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Abstract

Bayesian networks provide a mathematically sound formalism for representing and rea-
soning with uncertain knowledge and are as such widely used. However, acquiring and
capturing knowledge in this framework is difficult. There is a growing interest in formulat-
ing techniques for learning Bayesian networks inductively. While the problem of learning
a Bayesian network, given complete data, has been explored in some depth, the problem
of learning networks with unobserved causes is still open. In this proposal, we view this
problem from the perspective of theory revision and present a novel approach which adapts
techniques developed for revising theories in symbolic and connectionist representations.
Thus, we assume that the learner is given an initial approximate network (usually obtained
from a expert). Our technique inductively revises the network to fit the data better. Our
proposed system has two components: one component revises the parameters of a Bayesian
network of known structure, and the other component revises the structure of the network.
The component for parameter revision maps the given Bayesian network into a multi-layer
feedforward neural network, with the parameters mapped to weights in the neural network,
and uses standard backpropagation techniques to learn the weights. The structure revision
component uses qualitative analysis to suggest revisions to the network when it fails to pre-
dict the data accurately. The first component has been implemented and we will present
results from experiments on real world classification problems which show our technique to
be effective. We will also discuss our proposed structure revision algorithm, our plans for
experiments to evaluate the system, as well as some extensions to the system.
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1 Introduction

Theory revision is an area of research that has grown out of work on inductive and explanation-
based learning. It is based on the idea that, when only limited data is available, biasing an
inductive learner with prior knowledge can improve learning by reducing the search space of
possible hypotheses. The more complex the domain, the more the advantage of such a bias.
Thus, theory revisions systems assume that the learner has an initial imperfect knowledge
base (usually obtained from a domain expert) which is then inductively revised to fit the
data. Many techniques have been developed for revising knowledge bases represented in
various languages such as propositional Horn-clause logic (Ourston and Mooney, 1994) and
relational Horn-clause logic (Cohen, 1992; Pazzani and Kibler, 1992; Richards and Mooney,
1995). Even in the connectionist framework, theory revision has received a fair amount of
attention. At the most basic level are the pruning and growing algorithms (Mezard and
Nadal, 1989; Mozer and Smolensky, 1989; Frean, 1990; Fahlman and Lebiere, 1989) that use
data to either add or delete hidden units from a multi-layer feedforward network. There are
also techniques, such as KBANN (Towell and Shavlik, 1994; Opitz and Shavlik, 1993), that
explicitly bias a neural network with an initial theory. Experiments on real-world data have
demonstrated that revising an approximate domain theory produces more accurate results
than learning from training data alone (Ourston and Mooney, 1990; Thompson et al., 1991;
Towell et al., 1990).

Research in theory revision has, however, been limited to logical and connectionist repre-
sentations. Little has been done to address the problem of revising probabilistic knowledge.
Intelligent systems need mechanisms to represent and reason with uncertain knowledge. Un-
certainty in a domain or a task may arise due to incomplete knowledge about the state of
the world or due to true randomness in the domain. Examples of tasks involving uncertainty
include medical diagnosis, and plan recognition, to name but a few. Thus, we need languages
for representing uncertainty. It is also desirable to have techniques for learning and revising
knowledge represented in these languages.

There are many approaches to representing and reasoning with uncertainty, such as
non-monotonic logic, fuzzy logic, certainty factors,Bayesian networks, and Dempster-Schafer
calculus. Of these, non-monotonic logic uses a symbolic representation of uncertainty, while
the rest use numeric representations. The Bayesian networks approach stands out as the only
one that is directly grounded in probability theory, which has long been a widely accepted
formalism for representing uncertainty. The rest of the approaches invent their own calculi,
which makes their semantics less clearly defined.

Among the numeric representations, certainty factors have played a significant role in
the history of uncertain reasoning. The use of certainty factors is exemplified in MY CIN,
an expert system to recommend treatment for bacterial infection (Shortliffe and Buchanan,
1975; Buchanan and Shortliffe, 1984). MY CIN is a rule-based system. However, the rules are
augmented with certainty factors or numbers that indicate their credibility. The certainty
of a conclusion of a rule is computed as a function of the certainty of the premises and the
credibility of the rule. Although they have been successfully applied in a number of domains,
the rules for combining certainty factors are ad hoc and provide no mathematical guarantees,
unless unrealistic independence assumptions are made.

Bayesian networks (Pearl, 1988), on the other hand, represent uncertainties as proba-



bilities of events in the world. They provide ways for representing dependencies between
variables explicitly. They also provide theoretically sound mechanisms for combining prob-
abilities, and for accounting for dependencies. Their strong grounding in probability theory
makes them a particularly attractive formalism for representing knowledge. Many real-world
applications, especially in medical diagnosis, now use Bayesian networks (Pradhan et al.,
1994; Burnell and Horovitz, 1995; Fung and Del Favero, 1995). However, like all numerical
representation schemes, they suffer from the knowledge acquisition problem. Not only is
it difficult to formulate the underlying structure of the network, it is especially difficult to
specify the dependencies between the variables in precise numeric terms.

Thus, Bayesian networks provide a mathematically sound language for representing un-
certainty, but are hard to acquire. Therefore, it would be useful to have efficient techniques
that learn Bayesian networks from data. Not surprisingly, there is now a growing interest in
this problem.

Specification of a Bayesian network requires both the specification of the structure of the
network, as well as a set of parameters associated with the variables in the network. The
details of this will be explained further in the background section. Thus, the task of learning
a Bayesian network can be divided into two subtasks: one of learning the structure of the
network, and the second of determining the parameters.

Within the general framework of inducing Bayesian networks, we can envision the fol-
lowing scenarios.

1. Known structure, fully observable: In this scenario, the structure of the network is
completely known and the data includes observations of all the variables in the network.
The task here is to learn the parameters of the network from data.

2. Known structure, hidden variables: Here, the structure of the network is given and
known to be correct. The data, however, does not include observations of every variable
in the network. The variables whose observations are not specified in the data are called
hidden variables. Again, the task is to induce the parameters of the network. However,
the task is more complicated in this case due to the presence of hidden variables.

3. Unknown structure, fully observable: In this case, neither the structure, nor the pa-
rameters of the network are known. We can, however, assume that the only variables
in the network are those that are included in the data. The task here is to learn both

the structure and the parameters of the network.

4. Unknown structure, hidden variables: This is the most general learning scenario where
the structure of the network is unknown and there are hidden variables.

The first of these is fairly straightforward. A common approach is to use the maximum
likelihood estimates for the parameters, which in the case of no hidden variables, reduces to a
function of the relative frequencies of occurrences of the values of the variable (Spiegelhalter
and Lauritzen, 1990).

The problem of learning the parameters for a network with a known structure, in the
presence of hidden variables, has also received some attention. Many statistical techniques
like Gibbs sampling (Geman and Geman, 1984) and EM (Dempster et al., 1977; Lauritzen,



1995) can be used in the context of Bayesian networks. Russell et al. (1995) have proposed
an approach that optimises the probability of the data given the network using a gradient
descent algorithm.

The learning problem addressed by Cooper and Herskovits (1992) falls in the third
category. Their technique is to use a scoring metric to hill climb through a space of possible
Bayesian networks to find one that is the most probable given the data. A number of
variations and improvements to this approach have since been proposed (Buntine, 1991;
Heckerman et al., 1994; Provan and Singh, 1994).

The fourth scenario above, namely that of learning a Bayesian network with hidden vari-
ables and an unknown structure, is by far the most difficult and the least studied. Most of
the above techniques could be adapted to discover hidden variables, but at a great cost in-
volving brute force search. Connolly (1993) has proposed using clustering techniques (Fisher,
1987) to discover hidden variables. However, this technique can only learn tree structured
networks.

