
Appears in Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI-94), pp. 748-753, Seattle, WA, July, 1994

Inducing Deterministic Prolog Parsers from Treebanks:

A Machine Learning Approach �

John M. Zelle and Raymond J. Mooney

Department of Computer Sciences

University of Texas

Austin, TX 78712

zelle@cs.utexas.edu, mooney@cs.utexas.edu

Abstract

This paper presents a method for constructing de-
terministic Prolog parsers from corpora of parsed
sentences. Our approach uses recent machine
learning methods for inducing Prolog rules from
examples (inductive logic programming). We dis-
cuss several advantages of this method compared
to recent statistical methods and present results
on learning complete parsers from portions of the
ATIS corpus.

Introduction
Recent approaches to constructing robust parsers
from corpora primarily use statistical and probabilis-
tic methods such as stochastic context-free grammars
(Black et al., 1992; Pereira and Schabes, 1992). Al-
though several current methods learn some symbolic
structures such as decision trees (Black et al., 1993)
and transformations (Brill, 1993), statistical methods
still dominate. In this paper, we present a method that
uses recent techniques in machine learning to construct
symbolic, deterministic parsers from parsed corpora
(treebanks). Speci�cally, our approach is implemented
in a program called Chill (Zelle and Mooney, 1993b)
that uses inductive logic programming (ILP) (Muggle-
ton, 1992) to learn heuristic rules for controlling a de-
terministic shift-reduce parser written in Prolog.
We believe our approach o�ers several potential

advantages compared to current methods. First, it
constructs deterministic shift-reduce parsers, which
are very powerful and e�cient (Tomita, 1986) and
arguably more cognitively plausible (Marcus, 1980;
Berwick, 1985). Second, it constructs complete parsers
from scratch that produce full parse trees, as opposed
to producing only bracketings (Pereira and Schabes,
1992; Brill, 1993) or requiring an existing, complex
parser that over-generates (Black et al., 1992; Black
et al., 1993). Third, the approach is more exible in
several ways. It can produce parsers from either tagged

�This research was partially supported by the NSF un-
der grant IRI-9102926 and the Texas Advanced Research
Program under grant 003658114.

or untagged treebanks.1 When trained on an untagged
corpus, it constructs it's own syntactic and/or seman-
tic classes of words and phrases that allow it to deter-
ministically parse the corpus. It can also learn to pro-
duce case-role assignments instead of syntactic parse
trees and can use learned lexical and semantic classes
to resolve ambiguities such as prepositional phrase at-
tachment and lexical ambiguity (Zelle and Mooney,
1993b). Fourth, it uses a single, uniformparsing frame-
work to perform all of these tasks and a single, general
learning method that has also been used to induce a
range of diverse logic programs from examples (Zelle
and Mooney, 1994).
The remainder of the paper is organized as follows.

In section 2, we summarize our ILP method for learn-
ing deterministic parsers, and how this method was
tailored to work with existing treebanks. In section 3,
we present and discuss experimental results on learn-
ing parsers from the ATIS corpus of the Penn Treebank
(Marcus et al., 1993). Section 4 covers related work,
and section 5 presents our conclusions.

The Chill System

Overview

Our system, Chill, (Constructive Heuristics Induc-
tion for Language Learning) is an approach to parser
acquisition which utilizes a general learning mecha-
nism. The input to the system is a set of training
instances consisting of sentences paired with the de-
sired parses. The output is a shift-reduce parser (in
Prolog) which maps sentences into parse trees.
The Chill algorithm consists of two distinct tasks.

First, the training instances are used to formulate an
overly-general shift-reduce parser that is capable of
producing parses from sentences. The initial parser is
overly-general in that it produces a great many spuri-
ous analyses for any given input sentence. The parser is
then specialized by introducing search-control heuris-
tics. These control heuristics limit the contexts in

1In an untagged treebank, parses are represented as
phrase-level word groupings without lexical categories dom-
inating the words (e.g. parsed text from Penn Treebank
(Marcus et al., 1993))

which certain operations are performed, eliminating
the spurious analyses.

