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Abstract

There is much work done on Recommender Systems, systems that
automate the recommendation process; however there is little work
done on explaining recommendations. The only study we know did
an experiment measuring which explanation system increased user’s
acceptance of the item how much (promotion). We took a different
approach and measured which explanation system estimated the true
quality of the item the best so that the user can be satisfied with the
selection in the end (satisfaction).
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1 Introduction

With the exponential growth of information available on the web and with
the increase in the number of books, CDs, and films to choose from, a new
need in technology emerged: recommender systems. Recommender systems
are systems that build a representation of a user’s likes and dislikes and they
suggest items to the user based on this representation. Different methods
have been employed for computing recommendations. The most common two
approaches are collaborative filtering and content based recommendations.

To date, however, most of the research was done on how to efficiently
make good recommendations. Even though touched on by some papers, the
issue of improving users’ trust in recommendations is not much studied. How
will the users know that the recommended item really talks to their tastes
so that they can adopt it? One straightforward way to tackle this problem
is to explain the reasoning behind the recommendation; a similar method
that has been tried and proved to be successful for expert systems [4]. This
lead the researchers to build “explanation systems”, systems that explain
why an item is recommended to the user. Different papers [13, 3] describe
few explanation systems for their recommender systems. However, the only
exclusive study on explanation systems is done by Herlocker et al. [8].

There are two possible approaches to test the effectiveness of explanation
systems: the promotion approach and the satisfaction approach. According
to the promotion approach the best explanation system is the one that is
most successful at convincing the user to adopt the item. The satisfaction
approach, on the other hand, says that the best explanation is the one that
lets the user assess the quality of the item the best. We believe that the
satisfaction approach is a better approach than promotion approach because
what matters in the end is the satisfaction of the user. Moreover, if the users
are satisfied with their selections, they will continue using the system with
an increased trust in it.

Herlocker et al. implement several explanation systems for collaborative
filtering. However, we argue that they test explanation systems’ performance
from a promotion approach view, because according to their study, the more
positively the user responds to a recommendation with an explanation sys-
tem e, the better the e is. Additionally, they have done research only on
collaborative filtering. We implement three different explanation systems
and we test their successes from a satisfaction approach view. Moreover, our
research applies to both content based systems and collaborative filtering.
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We conducted user surveys to find out which explanation system predicts
the true rating of the recommended item the best. We used the Learning
Intelligent Book Recommending Agent (LIBRA) for our experimental study.
LIBRA is an online recommender system that employs both collaborative
filtering and content based algorithms [11].

The rest of the document is organized as follows: We give an overview
of recommender systems in section 2. Section 3 explains the underlying
recommender system. Section 4 discusses the experimental methodology and
the results. We discuss future work in section 5. We conclude in section 6.

2 Background

2.1 Recommender Systems

We face far more choices than we can try in the world: which book shall
I read, which movie is worth watching, which candidate shall we hire for
the job opening, where shall I have dinner tonight, etc. We often rely on
recommendations made by word of mouth, recommendation letters, book
reviews, or travel guides. Recommendation systems are systems that are
meant to augment this process in cases where we need help [16]. Examples
of such instances include: gathering many like-minded people in a database,
gathering information about thousands of books, combining information in
guides far more than we can research, etc.

For a typical recommender system, there are three steps:

1. The user provides some form of input to the system. These inputs
can be both explicit and implicit [15]. Ratings submitted by users are
among explicit inputs whereas the URLs visited by a user and time
spent reading a web site are among possible implicit inputs.

2. These inputs are brought together to form a representation of the user’s
likes and dislikes. This representation could be as simple as a matrix
of items-ratings, or as complex as a data structure combining both
content and rating information.

3. The system computes recommendations using these “user profiles.”

Even though the steps are essentially the same for most recommender
systems, there have been different approaches to both step 2 and 3. Two of
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the traditional approaches to building a user profile and computing recom-
mendations are collaborative filtering (CF) and content based (CB) recom-
mendation. Some researchers also tried hybrid approaches to improve the
quality of the recommendations.

2.2 Collaborative Filtering

Collaborative filtering, as its name suggests, is an attempt to simulate collab-
oration among users for sharing recommendations and reviews. The system
recommends items to a user by matching his/her personal tastes to that of
other users in the system. Most of the CF systems apply the nearest neighbor
model for computing recommendations. The nearest neighbor model consists
of three basic steps [7]:

First, the users provide ratings for the items they have experienced before.
Second, the active user 1 is matched with other users in the system. To

do so, correlation coefficients between the active user and other users are
computed. The users whose ratings highly correlate with that of the active
user are called the neighbors. A standard method for computing correlations
is the Pearson Correlation method.