Thus, while researchers have a grasp on some aspects of learning Bayesian networks, the
problem of learning Bayesian networks with unknown structures and hidden variables still
poses a tough challenge. However, theory revision techniques like those proposed by Ourston
and Mooney (1994); Opitz and Shavlik (1993); Mahoney and Mooney (1993a) have been
successful in addressing similar issues. The bias that such techniques provide in the form of
prior knowledge helps narrow the search space, making these techniques efficient. We had
mentioned earlier that there has been very little research into using theory revision techniques
to learn Bayesian networks. Lam and Bacchus (1994) have a technique for incrementally
refining a Bayesian network using the Minimum Description Length principle (Rissanen,
1978). Buntine (1991) has proposed a technique for revising a Bayesian network efficiently,
using scoring metrics similar to that proposed by (Cooper and Herskovits, 1992). However,
neither of these techniques can revise networks with hidden variables. Mahoney and Mooney
(1993a) have a system for revising probabilistic knowledge bases, but expressed in the form
of certainty factors. Their system, RAPTURE maps the rules of the knowledge base into
a neural network and uses connectionist methods to revise the certainty factors associated
with the rules as well as the rules themselves. RAPTURE can also discover hidden variables
not specified in the data.

In this research, we are proposing a theory revision approach to learning Bayesian net-
works that is inspired by RAPTURE. From the perspective of the four learning scenarios
outlined earlier, this problem lies somewhere between scenarios 2 and 4. Thus, we assume
that the learner is given a Bayesian network that may be incomplete or incorrect. We also
assume that the learner is provided with data that may not include all the variables in the
network. The task is to use the data to improve the predictive accuracy of the network.

Our system for revising Bayesian networks, called BANNER (BAyesian Networks NEural
Revision), is based on adapting symbolic and connectionist theory revision techniques similar
to EITHER and KBANN (Ourston and Mooney, 1994; Opitz and Shavlik, 1993). These
techniques provide a way to determine when the theory needs to be revised. They also cut
down the search space by focusing attention on local portions of the network that should be
modified. Our research, we hope, will lead to an efficient technique for revising a Bayesian
network. Another significant contribution of our research would be to provide a way to
invent hidden causes efficiently.



Whenever the structure of a network is changed, the parameters have to be modified as
well. In this proposal, we also describe a system that learns the conditional probabilities for a
network with noisy-and and noisy-or nodes by mapping such a network onto a multi-layered
feed-forward neural network (ANN) and refining the weights using standard backpropagation
techniques. This enables the learning of conditional probabilities even in the presence of
hidden variables.

We will first present a brief introduction to the various concepts that are central to our
research. Next, we will present our approach to the problem of revising Bayesian networks.
We will also present the results from our preliminary experiments with BANNER. We will
conclude with a discussion of our proposed future research.

2 Background

2.1 Bayesian Networks: An Overview

Bayesian networks (Pearl, 1988) provide a formalism for representing probabilistic knowl-
edge. In general, a Bayesian network is a directed acyclic graph whose nodes correspond to
random variables. These variables can take on many values. In this paper, an upper-case
letter represents a variable and the corresponding lower-case letter represents the value as-
sociated with the variable. A variable X is called a parent of another variable Y, if there
is a directed link from X to Y. In such a case, Y is called the child of X. A variable is
called a spouse of another variable, if the two share a common child. For example, in the
Bayesian network shown in Figure 1, B is the parent of A, A is the child of B, and F is the
spouse of B. Associated with each node is a conditional probability table (CPT), which gives
the probability of each value of the variable given each possible combination of values of its
parent nodes. Variables can be discrete or continuous. Given a network with n nodes and
the associated CPTs, the probability of a conjunction of a particular assignment of values
to the variables, i.e. P(xy,...,x,), can be calculated using the following formula:

Plzy,...,z,) = HP(ZL’Z | Parents(X;)) (1)
i=1
where P(z; | Parents(X;)) is obtained from the CPT associated with variable X.

Figure 1 (Pearl, 1988) shows an example of a Bayesian network. Such a network maybe
used by a person to decide whether or not to respond to a alarm in his house. The nodes
in the network represents the various events that are of relevance to the decision. Thus, the
node F represents the occurrence of an earthquake, node R represents the announcement of
an earthquake on the radio, and node D represents the event of the person’s daughter calling
him about the alarm. The links between the nodes represents the dependencies between the
various events. For instance, the network indicates that A is conditionally dependent on B
and F, while (G is independent of B given A. The links can also be seen to indicate causality.
Thus, the link from earthquake to alarm can be interpreted as a statement that earthquake
causes the alarm to go off. The CPT associated with each variable reflects the strength of
the causal influence on the variable from its parents. For example, the CPT associated with
variable A in Figure 1 would specify:



P(A|=B,~E) P(A|B,~E) P(A|-B,E) P(A|B,E
M(A) = P((ﬁA|ﬁB,ﬂE)) P((ﬁA|B,ﬁE)) P((ﬁA|ﬁB,E)) P((ﬁA|B,E)) (2)

Given the CPTs, the joint probability distribution of the variables in the network can be
computed as follows:

P(bye,r,a,d,w,g) = P(b)P(e)P(r | ¢)P(a| e,b)P(d | a)P(w | a)P(g | a) (3)

Burglar
Earthquake 9 ey

Radio

Daughter Neighbour
(%)

Phone

Figure 1: Bayesian Network - Example

Typically, a Bayesian network is used to infer the probability distribution of a set of
variables T', given the value of another set of variables £ (called evidence). This inference
can be predictive (inferring effect from causes). For example, one might want to use the
network in Figure 1 to infer the probability that his daughter will call, given evidence that a
burglary has occurred. Sometimes, the inference is diagnostic or abductive (inferring causes
from effects). This is the case, for instance, when one uses the network to infer the probability
of a burglary, given the evidence that his daughter called him to report the alarm. It is also
possible to combine predictive and diagnostic inferences. Thus, one might want to infer the
probability of the alarm going off, given the evidence that no burglary was known to occur,
but that the radio announced an earthquake. The complexity of the inference procedure
depends on the structure of the network. For a network that is a polytree, i.e. in which each
pair of variables is connected by at most one undirected path, the inference procedure is
linear in the size of the network. For networks with undirected loops, however, the inference
is NP-hard (Cooper, 1990).

The specification of a general Bayesian network is combinatorial in the fan-in of the
nodes. It requires the specification, for each variable, of the conditional probabilities of
the variable given all possible combinations of values of its parents. Thus, for a network
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where all variables are binary-valued, a variable with n parents would require 2" conditional
probabilities to be specified.

The noisy-or and the noisy-and models of Bayesian networks (Pearl, 1988) avoid this
problem by providing a way to compute the conditional probability of a variable given a
combination of values of its parents from just the conditional probabilities of the variable
given the value of each of its parents in isolation. In the following subsections, we further
elaborate on the specific combination rules provided by each of these models.

2.1.1 The noisy-or model

A noisy-or node in a Bayesian network is a generalisation of a logical or. As in the case of
the logical or, an event E is presumed to be false if all the conditions that cause E are false
(i.e. P(E)=0). However, unlike a logical or, if one of the causes of the event E is true, it does
not necessarily imply that E is definitely true. Each condition C; causing the event E can
be thought of as having an associated inhibitory influence which is active with a probability
¢;- Thus, if C; is the only cause of E that is true, then E is true with a probability (1 — ¢).
Moreover, the likelihood of E being true is a monotonic function of the number of its causal
conditions that are true. The parameter ¢; = 1 — ¢; is the degree to which an isolated cause
C; of an event E can endorse the event.

