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ABSTRACT
Most recommender systems use Collaborative Filtering or
Content-based methods to predict new items of interest for
a user. While both methods have their own advantages, indi-
vidually they fail to provide good recommendations in many
situations. Incorporating components from both methods,
a hybrid recommender system can overcome these short-
comings. In this paper, we present an elegant and e�ective
framework for combining content and collaboration. Our
approach uses a content-based predictor to enhance exist-
ing user data, and then provides personalized suggestions
through collaborative �ltering. We present experimental re-
sults that show how this approach, Content-Boosted Collab-
orative Filtering, performs better than a pure content-based
predictor, pure collaborative �lter, and a naive hybrid ap-
proach. We also discuss methods to improve the perfor-
mance of our hybrid system.

1. INTRODUCTION
Recommender systems help overcome information overload
by providing personalized suggestions based on a history of a
user's likes and dislikes. Many on-line stores provide recom-
mending services e.g. Amazon, CDNOW, BarnesAndNoble,
IMDb, etc. There are two prevalent approaches to building
recommender systems | Collaborative Filtering (CF) and
Content-based (CB) recommending. CF systems work by
collecting user feedback in the form of ratings for items in a
given domain and exploit similarities and di�erences among
pro�les of several users in determining how to recommend
an item. On the other hand, content-based methods pro-
vide recommendations by comparing representations of con-
tent contained in an item to representations of content that
interests the user.

Content-based methods can uniquely characterize each user,
but CF still has some key advantages over them [11]. Firstly,
CF can perform in domains where there is not much content
associated with items, or where the content is diÆcult for
a computer to analyze | ideas, opinions etc. Secondly a
CF system has the ability to provide serendipitous recom-
mendations, i.e. it can recommend items that are relevant
to the user, but do not contain content from the user's pro-
�le. Because of these reasons, CF systems have been used
fairly successfully to build recommender systems in various
domains [9, 19]. However they su�er from two fundamental
problems:

� Sparsity
Stated simply, most users do not rate most items and
hence the user-item rating matrix is typically very
sparse. Therefore the probability of �nding a set of
users with significantly similar ratings is usually low.
This is often the case when systems have a very high
item-to-user ratio. This problem is also very signi�-
cant when the system is in the initial stage of use.

� First-rater Problem
An item cannot be recommended unless a user has
rated it before. This problem applies to new items
and also obscure items and is particularly detrimental
to users with eclectic tastes.

We overcome these drawbacks of CF systems, by exploit-
ing content information of the items already rated. Our
basic approach uses content-based predictions to convert a
sparse user ratings matrix into a full ratings matrix; and
then uses CF to provide recommendations. In this paper,
we present the framework for this new hybrid approach,
Content-Boosted Collaborative Filtering (CBCF). We ap-
ply this framework in the domain of movie recommendation
and show that our approach performs signi�cantly better
than both pure CF and pure content-based systems.

The remainder of the paper is organized as follows. Section
2 provides an illustrative example to motivate our approach.
In Section 3, we describe our domain and the gathering of
data. Section 4 describes in detail our implementation of the
content-based predictor, the CF algorithm and the hybrid
approach. We present our experimental results in Section 5
and explain why our system performs well in Section 6. Sec-
tion 7 proposes methods to improve our CBCF predictions.
In Section 8, we discuss prior attempts at integrating collab-
oration and content; and �nally in Section 9, we conclude
with some future extensions to our work.

2. MOTIVATING EXAMPLE
In this section, we describe a common scenario in recom-
mender systems and show why both pure collaborative and
content-based methods fail to provide good recommenda-
tions. We take the domain of movie recommendations as a
representative case.