Lastly, predictions for the items that the active user has not yet rated,
but the neighbors have rated are computed, and these items are presented
to the user in descending order of the predictions. One way of computing
predictions is to compute the weighted average of ratings of the neighbors
using the correlation coefficients as weights.

Note that CF systems that use the nearest neighbor model rely upon the
assumption that people who agreed in the past are likely to agree in the
future as well [15].

2.3 Content Based Recommender Systems

CB systems recommend items based on items’ content rather than other
users’ ratings. There are essentially four steps for CB recommendations:

The first step is to gather content data about the items. For example
book title, author, description etc. for the books or the director, cast etc.
for the movies are some of the common content information. Most systems
use Information Extraction techniques to extract these data, and Information

1The user for whom the recommendations are computed.
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Retrieval techniques to retrieve the relevant information [1, 13]. Web crawlers
collecting data off the web are common tools in this step.

The second step is to ask the user to provide some ratings. In this step,
the user might be asked to rate random items, or can search and find any
books s/he likes.

The third step is to compile a profile of the user using the content infor-
mation extracted in the first step and the rating information provided in the
second step. Different information retrieval or machine learning algorithms
can be used to learn a profile. Term-frequency/inverse-document frequency
weighting [10] and the Bayesian learning algorithm [13, 14, 6] are some of
the many techniques that have been tried.

The last step is to match unrated books’ contents with the user profile
compiled in the third step and assigning scores to the items depending on
the quality of the match. The items are ranked according to their scores and
presented to the user in order [13].

2.4 Hybrid Approaches

Both CF and CB systems have advantages and disadvantages over each other.
The following lists of problems are discussed in [7, 11, 5, 17, 1, 2]. CF systems
face three problems:

1. At the initial use of the system, there are not enough users to match
with. This problem is called the cold start problem.

2. The users-items-ratings matrix is usually very sparse since recommender
systems are used in domains where there are many items to choose from.
Thus, finding highly correlated users might be difficult. This problem
is called the sparsity problem.

3. When an item is added to the system, since nobody has yet rated it,
it cannot be recommended to any user. This problem is called the first
rater problem.

CB systems also suffer from three problems:

1. For some domains, either there is no content information available, or
the content is hard to analyze.

2. Formulating taste and quality is not an easy task.
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3. These systems can suggest only items whose content match with the
user’s profile. If the user has tastes that are not represented in his/her
profile, items talking to the unrepresented taste will not be recom-
mended.

The cold start problem is an issue for CB systems only when the active
user is at his/her initial stage of use of the program. The active user does
not have to wait for others to use the system in order to receive good rec-
ommendations. The second and third problems of the CF systems are not
an issue for the CB systems, because CB systems do not try to match with
other users.

The first problem of the CB systems is not an issue for CF systems because
CF systems do not look for content. The second problem of CB is partially
solved by CF because the taste and quality is entered by the users as ratings.
CF also solves the third problem of CB because the neighbors might have
tastes that the active user’s profile do not represent.

Seeing that one disadvantage of a system is not an issue for another,
much research has done on combining collaborative filtering with content
based recommendation. Different techniques were employed to combine the
two.

Basu, Hirsh, and Cohen view recommendation as a classification task
and use an inductive learning system called Ripper. Both collaborative and
content information is first transformed into set-valued attributes and then
fed to Ripper. After trained on some examples, Ripper classifies each test
item into one of the two categories: liked, disliked [2].

Sarwar et. al introduce the idea of filterbots, software robots that auto-
matically rate a new item using the item’s content information as soon as
the item is entered to the database. Filterbots act like other users in the
system except that they have more ratings than a typical user, and they do
not ask for recommendations. Thus, filterbots are meant to overcome both
the sparsity and the first rater problem. [17].

Melville, Mooney, and Nagarajan employ a technique where the system
first complements the user data by using the content information and then
uses collaborative filtering to compute recommendations. In this system, first
the sparse users-items-ratings matrix is filled with pseudo-ratings, ratings
provided by content based recommender and then collaborative filtering is
performed on the full matrix [11].
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As a last example, Balabanoić and Shoham introduced a system called
Fab, a recommendation system for the Web. In this system, user profiles are
built by using the content information first. Then, the users are matched
against each other using these profiles rather than using merely the ratings.
Once neighbors are found for the active user, predictions are made by collab-
orative filtering methods. In order to perform well, however, the construction
of accurate profiles is crucial [1].

