
Proceedings of ICML-2003 Workshop on Machine Learning in Bioinformatics,
pp. 46-53, Washington, DC, August 2003

Learning to Extract Proteins and their Interactions from

Medline Abstracts

Razvan Bunescu razvan@cs.utexas.edu

Ruifang Ge grf@cs.utexas.edu

Rohit J. Kate rjkate@cs.utexas.edu

Raymond J. Mooney mooney@cs.utexas.edu

Yuk Wah Wong ywwong@cs.utexas.edu

Department of Computer Sciences, University of Texas, Austin, TX 78712, USA

Edward M. Marcotte marcotte@icmb.utexas.edu

Arun Ramani arun@.icmb.utexas.edu

Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, Univer-
sity of Texas, Austin, TX 78712, USA

Abstract

We present results from a variety of learned
information extraction systems for identify-
ing human protein names in Medline ab-
stracts and subsequently extracting interac-
tions between the proteins. We demonstrate
that machine learning approaches using sup-
port vector machines and hidden Markov
models are able to identify human proteins
with higher accuracy than several previous
approaches. We also demonstrate that vari-
ous rule induction methods are able to iden-
tify protein interactions with higher precision
than manually-developed rules.

1. Introduction

An incredible wealth of biological information is stored
in published articles in scientific journals. Summaries
of more than 11 million such articles are available in
the Medline database. However, retrieving and pro-
cessing this information is very difficult due to the lack
of formal structure in the natural-language narrative in
these documents. Automatically extracting informa-
tion from biomedical text holds the promise of easily
consolidating large amounts of biological knowledge in
computer-accessible form. A number of recent projects
have focused on the manual development of informa-
tion extraction (IE) systems for extracting informa-
tion from biomedical literature (Fukuda et al., 1998;
Blaschke & Valencia, 2001). Unfortunately, manual
engineering of IE systems for particular applications is
a tedious and time-consuming process. Consequently,

significant recent research in information extraction
has focused on using machine learning techniques to
help automate the development of IE systems (Cardie,
1997). Recently, several machine learning methods
have been used to develop Medline IE systems (Tanabe
& Wilbur, 2002; Raychaudhuri et al., 2002).

We are exploring the use of a variety of machine learn-
ing methods to automatically develop IE systems for
extracting information on gene/protein name and in-
teractions from Medline abstracts. Approximately
40,000 human genes are known from the sequences
of the human genome (Venter & et al., 2001), yet
fewer than 5,000 are well characterized and likely to
be described in the literature. Unlike other organ-
isms, such as yeast or Escherichia coli, human gene
names have no standardized naming convention, and
thus represent a more difficult extraction problem. In
this paper, we present cross-validated results on identi-
fying human proteins and their interactions by training
and testing on a set of approximately 1,000 manually-
annotated Medline abstracts that discuss human pro-
teins. Previous projects on extraction from Medline
typically present results for a single method with lim-
ited or no comparison to other methods. By contrast,
we present uniform results of a wide variety of meth-
ods on a single, reasonably large, human-annotated
corpus, thereby giving a broader picture of the rela-
tive strengths of different approaches.

2. Biomedical Corpora

In order to generate a corpus for testing the extraction
of protein names and interactions, we manually tagged

approximately 1,000 abstracts from among the 11 mil-
lion abstracts available in Medline. 750 abstracts con-
taining the word “human” are used for testing pro-
tein name extraction. Of these, 61.3% discussed pro-
teins, with a total of 5,206 protein references. 200
abstracts previously known to contain protein inter-
actions were obtained from the Database of Interact-
ing Proteins (http://dip.doe-mbi.ucla.edu/) and
tagged for 1,101 interactions and 4,141 protein names.
As negative examples of interactions were rare in these
abstracts, an extra set of 30 abstracts were collected by
scanning approximately 5,000 abstracts for sentences
that mention at least two proteins that do not interact.
The resulting 230 abstracts are used to test interaction
extraction.