In most systems, users provide feedback on items that they
liked or disliked, using which pro�les are formed to learn
about the speci�c interests of each user. For example, in
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User A User B

A Clockwork Orange Lord of the Rings
Star Wars Willow

Blade Runner
Twelve Monkeys

Table 1: Typical user pro�les: movies liked

movie recommendations, typical user pro�les could be as
shown in Table 1. The table shows two users A and B and
their pro�les that consists of movies that each liked. Pure
CF systems try to �nd neighbors(similar users) for a user by
computing similarity measures based on the common set of
movies that two users rated. If there is no overlap in the
movies of two users, they will not be considered as neigh-
bors. Thus in this example, A and B are not neighbors and
potentially movies that B liked, may not be recommended
to A even though their pro�les suggest that both like science
�ction movies.

Pure content-based systems on the other hand, form pro�les
for each user independently. Thus a typical system would
learn that A likes science �ction movies, while B likes both
fantasy and science �ction movies. But since each user is
considered separately, movies that do not share any content
with the ones already rated will not be considered for rec-
ommendation. In this case, fantasy movies that B liked may
not be recommended to A, even though A and B seem to
have a common taste | science �ction and it is quite likely
that A will like fantasy movies as well.

Clearly both of the above approaches are inadequate. Let us
consider a di�erent approach. We could use a content-based
system to predict A's preferences. A content-based predic-
tor would rate Blade Runner and Twelve Monkeys highly
based on A's predilection for science �ction. Now if we were
to perform CF using A's content-based predictions, A and
B would appear similar; and subsequently B's preferences
would be recommended to A. Our CBCF predictor is based
on this approach.

3. DOMAIN DESCRIPTION
We demonstrate the working of our hybrid approach in the
domain of movie recommendation. We use the user-movie
ratings provided by the EachMovie dataset and the movie
details from the Internet Movie Database (IMDb) [1, 2]. We
represent the content information of every movie as a set of
slots (features). Each slot is represented simply as a bag
of words. The slots we use for the EachMovie dataset are:
movie title, director, cast, genre, plot summary, plot key-
words, user comments, external reviews, newsgroup reviews,
and awards.

3.1 EachMovie Dataset
The EachMovie dataset is provided by the Compaq Systems
Research Center, which ran the EachMovie recommenda-
tion service for 18 months to experiment with a collabo-
rative �ltering algorithm. The information they gathered
during that period consists of 72,916 users, 1,628 movies,
and 2,811,983 numeric ratings. To have a quicker turn-
around time for our experiments, we only used a subset of

the EachMovie dataset. This dataset contains 7,893 ran-
domly selected users and 1,461 movies for which content
was available from IMDb. The reduced dataset has 299,997
ratings for 1,408 movies. The average votes per user is ap-
proximately 38 and the sparsity of the user ratings matrix
is 2.6%.

The dataset provides optional unaudited demographic data
such as age, gender, and the zip code supplied by each per-
son. For each movie, information such as the name, genre,
release date and IMDb URL are provided. Finally, the
dataset provides the actual rating data provided by each
user for various movies. User ratings range from zero-to-�ve
stars. Zero stars indicate extreme dislike for a movie and
�ve stars indicate high praise.

3.2 Data Collection
The content information for each movie was collected from
the Internet Movie Database (IMDb). A simple crawler fol-
lows the IMDB link provided for every movie in the Each-
Movie dataset and collects information from the various
links o� the main URL. We presently download content such
as plot summary, plot keywords, cast, user comments, ex-
ternal reviews (newspaper or magazine articles), newsgroup
reviews, and awards. This information, after suitable pre-
processing such as elimination of stop words etc., is collected
into a vector of bag of words, one bag for each feature de-
scribing the movie.

4. SYSTEM DESCRIPTION
The general overview of our system is shown in Figure 1.
The web crawler uses the URLs provided in the EachMovie
dataset to download movie content from IMDb. After ap-
propriate preprocessing, the downloaded content is stored in
the Movie Content Database. The EachMovie dataset also
provides the user-ratings matrix; which is a matrix of users
versus items, where each cell is the rating given by a user to
an item. We will refer to each row of this matrix as a user-
ratings vector. The user-ratings matrix is very sparse, since
most items have not been rated by most users. The content-
based predictor is trained on each user-ratings vector and a
pseudo user-ratings vector is created. A pseudo user-ratings
vector contains the user's actual ratings and content-based
predictions for the unrated items. All pseudo user-ratings
vectors put together form the pseudo ratings matrix, which
is a full matrix. Now given an active user's1 ratings, predic-
tions are made for a new item using CF on the full pseudo
ratings matrix.