3 System Description

3.1 The underlying recommender system

We have a system called Learning Intelligent Book Recommending Agent
(LIBRA), which employs collaborative filtering along with content based rec-
ommendation. The system is composed of two major components that were
adapted from few different researches [13, 11, 7] and another component that
we have newly built to bridge these two components. The three components
are pictured in red in Figure 1. The first component is the Content Based
Ranker that ranks books according the degree of the match between their
content and the active user’s profile. The second component is the Rating
Translator that assigns ratings to the books based on their rankings. The
third component is the Collaborative Filterer, which performs filtering on
the users-items-ratings matrix.

3.1.1 Content Based Ranker

LIBRA, originally built by Mooney [13] as a content based recommender sys-
tem, has a database of books categorized by six genres: literature, mystery,
romance, science fiction, science and technology, and children’s books. Each
genre has approximately 8000 books. The books are stored in a semistruc-
tured representation of ISBN, Author, Title, Description, Subject, Related
Authors, and Related Titles. The text in each slot is a bag of words, i.e. un-
ordered sequences of words, and a book is a vector of bags of words. These
data were collected in 1999 by crawling Amazon’s web page.

After choosing a genre, the active user rates a set of books by using the
search facility of the system. The user is asked to rate items on a discrete
1-5 rating scale.
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Figure 1: The Underlying Recommender System

The Content Based Ranker employs text categorization techniques using
a bag-of-words naive Bayesian text classifier. Instead of classifying into five
classes, there are only two classes: {likes, dislikes}. However, rather than
just classifying into one of these classes, LIBRA assigns a score to each item
and the items are ranked according to their scores.

LIBRA composes a “user profile table” for the active user after it has
been trained on some examples. This table consists of three columns: a slot
column, a column for the token in that slot, and the strength column. The
strength for a token t in a slot s is: P (t|cl,s)

P (t|cd,s)
where cl is the category of likes,

and cd is the category of dislikes. A score for a book is then computed by
multiplying the strengths of each token t in slot s of the book. The last step
is to rank the test examples based on their scores. This gives us the “Ranked
Items” vector in Figure 1.

To keep brevity, most of the details of the content-based ranker are omit-
ted. Please refer to [13] for a detailed description of the component.
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3.1.2 Rating Translator

The Rating Translator acts as a bridge between the Content Based Ranker
and the Collaborative Filterer. The Collaborative Filterer compares users
based on their ratings. Thus, in order to make use of the output of the
Content Based Ranker, the ranks assigned to the test examples must be
converted into ratings. We implemented the Rating Translator to do the
job.

A straightforward way to convert rankings into ratings is to assign the
top rating to the top item and decrease the rating as we go down the sorted
list. We do this by using rating-percentages arrays. A rating-percentages
array for a user shows what percent of the user’s training examples fall into
which rating category. An example of such an array is given in Table 1.

Table 1: Rating-percentages

Rating Number of Rating Smoother Smoothed

training examples percentages Array Array

5 10 20% 16% 18%
4 20 40% 24% 32%
3 10 20% 20% 20%
2 0 0% 12% 6%
1 10 20% 28% 24%

However, since users usually search for items that they like instead of
random items, rating-percentages arrays tend to be skewed towards the top
ratings. To minimize the effect of this skewing on ratings, we smooth the
rating-percentages arrays with yet another array, called the smoother array.
The smoother array is a rating-percentages array that is computed using
the data in Table 5 of [13]. This table contains ratings provided by some
volunteers on random items.

The smoothed array is computed as follows:

for i=1 to 5

smoothed[i]=(ratingpercentages[i]+w*smoother[i])/(1+w)

where w is the smoothing constant. w is inversely proportional with the
number of ratings provided by a user. In the example in Table 1, we chose
w = 1.
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The ratings are assigned as follows: Assume that there are x items. The
rater will assign x ∗ smoothed[i]/100 of the items a rating in the interval
[i, i − 1). Specifically, yth item in the bin of [i, i − 1) will be assigned i −

y−1
x∗smoothed[i]/100

.