Constructing the Overly-General Parser

The syntactic parse of a sentence is a labeled bracket-
ing of the words in the sentence. For example, the noun
phrase, \a trip to Dallas", might be decomposed into
component noun and prepositional phrases as: [np[npa
trip] [ppto [np dallas]]]. We represent such an analy-
sis as a Prolog term of the form: np:[np:[a, trip],
pp:[to, np:[dallas]]].
A shift-reduce parser to produce such analyses is eas-

ily implemented as a logic program. The state of the
parse is reected by the contents of the stack and input
bu�er. A new state is produced by either removing a
single word from the bu�er and pushing it onto the
stack (a shift operation), or by popping the top one
or two stack elements and combining them into a new
constituent which is then pushed back onto the stack
(a reduce operation).
Each operation can be represented by a single pro-

gram clause with two arguments representing the cur-
rent stack and input bu�er, and two arguments to rep-
resent their state after applying the operator. For ex-
ample, the operations and associated clauses required
to parse the above example phrase are as follows (the
notation, reduce(N) Cat, indicates that the top N
stack elements are combined to form a constituent with
label, Cat):

reduce(2) pp:
op([S1,S2|Ss], Words, [pp:[S1,S2]|Ss], Words).

reduce(2) np:
op([S1,S2|Ss], Words, [np:[S1,S2]|Ss], Words).

reduce(1) np:
op([S1|Ss], Words, [np:[S1]|Ss], Words).

shift: op(Stack, [Word|Words], [Word|Stack], Words).

Building an overly-general parser from a set of train-
ing examples is accomplished by constructing clauses
for the op predicate. Each clause is a direct trans-
lation of a required parsing action; there must be a
reduce operation for each constituent structure as well
as the general shift operator illustrated above. If the
sentence analyses include empty categories (detectable
as lexical tokens that appear in the analyses, but not
in the sentence), each empty marker is introduced via
its own shift operator which does not consume a word
from the input bu�er.
The �rst step in the Chill system is to analyze the

training examples to produce the set of general oper-
ators that will be used in the overly{general parser.
Once the necessary operators have been inferred, they
are ordered according to their frequency of occurrence
in the training set.

Parser Specialization

The overly-general parser produces a great many spu-
rious analyses for the training sentences because there
are no conditions specifying when it is appropriate to

use the various operators. The program must be spe-
cialized by including control heuristics that guide the
application of operator clauses. This section outlines
the basic approach used in Chill. More detail on in-
corporating clause selection information in Prolog pro-
grams can be found in (Zelle and Mooney, 1993a).
Program specialization occurs in three phases. First,

the training examples are analyzed to construct pos-
itive and negative control examples for each operator
clause. Examples of correct operator applications are
generated by �nding the �rst correct parsing of each
training pair with the overly-general parser; any sub-
goal to which an operator is applied in a successful
parse becomes a positive control example for that op-
erator. A positive control example for any operator is
considered a negative example for all previous opera-
tors that do not have it as a positive example. Note
that this assumes a deterministic framework in which
each sentence will have a single preferred parsing. Once
an operator is found to be applicable to a particular
parser state, subsequent operators will not be tried.
For example, in parsing the above phrase, when the re-
duce(2) NP operator is �rst applied, the call to op ap-
pears as: op([trip,a],[to,dallas], A, B) where A
and B are as yet uninstantiated output variables. This
subgoal would be stored as a positive control example
for the reduce(2) NP operator, and as a negative con-
trol example for reduce(2) PP, assuming the order
of operator clauses shown above.
In the second phase, a general �rst-order induction