3. Protein Name Identification

In this section we explore the problem of recognizing
references to human proteins using the tagged data
described in the previous section.

3.1. IE Methods

3.1.1. Dictionary-based Extraction

The success of a protein tagger depends on how well
it captures the regularities of protein naming as well
as name variations. In the dictionary-based approach,
we started with an extensive set of protein names ex-
tracted from two fairly comprehensive sources: (1)
the file human.seq, downloaded from the Human Pro-
teome Initiative (HPI) of Expasy;1 and (2) the file
feb2002-tables.tar.gz, downloaded from the Gene
Ontology Database.2

Altogether, these dictionaries contain 42,172 protein
names (synonyms included). This collection of protein
names, henceforth referred to as the original dictio-
nary, was further extended by isolating and replacing
numbers with 〈n〉, Roman letters with 〈r〉 and Greek
letters with 〈g〉. We tag a textual n-gram as a protein
name only if it is an instance of one of these general-
izations. The aim was to extend the coverage of the
original set, while at the same time trying to mini-
mize any decrease in accuracy. Table 1 shows some
examples of name generalizations.

We used this generalized dictionary-based tagger for
supplying a pre-tagged input to some of the learning
methods that will be discussed in the following sec-
tions.

1URL: http://us.expasy.org/sprot/hpi/
2URL: http://www.godatabase.org/dev/database/

Table 1. Dictionary generalizations.

Protein Names Generalized Names

NF-IL6-beta NF IL 〈n〉 〈g〉
NF-kappa B NF 〈g〉 〈r〉
TR2 TR 〈n〉

3.1.2. Rapier and BWI

Rapier (Califf & Mooney, 1999) is a rule learning
algorithm that acquires unbounded patterns for ex-
tracting information from text. Each extraction rule
consists of a pre-filler pattern that matches text imme-
diately preceding a filler, a filler pattern that matches
the extracted substring, and a post-filler pattern that
matches the text immediately following the filler.

To help Rapier capture generalities that are not evi-
dent from the words alone, we supplied part-of-speech
(POS) tags to every word in the text. POS tags are
potentially useful because certain types of words (e.g.
cardinal numbers and proper nouns) are likely can-
didates of being parts of a protein name. In another
experiment, we replaced the POS tags with the output
of the dictionary-based tagger in order to incorporate
domain knowledge into the learning algorithm.

We also performed similar experiments with Boosted
Wrapper Induction (BWI) (Freitag & Kushmerick,
2000), a method that repeatedly learns extraction
rules composed of simple contextual patterns called
wrappers.

3.1.3. Hidden Markov Models

Hidden Markov models (HMMs) are learning with
stochastic finite state automata. They have proved
to be highly effective in a number of information ex-
traction tasks (Bikel et al., 1999; Ray & Craven, 2001).

Following the approach used in (Ray & Craven, 2001),
we built HMMs for identifying protein names based
on words and POS information (and/or the output
of the dictionary-based tagger). It involved creating
a positive model for recognizing sentences containing
protein names, and a null model for recognizing sen-
tences without any protein names. The positive model
was trained on sentences tagged with protein names,
while the null model was trained on the remaining sen-
tences. In the extraction phase, a sentence is deemed
as positive (i.e. containing protein names) only if the
likelihood of emission by the positive model is greater
than the likelihood of emission by the null model.

3.1.4. Token Classification and Support

Vector Machines

Since our tagged Medline abstracts do not contain any
protein names that directly abut each other, we can
reduce the named-entity recognition problem to clas-
sification of individual words. Protein names are ex-
tracted by identifying the longest sequences of words
that have been classified as being part of a protein
name. Similar approaches have been applied success-
fully to the task of text chunking, which is identifying
simple phrases such as non-recursive noun and verb
phrases (Roth & van den Bosch, 2002).