Given some evidence, the ¢; associated with each link in a network, and the belief mea-
sures of all the parents of a node in the network, there is a simple equation for calculating
the degree of belief that the node is true. Under the assumption that all the evidence in the
network is causally upstream of the node, the degree of belief in a node X is given by

. Hi(l_ciﬂiX) if z =0
Bel(z) = { 1—IL( —emx) ifz=1 )
where 7;x 1s the degree of belief in the truth of the i-th parent of X. Thus, the number

of parameters that have to be specified for a noisy-or node is linear in its fan-in.

2.1.2 The noisy-and model

A noisy-and node is the dual of a noisy-or node. It is a generalisation of a logical and. As in
the case of a logical and, an event E is presumed to be true if all the conditions that cause E
are true (i.e. P(E)=1). However, unlike the logical and, if one of the causes of the event E is
false, it does not imply that E is definitely false. Each condition C; causing the event E can
be thought of as having an associated enabling influence which is active with a probability
gi. Thus, if C; is the only cause of E that is false, then E is false with a probability (1 — ¢;).
Moreover, the likelihood of E being false is a monotonic function of the number of its causes
that are false. The parameter ¢; is the degree to which disproving an isolated cause of an
event disproves the event itself.

The belief measure of a noisy-and node X, given some evidence, the ¢; associated with
each link in the network, and the belief measures of all the parents of the node, is given by

1_Hi1_ci1_7TiX lfl’:()
Bel(z) :{ (1 —(ci(l —(m)) ) ifx =1 (5)



where m;x 1s the degree of belief in the truth of the i-th parent of X. Here again, the
assumption is that all the evidence in the network is causally upstream of the node.

2.1.3 Polytree Vs. Loops

The structure of a Bayesian network has a significant influence on the complexity of inference.
Based on their structure, Bayesian networks can be divided into two classes: polytrees, which
have a simple structure where each pair of variable is connected by at most one path, and
networks with loops, which have undirected loops in the structure. The inference algorithm
for polytrees is linear in the size of the network and the propagation rules for beliefs are
local. However, the presence of loops increases the complexity of inference significantly. The
derivation of the propagation rules for polytrees exploit the fact that the network is singly
connected. These rules cannot be used in the presence of loops.

Several algorithms have been proposed for handling loops (Pearl, 1988). Clustering is a
technique where the variables forming a loop are clustered into one node, which results in
a polytree. Inference is done using the polytree algorithm on the clustered network. The
clustered nodes are then separated into individual nodes whose beliefs are computed from
the belief of the cluster. Conditioning is a technique which uses case analysis to propagate
beliefs. The algorithm picks a variable from each loop and this set of variables is instantiated
to all the possible values the variables can take. Instantiating a variable in each loop breaks
the loops and the network reduces to a polytree. Beliefs are propagated for each of these cases
using the polytree algorithm. The overall belief of each node is computed as the weighted
average of the belief computed for the node for each of the cases. Stochastic simulation is an
algorithm for simulating the network starting at some random state. The belief associated
with each variable is the frequency of occurrence of each value of the node over a large
number of simulations.

2.2 Multi-layered Feed-Forward Neural Networks

Our approach uses neural networks, specifically, multi-layered feed-forward networks, to
revise Bayesian networks. Here, we describe these networks briefly.

Figure 2 shows an example of a multi-layered feed-forward neural network (Hertz et al.,
1991). The output units are denoted by O; and the input units by Iz. The layer between
the input and the output layers is the hidden layer, whose units are denoted by H;. The
connections between the units in the input and the hidden layers are denoted by w;; and
those between the hidden and output layers are denoted by Wjy.

When the input units of a network are clamped to particular values, the output of the
network is computed by propagating these values through the hidden layers on to the output
layer. The activation of each unit is a function of a weighted combination of the values of
all the units feeding into it. Typically, each unit computes a function of the weighted sum
of all its inputs, as shown below.

Given a pattern p, the net input received by each hidden unit j is given by

h; = ijk]k (6)



Figure 2: Multi-layered Feed-Forward Neural Network - Example

The activation or the output of each hidden unit is given by
Vit = g(hj) (7)

where g(h) is a thresholding function, or a continuous sigmoid function. The net inputs and
the activations of the output units are computed similarly.

Given some data specifying a set of desired values for the input and output variables, the
network can be trained on the data using the backpropagation algorithm. This algorithm
uses a gradient descent approach to modify the weights in the network so as to minimize the
error of the network on the data. The error measure is defined by

Blw] = 1/2 (¢ — 01)? (®)

where (! is the desired value of the i-th output variable for pattern u of the data and O
is the actual output of the i-th output unit for the same pattern.

The backpropagation algorithm then changes each weight w;; by an amount Aw;; pro-
portional to the gradient of F given by:

Awij = —naE/awij (9)
where 1 is a parameter that controls the learning rate. Deriving an accurate gradient of
the error function is, therefore, a crucial aspect of the backpropagation approach.

At the start of training, the network is initialised with some (typically random) weights.!
For each pattern in the data, the inputs of the network are clamped with the input values
specified in the pattern. These values are propagated forward to the output units. The
error between the output values predicted by the network and those specified in the data
is propagated back through the hidden layers to the input layer. The error propagated to
each unit is used to modify the weights of the connections feeding into the unit, according
to the learning rule given by Equation 9. This process is repeatedly iterated over all the
patterns in the data until a desired level of convergence is reached. It should be noted that it
is possible for the network to settle into a local minimum. Depending on the initial weights,
it 1s also likely that the training will not converge. It is often necessary to fine tune the
training parameters, such as the learning rate, to get convergence.

!Sometimes the initial weights are determined using domain knowledge.



3 Owur Approach

Our approach to the problem of revising Bayesian networks has grown out of the following
insights.

e There are similarities between Bayesian networks and neural networks in that both
use local computations for inference. The value associated with each node (activation
in the case of an ANN, degree of beliefs in a Bayesian network) can be computed just
from the values of neighboring nodes and the strength of the connections with them.
Thus, variables in a Bayesian network are analogous to nodes in a neural network.
The conditional probabilities in a Bayesian network are analogous to the weights in a
neural network. This suggests that methods similar to gradient descent can be used
to learn the parameters of a Bayesian network.

e Most of the existing approaches to learning Bayesian networks use heuristics to optimise
the probability of the data given a network. However, most often a Bayesian network is
built for a specific task of prediction or diagnosis. We believe that a network trained for
optimal performance in its intended task will fare better than one trained to optimise
the probability of the data given the network. Thus, a network that will be used for
prediction should be trained to maximise its prediction accuracy. Intuitively, training
a network for a specific task would require less data than training it for all possible
tasks. Of course, the validity of this claim will have to be demonstrated empirically.

e Most of the techniques discussed in the previous sections focus on the probabilistic
aspects of a Bayesian network. Since probability distribution is a global property, these
techniques cannot detect the incorrectness of a Bayesian network locally. Nor can they
focus on local portions of the network that require revision. Symbolic theory revision
techniques, on the other hand, localise the blame for incorrect predictions on portions
of the theory which are then revised. This restricts the search space considerably. If,
instead of viewing a Bayesian network as a quantitative model, we could look at it as
a specification of qualitative relationship among variables (Wellman, 1990), we would
be able to apply symbolic theory revision techniques to revise the Bayesian network
locally. The idea is to reduce the search space of possible revisions by focusing attention
on a subset of variables that can be held responsible for an erroneous prediction by the
network.

Here, we propose a two-tiered approach, similar to RAPTURE (Mahoney and Mooney,
1993a; Mahoney and Mooney, 1994), to the problem of learning a Bayesian network from
partial specification. Given some data, we first try to improve the Bayesian model by revising
the parameters of the network. If the network still does not fit the training data, then the
structure of the network is modified to find the network with the highest predictive accuracy.
Thus, our approach has two distinct components:

1. The first component assumes that the underlying Bayesian structure is correct and is
concerned with modifying the parameters of the network to improve predictive accu-
racy. For this task, we first map the Bayesian network into a neural network and use
the standard backpropagation algorithm to optimise the parameters.
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2. The second component is concerned with modifying the structure of the network. To
do this, we approximate the Bayesian network by a Qualitative Probability Network
(QPN) (Wellman, 1990). Given a set of data which are predicted incorrectly by the
network, we use qualitative analysis to determine the portion of the network that needs
to be revised.