algorithm is employed to learn a control rule for each
operator. This control rule comprises a Horn-clause
de�nition that covers the positive control examples for
the operator but not the negative. There is a growing
body of research in inductive logic programming which
addresses this problem. Chill combines elements from
bottom-up techniques found in systems such as Cigol
(Muggleton and Buntine, 1988) and Golem (Muggle-
ton and Feng, 1992) and top-down methods from sys-
tems like Foil (Quinlan, 1990), and is able to invent
new predicates in a manner analogous to Champ (Ki-
jsirikul et al., 1992). Details of the Chill induction
algorithm can be found in (Zelle and Mooney, 1993b;
Zelle and Mooney, 1994).
The �nal step in program specialization is to \fold"

the control information back into the overly-general
parser. A control rule is easily incorporated into the
overly-general program by unifying the head of an op-
erator clause with the head of the control rule for the
clause and adding the induced conditions to the clause
body. The de�nitions of any invented predicates are
simply appended to the program. As an example, the
reduce(2) pp clause might be modi�ed as:

op([np:A,B|Ss], Words, [pp:[np:A,B]|Ss],Words) :-
preposition(B).

preposition(of). preposition(to). ...

Here, the induction algorithm invented a new predicate

representing the category \preposition."2 This new
predicate has been incorporated to form the rule which
may be roughly interpreted as stating: \If the stack
contains an NP followed by a preposition, then reduce
this pair to a PP." The actual control rule learned for
this operator is more complex, but this simple example
illustrates the basic process.

Parsing the Treebank

Training a program to do accurate parsing requires
large corpora of parsed text for training. Fortunately,
such treebanks are being compiled and becoming avail-
able. For the current experiments, we have used parsed
text from a preliminary version of the Penn Treebank
(Marcus et al., 1993). One complication in using this
data is that sentences are parsed only to the \phrase
level", leaving the internal structure of NPs unana-
lyzed and allowing arbitrary-arity constituents. Rather
than forcing the parser to learn reductions for arbitrary
length constituents, Chill was restricted to learning
binary-branching structures. This simpli�es the parser
and allows for a more direct comparison to previous
bracketing experiments (e.g. (Brill, 1993; Pereira and
Schabes, 1992)) which use binary bracketings.
Making the treebank analyses compatible with the

binary parser required \completion" of the parses into
binary-branching structures. This \binarization" was
accomplished automatically by introducing special in-
ternal nodes in a right-linear fashion. For example,
the noun-phrase, np:[the,big,orange,cat], would
be binarized to create: np:[the,int(np):[big,
int(np):[orange, cat]]]. The special labeling
(int(np) for noun phrases, int(s) for sentences, etc.)
permits restoration of the original structure by merg-
ing internal nodes. Using this technique, the re-
sulting parses can be compared directly with tree-
bank parses. All of the experiments reported below
were done with automatically binarized training ex-
amples; control rules for the arti�cial internal nodes
were learned in exactly the same way as for the origi-
nal constituents.

Experimental Results

The Data

The purpose of our experiments was to investigate
whether the mechanisms in Chill are su�ciently ro-
bust for application to real-world parsing problems.
There are two facets to this question, the �rst is
whether the parsers learned by Chill generalize well
to new text. An additional issue is whether the in-
duction mechanism can handle the large numbers of
examples that would be necessary to achieve adequate
performance on relatively large corpora.
We selected as our test corpus a portion of the ATIS

dataset from a preliminary version of the Penn Tree-

2Invented predicates actually have system generated
names. They are renamed here for clarity.

bank (speci�cally, the sentences in the �le ti tb). We
chose this particular data because it represents realistic
input from human-computer interaction, and because
it has been used in a number of other studies on au-
tomated grammar acquisition (Brill, 1993; Pereira and
Schabes, 1992) that can serve as a basis for comparison
to Chill.
Experiments were actually carried out on four dif-

ferent variations of the corpus. A subset of the cor-
pus comprising sentences of length less than 13 words
was used to form a more tractable corpus for system-
atic evaluation and to test the e�ect of sentence length
on performance. The entire corpus contained 729 sen-
tences with an average length of 10.3 words. The re-
stricted set contains 536 sentences averaging 7.9 words
in length. A second dimension of variation is the form
of the input sentences and analyses. Since Chill has
the ability to create its own categories, it can use un-
tagged parse trees. In order to test the advantage
gained by tagging, we also ran experiments using lexi-
cal tags instead of words on both the full and restricted
corpus.