In our experiments, we used support vector machines
(SVMs) as the token classifier (Vapnik, 1998).3 SVMs
are generally considered to be the currently best tech-
nique for text classification (Joachims, 1998). Building
SVMs involves finding an optimal margin hyperplane
that separates positive (tokens annotated as proteins)
and negative examples with minimal training errors.
For each token, we built a feature vector consisting of
the current word, the previous and following N words,
and their corresponding POS tags (or the output of
the dictionary-based tagger). To capture morpholog-
ical similarities and alleviate the problem of unseen
words, we included as features the last one, two, and
three characters of each word in the feature vector,
which we henceforth refer to as the suffix features. We
also included as features the class labels of the N pre-
ceding tokens. Since the class labels were not given in
the test data, they were decided dynamically during
the tagging of previous tokens (Kudoh & Matsumoto,
2000). For each extracted sequence of tokens, we used
the minimal distance from the separating hyperplane
as a quantitative measure of confidence.

The training set for the token classification problem
is highly imbalanced. Out of the 209,022 tokens in
our corpus, only 10,175 of them (4.87%) are protein
names. As pointed out by Kubat et al. (1998), the
induced classifiers tend to be highly accurate on neg-
ative examples but also produce many false negatives
which lead to low recall. By sampling the training set
and feeding the learner with only negative examples
surrounding the positive ones, we can shift the result-
ing hyperplane and potentially reduce the number of
false negatives. Our experiments supported this claim
and showed that we could attain very high recall at
the expense of precision.

3We have tried a number of classifiers, and SVMs seem
to perform the best. Please refer to (Bunescu et al., sub-
mitted 2002) for details.

3.1.5. Existing Protein Name Identification

Systems

For comparison, we tested two existing protein name
identification systems. The first is KEX version
1.21 (Fukuda et al., 1998), which has a set of hand-
built pattern matching rules that makes use of POS
information. The second system is Abgene (Tanabe
& Wilbur, 2002), which uses a transformation-based
tagger to produce initial tagging, and several dictio-
naries and contextual rules for weeding out false posi-
tives and recovering false negatives.

3.2. Experimental Results

3.2.1. Experimental Methodology

The 750 Medline abstracts annotated with protein tags
were tokenized using simple pattern rules developed
for the Penn Treebank project.4 For programs requir-
ing sentence-segmented input, we used the sentence
segmenter from the KEX tagger with additional rules
for bulleted lists. To produce POS tags, we used Brill’s
POS tagger, which we trained using 10,000 untagged
Medline abstracts. Those abstracts were obtained the
same way we did for the set of 750 abstracts. No stem-
ming or stopword filtering was performed during the
experiments.

We performed ten-fold cross validation on each learn-
ing algorithm with a particular parameter setting.
Each extracted protein name in the test data was com-
pared to the human-tagged data, with the positions
taken into account. Two protein names are considered
a match if they consist of the same character sequence
in the same position in the text. This detects circum-
stances where common English words are incorrectly
recognized as protein names, and ensures that all refer-
ences to proteins are recognized.5 We measured preci-
sion (percentage of extracted names that are correct),
recall (percentage of correct names that are found),
and F-measure (harmonic mean of precision and re-
call).

3.2.2. Quantitative Results

Table 2 summarizes results for the protein taggers pre-
sented, along with any additional sources of informa-
tion used. For the SVM tagger, we use the full set of
negative examples for training, and use N = 2 since
it provides the best performance. For systems which
output confidences that allow trading-off precision and

4URL: http://www.cis.upenn.edu/~treebank/
5Since Abgene provides no positional information, we

assume that all occurrences of the extracted strings are
recognized as proteins.

recall (i.e. BWI, SVM, and HMM), results are pre-
sented for the maximum achievable recall.

