
Appears in Symbolic, Connectionist, and Statistical Approaches to Learning for
Natural Language Processing, Springer Verlag, 1996

Comparative Results on Using Inductive Logic
Programming for Corpus-based Parser

Construction

John M. Zelle1, and Raymond J. Mooney2

1 Department of Mathematics and Computer Science, Drake University, Des Moines
IA 50311, USA (jz6011r@dunix.drake.edu)

2 Department of Computer Sciences, University of Texas, Austin TX 78712, USA
(mooney@cs.utexas.edu)

Abstract. This paper presents results from recent experiments with
Chill, a corpus-based parser acquisition system. Chill treats language
acquisition as the learning of search-control rules within a logic program.
Unlike many current corpus-based approaches that use statistical learn-
ing algorithms, Chill uses techniques from inductive logic programming
(ILP) to learn relational representations. Chill is a very exible system
and has been used to learn parsers that produce syntactic parse trees,
case-role analyses, and executable database queries. The reported exper-
iments compare Chill's performance to that of a more naive application
of ILP to parser acquisition. The results show that ILP techniques, as
employed in Chill, are a viable alternative to statistical methods and
that the control-rule framework is fundamental to Chill's success.

1 Introduction

Empirical or corpus-based methods for constructing natural language systems has
been an area of growing research interest in the last several years. The empirical
approach replaces hand-generated rules with models obtained automatically by
training over language corpora. Corpus-based methods may be used to augment
the knowledge of a traditional parser, for example by acquiring new case-frames
for verbs [13] or acquiring models to resolve lexical or attachment ambiguities
[11, 8]. More radical approaches attempt to replace the hand-crafted components
altogether, constructing complete parsers directly from suitable corpora. Recent
approaches to constructing robust parsers from corpora primarily use statistical
and probabilistic methods such as stochastic grammars [4, 23, 7] or transition
networks [17]. These methods eschew traditional, symbolic parsing in favor of
statistical and probabilistic methods. Although several current methods learn
some symbolic structures such as decision trees [3, 12] and transformations [6],
statistical methods dominate.

A common thread in all of these approaches is that the acquired knowledge
is represented in a propositional form (perhaps with associated probabilities).
This means for example, a decision about how to label a node in a parse tree is
made by considering a �xed set of properties (e.g., syntactic category) about a

�xed context of surrounding nodes (e.g., parent and immediate left sibling). The
exact conditions of the rule(s) are determined by the acquisition algorithm but
the context over which the rules are formed, and the exact properties which may
be tested are determined a priori by the designer of the acquisition system. In
machine learning, such approaches are often called feature-vector representations,
as each decision context can be speci�ed by a �nite vector of atomic values
associated with the various features of interest.

In contrast, the Chill system [28, 30, 27] uses a framework for learning with
structured representations. Relational representations have long been a tool of
traditional NLP. Virtually all of this work has utilized hand-crafted grammars as
suitable methods for automating the construction of relational knowledge bases
had not yet been developed. Now, however, a growing sub�eld of machine learn-
ing research called Inductive Logic Programming (ILP) addresses the problem of
learning �rst-order logic descriptions (Prolog programs). Due to the expressive-
ness of �rst-order logic, ILP methods can learn relational and recursive concepts
that cannot be represented in the featural languages assumed by most machine-
learning algorithms. ILP methods have successfully induced small programs for
sorting and list manipulation [24] as well as produced encouraging results on
important applications such as predicting protein secondary structure [21]. Our
research seeks to apply ILP methods to NLP in a e�ort to bridge the gap between
traditional NLP and empirical approaches.

A major advantage using ILP techniques is the resulting exibility. Given the
power of �rst-order rules, there is less need to hand-engineer appropriate features
and contexts over which the system learns. The induction algorithm can auto-
matically extract the relevant portions of structured contexts and construct new
predicates to represent novel syntactic and/or semantic word and phrase categor-
ies that are necessary to perform accurate parsing. Furthermore, the combination
of traditional and empirical approaches allows the insights of traditional parsing
to provide structure or bias to the learning component. Stronger biases poten-
tially allow better results from smaller training corpora. Finally, the approach
is easily adapted to learn parsers for various types of analyses. Chill has been
used to learn parsers that produce syntactic parse trees, case-role analyses, and
actual executable database queries.