Experimental Method

Training and testing followed the standard paradigm
of �rst choosing a random set of test examples and
then creating parsers using increasingly larger subsets
of the remaining examples. The performance of these
parsers was then determined by parsing the test exam-
ples. Obviously, the most stringent measure of accu-
racy is the proportion of test sentences for which the
produced parse tree exactly matches the treebanked
parse for the sentence. Sometimes, however, a parse
can be useful even if it is not perfectly accurate; the
treebank itself is not entirely consistent in the handling
of various structures.
To better gauge the partial accuracy of the parser,

we adopted a procedure for returning and scoring par-
tial parses. If the parser runs into a \dead-end" while
parsing a test sentence, the contents of the stack at the
time of impasse is returned as a single, at constituent
labeled S. Since the parsing operators are ordered and
the shift operator is invariably the most frequently
used operator in the training set, shift serves as a sort
of default when no reduction action applies. Therefore,
at the time of impasse, all of the words of the sentence
will be on the stack, and partial constituents will have
been built. The contents of stack reect the partial
progress of the parser in �nding constituents.
Partial scoring of trees is computed by determin-

ing the extent of overlap between the computed parse
and the correct parse as recorded in the treebank.
Two constituents are said to match if they span ex-
actly the same words in the sentence. If constituents
match and have the same label, then they are iden-
tical. The overlap between the computed parse and
the correct parse is computed by trying to match
each constituent of the computed parse with some

Size Correct Partial 0-Cross Crossing %
50 14.1 66.0 47.6 85.4
100 18.6 69.3 52.7 84.5
150 25.4 72.5 50.8 86.1
200 26.8 74.9 57.6 88.2
250 29.2 76.1 62.1 89.6
300 33.1 79.1 63.6 91.2

Size Correct Partial 0-Cross Crossing %
50 11.4 60.0 43.1 80.3
100 10.3 61.5 45.2 81.5
150 12.4 62.0 44.2 80.4
200 17.5 67.8 52.1 83.5
250 18.1 67.7 51.6 83.7
300 17.4 69.6 53.6 85.2

Table 1a: Lexical Tags Table 1b: Raw Text

Table 1: Results for restricted length corpus

constituent in the correct parse. If an identical con-
stituent is found, the score is 1.0, a matching con-
stituent with an incorrect label scores 0.5. The sum
of the scores for all constituents is the overlap score
for the parse. The accuracy of the parse is then com-
puted as Accuracy = (O

Found
+ O

Correct
)=2 where O is

the overlap score, Found is the number of constituents
in the computed parse, and Correct is the number of
constituents in the correct tree. The result is an av-
erage of the proportion of the computed parse that is
correct and the proportion of the correct parse that
was actually found.
Another accuracy measure, which has been used

in evaluating systems that bracket the input sentence
into unlabeled constituents, is the proportion of con-
stituents in the parse that do not cross any constituent
boundaries in the correct tree (Black, 1991). Of course,
this measure only allows for direct comparison of sys-
tems that generate binary-branching parse trees.3 By
binarizing the output of the parser in a manner anal-
ogous to that described above, we can compute the
number of sentences with parses containing no crossing
constituents, as well as the proportion of constituents
which are non-crossing over all test sentences. This
gives a basis of comparison with previous bracketing
results, although it should be emphasized that Chill
is designed for the harder task of actually producing
labeled parses, and is not directly optimized for the
bracketing task.