For ease of comparison, we show precision-recall curves
in Figure 1, using the version of each system that gave
the best F-measure (as shown in bold in Table 2).
For those IE methods that output extraction confi-
dences, we show curves indicating the precision for
each achievable level of recall. For the SVM tagger, we
achieve higher recall by gradually reducing the num-
ber of negative examples in the training set, until only
those negative examples adjacent to positive examples
remain. At the point of maximum recall (81.82%),
53.17% of the training examples are positive, and we
are able to achieve 10.83% precision. Single precision-
recall points are shown for all other methods.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (

%
)

Recall (%)

Dict
RAPIER-Dict

BWI-Dict
HMM-Dict
SVM-Dict

KEX
Abgene

Figure 1. Precision-recall curves for protein taggers in
their best settings.

3.2.3. Discussion of Results

Overall, the results show limited utility of POS tags.
The use of POS tags in Rapier and SVM does not
improve F-measure significantly according to a paired
t-test (p > 0.05). An exception is for HMM, where the
F-measure increases significantly when both the POS
tags and the output of the dictionary-based tagger are
available. This is because the inclusion of POS tags
results in a model with more states, allowing for more
accurate modeling of the data. On the other hand, the
dictionary-based tagger is generally helpful in boosting
precision or recall. The SVM tagger also shows better
precision with the inclusion of suffix features.

While none of the learning methods achieve a signifi-
cant improvement over the dictionary-based tagger in
terms of F-measure, several of them can produce much
higher precision. In particular, SVM is able to achieve

arbitrarily high precision by adjusting the level of re-
call. This is because the extraction confidence seems to
truly reflect the probability of correctness. Since high
precision is needed to extract accurate knowledge from
text, this is a significant contribution. We can also ob-
tain much higher recall by sampling the training data
for use by token classification methods. The proposed
proteins may be subject to further filtering to produce
a more accurate set.

All of our IE methods perform significantly better
than two existing protein taggers, KEX and Abgene.
Given that these systems were developed for different
distributions of proteins, this is not surprising; how-
ever it does illustrate the relative difficulty of identi-
fying human proteins. The hand-built rules used in
KEX were developed and tested on a rather confined
set of proteins different from the human proteins in
our data. Abgene uses transformation-based learn-
ing (TBL) to learn a protein tagger; however, the spe-
cific tagger we obtained was not trained specifically
for human proteins. Our own experiments with TBL
showed that even when specifically trained for human
proteins, a TBL-based tagger was still inferior to many
other learning approaches.6

4. Protein Interaction Extraction

This section discusses our work on identifying human-
protein interactions assuming that the proteins them-
selves have already been tagged. We also present com-
parison of our machine-learning systems with human-
written extraction rules.

4.1. IE Methods

4.1.1. Rapier and BWI

In order to adapt slot-filling IE systems that extract
individual entities (like Rapier and BWI) to the prob-
lem of extracting relations, we developed two ap-
proaches. The first approach we call the Interfiller
approach. Given two tagged entities participating in a
relationship, the text fragment between them is called
the interfiller. If a slot-filling IE system extracts an
interfiller, the tagged entities before and after it can
be extracted as participating in the targeted relation.

The second approach we call the Role-filler approach.
In this approach, we extract the two related entities
into different role-specific slots. For protein interac-
tions, we named the roles interactor and interactee.
We then assume that all interacting proteins appear in

6Please refer to (Bunescu et al., submitted 2002) for
details.

Table 2. Performance of protein taggers in different settings.

IE Methods and Additional Information Used Precision Recall F-measure

Dictionary-based with generalized dictionary 62.27% 45.85% 52.81%

Rapier

words only 76.11% 9.97% 17.63%
part-of-speech 70.84% 11.05% 19.12%
dictionary-based tagger 74.49% 12.22% 21.00%

BWI (300 iterations, 2 lookaheads, max. recall)
words only 70.67% 11.52% 19.81%
dictionary-based tagger 71.01% 24.06% 35.94%

HMM (max. recall)
part-of-speech 49.21% 25.93% 33.96%
dictionary-based tagger 51.24% 33.73% 40.68%
part-of-speech and dictionary-based tagger 60.29% 39.95% 48.05%