This paper considers two methods of applying ILP to the problem of corpus-
based parser construction. We present a naive approach based on the direct in-
duction of logic programs to perform parsing, and a more sophisticated system,
Chill, which applies ILP within the context of a �xed parsing framework. Ex-
perimental results demonstrate that the bias provided by the parsing framework
signi�cantly improves the accuracy of the resulting parsers.

2 Using ILP for Parser Construction

2.1 Introduction to ILP

ILP research considers the problem of inducing a �rst-order, de�nite-clause logic
program from a set of examples and given background knowledge[10, 22]. As

such, it stands at the intersection of the traditional �elds of machine learning
and logic programming.

As an example ILP task, consider learning the concept of list membership.
The input to the learning system consists of a number of positive and negat-
ive instances of the predicate, member/2.3 Some positive instances might be:
member(1, [1,2]), member(2, [1,2]), member(1,[3,1]). Instances such as
member(1,[]), member(2,[1,3]), would serve as negative examples. Addi-
tional information is provided in the form background relations in terms of which
the desired concept is to be learned. In the case of list membership, this in-
formation might include a de�nition of the concept, components/3 which de-
composes a list into its component head and tail. This type of \constructor"
predicate is typically used as many ILP systems learn function-free clauses; us-
ing components/3 eliminates the need for list constructions (e.g. [XjY]) within
learned clauses. Given this input, an ILP system attempts to construct a concept
de�nition which entails the positive training examples, but not the negatives. In
this case, we hope to learn the correct de�nition of member, namely:

member(X, List) :- components(List, X, Tail).
member(X, List) :- components(List, Head, Tail), member(X, Tail).

2.2 \Naive" Parser Construction

A straight-forward application of ILP to parser construction would be to simply
present a corpus of sentences paired with representations as a set of positive
examples to an ILP system. For example, we might try to learn a de�nition of the
concept parse(Sentence,Rep). The induced logic program, might then be used
to prove goals having the second argument uninstantiated, e�ectively producing
parses of sentences provided as input. There are a number of di�culties with
this approach.

First, it is not clear what the other inputs to the ILP system should be. We do
not have a convenient set of negative examples or a good theory of what the back-
ground relations should be. Both of these are critical to the success of current ILP
algorithms. Clearly, it is intractable to generate all possible sentences paired with
incorrect analyses as a set of negative examples. Even selecting a manageable{
sized random subset of these negative examples is unlikely to be su�cient, as
such a sample is unlikely to include the many \near-miss" examples which are
crucial to learning good generalizations. Rather than attempting to generate a set
of explicit negative examples, we have developed a technique of quantifying impli-

cit negative examples that e�ectively overcomes this di�culty [31]. The problem
of providing appropriate background knowledge has been largely unexplored; in
our experiments, we relied on the ability of the ILP algorithm to invent suitable
background relations.

3 We use the standard notation hnamei/hnumberi to indicate the name and arity
(number of arguments) for a predicate.

Even given these other inputs, it seems unlikely that an uninformed ILP
system could produce a program which generalizes well to new inputs. The space
of logic programs is too large, and the learning problem too unconstrained to
hope that the results would be useful. In short, the \inductive leap" is simply too
great. Evaluating the success of the naive approach is, ultimately, an empirical
question. In this paper we compare the naive technique with a more sophisticated
alternative, namely Chill, which addresses these issues by considering language
acquisition as a control-rule learning problem.