Sections 4.1 and 4.2 describe our implementation of the
content-based predictor and the pure CF component. In
Section 4.3 we describe our hybrid approach in detail.

4.1 Pure Content-based Predictor
To provide content-based predictions we treat the predic-
tion task as a text-categorization problem. We view movie
content information as text documents, and user ratings 0-5
as one of six class labels. We implemented a bag-of-words
naive Bayesian text classi�er [15] to learn a user pro�le from

1The active user is the user for which predictions are being
made.
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Figure 1: System Overview

a set of rated movies i.e. labeled documents. A similar ap-
proach to recommending has been used e�ectively in the
book-recommending system LIBRA [16, 17].

We use a multinomial text model [14], in which a document
is modeled as an ordered sequence of word events drawn
from the same vocabulary, V . The naive Bayes assumption
states that the probability of each word event is dependent
on the document class but independent of the word's context
and position. For each class cj , and word (token), wk 2
V , the probabilities, P (cj) and P (wkjcj) must be estimated
from the training data. Then the posterior probability of
each class given a document D, is computed using Bayes
rule:

P (cj jD) =
P (cj)

P (D)

jDjY
i=1

P (aijcj)

where ai is the ith word in the document, and jDj is the
number of words in the document. The prior P (D) can be
ignored, since it is a constant for any given document.

In our case, since movies are represented as a vector of \doc-
uments", dm, one for each slot (where sm denotes the mth
slot), the probability of each word given the category and
the slot, P (wkjcj ; sm), must be estimated and the posterior
category probabilities for a �lm, F , computed using:

P (cj jF ) =
P (cj)

P (F )

SY
m=1

jdmjY
i=1

P (amijcj ; sm)

where S is the number of slots and ami is the ith word in the
mth slot. The class with the highest posterior probability
determines the predicted rating.

The model parameters are estimated using the algorithm
in Algorithm 1. Note that Laplace smoothing [12] is used

to avoid zero probability estimates. The evaluation of the
content-based recommender can be found in the appendix.

Algorithm 1 Training the Content-Based Predictor

Train Naive Bayes(Examples;C)

Each example in Examples is a vector of bag-of-words
and a category corresponding to a 0-5 rating. Each bag of
bag-of-words corresponds to a slot e.g. title, cast, reviews,
etc. C is the set of all possible categories. This function
estimates the probability terms P (amijcj ; sm), describing
the probability that a randomly drawn word from a slot
sm in an example in class cj will be the word ami.

1. Calculate class priors, P (cj)

� docsj  subset of documents from Examples
for which the class label is j

� P (cj) 
jdocsj j+

1

jExamplesj

jExamplesj+
jCj

jExamplesj

2. Calculate conditional probabilities, P (amijcj ; sm)

For each slot sm,

� V ocabularym  set of all distinct tokens oc-
curring in slot sm in all examples

� For each possible class cj

{ Textmj  a single document created by
concatenating all bags-of-words appear-
ing in slot sm and in class cj

{ n total number of distinct word posi-
tions in Textmj

{ For each token, ami in V ocabularym

� nk  number of times token ami

occurs in Textmj

� P (amijcj ; sm) 
nk+

1

jExamplesj

n+
jV ocabularymj

jExamplesj

4.2 Pure Collaborative Filtering
We implemented a pure collaborative �ltering component
that uses a neighborhood-based algorithm [11]. In neighborhood-
based algorithms, a subset of users are chosen based on their
similarity to the active user, and a weighted combination of
their ratings is used to produce predictions for the active
user. The algorithm we use can be summarized in the fol-
lowing steps:

1. Weight all users with respect to similarity with the
active user.

� Similarity between users is measured as the Pear-
son correlation between their ratings vectors.

