Bayesian network composed of noisy-or/and nodes in the presence of
hidden variables. In this paper, we present BANNER, a technique that revises the parameters of
a network by using gradient descent to minimize the mean squared-error between the measured
and computed values of certain output variables. In addition to being restricted to noisy-or/and
nodes, it only works on problems where the inference is causal (i.e. from cause to effect). Thus, it
can only learn networks whose root causes are specified as evidence, and whose leaves are specified
as outputs. Furthermore, it can only be applied to networks in which every loop involves an
instantiated piece of evidence, i.e. an input. The reason for these restrictions will become clear
when we present the details of the algorithm.

We then compare the performance of BANNER with two other techniques for parameter revision
on a real-world learning problem of DNA promoter recognition (Towell et al., 1990). These are:

1. Adaptive Probabilistic Networks (APN) (Russell et al., 1995): This technique uses
gradient descent to learn a network that optimizes the likelihood of the given data being
generated by the network. This is a general algorithm that does not place many restrictions
on the kinds of distributions it can learn. In fact, this is one of the reasons why we picked
this algorithm for comparison.

2. Conditional APN: APN learns to optimize the likelihood of the entire data being generated
by the network. However, as pointed out by Friedman and Goldszmidt (1996), such an
approach may not lead to the best classifier. This is an important consideration when a
Bayesian network is being learned to serve as a classifier. So, we have implemented a system
called C-APN which uses APN to learn a network that is optimized to estimate the probability
of certain class variables given some evidence. Since it is based on APN, it is just as general.

The approach is also compared to a “naive” Bayesian classifier and a previous rule-based revision
system that has the currently best known performance on this task (Mahoney, 1996).

We begin with a description of the details of BANNER, APN and C-APN. This is followed by
a discussion of the experimental evaluation of these techniques. We conclude with a discussion of
where we hope to take our research in the future.

2 Overview of BANNER

The learning algorithm used by BANNER is analogous to the standard backpropagation algorithm
used to train a multi-layered feedforward network (McClelland & Rumelhart, 1988). It uses gradient
descent to minimize the mean-squared error between the measured and computed values of certain
output variables. The algorithm is as follows:

1. Initialize the parameters of the network either randomly or based on some prior knowledge.
2. For every example in the training data

(a) Place the evidence on the network and propagate the beliefs through the network.
(b) Compute the mean squared-error at the output nodes.

(c) Back-propagate the gradient and the errors from the output nodes to the evidence
nodes.



(d) Modify the parameters based on the errors and gradients.

3. Repeat Step 2 for several cycles until a desired level of training performance is reached. Each
cycle through the entire data set is called an epoch.

In the following subsections, we discuss the forward propagation and the backpropagation phases.
This is followed by a discussion of step 3, i.e. the criteria used to decide when to stop training.

2.1 Forward propagation for noisy-or and noisy-and nodes

A noisy-or node in a Bayesian network is a generalization of a logical or. As in the case of the
logical or, an event X is presumed to be false if all the conditions that cause X are false. However,
unlike a logical or, if one of the causes of the event X is true, it does not necessarily imply that X
is definitely true. Each condition C; causing the event X can be thought of as having an associated
inhibitory influence which is active with a probability g;. Thus, if C; is the only cause of X that
is true, then X is true with a probability (1 — ¢;;). Moreover, the likelihood of X is a monotonic
function of the number of its causal conditions that are true. The parameter ¢;; = 1 — ¢;; is the
degree to which an isolated cause C; of an event X can endorse the event.

Given some evidence, the ¢;, associated with each link to a node X from each of its parents,
and the belief measures of all the parents of X, there is a simple equation for calculating the degree
of belief that X is true. Under the assumption that all the evidence in the network is causally
upstream of the node, the degree of belief in a node X is given by:

L = cizmix) ifz=0
Bel(z) = ! . 1
el(w) { 1-TL( —epmix) fz=1 (1)
where 7;x is the degree of belief in the truth of the i-th parent of X. Thus, the number of parameters
that have to be specified for a noisy-or node is linear in its fan-in. Given some data, the learning
task is to learn these parameters such that the prediction accuracy of the network is optimized.

A noisy-and node is the dual of a noisy-or node. It is a generalization of a logical and. Each
causal link between C; and X has associated with it a parameter ¢, that specifies the degree to
which disproving the event C; disproves X. The belief measure of a noisy-and node X, given some
evidence, the ¢;, associated with each link to X from its parents, and the belief measures of all the
parents of X, is given by

1 -TLA=ep(l —=mx)) ifz=0
Bel(e) = { L~ en(l o my)) it =1 @)

where m;x is the degree of belief in the truth of the i-th parent of X. Here again, the assumption is
that all the evidence in the network is causally upstream of the node.