2.3 Acquisition as Control Rule Learning

Rather than using ILP techniques to directly learn a logic grammar,Chill begins
with a well-de�ned parsing framework and uses ILP to learn control strategies
within this framework. Treating language acquisition as a control-rule learning
problem is not in itself a new idea. Berwick [1] used this approach to learn rules
for a Marcus-style deterministic parser. When the system came to a parsing
impasse, a new rule was created by inferring the correct parsing action and
creating a new rule using certain properties of the current parser state as trigger
conditions for its application. In a similar vein, Simmons and Yu [26] controlled a
simple shift-reduce parser by storing example contexts consisting of the syntactic
categories of a �xed number of stack and input bu�er locations. New sentences
were parsed by matching the current parse state to the stored examples and
performing the action corresponding to the best matching previous context. Like
the statistical approaches mentioned above, these early control-rule acquisition
systems used pre-de�ned feature-vector representations. Chill is the �rst system
to use ILP techniques rather than less exible propositional approaches.

The input to Chill is a set of training instances consisting of sentences paired
with the desired parses. The output is a shift-reduce parser in Prolog which maps
sentences into parses. Figure 1 shows the basic components of the system.

Chill employs a simple deterministic, shift-reduce parser with the current
parse state represented by the content of the stack and the remaining portion of
the input bu�er. Parsing operators are program clauses which take the current
stack and input bu�er as input arguments and return a modi�ed stack and buf-
fer as outputs. During Parser Operator Generation, the training examples are
analyzed to extract all of the general operators which are required to produce
the analyses. For example, when producing case-role analyses, an operator to
reduce the top two items on the stack by attaching the second item as an agent of
the �rst is represented by the clause op([Top,SecondjRest],In,[NewTopjRest],In)

:- reduce(Top,agt,Second,NewTop) where the arguments to op/4 are, in order,
the current stack, current input bu�er, new stack, and new input bu�er. The
reduce/4 predicate simply combines Top and Second using the role agt to pro-
duce the new structure for the top of the stack. In general, one such operator clause
is constructed for each attachment-role in the training examples. The resulting
parser is severely over-general, as the operators contain no conditions specifying
when they should be used; any operator may be applied to (virtually) any parse
state.

Final

Example
Analysis

Control
Rule

Induction

Program
Specialization

Training
Examples

Control Examples

Control

Rules

Overly−General
 Parser

 Parsing
 Operator
Generator

Parser

<Sentence, Representation>

Prolog

Prolog

Fig. 1. The Chill Architecture

In Example Analysis, the overly-general parser is used to parse the training
examples to extract contexts in which the various parsing operators should and
should not be employed. These contexts form sets of positive and negative control
examples from which the appropriate control rules can be subsequently induced.
A control example is a \snapshot" of the subgoal to which a particular operator
clause may be applied in the course of parsing an example. Examples of correct
operator applications are generated by �nding the �rst correct parsing of each
training pair with the overly-general parser; any subgoal to which an operator
is applied in this successful parse becomes a positive control example for that
operator.

For the agent operator shown above, the sentence \the man ate the pasta,"
would produce a single positive control example: op([ate,[man, det:the]],

[the,pasta], A, B). This is the only subgoal to which this operator is applied
in the correct parsing of the sentence. A and B are uninstantiated variables since
they are outputs from the op/4 clause and are not yet bound at the time the
clause is being applied. The sentence generates the following negative control
examples for this operator:

op([man,the],[ate,the,pasta],A,B)

op([the,[ate,agt:[man,det:the]]],[pasta],A,B)

op([pasta,the,[ate,agt:[man,det:the]]],[],A,B)

op([[pasta,det:the],[ate,agt:[man,det:the]]],[],A,B)

Note that there are additional parse states such as op([], [the,man,ate,the,

pasta], A, B) which do not appear in this list. This is because the agent clause
of op/4 requires that its �rst argument be a list containing at least two items.
Since the clause cannot match these other subgoals, they will not be included as
negative examples.