3.1.3 Collaborative Filterer

We use the Collaborative Filterer that was originally implemented by Her-
locker et. al [7] for a news recommender and adapted by Melville et. al [11]
for a movie recommender. We slightly modified it to fit into our system. The
collaborative filtering for the active user is composed of three steps:

1. Compute correlations between the active user and other users of the
system.

2. Choose the best n users (i.e. neighbors) that have the highest correlation
with the user.

3. Compute predictions for items using the neighbors’ ratings.

We use Pearson Correlation to measure the similarity between users,
which is:

Pa,u =

m
∑

i=1
(ra,i − ra) × (ru,i − ru)

√

m
∑

i=1
(ra,i − ra)2 ×

m
∑

i=1
(ru,i − ru)2

where m is the number of items, ra,i is the rating given by the active user
to the item i, and ra is the mean rating of the active user. ru,i and ru are
similar.

The predictions for items are computed using the formula:

pa,i = ra +

n
∑

u=1
(ru,i − ru) × Pa,u

n
∑

u=1
Pa,u

where n is the number of neighbors and Pa,u is the Pearson Correlation con-
stant described above.

The items are sorted based on the predicted ratings and then presented
to the user.
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3.2 The Explanation Systems

There are a handful of good recommender systems available now. Some are
available for research purposes such as GroupLens [15], Video Recommender
[9], Ringo [18], MovieLens on a PDA [12], and some are for commercial uses
such as Amazon, NetFlix, CDNow, and MovieFinder. Even though some of
them provide some sort of explanation about their recommendations, most
are black boxes as to why they recommend a specific item [8]. Thus, the users’
only way to assess the quality of the recommendation is to try the item, i.e.
read the book or watch the recommended movie. However, since users use
recommender systems to reduce the time of choosing an item, it seems very
unlikely that they would spend time trying an item without trusting that it
is worth trying.

Explanation systems can prove to be useful for gaining the trust of the
users and thus improve the acceptance of the system. Explanation facilities
have been used for expert systems before and proved to be useful [4]. On
the domain of recommendation, Herlocker et al. have shown that explanation
systems increased the acceptance of automated collaborative filtering systems
[8].

There are many purposes explanation systems can be used for, some
of which are interleaved. Providing transparency into the working of the
system, increasing users’ trust in the system, letting users spot erroneous
recommendations, convincing users to purchase an item, and informing users
about the recommendations are some examples of the purposes of explanation
systems.

The effectiveness of an explanation system can be measured from two
different approaches: the satisfaction approach and the promotion approach.
According to the satisfaction approach, the best explanation is the one that
lets the users assess the quality of the item the best. For the promotion
approach, the best explanation is the one that is most successful at convincing
the user to adopt an item.

As described in previous sections, there is much research done in com-
puting good recommendations. However, there is very little research done
on explaining recommender systems, at least to our knowledge. The only
exclusive study on explanation systems was done by Herlocker et al. They
present the user a recommendation with twenty one different explanations.
The title of the item is removed in order to prevent any bias it might cause.
The user is asked to rate the recommendation by just looking at the expla-
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nations. Herlocker et al. present the explanation system for which the mean
rating is the highest as the best explanation. Thus, we believe that they
took the promotion approach. For more information about their study on
explanation systems, please see [8].

We believe that the satisfaction approach is a better approach than the
promotion approach, because what matters in the end is the satisfaction of
the user. If the user is satisfied with his/her selection in the end, the user’s
trust in and happiness with the system will increase, which in turn means
that the user will continue using the system. Thus, we took the satisfaction
approach.

We have used three explanation systems in our study: keyword style expla-
nation (KSE), neighbor style explanation (NSE), and influence style explana-
tion (ISE). Two factors played a role in choosing these styles of explanations.
One factor that affected the decision is the availability of the information, i.e.
content and collaborative information. We included KSE for systems that
are purely content-based and NSE for purely collaborative filtering systems.
ISE is not system dependent as will be described below. The second factor
that affected our selection of these styles is that we wanted to test how KSE
and ISE perform compared to NSE, which is the best performing explanation
system in Herlocker et al.’s study [8].

3.2.1 Keyword Style Explanation

Once the users are provided a recommendation, they are usually eager to
learn “what is in it that speaks to their interests.” KSE analyzes both the
content of the item and the profile of the user to find matches. If KSE is
implemented on top of a content-based recommender system, like in our case,
such a comparison is already made during the computation of the recommen-
dations. Then, KSE can just re-format the information in a user readable
form and present it to the user.