Figure 3 illustrates the interactions between these components. Note that their modular-
ity and separation allows us to replace the algorithm implementing each component without
affecting the entire system.

This division of the overall problem suggests that our research should proceed in two
stages: the first stage which investigates techniques for learning parameters, and the second
stage that investigates the problem of structure revision. In fact, this has been our approach.
In the following section, we will first discuss our research into parameter revision techniques,
followed by a discussion of our proposed research into structure revision.

Initial Network Data

1T """~ ~"~"7/~/"7/7—/— 0 |

. |
: revised network |
I |
| |
| |
| I |
| y |
| |
| |
l Parameter Structure |
| revision revision |
| |
| revised |
| network |
I |
I |
I |
I |
| |
| I
e |

Final network

Figure 3: Overview of Our System

4 Parameter Revision: Learning Conditional Proba-
bilities

In this section, we present our on-going research into techniques for parameter revision. We
approach the problem by first investigating the simpler case i.e. where it is assumed that
network is being trained for predictive inference. We then address the general case where the
network is trained for a combination of predictive and diagnostic inferences. For each of these

11



cases, we present our approach followed by some experiments that evaluate its performance,
as well as a discussion of future research.

Our proposed technique for learning the conditional probabilities on a Bayesian network
works as follows:

1. Map the given Bayesian structure onto a multi-layered feed-forward neural network.

2. Train the neural network on the given data using the standard gradient descent back-
propagation algorithm.

3. Map the trained neural network back onto a Bayesian network.

While this top level description of the algorithm is general and covers all inference sce-
narios, we have found the details of the algorithm for the predictive case to be different from
those for the general case. Due to differences in the computations involved in the two cases,
the learning rules for the predictive case are much simpler.

4.1 Parameter Revision for the Predictive Case
4.1.1 Neural Network Mapping

Recall that the first step in our technique is to map the Bayesian network into a neural
network. The structure of the ANN is identical to the structure of the given Bayesian
network. A noisy-or node in the Bayesian network is mapped onto a noisy-or unit in the
neural network. A noisy-and node in the Bayesian network is mapped onto a noisy-and
unit in the neural network. The causal link between the nodes of the network are mapped
onto connections between the corresponding units in the ANN. The weight on each link
corresponds to the ¢; associated with the link in the corresponding Bayesian network (Section

2.1).

b. Neural network mapped from a.

a. Bayesian network
Figure 4: Mapping from a Bayesian network into a neural network

Thus, the Bayesian network shown in Figure 4a is mapped on to an ANN shown in
Figure 4b. The output of the noisy-or and noisy-and units are computed using the following
functions:
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1 —TI;(1 =w;;0;)  (Noisy-or)

activation(i) = { [1;(1 = wi;j(1 — 0;)) (Noisy-and)

where
O; is the activation of the jth unit feeding into unit ¢,

w;; 1s the weight of the link between unit ¢ and the jih unit feeding into it.
This function computes the degree of belief in the truth of the variable represented by

the unit. Note that, since the only evidence placed in the network is on the input variables,
the assumption that all evidence in the network is causally upstream of all the hidden and
output variables holds.

Since the mapping is direct, it is straight forward to recover the Bayesian network from

a trained ANN.

4.1.2 The Training Phase

Once the Bayesian network is transformed into an ANN as described in the previous section,
the problem of learning the parameters (the ¢;’s) of the Bayesian network is transformed
into a problem of learning the weights in the ANN. This is achieved by training the ANN
using standard backpropagation techniques.

The data used for training the network should consist of a set of patterns that specify
the value for the input and the output variables of the network. Since we are assuming that
all the evidence in the network is causally upstream of all the hidden and output variables,
input variables are the sources in the DAG representing the network (i.e those variables that
have no incoming links). The sinks in the DAG are the output variables. The values for the
hidden variables do not have to be specified in the data.

To train the network, the backpropagation algorithm requires a learning rule. These are
derived by incorporating the activation function for a noisy-or or a noisy-and unit (Equation
10) into the error function defined in Equation 8 and taking the partial derivative of the
resulting error function with respect to the weights, as per Equation 9. This results in the
following learning rules for the noisy-or and noisy-and units:

Ay = {103 Tligs (1= w00 (Noisy-or) )
” —10i(1 — O;) [Trz; (1 — wir(1 — Oy)) (Noisy-and)

where

n = learning rate and

d; = error propagated back from the output units to unit 7. O; is the activation of
the jth unit feeding into 1,

w;; 1s the weight of the link between unit ¢ and the j¢h unit feeding into it.
Once the network has been trained to a desired accuracy following the procedure de-

scribed in Section 2.2, it can be mapped back into a Bayesian network.

4.1.3 Experimental Evaluation

We have evaluated BANNER on two classification problems: DNA promoter recognition (No-
ordewier et al., 1991) and DNA Splice Junction recognition (Noordewier et al., 1991). Each
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of these has associated with it an initial domain theory that does not have a good prediction
accuracy on the data and therefore has to be revised.

For each problem, we created several random splits of the data into training and test
sets. One of these data splits was used to determine the stopping point for training. The
network was trained until further training did not decrease the root mean square error of
the network on the training set. The networks for the remaining splits were trained for the
same number of epochs as the first one.

Here, we present the results of our experiments. We also compare the performance
of BANNER with the performances of other learning systems like KBANN, ID3, EITHER,
RAPTURE and BACKPROP. ID3 (Quinlan, 1986) is a system for inducing decision trees.
EITHER (Ourston and Mooney, 1994) learns and revises propositional Horn-clause theories.
RAPTURE (Mahoney and Mooney, 1993b) is a system for revising certainty-factor rule bases
using neural networks. KBANN (Towell et al., 1990; Noordewier et al., 1991) revises a logical
theory using a hybrid of symbolic and connectionist learning methods. BACKPROP is the
standard backpropagation approach using a three-layer feedforward neural network.

DNA Promoter Recognition: Figure 5 shows the initial logical theory for recognising a
DNA promoter sequence. There are 57 input features called nucleotides, each of which can
take on one of four values, A, G, T and C. The target class, promoter, predicts whether or
not the input DNA sequence indicates the start of a new gene.

promotor <- contact, conformation

contact <— minus_35, minus_10

minus_35 <- (P-36 T), (P-35T), (P-34 G), (P- 3A) (P-32 C).

minus_35 <- (P-36 T), (P-35T), (P-34 G), (P-32C), (P-31A).

minus_10 <- (P-14 T), (P-13 A), (P-12T), (P- 11 A), (P-10A), (P-9T).

minus_10 <- (P-13 T), (P-12 A), (P-10 A), (P-8T).

minus_10 <- (P-12 T), (P-11 A), (P-7T).

conformation <— (P-47 C), (P-46 A), P(-45 A), (P-43T), (P-42T), (P-40A)
(P-39 C), (P-22 G).

conformation <— (P-45 A), (P—44 A), (P-41 A).

conformation <- (P-49 A), (P-44T), (P-27T), (P-22 A), (P-18T), (P-16T),
(P-15G), (P-1A).

conformation <- (P-45 A), (P-41A), (P-28T), (P-27T), (P-23T), (P-21A),
(P-17T), (P-4 T).