Results

The results of these experiments are summarized in
Tables 1 and 2. The �gures for the restricted length
corpus in Table 1 reect averages of three trials, while
the results on the full corpus are averaged over two tri-
als. The �rst column shows the size of the training set
from which the parsers were derived, while the remain-
ing columns present results for each of the four metrics
outlined above. Correct is the percentage of test sen-
tences with parses that matched the treebanked parse
exactly. Partial is partial correctness using the over-
lap metric. The remaining columns reect measures
based on re-binarizing the parser output. 0-Cross is

3A tree containing a single, at constituent covering
the entire sentence always produces a perfect (non)crossing
score.

the proportion of test sentences having no constituents
that cross constituents in the correct parsing. The re-
maining column reports the percentage of (binarized)
constituents that are consistent with the treebank (i.e.
cross no constituents in the correct parse).

The results for the restricted corpus in Table 1 are
encouraging. While we know of no other results for
parsing accuracy of automatically constructed parsers
on this corpus, the �gures of 33% completely correct
using the tagged input and 17% on the raw text seem
quite good for a relatively modest training set of 300
sentences. The �gures for 0-cross and crossing% are
about the same as those reported in studies of au-
tomated bracketing for the unrestricted ATIS corpus
(Brill (1993) reports 60% and 91.12%, respectively).
However, our bracketing results for the unrestricted
corpus are not as good.

A comparison of Tables 1a and 1b show that con-
siderable advantage is gained by using word-class tags,
rather than the actual words. This is to be expected
as tagging signi�cantly reduces the variety in the in-
put. The results for raw-text use no special mechanism
for handling previously unseen words occurring in the
testing examples. Achieving 70% (partial) accuracy
under these conditions seems quite good. Statistical
approaches relying on n-grams or probabilistic context-
free grammars would have di�culty due to the large
number of terminal symbols (around 400) appearing in
the modest-sized training corpus. The data for lexical
selection would be too sparse to adequately train the
pre-de�ned models. Likewise, the transformational ap-
proach of (Brill, 1993) is limited to bracketing strings
of lexical classes, not words. A major advantage of
our approach is the ability of the learning mechanism
to automatically construct and attend to just those
features of the input that are most useful in guiding
parsing.

It should also be noted that the system created
new categories in both situations. In the raw text
experiments, Chill regularly created categories for
preposition, verb, form-of-to-be, etc.. With
tagged input, various tags were grouped into classes
such as the verb and noun forms. In both cases, the
system also formed numerous categories and relations
that seemed to defy any simple linguistic explanation.
Nevertheless, these categories were helpful in parsing
of new text. These results support our view that any

Size Correct Partial 0-Cross Crossing %
50 9.2 58.9 35.3 72.5
100 16.3 65.2 41.9 74.3
150 21.0 70.1 44.7 76.8
200 23.5 71.4 46.2 77.9
250 25.6 72.5 47.1 77.9

Size Correct Partial 0-Cross Crossing %
50 6.2 54.0 33.1 68.9
100 4.7 54.9 41.2 72.0
150 8.5 59.6 39.7 71.5

Table 2a: Lexical Tags Table 2b: Raw Text

Table 2: Results for full corpus

practical acquisition system should be able to create
its own categories, as it is unlikely that independently-
crafted feature systems will capture all of the nuances
necessary to do accurate parsing in a reasonably com-
plex domain.
Table 2 shows results for the full corpus. As one

might expect, the results are not as good as for the re-
stricted set. There are a number of factors that could
lead to diminishing performance as a function of in-
creasing sentence length. One explanation might be
that the longer sentences are simply more complicated
and, thus harder to parse accurately. If the di�culty
is inherent in the sentences, the only solution is larger
training sets.
Another possible problem is the compounding of er-

rors. If an operator is chosen incorrectly early in the
parse, it might lead the parser into states that have not
been encountered in training, leading to subsequent er-
rors in the application of other operators. This factor
might be mitigated by developing more robust training
procedures. By providing control examples from erro-
neous states as well as correct ones, the parser might be
trained to be somewhat self-correcting, choosing cor-
rect operators later on even in the face of previous
errors.
A third possibility is that the additional sentence