We used the KSE implementation that has been described in [13]. We
built it on top of Content Based Ranker explained in section 3.1.1. This KSE
presents a table to the user explaining what words had the most influence
on the rank of the recommended item. An example is presented in Figure 2.

As described in section 3.1.1, the system builds a profile table for each
user containing strengths of each token in each slot. An item’s content is
matched against this profile. For each token t occurring c times in slot s, a
strength of c∗strength(t) is assigned, where strength(t) is retrieved from the
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Figure 2: The Keyword Style Explanation

profile table. Then, the table is sorted according to the strength and only the
first twenty entries are displayed to the user. If a user wonders where a word
comes from, s/he can click on the explain column, which will take him/her to
yet another table explaining in which training examples that word occurred
and how many times. Only positively rated training examples are included
in the table. An example of such a table is presented in Figure 3.

Figure 3: Explanation of where a word appears

Billsus and Pazzani provided similar explanations for their news recom-
mender [3].

3.2.2 Neighbor Style Explanation

If the recommender system is collaborative filtering, then the users wonder
what their recommending neighbors think about the recommended items.
The neighbor style explanation (NSE) is designed to answer this question.
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NSE was implemented along with twenty other explanation systems by
Herlocker et al [8]. NSE performed best from the promotion view. NSE makes
use of only the collaborative information to compile a chart that shows how
the active user’s neighbors think about the recommended item. An example
is shown in Figure 4. To compute the chart, the active user’s neighbors’
ratings for the recommended item are categorized into three categories: Bad,
Neutral, and Good. A bar chart is plotted and presented.

Figure 4: Table showing ratings of a user’s neighbors

3.2.3 Influence Style Explanation

An influence style explanation (ISE) neither presents content nor collabora-
tive information. Rather, it tells the users how their interactions with the
recommender system influenced the recommendation. Thus, ISE is indepen-
dent of the underlying recommender system.

ISE presents to the users a table of what had the most impact on the rec-
ommended item. If the data collected by the underlying system are ratings,
this table might contain rated items that had the most influence; if the data
are URLs visited by the users, the table can show which URLs caused the
recommendation. Amazon has a similar style of explanation, however we do
not know how they compute the explanations.

Since LIBRA collects ratings for books, we present a table of books that
had the most impact on the recommendation. Each row of the table consists
of two columns in which one is a book that the active user has rated and
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the other column is the influence of that book on this recommendation. An
example of such an explanation is shown in Figure 5.

Figure 5: Influence Style Explanation

The ideal way to compute the influences is to remove the book whose
influence is being computed from the training set, recompute recommen-
dations, and measure the difference in ranking/score of the recommended
book. However, this process could be very time consuming and thus could
be uncomfortable for the active user especially if the user has rated a large
number of items (which of course is good thing to get good recommenda-
tions). Thereby, different methodologies need to be implemented to reduce
the response time.

To compute influences efficiently, we modified the “recompute recom-
mendations” step. Instead of recomputing recommendations, we measure
two numbers, content influence and collaborative influence, separately and
take the weighted average of them. To compute the content influence of
an item, we remove the item from the training set, we retrain the Bayesian
Classifier with the remaining training set, and we recompute a score for the
recommended item with the new user profile. Please refer to section 3.1.1 for
more information on computing scores. The difference in the recommended
item’s score measured before and after the removal of the item is the content
influence. To compute the collaborative influence we remove the item from
the “Rated Items” vector and recompute a prediction for the recommended
item. The difference in the predictions before and after the removal of the
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item is the collaborative influence. Please refer to section 3.1.3 for more in-
formation on how predictions are computed. Finally, we combine these two
numbers by taking a weighted average of them, giving us the final influence.
The equation we used is: finalInfluence = contentInfluence+w∗collabInfluence

1+w
.

We chose w = 1, however, a different value can be chosen depending on the
system. The table is sorted according to finalInfluence.

4 Experimental Methodology and Results

4.1 Methodology

As described in section 3.2, we took the satisfaction approach. We designed
a user study where we asked the users to fill out an online survey. The ideal
way to implement the survey of a satisfaction approach would be:

1 Ask for ratings and compute a recommendation r

2 for each explanation system e

2.1 Present r to the user with e

2.2 Ask the user to rate r

3 Ask the user to try r and then rate it again

Because the satisfaction approach says that the best explanation is the one
that lets the user assess the quality of the item the best, the explanation
system for which the difference between the rating provided at step 2.2 and
3 is minimum is the best one (Note that the user rates the same item in step
2.2 and 3.).