2. Select n users that have the highest similarity with the
active user.

� These users form the neighborhood.
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3. Compute a prediction from a weighted combination of
the selected neighbors' ratings.

In step 1, similarity between two users is computed using
the Pearson correlation coeÆcient, de�ned below:

Pa;u =

Pm

i=1
(ra;i � ra)� (ru;i � ru)qPm

i=1 (ra;i � ra)
2 �
Pm

i=1 (ru;i � ru)
2

(1)

where ra;i is the rating given to item i by user a; and ra is
the mean rating given by user a.

In step 3, predictions are computed as the weighted average
of deviations from the neighbor's mean:

pa;i = ra +

Pn

u=1
(ru;i � ru)� Pa;uPn

u=1
Pa;u

(2)

where pa;i is the prediction for the active user a for item i.
Pa;u is the similarity between users a and u. n is the number
of users in the neighborhood. For our experiments we used
a neighborhood size of 30, based on the recommendation of
[11].

It is common for the active user to have highly correlated
neighbors that are based on very few co-rated (overlapping)
items. These neighbors based on a small number of over-
lapping items tend to be bad predictors. To devalue the
correlations based on few co-rated items, we multiply the
correlation by a Signi�cance Weighting factor [11]. If two
users have less than 50 co-rated items we multiply their cor-
relation by a factor sga;u = n=50, where n is the number
of co-rated items. If the number of overlapping items is
greater than 50, then we leave the correlation unchanged
i.e. sga;u = 1.

4.3 Content-Boosted Collaborative Filtering
In content-boosted collaborative �ltering, we �rst create a
pseudo user-ratings vector for every user u in the database.
The pseudo user-ratings vector, vu, consists of the item rat-
ings provided by the user u, where available, and those pre-
dicted by the content-based predictor otherwise.

vu;i =

�
ru;i : if user u rated item i
cu;i : otherwise

In the above equation ru;i denotes the actual rating provided
by user u for item i, while cu;i is the rating predicted by the
pure content-based system.

The pseudo user-ratings vectors of all users put together
gives the dense pseudo ratings matrix V . We now perform
collaborative �ltering using this dense matrix. The similar-
ity between the active user a and another user u is computed
using the Pearson correlation coeÆcient described in Equa-
tion 1. Instead of the original user votes, we substitute the
votes provided by the pseudo user-ratings vectors va and vu.

4.3.1 Harmonic Mean Weighting
The accuracy of a pseudo user-ratings vector computed for
a user depends on the number of movies he/she has rated.
If the user rated many items, the content-based predictions
are good and hence his pseudo user-ratings vector is fairly
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Figure 2: Learning Curve for the Content-based

Predictor

accurate. On the other hand, if the user rated only a few
items, the pseudo user-ratings vector will not be as accurate.
We found that inaccuracies in pseudo user-ratings vector of-
ten yielded misleadingly high correlations between the active
user and other users. Hence to incorporate con�dence (or
the lack thereof) in our correlations, we weight them us-
ing the Harmonic Mean weighting factor(HM weighting, for
short).

hmi;j =
2mimj

mi +mj

mi =

�
ni
50

: if ni < 50
1 : otherwise

In the above equation, ni refers to the number of items that
user i has rated. The harmonic mean tends to bias the
weight towards the lower of the two values | mi and mj .
Thus correlations between pseudo user-ratings with at least
50 user-rated items each, will receive the highest weight, re-
gardless of the actual number of movies each user rated. On
the other hand, even if one of the pseudo user-rating vectors
is based on less than 50 user-rated items, the correlation will
be devalued appropriately.

The choice of the threshold 50 is based on the learning curve2

of the content predictor. As can be seen in Figure 2, initially
as the predictor is given more and more training examples
the prediction performance improves, but at around 50 it
begins to level o�. Beyond this is the point of diminishing
returns; as no matter how large the training set is, prediction
accuracy improves only marginally.