The Control-Rule Induction phase uses a general �rst-order induction al-
gorithm to learn a control rule for each operator. This control rule comprises
a de�nite-clause de�nition that covers the positive control examples for the op-
erator but not the negative. There is a growing body of research in inductive
logic programming which addresses this problem.Chill combines elements from
bottom-up techniques found in systems such as Cigol [19] and Golem [20] and
top-down methods from systems like Foil [25], and is able to invent new pre-
dicates in a manner analogous to Champ [9]. Details of the Chill induction
algorithm can be found in [28, 29, 27]. Given our simple example, a control rule
that might be learned for the agent operator is

op([X,[Y,det:the]], [the|Z], A, B) :- animate(Y).

animate(man). animate(boy). animate(girl)

Here the system has invented a new predicate to help explain the parsing de-
cisions. Of course, the new predicate would have a system generated name. It is
called \animate" here for clarity. This rule may be roughly interpreted as stating:
\the agent reduction applies when the stack contains two items, the second of
which is a completed noun phrase whose head is animate." The output of the
Control-Rule Induction phase is a suitable control-rule for each clause of op/4.
These control rules are then passed on to the Program Specialization phase.

The �nal step, Program Specialization, \folds" the control information back
into the overly-general parser. A control rule is easily incorporated into the
overly-general program by unifying the head of an operator clause with the head
of the control rule for the clause and adding the induced conditions to the clause
body. The de�nitions of any invented predicates are simply appended to the
program. Given the program clause:

op([Top,Second|Rest],In,[NewTop|Rest],In) :-

reduce(Top,agt,Second,NewTop).

and the control rule:

op([X,[Y,det:the]], [the|Z], A, B) :- animate(Y).

animate(man). animate(boy). animate(girl)

the resulting clause is

op([A,[B,det:the]],[the|C],[D],[the|C]) :-

animate(B), reduce(A,agt,[B,det:the],D).

animate(boy). animate(girl). animate(man)...

The �nal parser is just the overly-general parser with each operator clause suit-
ably constrained.

3 Chill vs. Naive ILP

3.1 Experimental Method

In Section 2.2, we noted that the naive application of ILP to parser acquisition
would be to induce a program directly from the examples of the parse/2 rela-
tion. The advantage gained by the control-rule framework can be assessed by
comparing Chill to the performance achieved by Chill's ILP component try-
ing to learn the parse/2 relation directly. These two approaches were compared
using the standard machine learning paradigm of �rst choosing a random set of
test examples and then learning and evaluating parsers using increasingly larger
subsets of the remaining examples.

Since the naive approach requires positive and negative examples of the
parse/2 concept, we employed a version of the induction algorithm which ex-
ploits the output-completeness assumption to learn in the context of implicit

negative examples [31, 18]. A complete discussion of this technique is beyond the
scope of this paper, but the intuition is straightforward. A developing program
is evaluated by using it to construct all possible parses that it can generate from
a given training sentence. Since all of the correct parses are supplied for each
sentence, any generated outputs which are not present in the training set are
considered to be negative examples. Likewise, outputs which are not complete
(i.e. contain uninstantiated variables) are considered to cover many negative ex-
amples, since there could be a large number of incorrect representations that they
could match.

3.2 Results for Case-Role Mapping

In one experiment, Chill and naive ILP were compared on an arti�cial data
set for case-role mapping that has been used to demonstrate certain language
processing abilities of arti�cial neural networks [16]. This task involves a corpus
of 1475 sentence/case-structure pairs originally presented in [15]. The corpus
was produced from a set of 19 sentence templates, generating sentences such as
\The HUMAN ate the FOOD with the UTENSIL", where the capitalized items
are replaced with words of the given category. The sample actually comprises
1390 unique sentences, some of which allow multiple analyses. Since our parser
is capable (through backtracking) of generating all legal parses for an input,
training was done considering each unique sentence as a single example, and
insuring that the training corpus contained all correct parses.