length is \swamping" the induction algorithm. In-
creasing the average sentence length signi�cantly in-
creases the number of control examples that must be
handled by the induction mechanism. Training sizes of
several hundred sentences give rise to induction over
thousands of control examples. Additionally, longer
sentences lend themselves to more conicting analyses
and may increase the amount of noise in the control
data making it more di�cult to spot useful generaliza-
tions. Additional progress here would require further
improvement in the e�ciency and noise-handling ca-
pabilities of the induction algorithm.
Clearly further experimentation is needed to pin

down where the most improvement can be made. The
results so far do indicate that the approach has poten-
tial. The current Prolog implementation running on a
SPARC 2 was able to induce parsers from several hun-
dred sentences in a few hours, producing over 700 lines
of Prolog code. One trial was run using 400 tagged
sentences from the full corpus; the resulting parser
achieved 29.4% absolute accuracy and a partial scor-
ing of 82%. Further improvements in e�ciency may

make it feasible to produce parsers from thousands of
training sentences.

Related Work

As mentioned above, most recent work on automati-
cally constructing parsers from corpora has focused on
acquiring stochastic grammars rather than symbolic
parsers. When learning in this framework, \one sim-
ply gathers statistics" to set the parameters of a pre-
de�ned model (Charniak, 1993). However, there is a
long tradition of research in AI and Machine Learn-
ing suggesting the utility of techniques that extract
underlying structural models from the data. Earlier
work in learning symbolic parsers (Anderson, 1977;
Berwick, 1985) used fairly weak learning methods spe-
ci�c to language acquisition and were not tested on
real corpora. Chill represents the �rst serious appli-
cation of modern, machine-learningmethods to acquir-
ing parsers from corpora.
Brill (1993), presents a technique for acquiring

parsers that produce binary-branching syntax trees
with unlabeled nonterminals. The technique, utilizing
structural transformation rules based on lexical cate-
gory information, has proven quite successful on real
corpora. Chill, which creates fully labeled parses, has
a more general learning mechanism allowing it to make
distinctions based on more subtle structural and lexical
cues (e.g. creating semantic word classes for resolving
attachment).
Our framework for learning deterministic, context-

dependent parsers is very similar to that of (Simmons
and Yu, 1992); however, there are two advantages of
our ILP method compared to their exemplar matching
method. First, ILP methods can handle unbounded,
structured data so that the context does not need to
be �xed to a limited window of the stack and the
remaining sentence. The entire stack and remaining
sentence is available as potential context for deciding
which parsing operator to apply at each step. Second,
the system is capable of creating its own syntactic and
semantic word and phrase classes instead of relying on
the user to provide part-of-speech tagging.
Chill's ability to invent new classes of words and

phrases speci�cally for resolving ambiguities such as
prepositional phrase attachment makes it particularly
interesting. There is some existing work on learning
lexical classes from corpora (Sch�utze, 1992); however,
the classes are based on word co-occurrence rather than

the speci�c needs of parsing. There are also meth-
ods for learning to resolve attachments using lexical
information (Hindle and Rooth, 1993); however, they
do not create new lexical classes. Chill uses a single
learning algorithm to perform both of these tasks.

Conclusion
This paper has demonstrated that modern machine-
learning methods are capable of inducing traditional
shift-reduce parsers from corpora, complementing the
results of recent statistical methods. We believe that
the primary strength of corpus-based methods is not
the particular approach or type of parser employed
(e.g. statistical, connectionist, or symbolic), but the
fact that large amounts of real data are used to au-
tomatically construct complex parsers that are in-
tractable to build manually. However, we believe
our approach based on a very general inductive-logic-
programming method has several advantages such as
e�cient, deterministic parsing; production of complete
labeled parse trees; and an ability to use untagged
text and automatically create new, useful lexical and
phrasal categories based directly on the needs of pars-
ing.

References
Anderson, J. R. (1977). Induction of augmented tran-

sition networks. Cognitive Science, 1:125{157.