To the HM weight, we add the signi�cance weighting de-
scribed in Section 4.2, and thus obtain the hybrid correlation
weight hwa;u.

hwa;u = hma;u + sga;u (3)

2The appendix provides a detailed explanation of the gen-
eration of the learning curve.
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4.3.2 Self Weighting
Recall that in CF, a prediction for the active user is com-
puted as a weighted sum of the mean-centered votes of the
best-n neighbors of that user. In our approach, we also add
the pseudo active user3 to the neighborhood. However, we
may want to give the pseudo active user more importance
than the other neighbors. In other words, we would like to
increase the con�dence we place in the pure-content predic-
tions for the active user. We do this by incorporating a Self
Weighting factor in the �nal prediction:

swa =

�
na
50
�max : if na < 50

max : otherwise
(4)

where na is the number of items rated by the active user.
Again, the choice of the threshold 50 is motivated by the
learning curve mentioned earlier. The parameter max is an
indication of the over-all con�dence we have in the content-
based predictor. In our experiments, we used a value of 2
for max.

4.3.3 Producing Predictions
Combining the above two weighting schemes, the �nal CBCF
prediction for the active user a and item i is produced as fol-
lows:

pa;i = va +

swa(ca;i � va) +
nP

u=1
u6=a

hwa;uPa;u(vu;i � vu)

swa +
nP

u=1
u 6=a

hwa;uPa;u

In the above equation ca;i corresponds to the pure-content
predictions for the active user and item i. vu;i is the pseudo
user-rating for a user u and item i and vu is the mean over
all items for that user. swa, hwa;u and Pa;u are as shown
in Equations 4, 3 and 1 respectively; n is the size of neigh-
borhood. The denominator is a normalization factor that
ensures all weights sum to one.

5. EXPERIMENTAL EVALUATION
In this section we describe the experimental methodology
and metrics we use to compare di�erent prediction algo-
rithms; and present the results of our experiments.

5.1 Methodology
We compare CBCF to a pure content-based predictor, a CF
predictor, and a naive hybrid approach. The naive hybrid
approach takes the average of the ratings generated by the
pure content-based predictor and the pure CF predictor. For
the purposes of comparison, we used a subset of the ratings
data from the EachMovie data set (described in Section
3.1). Ten percent of the users were randomly selected to be
the test users | all test user had rated at least forty movies.
From each user in the test set, ratings for 25% of items were
withheld. Predictions were computed for the withheld items
using each of the di�erent predictors.

The quality of the various prediction algorithms were mea-
sured by comparing the predicted values for the withheld
ratings to the actual ratings.
3Pseudo active user refers to the pseudo user-ratings vector
based on the active user's ratings.

5.2 Metrics
The metrics for evaluating the accuracy of a prediction al-
gorithm can be divided into two main categories: statistical
accuracy metrics and decision-support metrics. Statistical
accuracy metrics evaluate the accuracy of a predictor by
comparing predicted values with user-provided values. To
measure statistical accuracy we use the mean absolute error
(MAE) metric | de�ned as the average absolute di�erence
between predicted ratings and actual ratings. In our exper-
iments we computed the MAE on the test set for each user,
and then averaged over the set of test users.

Decision-support accuracy measures how well predictions
help users select high-quality items. We use Receiver Oper-
ating Characteristic (ROC) sensitivity to measure decision-
support accuracy. A predictor can be treated as a �lter,
where predicting a high rating for an item is equivalent to
accepting the item, and predicting a low rating is equivalent
to rejecting the item. The ROC sensitivity is given by the
area under the ROC curve | a curve that plots sensitivity
versus 1-speci�city for a predictor. Sensitivity is de�ned as
the probability that a good item is accepted by the �lter;
and speci�city is de�ned as the probability that a bad item
is rejected by the �lter. We consider an item good if the user
gave it a rating of 4 or above, otherwise we consider the item
bad. We refer to this ROC sensitivity with threshold 4 as
ROC-4. ROC sensitivity ranges from 0 to 1, where 1 is ideal
and 0.5 is random.