SVM (N = 2, full training set, max. recall)
preceding class labels 69.16% 19.74% 30.72%
preceding class labels and part-of-speech 70.18% 19.72% 30.79%
preceding class labels and dictionary-based tagger 65.00% 45.43% 53.48%

with additional suffix features 70.38% 44.49% 54.42%

KEX 14.68% 31.83% 20.09%

Abgene 32.39% 45.87% 37.97%

the same sentence and extract the related pairs using
the following heuristics. (1) The interactors and inter-
actees appearing in the same sentence form a sequence
of role fillers. This sequence is separated into segments
at the points where an interactee is immediately fol-
lowed by an interactor. Interactors and interactees can
only be paired within the same segment. (2) Each in-
teractor is associated with the next occuring interactee
in the segment. (3) If there are fewer interactors (inter-
actees) than interactees (interactors) in the segment,
use the last interactor (interactee) in constructing the
remaining pairs. In our human-tagged interaction cor-
pus, assuming interactors and interactees are properly
tagged, this approach identifies all the interacting pairs
with 99.2% accuracy.

Both of these approaches have been used to train BWI
to extract interacting proteins, and the Role-filler ap-
proach has been used to train Rapier to extract inter-
actions. Rapier could not learn to extract interfillers
successfully, since, in the worst case, the time com-
plexity of its generalization algorithm can grow ex-
ponentially in the length of a filler. Since extracted
entities are usually fairly short, this is typically not a
problem in standard slot-filling IE. However, the long
interfillers in many protein interactions prevented us
from running Rapier with the Interfiller approach.

4.1.2. ELCS

We have also developed a new method for directly
learning patterns for extracting relations between pre-

viously tagged entities. Blaschke and Valencia (2001;
2002) manually developed rules for extracting inter-
acting proteins. Our method ELCS (Extraction using
Longest Common Subsequences) automatically learns
such rules from the training data.

ELCS’ rule representation is similar to that in
(Blaschke & Valencia, 2001; Blaschke & Valencia,
2002), except that it currently does not use POS tags,
but allows disjunctions of words. Figure 3 shows some
examples of rules learned by ELCS. Words in square
brackets separated by ‘|’ indicate disjunctive lexical
constraints, i.e. one of the given words must match
the sentence at that position. The numbers in paren-
theses between adjacent constraints indicate the maxi-
mum number of unconstrained words allowed between
the two (called a word gap). A sentence matches the
rule if and only if it satisifes the word constraints in
the given order and respects the respective word gaps.
One of the ELCS’ versions allows conjunctions of the
sequences of words (last two examples in Figure 3) and
in order to match such a rule a sentence must match
each of these sequences.

Sentences in the training data that contain interacting
proteins are called positive sentences and others are
called negative sentences. Note that a positive sen-
tence may contain more than two proteins and more
than one pair of interacting proteins. In order to ex-
tract the interacting pairs, the rules should be trained
to pick out exactly the interacting proteins from the
positive sentences. To do this we replicate positive

Sentence 1: The self - association site appears to
be formed by interactions between helices 1 and 2
of beta spectrin

1
repeat 17 of one dimer with he-

lix 3 of alpha spectrin
1

repeat 1 of the other dimer to
form two combined alpha - beta triple - helical segments .

Sentence 2: Title - Physical and functional interac-
tions between the transcriptional inhibitors Id3

2
and

ITF - 2b
2

.

Generalization using longest common sequence (LCS):
- (7) interactions (0) between (5) PROT (9) PROT (17) .

Generalization using edit-distance (ED):
[self|Title] (0) - (4) [be|Physical] (0) [formed|and] (0)
[by|functional] (0) interactions (0) between (2) [and|the]
(0) [2|transcriptional] (0) [of|inhibitors] (0) PROT (8)
[of|and] (0) PROT (17) .