Figure 5: DNA Promoter Recognition - Initial Domain Theory

Figure 6 shows a portion of the Bayesian network corresponding to this theory. All the
logical ands in the domain theory were mapped onto noisy-and nodes and all the logical ors
are mapped onto noisy-or nodes. Each 4-valued input feature has been converted into four

binary-valued features.? This network was translated into a neural network as described

?We use binary-valued nodes because the noisy-or and noisy-and nodes are binary-valued. However,
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earlier. The initial weights were all set to random values close to 1.0 to mimic the initial
logical theory. It is necessary to perturb the weights around the value 1.0 to break the

PROMOTER

Noisy—-And

symmetry for better convergence.

N~

Noisy-And

Figure 6: DNA Promoter Recognition - Bayesian Network

The data consisted of 106 patterns (53 positive and 53 negative examples). Figure 7
shows the learning curve determined from this experiment. This graph is a plot of the
average accuracy of the network at classifying DNA strings over 25 different random splits.
It clearly demonstrates that our technique is successful in improving the accuracy of the
network substantially (by about 40 percentage points).

The graph also shows the performance of some of the inductive learning algorithms
(ID3 and BACKPROP) and theory revision algorithms (EITHER, RAPTURE and KBANN) on
the same task. The theory revision systems started out with the same initial theory as
BANNER(Figure 5), which they subsequently revised to fit the data. Our technique performs
better than ID3, EITHER, and BACKPROP. Its ultimate performance is comparable to both
RAPTURE and KBANN, although its learning curve is not as steep.

DNA Splice Junction: We have also evaluated BANNER on the task of learning to recog-
nise the splice junctions in a given DNA sequence (Noordewier et al., 1991). Human DNA
sequences consist of two regions: eztron regions encoding information that is used for protein
synthesis, interspersed with intron regions which are “garbage”. The junctions between these
regions are called splice junctions. There are two kinds of splice junctions: IE sites which are
at exon«intron boundaries, and EI sites which are at exon<intron boundaries. These form
the two output categories for the classification problem. There are 60 input features, each of
which represents a nucleotide and can take on the values A, C, G or T. The domain theory

there have been recent extensions that allow multi-valued noisy-or nodes. We will extend our technique to
accommodate multi-valued features in the future.
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specifies rules for recognising these sites from patterns of nucleotides around them. Here,
we won’t go into the details of the domain theory except to mention that it uses M-of-N
style rules, where if “M” of the “N” antecedents of a rule are true, then the consequent in
considered true. The initial logical domain theory was converted into a Bayesian network
and subsequently into a neural network as described in the previous subsection. The weights
in the neural network were initialised to random values close to 1.0 to mimic the logical
theory.

The data consisted of 2190 patterns, of which we randomly selected 900 patterns which
were then divided into training and test sets. Figure 8 shows the learning curves for BANNER
and some of the other inductive learning algorithms. The graph shows that the performance
of BANNER is comparable to that of KBANN and BACKPROP. Although RAPTURE and
KBANN perform better than BANNER it should be noted that they modify the structure of
the domain theory as well, which BANNER is not yet equipped to do.
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4.1.4 Future Work

So far we have shown BANNER to be effective on the two standard learning problem. Al-
though its learning rate is slower, BANNER eventually performs comparably with other induc-
tive learning systems. We would like to run similar experiments to compare the performance
of our system with other systems that learn Bayesian networks with hidden variables, such
as the Adaptive Probabilistic Networks (Russell et al., 1995) approach and the KM (Demp-
ster et al., 1977; Lauritzen, 1995) algorithm. Our experiments with learning parameters for
the general case (McQuesten, 1995) suggest that non-gradient techniques using simulated
annealing (Hertz et al., 1991) are more effective than backpropagation. We also propose to
compare the non-gradient training regimes with backpropagation for the predictive case.

One limitation with the current approach is that it cannot be used with networks that
have undirected loops. As discussed in Section 2.1.3, loops increase the complexity of in-
ference significantly. Moreover, the computations involved in the inference procedure are
more complex and less local than those for polytrees. Since our approach relies on the lo-
cality of the computations and involves computing the gradient of the belief functions, it is
significantly harder to extend this approach to handle networks with loops.

Non-gradient techniques, however, which only require that the beliefs for each variable be
computable, but are not sensitive to the actual computation, can be used even with networks
with loops. This is an additional advantage of using such techniques and we propose to
investigate this approach as a part of our research.

4.2 Parameter Revision for the General Case

In the previous subsections, we discussed a technique for learning the conditional probabili-
ties on a network using the gradient descent backpropagation algorithm. In formulating the
activations and the learning rules, we assumed that all the evidence was at the causal end
of the network. This learning rule thus optimises the network for predictive tasks. However,
many belief networks are built for abductive reasoning and some use a combination of pre-
dictive and abductive reasoning. In order learn the parameters for these networks, we have
to relax the assumption about the placement of evidence. Although the basic idea of using
backpropagation to learn the conditional probabilities remains the same, the activations and
the learning rules are more complicated for the general case where no assumptions about the
placement of evidence are made.

Our approach, for the general case, follows the same steps as for the predictive case: the
network is first mapped onto a neural network, the network is trained using the backprop-
agation algorithm, and the trained network is mapped back into a Bayesian network. The
procedure for mapping the Bayesian network onto a neural network is exactly the same as
that for the predictive case. The difference lies in the details of training, which proceeds as
follows:

1. For each training case, place the evidence on the network and propagate the beliefs
using standard Bayesian inference algorithms.

2. Once the final belief associated with each variable is established, use the learning rules
to propagate the errors back from the target variables to the rest of the network.
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3. Use the error accumulated on each variable to modify the conditional probabilities

associated with the variable.

Bayesian network algorithms distinguish between diagnostic evidence and predictive ev-
idence. Figure 9 shows a node X with a set of parents U, and a set of children Y. The
evidence in the network e can be partitioned into a set ey of all the evidence at the head
of the link X — Y, and the set e} of all the evidence at the tail of the link X — U/. The
degree of belief associated with the values of variable X is given by:

BEL(z) = aX(x)n(x) (12)

where

and « is a normalising constant.

\

Figure 9: A Fragment of a Polytree

The diagnostic evidence, A, for node X comes from the variables at the head of the link
X — Y. The predictive evidence for X, 7, comes from the tail of the link U' —+ X. Note
that, in a polytree, a node may receive diagnostic evidence from its spouse and predictive

evidence from its siblings.
In the predictive case, when all the evidence is on the root nodes of the network, the A
for all nodes is 1, since there is no diagnostic evidence. This reduces the belief computations
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to a propagation of the m values. However, in the general case, the As do come into play
while calculating the beliefs. Even in the specific case when all the evidence in the network
is diagnostic (i.e. on the sinks of the network), neither the s nor the As reduce to unity and
therefore must be considered in the computation.

The first step consists of multiple passes of A and 7 propagations before the final belief
of each node can be computed. In the second step of the algorithm, the errors that get
propagated have two components: the A errors, and the = errors. These errors gets prop-
agated throughout the network following an algorithm similar to that used in propagating
the beliefs. Once the error propagation attains quiescence, the changes to the parameters in
the link are computed based on the error accumulated in each node.

The A errors and the m errors are computed as derivatives of the belief propagation
functions. These gradients and the learning rules for modifying the weights based on the
errors are presented in (McQuesten, 1995).

4.2.1 Experimental Evaluation

McQuesten (1995) also reports on experiments conducted to evaluate this approach. We
picked a small network for our preliminary experiments designed to give us a quick evalu-
ation of our approach. We used the network shown in Figure 1 as our test bed. We used
IDEAL (Srinivas and Breese, 1993), a system for reasoning with Bayesian networks, to sim-
ulate the network and generate data. This data was then given to our system, along with
the structure of the network, to learn the parameters.

In all of our experiments, success was uniformly defined as mean square error less than
107¢. The backpropagation experiments were run in the batch mode, i.e. the weight changes
were accumulated and applied at the end of each training epoch.