Herlocker et al. used the same metrics to compare their al-
gorithms [11]. The statistical signi�cance of any di�erences
in performance between two predictors was evaluated using
two-tailed paired t-tests [15].

5.3 Results
Algorithm MAE ROC-4

Pure content-based predictor 1.059 0.6376
Pure CF 1.002 0.6423

Naive Hybrid 1.011 0.6121
Content-boosted CF 0.962 0.6717

Table 2: Summary of Results

The results of our experiments are summarized in Table 2
and Figure 3. As can be seen, our CBCF approach performs
better than the other algorithms on both metrics. On the
MAE metric, CBCF performs 9.2% better than pure CB, 4%
better than pure CF and 4.9% better than the naive hybrid.
All the di�erences in MAE are statistically signi�cant (p <
0:001).

On the ROC-4, metric CBCF performs 5.4% better than
pure CB, 4.6% better than pure CF and 9.7% better than
the naive hybrid. This implies that our system, compared
to others, does a better of job of recommending high-quality
items, while reducing the probability of recommending bad
items to the user.

Interestingly, Self Weighting did not make signi�cant im-
provements to our predictions.
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6. DISCUSSION
In this section we explain how content-boosted collaborative
�ltering overcomes some of the shortcomings of pure CF; and
we also discuss some of our performance results.

6.1 Overcoming Sparsity and the First-Rater
Problem

Since we use a pseudo ratings matrix, which is a full ma-
trix, we eliminate the root of the sparsity and �rst-rater
problems. Pseudo user-ratings vectors contain ratings for
all items; and hence all users will be considered as poten-
tial neighbors. This increases the chances of �nding similar
users.

The original user-ratings matrix may contain items that
have not been rated by any user | there are 53 such movies
in our dataset. In a pure CF approach these items would
be ignored. However in CBCF, these items would receive a
content-based prediction from all users. Hence these items
can now be recommended to the active user, thus overcom-
ing the �rst-rater problem.

6.2 Finding Better Neighbors
A crucial step in CF is the selection of a neighborhood. The
neighbors of the active user entirely determine his predic-
tions. It is therefore critical to select neighbors who are
most similar to the active user. In pure CF, the neighbor-
hood comprises of the users that have the best n correlations
with the active user. The similarity between users is only
determined by the ratings given to co-rated items; so items
that have not been rated by both users are ignored. How-
ever, in CBCF, the similarity is based on the ratings con-
tained in the pseudo user-ratings vectors; so users do not
need to have a high overlap of co-rated items to be consid-
ered similar. Our claim is that this feature of CBCF, makes
it possible to select a better, more representative neighbor-
hood. For example, consider two users with identical tastes
who have not rated any items in common. Pure collabo-
rative �ltering would not consider them similar. However,
pseudo user-ratings vectors created using content-based pre-
dictions for the two users would be highly correlated, and
therefore they would be considered neighbors. We believe
that this superior selection of neighbors is one of the reasons
that CBCF outperforms pure CF.

6.3 Making Better Predictions
As discussed above, CBCF improves the selection of neigh-
boring users. In traditional CF, we would compute a pre-
diction for each item as a weighted sum of only the actual
ratings of these neighbors. However, in our approach, if the
actual rating from a neighboring user does not exist, we use
his content-based predicted rating. This approach is moti-
vated by the hypothesis that if a user is highly correlated to
the active user then his content-based predictions are also
very relevant to the active user. We believe that the use of
the content-based ratings of neighbors to compute predic-
tions is another important factor contributing to CBCF's
superior performance.

6.4 Self Weighting
Content predictions based on a large number of training ex-
amples tend to be fairly accurate, as is apparent from Fig-
ure 2. Hence, giving a greater preference to such predictions
should improve the overall accuracy of our hybrid prediction.
Interestingly, this was not re
ected in our results. This may
because of the choice of the max parameter in Equation 4,
which was �xed to be 2 in our experiments. A higher value
for max would increase the weight of content-based predic-
tions, and might yield better results.