In the first step, we ask the active user to provide LIBRA at least three
ratings, so that LIBRA can provide him/her a decent recommendation along
with some meaningful explanation.

We remove the title and author of the book in the second step because
we do not want the user to be influenced by it. Moreover, we randomize the
order of explanation system seen for each run of the system to minimize the
effect of seeing one explanation before another.

Since running this experiment would be very time consuming primarily
due to the third step, we slightly modified it. Instead of reading the book,
the active user can read the Amazon page describing the book and then make
a guess about what his satisfaction would be should he read the book.

Comparing the ratings provided at step 2.2 and 3, we hypothesized that:
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1. NSE will overestimate the rating of an item.

2. KSE and ISE will estimate the true rating well.

3. All three should have positive correlations with the actual ratings.

4.2 Results

The data were collected primarily from three different sources. Students at
the Artificial Intelligence class at the University of Texas at Austin Computer
Science department were asked to fill the online survey. The author also
asked students at various departments at UT-Austin. Finally, the author
asked his friends to fill in the survey. 34 people completed the online survey.
Since the system allows the users to repeat steps 2 and 3 with different
recommendations, we were able to collect data on 53 recommendations.

We use the following definitions in the rest of the paper. Explanation-
rating is the rating given to an item by the users by just looking at the
explanation of the recommendation. For example, influence-rating is the
rating given by a user to an item that has been explained by the influence
style explanation. These ratings are the ratings provided at step 2 of the
experiment. Actual-rating on the other hand, is the rating that users give to
an item after experiencing the item. This rating is the rating provided at
step 3 of the experiment.

Since LIBRA tries to provide good recommendations to the user, we
expect both explanation-ratings and actual-ratings to be high. As can be
seen from histogram diagrams in Figure 6, the data are concentrated at
categories 3 and especially 4 and 5. When we look at the means in Table 2,
we see that means for the ratings are pretty high, being 3.75 at the least.

Table 2: Means and Std Deviations of the ratings

Type Mean Std. Deviation

Actual 3.75 1.02
Influence 3.75 1.07
Keyword 3.75 0.98
Neighbor 4.49 0.64
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Figure 6: Histogram of Actual, Influence, Keyword, and Neighbor Ratings

We expect to have approximately normal distributions for the differences
between the actual-ratings and explanation-ratings. The histograms of the
differences are displayed in Figure 7. The means of the differences can be
seen in Table 3.

Table 3: Means, Std Deviations, and Confidence Intervals of the differences

Type Mean Std. Deviation 95% Conf. Int.

Influence 0.00 1.30 (-0.36, 0.36)
Keyword 0.00 1.14 (-0.32, 0.32)
Neighbor 0.74 1.21 (0.40, 1.07)

According to the satisfaction approach, the best explanation is the one
that allowed users to best approximate the actual-rating. That is, the dis-
tribution of (explanation-ratings − actual-ratings) for a good explanation
should be centered around 0. Thus, the explanation whose µd (the mean of
the difference between explanation-rating and actual-rating) is closest to 0

17



Figure 7: Histogram of Difference Between Actual, Influence, Keyword, and
Neighbor Ratings

and that has the smallest standard deviation σd in Table 3 is a candidate
for being the best explanation. The keyword style explanation (KSE) wins
with µd = 0.00 and σd = 1.14. When we look at the confidence intervals, we
see that both KSE and influence style explanation (ISE) are very close. This
table also shows that, with high probability, the neighbor style explanation
(NSE) overestimates the actual-rating by at least 0.40. Considering that the
mean for actual-ratings is 3.75, and also considering that the highest rating
possible is 5.00, a mean of 0.74 overestimate is a significant overestimation.
This table justifies both Hypotheses 1 and 2.