Generalization using conjunctions (CJ):
{ - (7) interactions (0) between (5) PROT (9) PROT (17)
. }

∧
{- (11) and (6) PROT (9) PROT (17) . }

Figure 2. Generalizations of two sentences using different
methods. Protein names have been underlined and same
sub-script numbers indicate interactions between them.
Tag ‘PROT’ stands for potein name.

sentences having n proteins (n > 2) into Cn

2 sentences
such that each one has exactly two of the proteins
tagged, with the rest of the protein tags omitted. If the
tagged proteins interact, then the replicated sentence
is added to the set of positive sentences, otherwise it is
added to the set of negative sentences. During testing
also we replicate sentences containing more than two
protein names in a similar way.

ELCS induces rules using a bottom-up approach. It
starts with positive sentences and repeatedly gener-
alizes them to form rules. We have developed three
methods for generalizing rules. The first method finds
the longest common subsequence (LCS) of words be-
tween the rules. Efficient algorithms for computing an
LCS are presented in (Gusfield, 1997). After finding
the LCS between two rules, we determine the size of
word gaps between every two adjacent words in their
LCS as the larger of the number of words plus the
sum of existing word gaps between the two LCS words
where they are found in the orignal two rules.

Our second method of generalization uses edit dis-
tance (ED) (Gusfield, 1997) and creates more spe-
cific rules that contain disjunctive constraints. The
most common edit distance is Levenshtein distance
(Levenshtein, 1966), defined as the minimum num-
ber of edit operations (adding, deleting, or replacing
an item) required to convert one sequence into an-
other. We use the minimal edit-operation sequence
obtained when computing Levenshtein distance to gen-

interactions (0) between (4) PROT (0) and (4) PROT
(16) .

PROT (0) / (0) PROT (10) heterodimers (36) .

[binding | substitution | AB | addition | Interestingly |
TI | interactions] (0) [of | - | ,] (3) PROT (19)
[to | for | : | same | with] (10) PROT (30) [nM |
binding | 1 | CDK6 | CCR8 | death] (9) .

[linker | TI | armadillo | b558 | of] (0) [- | , | a] (5)
PROT (13) [and | / | with | to | containing] (0)
PROT (2) .

{, (11) PROT (25) and (8) to (9) PROT (66) .}
∧

{,
(11) PROT (16) bind (18) PROT (66) .}

{, (10) PROT (5) for (7) PROT (9) .}
∧

{, (10) PROT
(4) binding (6) PROT (9) .}

Figure 3. Some example rules learned by ELCS; the first
two were learned using LCS generalization, the next two
using ED generalization and the last two using CJ gener-
alization.

eralize two rules. We preserve the common word con-
straints between the rules, make disjunctions of con-
straints when one item is replaced by another in the
edit sequence, and drop constraints that are added or
deleted in the edit sequence. Finally, we introduce
word gaps using the method described for the LCS-
based generalization.

The third generalization method finds all common se-
quences between the two rules and considers their con-
junction (CJ) as the generalization. Unlike the previ-
ous two methods, this method is associative, i.e. we
get the same generalization of a set of rules irrespec-
tive of the order in which we generalize two of them
at a time. If there is any common pattern among the
base rules then this property guarantees that the pat-
tern will also appear in the generalization (note that
it is possible to lose such a common pattern while tak-
ing LCS of two rules at a time). Word gaps are then
introduced as in the previous two methods. Figure 2
shows generalization of two sentences obtained by each
of these methods.

Using one of these generalization methods, a greedy-
covering, bottom-up rule-induction method is used to
learn a small set of rules that cover all the positive
sentences without covering many negative ones. We
use an algorithm similar to beam search and consider
only the n best rules for generalization at any time.
We start with n randomly selected positive examples.
These n rules are generalized with one of the remain-
ing positive examples to obtain n more rules. Out
of these 2n rules we select n rules with the highest

confidence level and allow further generalization with
the remaining positive examples. After iterating over
the remaining positive examples in this way, the n best
rules are finally included in the set of learned rules and
the positive examples covered by them are removed.
The entire process is repeated till we exhaust the set
of positive examples.