6.5 Naive Hybrid
The naive hybrid approach that we used to compare our sys-
tem with was inspired by [6]. We found that this approach
was a poor strawman to compare with. As can be seen by
the results the naive hybrid performs worse than CF on the
MAE metric. It also performs poorly on the ROC-4 metric,
when compared to the other approaches. In Section 8, we
present some other approaches we can use as benchmarks to
compare our approach against.

6.6 Efficient Implementation
Outwardly CBCF may appear to be infeasible for an online
recommending system, since generating the pseudo ratings
matrix requires computing the content-based predictions for
all users and all items. However the computational costs of
running a CBCF system can be signi�cantly reduced by only
making incremental updates to the pseudo ratings matrix.
To do this, we need to maintain the most recent pseudo
ratings matrix and the models learned by the content-based
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predictor for each user. If a user rates new items (or changes
existing ratings) then we only need to change that user's
column in the pseudo ratings matrix i.e. we retrain the
content-based predictor on his new ratings vector and pro-
duce predictions for his unrated items. The computational
complexity of training and producing predictions with the
naive Bayesian classi�er is linear in the size of the docu-
ments; and therefore a single vector can be updated fairly
eÆciently. Furthermore, to speed up an online system, we
can perform all updates o�ine in batches at regular inter-
vals.

The pseudo ratings matrix will also need to be updated if
a new item is added to the database (e.g. a new movie is
released). In this case, a new row with predictions for this
item must be added to the ratings matrix. This does not
require any retraining, since we maintain the current user
models built by the content-based predictor. All we need to
do is generate predictions for the new item, for each user.
The computational complexity of this operation is linear in
the size of the new item (document) times the number of
users. Therefore this update is also taken care of eÆciently.

7. IMPROVING CBCF
Due to the nature of our hybrid approach, we believe that
improving the performance of the individual components
would almost certainly improve the performance of the whole
system. In other words, if we improved our pure content-
based predictor or the CF algorithm, we would be able to im-
prove our system's predictions. A better content-based pre-
dictor would mean that the pseudo ratings matrix generated
would more accurately approximate the actual full user-
ratings matrix. This in turn, would improve the chances
of �nding more representative neighbors. And since the �-
nal predictions in our system are based on a CF algorithm,
a better CF algorithm can only improve our system's perfor-
mance. We discuss some methods we could use to improve
the individual components.

7.1 Improving the Content-based Predictor
In our current implementation of the content-based predic-
tor, we use a naive Bayesian text-classi�er to learn a six-way
classi�cation task. This approach is probably not ideal, since
it disregards the fact that classes represent ratings on a lin-
ear scale. For example, the posterior probabilities for the
classes 1 and 3 might be 0.4 and 0.6 respectively, this would
imply that a good prediction should be close to 2. But the
classi�er will predict a 3 i.e the class with the higher poste-
rior probability.

This problem can be overcome by using a learning algorithm
that can directly produce numerical predictions. For exam-
ple, logistic regression and locally weighted regression [7]
could be used to directly predict ratings from item content.
We should be able to improve our content-based predictions
using one of these approaches.

7.2 Improving the CF Component
The CF component in our system can be improved by us-
ing a Clustered Pearson Predictor (CPP) [8], instead of the
Simple Pearson Predictor (SPP) that we currently employ.
The CPP algorithm creates k clusters of users based on the

k-means clustering algorithm. A pro�le is created for each
cluster, which contains the average of the ratings given for
each item by all the users in the cluster. Now, predictions
are computed using SPP where only the k pro�les gener-
ated earlier are considered as potential neighbors. Fisher
et al. claim that this approach is more accurate than SPP
[8]. CPP also has the advantage of being more scalable than
SPP.

8. RELATED WORK
There have been a few other attempts to combine content in-
formation with collaborative �ltering. One simple approach
is to allow both content-based and collaborative �ltering
methods to produce separate ranked lists of recommenda-
tions, and then merge their results to produce a �nal list
[6]. There can be several schemes to merging the ranked
lists, such as interleaving content and collaborative recom-
mendations or averaging the rank or rating predicted by the
two methods. This is essentially what our naive hybrid ap-
proach does.