We have also run paired t-tests to find out whether these differences were
due to chance only. The null hypothesis we used for all three types of expla-
nations is H0(µd = 0). Since we did not have prior estimates on whether KSE
and ISE would overestimate or underestimate should they estimate wrong,
the alternative hypothesis for these explanation systems is Ha(µd 6= 0). How-
ever, since we postulated that the NSE would overestimate the actual-ratings,
the alternative hypothesis is Ha(µd > 0).
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The results in Table 4 clearly show that we can reject the null hypothesis
for NSE, because the probability of having µd = 0 is 0.00. (i.e. P = 0.00).
So, we accept the alternative hypothesis for NSE. For ISE and KSE on the
other hand, we cannot reject the null hypothesis, because P = 1.00. So,
results for these two styles are inconclusive. Thereby, the t-tests justifies our
Hypothesis 1.

Table 4: t-tests

Actual

Hypotheses P

ISE H0(µd = 0), Ha(µd 6= 0) 1.00
KSE H0(µd = 0), Ha(µd 6= 0) 1.00
NSE H0(µd = 0), Ha(µd > 0) 0.00

One other thing that needs to be noted is that the means themselves
might be misleading. Consider the following scenario. Assume that we have
a new style of explanation called, the fixed style explanation, where all fixed-
ratings are 3. If the actual-ratings are equally distributed in the interval [1, 5],
then the mean difference between the fixed-ratings and the actual-ratings will
be 0. However, this does not necessarily mean that fixed style explanation is
a good explanation. A good explanation should have µd = 0, a low σd, and
a strong correlation constant r. That is, explanation-ratings should strongly
correlate with the actual-ratings.

We have calculated the correlation between actual-ratings and explanation-
ratings along with their respective probabilities of being due to chance and
they are presented in Table 5.

Table 5: Correlations and P-Values

Actual

r P

ISE 0.23 0.10
KSE 0.34 0.01
NSE -0.02 0.90

The most strongly correlating explanation is KSE as can be seen in Table
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5. The probability of having this high of a correlation due to chance is only
0.01. Next, ISE has a correlation of 0.23, and the probability of having this
correlation due to chance is 0.1. Even though it does not meet the standard
value of 0.05, 0.1 is still not a big chance. The correlation constant for NSE
is negative, however, the chance of having this small of a negative correlation
is 90%. The correlation table justifies our Hypothesis 3 fully for KSE and
partially for ISE. However, our Hypothesis 3 fails to be true for NSE.

5 Future Work

Another measure that can be calculated is the disappointment level, which
is, once the user chooses an item by looking at an explanation, how much
difference will there be between his expected and true final satisfaction? This
requires analyzing the difference between the explanation-rating that is above
some predefined threshold and the actual-rating, because if the explanation-
rating is below some threshold, the users will not even try the item, thus
they will not be disappointed at trying it.

Secondly, the users who participated in the experiment mostly had three
ratings in their profile. If they had more, the results could be different.

And lastly, there are twenty other explanation styles described in Her-
locker et al.’s paper [8]. The experiment can be repeated with other ex-
planation styles as well. Note that NSE was the best explanation from a
promotion view. Another style in that study can perform better from a
satisfaction view.

6 Conclusions

Our Hypothesis 1 and 2 are justified while Hypothesis 3 is partially justified.
The mean of the differences (µd), the standard deviations (σd), and 95%

confidence intervals in Table 3, the t-tests in Table 4, and correlation con-
stants (r) in Table 5 all tell us to use the keyword style explanation (KSE),
and not to use the neighbor style explanation (NSE). However, to produce
KSE, the system needs to have content information and needs to make use
of this content in the recommendation process.

The influence style explanation (ISE) also performed quite well. If the
content information is not available, or if it is difficult to extract meaningful
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information from the content, then the ISE can be used safely. Note that the
differences in results for KSE and ISE were not dramatic.

NSE clearly overestimated the actual-ratings and should not be used from
the satisfaction view. If an explanation system causes the users to overes-
timate the quality of the item, then the users will expect a high return on
trying the item. However, once they experience the item, they will be disap-
pointed and their trust in the system will decrease. They might even decease
using the system. If an explanation system underestimates the quality of
an item, then the users might not even bother examining the item. So, a
good explanation system should do its best to estimate the real quality of
the recommended item. KSE and ISE seem to do well from this view.

Lastly, ISE is not system dependent. i.e. The underlying system does not
have to be based on neither content nor collaborative information. On the
other hand, KSE is based on content information, where as NSE is based on
collaborative information. Thereby, ISE can be implemented for any recom-
mender system that gathers user input. Moreover, ISE might help the user
understand how her/his interactions with the system affect the recommenda-
tion. This information is crucial if the system collects implicit data because
the user can then adjust his/her interactions with the system accordingly
[8].
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