Note that, since the belief that a variable is true and the belief that the variable is false are
complementary, learning a good estimation of one leads to a good estimation of the other. Thus,
our problem reduces to that of learning a network that best estimates the probability that the
output variables are true given some evidence.



2.2 Backpropagation

Once the mean-squared error is computed for the output nodes, it is propagated back through the
network. The gradient to be applied to each of the parameters is computed based on these errors.
The mean squared-error function is defined as:

Elw]=1/232(¢! - O1)? 3)

where ¢/ is the value of the i-th output node for pattern u of the data and O! is the actual value
of the i-th output variable for the same pattern.

The gradient is computed by incorporating the belief functions for noisy-or/and nodes (Equa-
tions 1 and 2) into the error function above and taking its partial derivative with respect to the
parameters. This results in the following gradients for the noisy-or and noisy-and nodes:

Acoi — 16i0; [T (1 = cxiOk) (for Noisy-or) n
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where

7 is the learning rate,

d; is the error propagated back from the output nodes to node 7,

O; is the computed belief that the jth parent of 7 is true, and

cj; is the parameter on the link between node i and its jth parent. The error that a node ¢
propagates to its parent j is:

5 — =8;¢ji [Tz (1 — €iOk) (for Noisy-or) (5)
T dicsi Tz (1 = eri(1 = Ok))  (for Noisy-and)

where

d; is the error at node ¢,

O; is the belief that the j parent of 7 is true, and
cj; is the parameter on the link node 5 to node <.

The computations presented here and in the previous subsection lead us to the reason why
BANNER is limited to causal inference and allows only certain kinds of loops. Since the gradients
are based on Equations 1 and 2 which were derived based on the assumption that the inference is
causal, they would not be appropriate for diagnostic inference. Moreover, the functions for forward
propagation shown above are no longer applicable in the presence of loops, unless the loop contains
an instantiated variable that can break the loop. Since in the case of BANNER, all the evidence is
placed at the roots of the network, and the roots of a network can break loops when instantiated,
BANNER is applicable to networks in which every loop contains an instantiated evidence node.

2.3 Stopping Criteria

Knowing when to stop training is one of the crucial aspects of a gradient descent training algorithm.
If the network is not trained enough, then it will not learn the training data effectively and hence
may not be able to generalize well. However, if it is trained for too long, it may over-fit the training
data and therefore lose out on generalization. In order to avoid overfitting, we use 10-fold internal
cross-validation to determine when to stop training. Thus, each set of training data is further split
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into internal training and test sets (in the ratio 90% to 10%). The network is trained on the reduced
training set, and the generalization performance on the internal test set is monitored at the end
of each epoch. This is done for ten different internal splits of the training data, and the average
generalization error is computed for each epoch. The number of training epochs that shows the
least average generalization error is picked as the number of epochs needed to train the network on
the full training set.

3 APN and C-APN

Having discussed BANNER in detail, we now move on the other two learning algorithms under
consideration. Russell et al. (1995) proposed APN as a technique to learn the parameters of a
Bayesian network with hidden variables. It uses gradient descent to optimize In P, (D), i.e. the log
of the probability assigned by the network to the data when the parameters are set to w. Equation
6 shows the gradient. APN was shown to be effective in learning the parameters of a network that
models the task of car insurance risk estimation. However, that example did not involve noisy-or
nodes, which is what this comparison is concerned with. Moreover, their experiment used artificial
training data generated from an actual network built for this task. Our experiments evaluate
performance of the techniques on a problem set where the training data is generated independent
of the network being learned. Although, the authors do not report any results on noisy-or models,
they point out how their technique can be extended to compute gradients for noisy-or parameters.
Our implementation of APN, built on top of IDEAL (Srinivas & Breese, 1993), can handle noisy-or
and noisy-and nodes in addition to general discrete-valued, probabilistic nodes. !

(6)

Owijk Wik

dlnP,(D) i Py (x5, uir | Dr)
=1

where

m is the number of training instances,

z;; is the jth possible assignment to variable X;,

u;k is the kth possible value assignment to the parents of X,

w;; is the probability that variable X; takes on its jth possible assignment given that its parents
U; take on their kth possible assignment.