Our results reect averages over �ve trials using di�erent testing sets of 740
sentences each. During testing, the parser was used to enumerate all analyses for
a given test sentence. Parsing of a sentence can fail in two ways: an incorrect
analysis may be generated, or a correct analysis may not be generated. In order
to account for both types of inaccuracy, a metric was introduced to calculate the
\average correctness" for a given test sentence as follows:Accuracy = (C

P
+ C

A
)=2

where P is the number of distinct analyses produced, C is the number of the
produced analyses which were correct, and A is the number of correct analyses

possible for the sentence. This measure can be viewed as an average of the parser's
precision and recall for a given sentence.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

A
cc

ur
ac

y

Training Examples

Chill
Naive ILP

Fig. 2. Chill vs. Naive ILP on Arti�cial Case-role Task

Figure 2 shows the average learning curves of these two systems. Both are
able to learn this simple task very accurately, signi�cantly outperforming the
previous neural network approaches [16]. The results show that the naive ap-
proach performs only slightly worse than Chill for small examples sets, and
becomes indistinguishable as the sample grows. Inspection of the resulting pro-
grams showed that the induction algorithm was fairly accurately recreating the
template-and-�ller style of program which was used to generate this corpus. This
provides strong evidence of the power of the ILP induction algorithm for indu-
cing programs from examples exhibiting regular structure. The next subsection
considers a more realistic task.

3.3 Parsing the Penn Tree-bank

Applying Chill: A second set of experiments was carried out using a portion of
the ATIS dataset from a preliminary version of the Penn Tree-bank (speci�cally,
the sentences in the �le ti tb)[14]. We chose this particular data because it
represents realistic input from human-computer interaction, and because it has
been used in a number of other studies on automated grammar acquisition [6, 23]
that can serve as a basis for comparison to Chill. The corpus contains 729
sentences with an average length of 10.3 words. The experiments reported here
were performed using \tagged" strings of lexical categories as input rather than
words.

The learning component of Chill remained exactly the same as in the case-
role experiments except that the initial Parsing Operator Generator was mod-

i�ed to produce operators appropriate for the syntactic analyses of the Penn
Tree-bank. As in case-role parsing, building an overly-general parser from a set
of training examples is accomplished by constructing clauses for the op predic-
ate. For example, an operator to reduce a prepositional phrase might look like:
op([S1,S2|Ss], Words, [pp:[S2,S1]|Ss], Words).

Our initial experiments used this simple representation of parsing actions [30].
However, better results were obtained by making the operators more speci�c,
e�ectively increasing the number of operators, but reducing the complexity of
the control-rule induction task for each operator. The basic idea was to index
the operators based on some relevant portion of the parsing context. In these
experiments, the operators were indexed according to the syntactic category at the
front of the input bu�er. As an example, the general \shift" operator op(Stack,
[Word|Words], [Word|Stack], Words) becomes multiple operators in slightly
di�ering contexts such as:

op(Stack, [detjWs], [detjStack], Ws)

op(Stack, [npjWs], [npjStack], Ws)

The operators were placed in order of increasing frequency as indicated by the
training set. This allows the learning of control rules which take advantage of
\default" e�ects where speci�c exceptions are learned �rst before control falls
through to the more generally applicable rules.

Chill Results: Obviously, the most stringent measure of accuracy is the pro-
portion of test sentences for which the produced parse tree exactly matches the
tree-banked parse for the sentence. Sometimes, however, a parse can be useful
even if it is not perfectly accurate; the tree-bank itself is not completely consistent
in the handling of various structures.

To better gauge the partial accuracy of the parser, we adopted a procedure
for returning and scoring partial parses. If the parser runs into a \dead-end"
while parsing a test sentence, the contents of the stack at the time of impasse is
returned as a single, at constituent labeled S. Since the parsing operators are
ordered and the shift operator is invariably the most frequently used operator in
the training set, shift serves as a sort of default when no reduction action applies.
Therefore, at the time of impasse, all of the words of the sentence will be on the
stack, and partial constituents will have been built. The contents of stack reect
the partial progress of the parser in �nding constituents.