We measure the confidence levels of our rules us-
ing m-estimate (Cestnik, 1990) which is a measure
of expected accuracy of a rule. It is defined as:

confidence level(rule) = p+m.p
+

p+n+m
, where p and n are

the number of positive and negative examples covered
by the rule, p+ is the prior probability of positive ex-
amples and m is a parameter which should be set ac-
cording to the amount of noise in the data. We set p+

as the fraction of examples in the training data which
are positive and set m based on pilot studies. Figure 3
shows some sample rules learned by ELCS.

4.2. Experimental Results

4.2.1. Experimental Methodology

Medline abstracts were pre-processed as described in
Section 3.2.1. All our systems for extracting inter-
actions require sentence segmentation since only two
proteins within a sentence are considered when iden-
tifying interactions. We also compared our systems
with manually-written rules from (Blaschke & Valen-
cia, 2002) which use POS tags and (Blaschke & Va-
lencia, 2001) in which the POS tags are replaced by
typical words indicating interactions such as activa-
tion, phosphorylation or interaction for nouns and ac-
tivates, binds or phosphorylates for verbs.

Our current experiments only evaluate the perfor-
mance of interaction extraction, assuming all protein
names have already been correctly tagged. As in
Section 3.2.1, performance is evaluated using ten-fold
cross validation and measuring recall and precision.
We consider an extracted interaction from an abstract
correct only if both its proteins have been human-
tagged as interacting with each other in that abstract.
We don’t care about their exact positions within the
abstract as the task is only to find interacting protein-
pairs. For those IE methods which output extraction
confidences, if we extract more than one occurrence
of interaction between two proteins then we combine
their extraction confidences using the standard Noisy-
Or method (Pearl, 1988).

4.2.2. Quantitative Results

Figure 4 shows precision-recall results for protein-
interaction extraction when tested on abstracts that

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (

%
)

Recall (%)

BWI-Interfiller
BWI-Role-Filler

ELCS
ELCS-ED
ELCS-CJ

RAPIER-Role-Filler
Human-Written-Words

Human-Written-POS

Figure 4. Precision-recall graphs for protein interaction
extraction.

have been manually tagged for protein names. We
plotted a precision-recall curves for BWI by utiliz-
ing its extraction confidences and for ELCS using the
confidence levels of the rules which extract the inter-
actions. Since Rapier and human-written rules do
not produce confidences, only a single precision-recall
point is shown for each of them.

4.2.3. Discussion of Results

BWI gives varying degrees of high precision, but its
recall is generally quite low. Rapier also gives rela-
tively high precison but low recall. ELCS tends to give
higher recall with only a modest decrease in precision
compared to BWI and Rapier.

These results demonstrate that machine learning sys-
tems can provide higher precisions than human-
written rules. In order to avoid over-loading human
curators with too many false positives when extract-
ing knowledge from large volumes of text, a general
emphasis towards higher precision seems appropriate.
The machine learning systems also offer a wide range of
precision-recall trade-off which can be suitably utilized
by a user depending upon the need of an application.
The machine learning systems can also provide recalls
higher than the best recall human-written rules can
provide.

5. Conclusions

After comparing a number of methods for extracting
human protein names and interactions, we obtained
the best performance for protein tagging with an
SVM-based token classification method that exploits
a generalized protein-name dictionary. For extracting
protein interactions, we found that several methods

for learning extraction rules out-perform hand-written
rules with respect to precision.

Acknowledgements

We would like to thank members of the Mar-
cotte lab for helping tag Medline abstracts. We
are grateful to Kristie Seymore, Lorraine Tanabe,
Soumya Ray & Mark Craven, Kenichiro Fukuda, Mary
Elaine Califf, Dayne Freitag & Nicholas Kushmerick,
Thorsten Joachims, Eric Brill, Ellen Riloff and Chris-
tian Blaschke for making us available their respective
systems/rules. This work was supported in part by the
National Science Foundation (IIS-0117308), the Welch
Foundation (F-1515), the National Science Founda-
tion (ITR-0219061), and the Texas Advanced Research
Program.