While APN optimizes the probability assigned by the network to the data as a whole, some-
times it may be desirable to optimize the classification accuracy of the network, specially when
the Bayesian network is being trained to be a classifier. Friedman and Goldszmidt (1996) have
experimentally demonstrated the advantage of using this approach to maximize classification ac-
curacy. Specifically, the learning algorithm should try to learn a network that best estimates the
probability distribution of the class variables conditioned on some evidence or attributes. Thus,
the function to be optimized is In P,,(C' | E), which is the log of the conditional distribution found
in the data of certain class variables C', conditioned on some evidence F. In order to see how APN
can be used to optimize this metric, note that by applying Bayes law we get

InPy(C | E) = i In Py (Cy | E) (7)
=1

'When contacted, the authors of APN were unable to release their implementation.
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= Y (InPu(Ci, Er) — In P, (EY))
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where m is the number of training instances. Therefore,

OlnP,(C|E) i((’)lnPw(Cz,Ez) _ 0ln Py (Ey)

=1

(8)

Owijk 8wijk 8'1[)2']‘1C

Thus, for each training example /, the gradient to optimize In P, (C; | F;) can be computed by
first computing the gradient wrt. In P, (C}, E) using APN, and then computing the gradient wrt.
In P, (E;) using APN, and taking their difference. This is the procedure adopted by C-APN, which

can also handle noisy-or, noisy-and as well as general probabilistic nodes.

4 Experimental Evaluation

The standard practice in the field of learning Bayesian networks is to generate data from a pre-
specified network and then try to use the data to re-learn the original network. The performance
of the learning technique is evaluated by directly comparing the learned network to the original.
However, in real-world applications the “correct” network is not known. Recently, there has been
growing interest in using evaluation functions such as classification accuracy to demonstrate the
effectiveness of techniques for learning Bayesian networks (Friedman & Goldszmidt, 1996; Russell
et al., 1995). In our experiment, we follow the standard methodology used to evaluate machine
learning methods, i.e. that of studying the effect of training by determining the classification
accuracy of the trained network on a separate test set. We use a real-world classification problem
of DNA promoter recognition (Towell et al., 1990) to evaluate the learning algorithms. This problem
comes with an initial domain theory (rule base) provided by a domain expert and independent data
for use in training and testing. As described below, we use the initial domain theory to provide
the structure and initial parameters for a Bayesian network. Our experiments also compare the
performance of BANNER with those of APN, C-APN, and a naive Bayesian classifier on this problem.
Naive Bayes learns a simple single-layer Bayes net and has been shown to perform quite well on
many real-world classification problems (Langley, Iba, & Thompson, 1992; Friedman & Goldszmidst,
1996).

4.1 DNA Promoter recognition

Figure 2 shows the initial expert rules for recognizing a DNA promoter sequence. There are 57
input features called nucleotides, each of which can take on one of four values, A, G, T and C. The
target class, promoter, predicts whether or not the input DNA sequence indicates the start of a
new gene.

Figure 3 shows a portion of the Bayesian network corresponding to this theory. All the logical
ands in the domain theory are mapped onto neisy-and nodes and all the logical ors are mapped

onto noisy-or nodes. Each 4-valued input feature has been converted into four binary-valued

2

features.” This network was translated into a neural network as described earlier. The initial

2We use binary-valued nodes because the noisy-or and noisy-and nodes are binary-valued. However, there
have been recent extensions that allow multi-valued noisy-or nodes. BANNER cannot handle these kinds of
extended noisy-or nodes.



promotor <— contact, conformation

contact <— minus_35, minus_10

minus_35 <- (P-36 T), (P-35T), (P-34 G), (P-33 A), (P-32C).

minus_35<- (P-36T), (P-35T), (P-34G), (P-32C), (P-31A).

minus_10 <- (P-14T), (P-13A), (P-12T), (P-11 A), (P-10A), (P-9T).

minus_10 <- (P-13T), (P-12 A), (P-10 A), (P-8T).

minus_10 <- (P-12T), (P-11A), (P-7T).

conformation <- (P-47 C), (P-46 A), P(-45 A), (P-43T), (P-42T), (P-40 A)
(P-39 C), (P-22 G).

conformation <— (P-45 A), (P-44 A), (P-41 A).

conformation <- (P-49 A), (P-44T), (P-27T), (P-22 A), (P-18T), (P-16T),
(P-15 G), (P-1A).

conformation <- (P-45 A), (P-41A), (P-28T), (P-27T), (P-23T), (P-21A),
(P-17T), (P-4T).

Figure 2: DNA Promoter Recognition - Initial Domain Theory

PROMOTER

Noisy-And

Noisy-And

Figure 3: DNA Promoter Recognition - Bayesian Network
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Figure 4: DNA Promoter Recognition - Predictive Accuracy

weights were all set to random values between to 0.90 and 0.99 to mimic the initial logical theory.
Some randomization is necessary to break the symmetry for better convergence.