Partial scoring of trees is computed by determining the extent of overlap
between the computed parse and the correct parse as recorded in the tree-bank.
Two constituents are said to match if they span exactly the same words in the
sentence. If constituents match and have the same label, then they are identical.
The overlap between the computed parse and the correct parse is computed by
trying to match each constituent of the computed parse with some constituent in
the correct parse. If an identical constituent is found, the score is 1.0, a matching
constituent with an incorrect label scores 0.5. The sum of the scores for all
constituents is the overlap score for the parse. The accuracy of the parse is then

computed as Accuracy = (O

Found
+ O

Correct
)=2 where O is the overlap score,

Found is the number of constituents in the computed parse, and Correct is
the number of constituents in the correct tree. The result is an average of the
proportion of the computed parse that is correct and the proportion of the correct
parse that was actually found.

Another accuracy measure, which has been used in evaluating systems that
bracket the input sentence into unlabeled constituents, is the proportion of con-
stituents in the parse that do not cross any constituent boundaries in the correct
tree [2]. We have computed the number of sentences with parses containing no
crossing constituents, as well as the proportion of constituents which are non-
crossing over all test sentences. This gives a basis of comparison with previous
bracketing results, although it should be emphasized that Chill is designed for
the harder task of actually producing labeled parses, and is not optimized for
bracketing.

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

A
cc

ur
ac

y

Training Examples

Correct
Partial

0-Cross
Consistent

Fig. 3. Chill ATIS Results

The average learning curves over 5 trials using independent testing sets of 204
sentences are shown in Figure 3. Correct is the percentage of test sentences with
parses that matched the tree-banked parse exactly. Partial is partial correctness
using the overlap metric. 0-Cross is the proportion of test sentences having no
constituents that cross constituent boundaries in the correct parsing. Finally,
Consistent shows the overall percentage of constituents that are consistent with
the tree-bank (i.e. cross no constituents in the correct parse).

The results are very encouraging. After training on 525 sentences, Chill con-
structed completely correct parses for 41% of the novel testing sentences. Using
the partial scoring metric, Chill's parses garnered an average accuracy of over
84%. The �gures for 0-cross and consistent compare very favorably with those

reported in studies of automated bracketing for the ATIS corpus. Brill (1993)
reports 60% and 91.12%, respectively. Chill scores higher on the percentage
of sentences with no crossing violations (64%) and slightly lower (90%) on the
total percentage of non-crossing constituents. This is understandable as Brill's
transformation learner tries to optimize the latter value, while Chill's preference
for sentence accuracy might tend to improve the former (since correctly parsed
sentences are consistent).

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

A
cc

ur
ac

y

Training Examples

Chill
Naive ILP

Fig. 4. Chill vs. Naive ILP on ATIS Corpus

Comparison: On this less-structured, real-world corpora, the advantage of the
control-rule framework over the naive approach becomes readily apparent. Fig-
ure 4 shows the results for the partial accuracy metric of the two systems in the
ATIS experiment. Here Chill has an overwhelming advantage, achieving 84%
accuracy compared to the 20% accuracy of induction with implicit negatives.
Clearly, providing the shift-reduce parsing framework signi�cantly eases the task
of the inductive component.

4 An Application: Parsing Database Queries

The foregoing experiments demonstrate that ILP techniques as implemented in
Chill can produce results that are comparable to, or better than, previous em-
pirical approaches for constructing syntactic parsers on certain corpora. One of
the shortcomings of these experiments is that the target representations were
either syntactic or relatively shallow semantic structures. Parsing to this level of
representation is only a small part of the larger problem of natural language un-
derstanding. Because of this, parsing systems are usually compared on the types

of arti�cial metrics presented here. Unfortunately, it is not clear how well these
metrics translate to performance on actual language processing tasks.

As we argued in the introduction, one of the major attractions of an approach
based on �rst-order learning is its exibility. The type of representation learned
by Chill is controlled only by the type of parsing operators employed. We have
already shown that changing the parsing operators allows Chill to learn parsers
for either case-role assignments or syntactic parse-trees. However, Chill is not
restricted to learning syntactic representations. In an e�ort to assess the utility of
Chill in constructing a complete natural language application, a third operator
framework was devised that allows the parsing of logic-based database queries.