References

Bikel, D. M., Schwartz, R., & Weischedel, R. M.
(1999). An algorithm that learns what’s in a name.
Machine Learning, 34, 211–232.

Blaschke, C., & Valencia, A. (2001). Can bibliographic
pointers for known biological data be found au-
tomatically? protein interactions as a case study.
Comparative and Functional Genomics, 2, 196–206.

Blaschke, C., & Valencia, A. (2002). The frame-based
module of the Suiseki information extraction sys-
tem. IEEE Intelligent Systems, 17, 14–20.

Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M.,
Mooney, R. J., Ramani, A. K., & Wong, Y. W. (sub-
mitted 2002). Learning to extract proteins and their
interactions from Medline abstracts. Artificial Intel-
ligence in Medicine.

Califf, M. E., & Mooney, R. J. (1999). Relational learn-
ing of pattern-match rules for information extrac-
tion. Proc. of 16th Natl. Conf. on Artificial Intelli-
gence (AAAI-99) (pp. 328–334). Orlando, FL.

Cardie, C. (1997). Empirical methods in information
extraction. AI Magazine, 18, 65–79.

Cestnik, B. (1990). Estimating probabilities: A cru-
cial task in machine learning. Proc. of 9th Euro-
pean Conf. on Artificial Intelligence (pp. 147–149).
Stockholm, Sweden.

Freitag, D., & Kushmerick, N. (2000). Boosted wrap-
per induction. Proc. of 17th Natl. Conf. on Artificial
Intelligence (AAAI-2000) (pp. 577–583). Austin,
TX: AAAI Press / The MIT Press.

Fukuda, K., Tsunoda, T., Tamura, A., & Takagi, T.
(1998). Information extraction: Identifying protein
names from biological papers. Proc. of the 3rd Pa-
cific Symp. on Biocomputing (pp. 707–718).

Gusfield, D. (1997). Algorithms on strings, trees and
sequences. New York: Cambridge University Press.

Joachims, T. (1998). Text categorization with sup-
port vector machines: Learning with many relevant
features. Proc. of 10th European Conf. on Machine
Learning (pp. 137–142). Berlin: Springer-Verlag.

Kubat, M., Holte, R. C., & Matwin, S. (1998). Ma-
chine learning for the detection of oil spills in satel-
lite radar images. Machine Learning, 30, 195–215.

Kudoh, T., & Matsumoto, Y. (2000). Use of support
vector learning for chunk identification. Proc. of
CoNLL-2000 and LLL-2000 (pp. 142–144). Lisbon,
Portugal.

Levenshtein, V. I. (1966). Binary codes capable of
correcting insertions and reversals. Soviet Physics
Doklady, 10, 707–710.

Pearl, J. (1988). Probabilistic reasoning in intelligent
systems: Networks of plausible inference. San Ma-
teo,CA: Morgan Kaufmann.

Ray, S., & Craven, M. (2001). Representing sentence
structure in hidden Markov models for information
extraction. Proc. of 17th Intl. Joint Conf. on Ar-
tificial Intelligence (IJCAI-2001) (pp. 1273–1279).
Seattle, WA.

Raychaudhuri, S., Chang, J. T., Sutphin, P. D., &
Altman, R. B. (2002). Associating genes with gene
ontology codes using a maximum entropy analysis
of biomedical literature. Genome Research, 12, 203–
214.

Roth, D., & van den Bosch, A. (Eds.). (2002). Proc.
of 6th conf. on natural language learning. Taipei,
Taiwan: Association for Computational Linguistics.

Tanabe, L., & Wilbur, W. J. (2002). Tagging gene and
protein names in biomedical text. Bioinformatics,
18, 1124–1132.

Vapnik, V. N. (1998). Statistical learning theory. John
Wiley & Sons.

Venter, J. C., & et al. (2001). The sequence of the
human genome. Science, Feb 16;291(5507), 1304–
1351.