Soboro� et al. propose a novel approach to combining con-
tent and collaboration using latent semantic indexing (LSI)
[20]. In their approach, �rst a term-document matrix is cre-
ated, where each cell is a weight related to the frequency of
occurrence of a term in a document. The term-document
matrix is multiplied by the normalized ratings matrix to
give a content-pro�le matrix. The singular value decompo-
sition (SVD) of this matrix is computed. Using LSI, a rank-
k approximation of the content-pro�le matrix is computed.
Term vectors of the user's relevant documents are averaged
to produce a centroid representing the user's pro�le. Now,
new documents are ranked against each user's pro�le in the
LSI space.

In Pazzani's approach [18], user pro�les are represented by
a set of weighted words derived from positive training ex-
amples using the Winnow algorithm. This collection of user
pro�les can be thought of as the content-pro�le matrix. Pre-
dictions are made by applying CF directly to the content-
pro�le matrix (as opposed to the user-ratings matrix).

An alternate approach to providing content-based collabora-
tive recommendations is used in Fab [3]. Fab uses relevance
feedback to simultaneously mold a personal �lter along with
a communal \topic" �lter. Documents are initially ranked
by the topic �lter and then sent to user's personal �lters.
A user then provides relevance feedback for that document,
which is used to modify both the personal �lter and the
originating topic �lter.

Basu et al. integrate content and collaboration in a frame-
work in which they treat recommending as a classi�cation
task [4]. They use Ripper, an inductive logic program, to
learn a function that takes a user and movie and predicts
a label indicating whether the movie will be liked or dis-
liked. They combine collaborative and content information,
by creating features such as comedies liked by user and users
who liked movies of genre X.

Good et al. [10] use collaborative �ltering along with a num-
ber of personalized information �ltering agents. Predictions
for a user were made by applying CF on the set of other users
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and the active user's personalized agents. Our method dif-
fers from this by also using CF on the personalized agents
of the other users.

In recent work, Lee [13] treats the recommending task as the
learning of a user's preference function that exploits item
content as well as the ratings of similar users. They perform
a study of several mixture models for this task.

In related work, Billsus and Pazzani [5] use singular value
decomposition to directly tackle the sparsity problem. They
use the SVD of the original user-ratings matrix to project
user-ratings and rated items into a lower dimensional space.
By doing this they eliminate the need for users to have co-
rated items in order to be predictors for each other.

9. CONCLUSIONS AND FUTURE WORK
Incorporating content information into collaborative �lter-
ing can signi�cantly improve predictions of a recommender
system. In this paper, we have provided an e�ective way of
achieving this. We have shown how Content-boosted Col-
laborative Filtering performs signi�cantly better than a pure
content-based predictor, collaborative �ltering, or a naive
hybrid of the two.

CBCF elegantly exploits content within a collaborative frame-
work. It overcomes the disadvantages of both collabora-
tive �ltering and content-based methods, by bolstering CF
with content and vice versa. Further, due to the nature of
the approach, any improvements in collaborative �ltering
or content-based recommending can be easily exploited to
build a more powerful system.

Although CBCF performs consistently better than pure CF,
the di�erence in performance is not very large (4%). We are
currently attempting to boost the performance of our system
by using the methods described in Section 7. In future, we
also plan to test if our approach performs better than the
other approaches that combine content and collaboration
outlined in Section 8.
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APPENDIX
The performance of the content-based predictor was evalu-
ated using 10-fold cross-validation, in which each data set
is randomly split into 10 equal-size segments and results
are averaged over 10 trials. For each trial, one segment is
set aside for testing, while the remaining data is available
for training. To test performance on varying amounts of
training data, a learning curve was generated by testing the
system after training on increasing subsets of the overall
training data. We generated learning curves for 132 users
who had rated more than 200 items. The points on the 132
learning curves were averaged to give the learning curve in
Figure 2.
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