We ran several trials in which we trained networks that were initialised with random
weights. Our backpropagation algorithm succeeded only twice out of 60 trials with a limit
if 2000 epochs. There were no successes in 28 runs to 5000 epochs, nor in 3 runs to 10,000
epochs.

We also ran some experiments where we used simulated annealing (Hertz et al., 1991),
instead of backpropagation, to train the network. This training regime does not require the
gradient of the error function in order to modify the weights. Instead, it makes random
perturbations to the weights of the network and picks the best network in each iteration. In
experiments conducted with the same data set as above, the technique converged successfully
in 16 out of 25 trials on networks with randomly initialised weights.

Thus, our preliminary experiments indicate that, although the backpropagation technique
does improve the training performance of the network (indicated by falling mean squared
errors), it does not converge quickly. This suggests that we should run more rigorous experi-
ments with different learning rates to study the rate of convergence. We will also analyse the
causes that lead to poor convergence. Such an analysis may suggest some improvements that
can be made to the training algorithm. Finally, we will also investigate the faster training
algorithms such as the conjugate gradient (Hertz et al., 1991) approach.
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4.2.2 Future Work

Our experiments, indicating the success of simulated annealing techniques in learning the
parameter, is especially interesting since this training regime does not require gradients and
hence does not depend on the computations involved in the propagation of activations over
the network. This will enable us to build a parameter revision subsystem that works uni-
formly with the different kinds of reasoning mechanisms, abductive and deductive. This will
also enable our system to handle networks with loops. Our results are, however, preliminary
and we will have to perform more rigorous experiments to show that simulated annealing
does indeed yield good results.

5 Structure Revision

When the revision of conditional probabilities on a network fails to improve its predictive
accuracy, the network is passed on to the structure revision algorithm. In order to revise
the structure of a network, we take a qualitative view of the network. Starting with the
target variables that are misclassified, we use qualitative analyses to hypothesise revisions
to the network. We use the ideas of Qualitative Probability Networks (QPN), presented in
Wellman (1990) in our analyses. We first describe QPNs and then give an outline of our
structure revision algorithm.

5.1 Qualitative Probability Networks

Qualitative Probability Networks (Wellman, 1990) are an abstraction of graphical representa-
tions of probability distributions such as Bayesian networks. They represent the dependencies
between variables in terms of qualitative relationships rather than numerically. Qualitative
relationships specify constraints on the joint probability distribution over the variables and
are of two types: qualitative influences and qualitative synergies. Although Wellman (1990)
describes how these qualitative relationships could be used for inference, in our research we
are more interested in the qualitative relationships themselves rather than the inference pro-
cedures. In this section, we restrict ourselves to a discussion of the qualitative relationships.

Figures 10 and 11 show the qualitative abstractions of the noisy-or and the noisy-
and gates respectively. The signs on the arrows between the variables indicate qualitative
influences and the signs in the boxes indicate qualitative synergies.

Qualitative influences specify the direction of the relationship between two variables.
The possible influences between variables are +, —, 0, 7. A positive influence (+) between
a variable A and its child B implies that higher values of B are more likely, given higher
values of A (this assumes that the values associated with a variable are ordered). Thus, in
the binary case, variable B is more likely to be true, given higher likelihoods of A being true.
A negative influence is similarly defined. A 0 influence signifies a lack of qualitative influence
between two variables and the 7 signifies an unknown influence.

Qualitative synergies describe the interactions among influences. For example, if two
variables A and B influence a variable X, then qualitative synergies would describe how
the influence of A on X affects the influence of B on X. Intuitively, two influences interact
subsynergistically when increasing the likelihood of one parent has less effect when the other
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noisy—or noisy—or

a) A Noisy-or Gate b) Corresponding Qualitative Abstraction

Figure 10: Qualitative Abstraction of a Noisy-Or Gate: The box with the - indicates a
subsynergistic relationship

noisy—and noisy—-and

a) A Noisy-or Gate b) Corresponding Qualitative Abstraction

Figure 11: Qualitative Abstraction of a Noisy-And Gate: The box with the + indicates a
synergistic relationship
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already has a high likelihood. The noisy-or gate is an example where influences interact sub-
synergistically. Thus, in figure 10b, the higher the likelihood of B, the lesser the influence
of A on X. The influences involved in a noisy-and gate, on the other hand, interact syner-
gistically. In this case, raising the likelihood of one parent has more effect when the other
parents have a high likelihood themselves. Thus, in figure 11b, increasing the likelihood of
A has the effect of increasing the influence of B on X.

5.2 Outline of the Structure Revision Algorithm

A Bayesian network is typically built for inferring the values of certain variables (targets)
given the value of certain other variables (evidence). The desired inference could either be
in the predictive or in the diagnostic direction, or even a combination of the two.

Our proposed revision algorithm, based on existing theory-revision techniques (Ourston
and Mooney, 1994; Opitz and Shavlik, 1993), makes use of this flow of reasoning. The
data is assumed to be a set of examples consisting of observations of the evidence and the
target variables. For each example, the revision algorithm first propagates the evidence to
the target variables using the standard inference algorithms used with Bayesian networks.
Whenever the qualitative likelihood of a target variable does not match the data, it is marked
as an error. Using qualitative analysis, this error is propagated to the rest of the network to
produce a set of candidate revisions that would correct the erroneous target. Some of these
revisions are then implemented and the network is retrained to revise the parameters. These
steps are repeated until further revision fails to improve the performance of the network on
the data.

In designing the details of the algorithms, we are concerned with the following issues:
when should a network be modified, which components of the network should be modified,
what kinds of modifications should be attempted, how to pick the best revision from the
candidate set of revisions, and when to stop revising the network.

From our perspective, a network should be revised when it fails to predict the targets
accurately. In the binary case, if a target variable is inferred to be positive (i.e. it is more
likely to be true than false), but is specified as being negative in the data, then the example
is defined to be a false positive. A false negative is similarly defined. Starting at a variable
classified as a false positive or a false negative, our algorithm will propagate blame and
revisions based on rules derived from the qualitative relationships between the variables in
the network. This propagation terminates at terminal and evidence nodes.

The high-level algorithm for revising the structure of the network is as follows:

e Train the initial network to revise the parameters.
e Repeat until desired training performance

— For each misclassified training example

1. Propagate structural revisions starting at the target variables (using the
heuristics discussed below).

2. For each of the structural revisions hypothesized, add the example to the set
of examples covered by the revision.
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— Find a small set of revisions that covers all the misclassified examples using a
greedy set covering algorithm.

— Train the revised network to revise the parameters.

Our algorithm uses heuristics for proposing revisions. These heuristics suggest a set
of variables that can be held responsible for causing an erroneous prediction. They also
suggest ways of revising the network around these variables in order to correct the error.
These heuristics, therefore, restrict the search space by focusing the revision on a subset of all
the variables in the network. A variable that is a false positive can be corrected by increasing
the proportion of negative evidence presented to it, either by increasing the negative evidence
or by decreasing the positive evidence. The qualitative relationships between the variables
provide a way of proposing revisions that would lead to such corrections. Thus the following
revisions could be proposed to correct a false negative noisy-or node.

1. Classify a negative parent as false negative and recursively apply the revision algorithm
to the parent.

2. Classify a negative child with diagnostic evidence as false negative and recursively
apply the revision algorithm to the child.

3. Add a positive node to the parent set of the node.

4. Make a positive node, with diagnostic evidence, a new child of the node.

An added complexity in deriving these heuristics is that variables with a common child
can interact when the child has diagnostic evidence. Depending on the synergy of this
interaction, additional revisions can be hypothesized. For example, the following revisions
can be applied to correct a false negative variable with a noisy-or child,

1. Delete the link from a positive spouse to the common child, provided the common child
has positive diagnostic evidence.