Berwick, B. (1985). The Acquisition of Syntactic
Knowledge. Cambridge, MA: MIT Press.

Black, E., Jelineck, F., La�erty, J., Magerman, D.,
Mercer, R., and Roukos, S. (1993). Towards
history-based grammars: Using richer models for
probabilistic parsing. In Proceedings of the 31st
Annual Meeting of the Association for Computa-
tional Linguistics, pages 31{37. Columbus, Ohio.

Black, E., La�erty, J., and Roukaos, S. (1992). Devel-
opment and evaluation of a broad-coverage prob-
abilistic grammar of English-language computer
manuals. In Proceedings of the 30th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 185{192. Newark, Delaware.

Black, E. et. al. (1991). A procedure for quantitatively
comparing the syntactic coverage of English gram-
mars. In Proceedings of the Fourth DARPA Speech
and Natural Language Workshop, pages 306{311.

Brill, E. (1993). Automatic grammar induction and
parsing free text: A transformation-based ap-
proach. In Proceedings of the 31st Annual Meeting
of the Association for Computational Linguistics,
pages 259{265. Columbus, Ohio.

Charniak, E. (1993). Statistical Language Learning.
MIT Press.

Hindle, D. and Rooth, M. (1993). Structural ambiguity
and lexical relations. Computational Linguistics,
19(1):103{120.

Kijsirikul, B., Numao, M., and Shimura, M. (1992).
Discrimination-based constructive induction of
logic programs. In Proceedings of the Tenth Na-
tional Conference on Arti�cial Intelligence, pages
44{49. San Jose, CA.

Marcus, M. (1980). A Theory of Syntactic Recogni-
tion for Natural Language. Cambridge, MA: MIT
Press.

Marcus, M., Santorini, B., and Marcinkiewicz, M.
(1993). Building a large annotated corpus of en-
glish: The Penn treebank. Computational Lin-
guistics, 19(2):313{330.

Muggleton, S. and Buntine, W. (1988). Machine in-
vention of �rst-order predicates by inverting res-
olution. In Proceedings of the Fifth International
Conference on Machine Learning, pages 339{352.
Ann Arbor, MI.

Muggleton, S. and Feng, C. (1992). E�cient induction
of logic programs. In Muggleton, S., editor, In-
ductive Logic Programming, pages 281{297. New
York: Academic Press.

Muggleton, S. H., editor (1992). Inductive Logic Pro-
gramming. New York, NY: Academic Press.

Pereira, F. and Schabes, Y. (1992). Inside-outside rees-
timation from partially bracketed corpora. In Pro-
ceedings of the 30th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 128{
135. Newark, Delaware.

Quinlan, J. (1990). Learning logical de�nitions from
relations. Machine Learning, 5(3):239{266.

Sch�utze, H. (1992). Context space. In Working
Notes, AAAI Fall Symposium Series, pages 113{
120. AAAI-Press.

Simmons, R. F. and Yu, Y. (1992). The acquisition and
use of context dependent grammars for English.
Computational Linguistics, 18(4):391{418.

Tomita, M. (1986). E�cient Parsing for Natural Lan-
guage. Boston: Kluwer Academic Publishers.

Zelle, J. M. and Mooney, R. J. (1993a). Combining
FOIL and EBG to speed-up logic programs. In
Proceedings of the Thirteenth International Joint
conference on Arti�cial intelligence, pages 1106{
1111. Chambery, France.

Zelle, J. M. and Mooney, R. J. (1993b). Learn-
ing semantic grammars with constructive induc-
tive logic programming. In Proceedings of the
Eleventh National Conference on Arti�cial Intel-
ligence, pages 817{822. Washington, D.C.

Zelle, J. M. and Mooney, R. J. (1994). Combining top-
down and bottom-up methods in inductive logic
programming. In Proceedings of the Eleventh In-
ternational Conference on Machine Learning. New
Brunswick, NJ.