The data consisted of 106 patterns (53 positive and 53 negative examples). All the input
variables (P-50 ... P7) were completely known and specified. The values of the output variable
(promoter) was also given for each pattern. The values for the hidden variables (e.g. minus-10)
were not given. The data was split into training and test sets of varying sizes. Figure 4 shows the
resulting learning curve. This graph is a plot of the average accuracy of the network at classifying
DNA strings over 25 different random training/test splits. As mentioned earlier, BANNER used
10-fold internal cross-validation on the training set to determine the stopping point for each train-
test split. However, we were unable to do this with APN and C-APN due to time limitations.
Therefore, for these two techniques, all networks were trained uniformly to 300 epochs. Also, due
to time limitations, the current results for APN and C-APN are averages over only 10 trials.

The learning curves clearly demonstrate that our technique is successful at learning a network
with a high classification accuracy. They also show that BANNER outperforms APN and C-APN
significantly. It also performs better than naive Bayes. RAPTURE (Mahoney & Mooney, 1993,
1994) is a system that uses a connectionist approach to revise certainty-factor rule bases. Among a
number of theory-revision systems that have been evaluated on this problem, RAPTURE currently
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has the best performance. Thus, although BANNER is effective in achieving high classification
accuracy, there is still some room for improvement. However, BANNER generates a theory in the
form of a Bayesian network, which has more clearly defined semantics than a certainty-factor rule
base.

4.2 Discussion of Results

There are two issues that we hoped to address with our experiment. The first issue is: given
a classification problem to be modeled as a Bayesian network of a given structure, which of the
three techniques produces better results (measured in terms of classification performance on unseen
cases)? For the problem discussed here, BANNER produces better networks than APN or C-APN.
However, this difference in accuracy on the test data could be in part due to a difference in accuracy
on training data (Figure 5). APN and C-APN show relatively poor training accuracy, which is
reflected in their generalization performance. An obvious solution is to let the networks train
longer until they converge on the training data. However, both APN and C-APN were found to be
very slow, which made it infeasible to train the networks longer. For instance, it took 15 hours (real-
time) for C-APN to train a network for 300 epochs on 90 example on an UltraSparc, whereas it only
took 90 seconds for BANNER to do the same. This is also the reason why it was infeasible to perform
internal cross-validation to determine the stopping points for APN and C-APN. Of course, these
algorithms are slowed down to some extent because of the underlying Bayesian network simulator
that our implementation uses. However, real time aside, BANNER was also found to converge with
many fewer epochs than APN or C-APN. For instance, BANNER needed an average of 30 epochs to
converge on 90 examples, whereas APN and C-APN could achieve less than 80% training accuracy
even when trained up to 300 epochs. Since both approaches are performing gradient descent,
the results imply that the error-space navigated by BANNER is more well-behaved (less plateaus
and local minima) than that navigated by APN. By restricting itself to certain kinds of network
structures, BANNER is able to directly exploit the computations involved in the Bayesian inference
process, which in turn exploit the fact that noisy-or/and parameters combine linearly. This could
also partly explain why BANNER is able converge much more quickly than APN or C-APN.

The second issue is whether or not it is better to train a network specifically for classification
in order to get better classification performance. Our experiments do not yet provide a completely
definitive answer on this issue. While BANNER, which trains for classification accuracy does perform
better than APN, C-APN seems to do worse. However, it should be noted that C-APN performs
worse than APN on the training data, which could partly explain its poorer generalization. It
would be interesting to compare APN and C-APN on a smaller problem where training time would
not be an issue.

5 Related Work

The problem of learning the parameters of a Bayesian network from data has attracted attention
in the recent years. Several researchers have studied this problem and offered interesting solutions.
However, previous methods have limitations that prevent them from being effective on problems
like those considered in this paper.

Learning the parameters is fairly straightforward when all the variables of the network are
represented in the data. A common approach is to use the maximum likelihood estimates for the
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Figure 5: DNA Promoter Recognition - Training Accuracy

parameters, which in the case of no hidden variables, reduces to a function of the relative frequencies
of occurrences of the values of the variable.