2. Classify a positive spouse as a false positive and recursively apply the revision algorithm
to the spouse.

These rules seem intuitive given a logical interpretation of the noisy-or gate and one
might question the role of the QPN theory in our analysis. The advantage of basing our
rules on the QPN idea is that similar rules can be derived for other kinds of specialised nodes
as long as the qualitative relations associated with it are known.

Whenever a revision that adds a parent (or a child) to a node is implemented, a new
intermediate node is created between the node and the new parent (child). For example,
let us suppose that, for the network shown in Figure 12a, it is determined that the revision
that the covers the most number of misclassified examples (false negatives) is that of adding
a link between the variables F and C'. Figure 12b shows the network resulting from the
implementation of this revision. Notice that a new noisy-and variable H1 has been added
as an intermediate node between variables £ and C. It is possible that this revision, while
accounting for a large number of false negatives, could give rise to false positives. In other
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words, adding a link between F and C' could cause the network to over-generalise. These
false positives would be detected during the next iteration of the training process. Suppose
that, in the next iteration of the structure revision algorithm, it is determined that the best
way to revise the theory, in order to correct these false positives, is to add a link between the
nodes H1 and D. Figure 12¢ shows the network resulting from implementing this revision.
Node D has been linked to H1 via a new, noisy-or node H2. At the end of training, all
branches of the network that form a single chain can be collapsed into a single link. For
instance, if further iterations of revision do not modify the portion of the network shown
in the figure, then the single chain connecting variables H1, H2 and D can be collapsed to
result in the network shown in Figure 12d.

PSP A

noiy—or noisy—or noisy- or @ noisy-or

golsy and noisy—and

a) Initial Network b) Network after 1st iteration.

noisy-and noisy-and

c) Network after 2nd iteration d) Final network

Figure 12: Adding Hidden Variables: An example

So far, we have presented a high-level view of the algorithm for proposing revisions to a
given Bayesian network and for adding hidden variables. A number of important issues have
yet to be addressed, and the details of each step in the algorithm have to fleshed out. The
approach outlined here is similar to the one used by (Opitz and Shavlik, 1993) to revise
knowledge-based neural networks. Their experiments revealed that adding links and new
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nodes is more crucial for their system than deleting links and nodes. This is because the
weights on the extra links in the neural network eventually decay to insignificance during
the parameter learning phase. We would like to run similar experiments to determine if a
similar phenomenon can be observed in our system. Focusing the revision algorithm just on
adding nodes and links would significantly reduce the search space.

5.3 Future Work

Working out the details of the structure revision algorithm will be the main focus of our
research in the immediate future. Once the algorithm has been implemented, we will evaluate
its performance on some real-world problems. For this purpose, we will try to find some
real-world applications of Bayesian networks which could be used for evaluation. We will
also compare the performance of our system with other systems, such as K2 (Cooper and
Herskovits, 1992), that learn Bayesian networks, We discuss this in greater detail in Section

6.1.

6 Research Plan

As discussed in previous chapters, we have already implemented our technique for revising
the conditional probabilities for predictive inference. Preliminary results show that our
technique is effective in learning the parameters of a Bayesian network given the structure.
We also have an outline of the algorithm for structure revision. Topping our research agenda
is the task of working out the details of the structure revision algorithm. We also propose to
evaluate our parameter revision system by comparing it with other such techniques and to
explore further the idea of using non-gradient techniques for training our neural networks.
We have discussed these ideas in detail in the previous sections. In this section, we will
elaborate on our proposed empirical evaluation of our system. In addition, we will also
discuss some extensions that we would like to explore as a part of this research.

6.1 Empirical Evaluation

We want to show, through experiments, that our technique can indeed revise networks so as
to improve its performance on a given task. To this end, we will evaluate our system on some
learning problems by testing how well the learned network can generalise to cover unseen
cases. Next, we would also like to compare our system to some of the other systems that
learn Bayesian networks. In particular, we would like to empirically prove the hypothesis
that it is better to train a network to optimise it for its intended task rather than optimise the
probability of the network given the data. For this, we will compare the performance of our
system with the APN (Russell et al., 1995) approach as well as the EM algorithm. Both these
systems only learn the parameters of the network and cannot revise the structure. Therefore,
we will also compare the performance of our system with systems like K2 (Cooper and
Herskovits, 1992) which use induction to learn the structure of a network. This experiment
will also evaluate the advantage of using the theory-revision approach to learning as opposed
to a purely inductive approach.

26



A standard practice in the field of learning Bayesian networks is to the evaluate a learn-
ing algorithm by comparing the learned network with the original network, called the gold
standard (Heckerman, 1995). This assumes that the target network is known ahead of time.
Given the target network, the practice is to generate data from the network, learn a Bayesian
network from the generated data, and compare the learned network with the original. Our
system requires an initial network to bias the learning. For this, we will perturb the original
network randomly to create the initial network, which will then be revised using the gener-
ated data. One way of comparing the original and the learned networks is to compute the
cross-entropy, which measures how close the learned distribution is to the target distribu-
tion (Heckerman et al., 1994). Another measure is the structural-difference measure, which
computes how similar the structures of the two networks are. One of the data set that is
used as a standard for such experiments is the ALARM data set, which is a database of cases
generated from a network designed to assist in monitoring the heart rate of a patient (Bein-
lich et al., 1989; Cooper and Herskovits, 1992). Russell et al. (1995) evaluate their system
on data generated from a network for car insurance risk estimation (Musick, 1994). We will
evaluate our system on both these data sets. We will also test our system on a database
of cases generated from a Bayesian network for a medical knowledge-base which is used in
evaluating the ability medical students to treat patients (Pradhan et al., 1994).

Real world learning problems, however, seldom provide gold standards. While we will
certainly evaluate our algorithm using the methodology described above, we also propose to
evaluate it using real-world data for which approximate theories are available but not the
target networks. The evaluation measure, in these cases, would be the prediction accuracy
of the revised network on unseen data. Apart from using the splice junction data set, we
will also evaluate our system for building a network to predict the aspect of a verb in a

sentence (Marshall R. Mayberry, 1995).

6.2 Extension to general nodes

So far we have only considered networks with noisy-or and noisy-and nodes. It would be
useful to extend our techniques to revise networks with general nodes. Schwalb (1993) pro-
poses a technique for mapping a Bayesian network with general nodes into a neural network
and learning the parameters using backpropagation techniques. It should be straightforward
to incorporate his techniques into our parameter revision system. A more challenging task
would be to extend our structure revision algorithm to cover general nodes. As we have
pointed out earlier, so long as the qualitative relationship between the variables are known,
our algorithm will be able to determine possible revisions, regardless of the actual type of
nodes present in the network. However, in the case of general nodes, it is not always possi-
ble to isolate individual qualitative relationships, since the CPTs only specify the combined
effect of all the parents of a node. These are some of the challenging issues that we hope to
address in the future.

6.3 Extension to multi-valued variables

While all our algorithms have assumed that the variables in the network are binary-valued,
several real-world applications of Bayesian networks require multi-valued variables. The
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notion of noisy-or gates has been extended to handle multi-valued variables (Pradhan et al.,
1994). Noisy-and gates can be similarly extended. We believe that the parameter revision
component can be extended to this case easily. Extending the theory revision algorithm poses
a challenge, since we now have to search for hidden variables with an unknown number
of values. This would increase the search space considerably. Connolly (1993) proposes
a technique for discovering hidden variables with an unknown number of values using a
clustering algorithm similar to COBWEB (Fisher, 1987). However, their approach can only
learn tree-structured networks with all the observable variables at the bottom-most level.
We will consider adapting such algorithms to our learning problem.