In the case of data that is missing some values, approximation methods like Giibbs Sampling (Ge-
man & Geman, 1984) and EM (Dempster et al., 1977; Lauritzen, 1995) have been proposed. Both
these methods require some initialization of the parameters and data for the missing variables. The
complete data is then sampled to compute new values for the parameters. These steps are repeated
until some convergence criteria is met. The goal of these methods is to optimize the likelihood of
the data given the network. APEM (Thiesson, 1995) is a technique that combines traditional EM
with gradient descent methods for faster convergence. Preliminary experiments with using APEM?
on the DNA promoter recognition problem did not yield encouraging results (Ramachandran &
Mooney, 1996). Although APEM could improve the accuracy of the network, it could only achieve
about 65% accuracy on the test sets. However, since APEM does not currently handle noisy-or or
noisy-and nodes, these nodes were modeled by general nodes with appropriate initial parameters.
This results in the system being less constrained and having to learn significantly more parameters.

Musick (1994) uses a statistical technique for induction of the parameters of a Bayesian network
assuming that the structure is given. Each parameter is represented as a distribution rather than

3We used the implementation of APEM provided by Bo Thiesson.
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as a point value. The focus of this research is less on induction of networks and more on inference
techniques for Bayesian networks with parameters specified as distributions. He does address the
question of inventing hidden variables, but the solution proposed works only for very limited cases.

One of the early connectionist approaches to learning the parameters of a Bayesian networks
is that reported in Neal (1992). It also uses the noisy-or approximation of a Bayesian node.
However, since it uses stochastic networks similar to the Boltzmann machine, simulation of the
network involves allowing the network to settle down to an equilibrium for each pattern observed.
This is expensive and slows down learning dramatically. We use a forward propagation algorithm
which results in significantly faster training.

Schwalb (1993) addresses the problem of learning the parameters of a given Bayesian network
by mapping it onto a neural network with SIGMA-PI nodes and learning the conditional probabili-
ties associated with the network (represented by link weights in the corresponding neural network)
using standard backpropagation techniques (McClelland & Rumelhart, 1988). This has the advan-
tage that it is able to learn the conditional probabilities even in the presence of hidden variables.
However, the size of the neural network is combinatorial in the number of parents a node has in the
corresponding Bayesian network, making the technique infeasible for even modestly large networks
such as that for the DNA promoter recognition problem. Kwoh and Gillies (1996) have recently
proposed a technique similar to BANNER for learning the parameters of a network with general
discrete-valued, probabilistic nodes. Like BANNER, it performs gradient descent to minimize mean
squared-error with respect to some output variables. Since, like BANNER they use the belief prop-
agation computations for formulating the gradients, their technique faces the same limitations in
terms on the kinds of network structures it can handle. As such, their computations are only valid
for tree-structured networks and do not handle noisy-or/and nodes.

Our research was initially motivated by previous research on RAPTURE (Mahoney & Mooney,
1993, 1994). While RAPTURE is concerned with applying symbolic and connectionist techniques to
revise certainty factor rule bases, we address the same problem for Bayesian networks. Although
RAPTURE is successful in its task, it is limited by the fact that certainty factors themselves are not
as formally grounded in probability theory as Bayesian networks.

6 Extensions and Future Work

One of the restrictions of BANNER is that it assumes that the intended inference task to be optimized
is causal. However, this restriction is not inherent to the learning algorithm. The general technique
can be extended to apply to diagnostic (abductive) tasks, although it would involve multiple error
propagation passes and computing the gradients would be more complex.

The main aim of this research is to apply the idea of theory revision prevalent in the field of
machine learning to facilitate the acquisition of probabilistic knowledge in the form of Bayesian
networks. The research reported in this paper is concerned with the parameter revision component.
We are developing an algorithm for revising the structure of a Bayesian network with noisy-or/and
nodes that would augment a network with leak nodes and other buffer nodes to localize inconsis-
tencies in the network (based on the data). This procedure would also help identify and localize the
types of revisions (e.g. by adding a parent, removing a parent etc.) that would help remove these
inconsistencies. It would then use information gain (Quinlan, 1986) to determine the nodes to be
added or deleted from the parent set of a node. Efforts are underway to implement this algorithm,
and to study its performance.
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7 Conclusion

We have proposed a method for learning the parameters of a Bayesian network composed of noisy-or
and noisy-and nodes in the presence of hidden variables. Our approach uses standard gradient-
descent backpropagation techniques to optimize the classification accuracy of such networks for
causal inference. The approach is efficient and effective for revising Bayesian networks that are
initialized with an existing logical rule base. This makes it particularly appropriate for a range
of real-world problems where such rule bases are readily available or easy to build. In particular,
the technique was experimentally shown to quickly and effectively revise an existing knowledge
base for classifying DNA sequences using real scientific data. By comparison, other more general
gradient-descent techniques for revising parameters in the presence of hidden variables (APN and
C-APN) were significantly slower to train and unable to efficiently and effectively converge on the
training data, thereby limiting their generalization accuracies.
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