7 Related Work

The problem of learning Bayesian networks from data has received considerable attention in
recent years. On one hand, several techniques have been developed that use statistical tests
to determine the causal relationship among the observed variables (Pearl and Verma, 1991;
Glymour and Spirtes, 1988). However, such methods require exhaustive search and are, as
such, inefficient.

Cooper and Herskovits (1992) moved away from this paradigm and proposed a Bayesian
approach to learning Bayesian networks. They viewed the problem as one of maximising the
probability of the network given the data. They proposed a scoring metric that can be used
to incrementally hill-climb through the space of networks to find one that is highly probable
given the data. Others (Buntine, 1991; Heckerman et al., 1994; Provan and Singh, 1994)
have followed up on this paradigm, introducing variations to improve the performance of the
algorithm. The problem with these approaches, again, is that they involve extensive search
and are not very efficient for discovering hidden variables.

Apart from algorithms for learning the structure of a network, several researchers have
also studied the problem of learning the parameters of a network given the structure. This
is fairly straightforward when all the variables of the network are represented in the data. A
common approach is to use the maximum likelihood estimates for the parameters, which in
the case of no hidden variables, reduces to a function of the relative frequencies of occurrences
of the values of the variable.

In the case of data that is missing some values, approximation methods like Gibbs Sam-
pling (Geman and Geman, 1984) and EM (Dempster et al., 1977; Lauritzen, 1995) have been
proposed. Both these methods require some initialisation of the parameters and data for
the missing variables. The complete data is then sampled to compute new values for the
parameters. These steps are repeated until some convergence criteria is met.

While the above methods are efficient when the parameters have certain kinds of dis-
tributions, gradient descent approaches have been suggested for general distributions. One
example is the idea of Adaptive Probabilistic Networks (APNs) (Russell et al., 1995), which
uses a gradient descent algorithm to find the parameters that maximise the probability of
the data given the network. This is different from our approach, which tries to find param-
eters that will maximise the predictive accuracy of the network. We believe that training a
network to be optimal for the task it is being built to perform will result in better networks.
However, APNs can be used with networks that have loops, whereas our technique only
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works with polytrees. We would like to point out that since our technique for theory revi-
sion is modular, with a clear separation between the structure revision and the parameter
estimations components, we can use any of the other parameter estimation methods with
our revision algorithm.

Musick (1994) uses statistical technique for induction of the parameters of a Bayesian
network assuming that the structure is given. Each parameter is represented as a distri-
butions rather than as a point value. The focus of this research is more on techniques for
inferring with a Bayesian network with parameters specified as distributions rather than on
the induction itself. He does address the question of inventing hidden variables, but the
solution proposed works only for very limited cases.

One of the early connectionist approaches to learning the parameters of a Bayesian net-
works is that reported in Neal (1992). It also uses the noisy-or approximation of a Bayesian
node. However, since it uses stochastic networks similar to the Boltzmann machine, simula-
tion of the network involves allowing the network to settle down to an equilibrium for each
pattern observed. This is expensive and slows down learning. We use a forward propagation
algorithm which results in faster training.

Schwalb (1993) addresses the problem of learning the parameters of a given Bayesian net-
work by mapping it onto a neural network with SIGMA-PI nodes and learning the conditional
probabilities associated with the network (represented by link weights in the corresponding
neural network) using standard backpropagation techniques (McClelland and Rumelhart,
1988). This has the advantage that it is able to learn the conditional probabilities even in
the presence of hidden variables. However, the size of the neural network is combinatorial
in the number of parents a node has in the corresponding Bayesian network, making the
technique infeasible for even modestly large networks.

While the problem of inducing Bayesian networks from data has been explored deeply,
the problem revising a Bayesian network has received very little attention. Buntine (1991)
has proposed a technique for revising a Bayesian network efficiently, using scoring metrics
similar to that proposed by (Cooper and Herskovits, 1992). However, he does not specify
any method for recognising when the network needs to be revised. Nor does he discuss ways
of focusing on the portions of the network that should be modified. As such, his approach
involves extensive search and therefore is inefficient, especially in the presence of hidden
variables.

Lam and Bacchus (1994) have a technique for incrementally refining a Bayesian network
using the Minimum Description Length (Rissanen, 1978) principle. Their approach, however,
can only modify those portions of the network whose variables are observable. Thus, it cannot
modify nor invent a hidden variable.

Taking a different perspective, our proposed research also fits into the class of research
that is concerned with combining connectionist and symbolic approaches to learning. Thus,
our research is related to KBANN in that it uses backpropagation to refine an existing domain
theory inductively. However, a clear advantage of our proposed system is that the network
with its nodes and parameters has well defined semantics under the formalism of Bayesian
networks.

Our research can also be viewed as an extension of RAPTURE, described in (Mahoney and
Mooney, 1993a; Mahoney and Mooney, 1994). While RAPTURE is concerned with applying
symbolic and connectionist techniques to revise certainty factor rule bases, we address the
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issue of doing the same with Bayesian networks.

Apart from Schwalb (1993), most of the research in learning Bayesian networks has
taken the approach of optimising the probability of the network given the data. However, as
mentioned previously, Schwalb (1993) is only concerned with learning the parameters of the
network. Moreover, the technique presented handles only the predictive case. Our approach
is unique in that it applies the idea of optimising the network for its intended task to the
problem of learning the structure as well as the parameters of the network.

A survey of related research shows that, while the problem of learning Bayesian networks
with no hidden variables is well-understood, learning networks with hidden variables is still
an open problem. We hope to make a significant contribution in that direction with our
proposed research.

A significant component of research that is lacking in the area of learning Bayesian
networks is rigorous experimental comparisons of the various approaches to determine their
strengths and weaknesses. One of the goals of this research is to provide such experimental
comparisons. This will serve to not only evaluate our approach, but also to provide a clear
view of what problems have been addressed in this area and what problems remain an issue.

Recently, there has been a lot of interest in Bayesian backpropagation (Buntine and
Weigend, 1991; Buntine, 1994). We would like to point out that our research is very differ-
ent in that it addresses a different problem. Bayesian backpropagation proposes a Bayesian
theory of the back-propagation algorithm used for training standard feed-forward neural net-
works, whereas our research addresses the problem of learning the parameters of a Bayesian
network using backpropagation techniques.

& Conclusion

Bayesian networks provide an elegant and theoretically sound formalism for representing
and reasoning with uncertainty. Given that knowledge acquisition in general is a recognised
problem, it is not surprising that building knowledge bases in the form of Bayesian networks
is difficult. However, the need to specify the conditional probability tables in precise numeric
tables makes the problem of acquiring Bayesian networks even harder. Therefore, learning
Bayesian networks from data is beginning to receive a lot of attention recently. Rapid
progress has been made in solving some of the learning problems. However, some problems,
such as learning a Bayesian network in the presence of hidden variables are still open.

The field of inductive learning provides a wealth of techniques for acquiring knowledge
from data. Machine learning researchers have studied several representations, both symbolic
and subsymbolic. Research in this field has also revealed that, for some learning problems,
revising an initial approximate theory to fit the data produces more accurate results with
lesser data than learning from data alone. However, not much has been done apply these
techniques to the problem of learning Bayesian networks.

With all the recent activity in this area, the time seems ripe for bringing together the
techniques developed in the area of symbolic and connectionist learning to this problem. In
this proposal, we have explored one such synergy which uses ideas from symbolic and con-
nectionist learning to address some of the weaknesses in the existing techniques for learning
Bayesian networks. Our technique will make a significant contribution to this area by pro-

30



viding an efficient way to revise a network in the presence of hidden variables and imperfect
structure.

We have implemented a part of our proposed technique and preliminary experiments
have shown it to be effective. However, much remains to be done. We have yet to address,
in detail, the problem of structure revision. We also have to carry out extensive experiments
to evaluate the effectiveness of the overall system.
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