What is the capital of the state with the largest population?
answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What are the major cities in Kansas?
answer(C, (major(C), city(C), loc(C,S), equal(S,stateid(kansas)))).

Fig. 5. Sample Database Queries

In the db-query task, Chill is presented with a training set consisting of
sentences paired with executable database queries. Chill then learns a parser
which maps subsequent sentences directly into queries with no other intermedi-
ate representation. Experiments have been performed using a database on U.S.
geography. Figure 5 shows a sample of the type of queries employed. The data for
these experiments was gathered by asking uninformed subjects to generate sample
questions for the system. An analyst then paired the questions with approriate
queries to generate an experimental corpus. Experiments were then performed
by training on subsets of the corpus and evaluating the resulting parser on the
unseen examples. The parser was judged to have parsed a new sentence correctly
when the generated query produced exactly the same result as the query provided
by the analyst. Hence, the metric is a true measure of performance in a complete
database-query application.

Figure 6 shows the accuracy of Chill's parsers over a 10 trial average. The
line labeled \Geobase" shows the average accuracy of the Geobase system, a
natural-language front-end supplied as an example application with a commer-
cial Prolog system (Turbo Prolog 2.0 [5]). The curves show that Chill outper-
forms the existing system when trained on 175 or more examples. In the best
trial, Chill's induced parser comprising 1100 lines of Prolog code achieved 84%
accuracy in answering novel queries.

5 Future Work

Obviously, there is room for improvement in the results reported here. Improving
the accuracy of the resulting parsers requires progress on two fronts. One way

0

10

20

30

40

50

60

70

0 50 100 150 200 250

A
cc

ur
ac

y

Training Examples

Chill
Geobase

Fig. 6. Chill Accuracy on Database Query Domain

to improve accuracy is to use larger training sets. Making this practical requires
further improvements in the e�ciency of the induction algorithm. Another av-
enue to improvement is the incorporation of more language-speci�c biases into
the induction process. The shift-reduce framework of the current system is a
rather weak bias compared to the types of restrictions which might be found in
a \principles and parameters" based approach. A tighter integration of linguistic
insights with ILP methods could probably create more e�cient learning systems
for language tasks.

We are also investigating the extension of these methods to deal with a broader
range of NLP issues. On the lexical side, we are investigating new methods of
parsing operator generation. These operators will allow the creation of deeper
semantic representations that replace words with semantic tokens and infer in-
formation not explicitly given in the sentence. We also believe that ILP techniques
might be usefully applied in learning larger discourse structures and information
extraction tasks. We view Chill as a mere starting point in the investigation of
the usefulness of relational learning techniques for NLP in general.

6 Conclusions

In this paper we have argued that ILP techniques o�er a more exible approach
to learning in natural language systems than do feature-vector representations.
Experimental results with Chill show that ILP techniques perform as well or
better than propositional approaches on some comparable tasks. One of the major
attractions of ILP is the ease with which it may be integrated with traditional,
symbolic parsing methods. Indeed, the experiments demonstrate that the tradi-
tional shift-reduce framework used by Chill is fundamental to Chill's success
in learning realistic language processing tasks.

Acknowledgments This research was supported by the National Science Found-
ation under grant IRI-9310819 and the Texas Advanced Research Program under
grant ARP-003658-114.

References

1. B. Berwick. The Acquisition of Syntactic Knowledge. MIT Press, Cambridge, MA,
1985.

2. E. Black and et. al. A procedure for quantitatively comparing the syntactic cover-
age of English grammars. In Proceedings of the Fourth DARPA Speech and Natural

Language Workshop, pages 306{311, 1991.
3. E. Black, F. Jelineck, J. La�erty, D. Magerman, R. Mercer, and S. Roukos. To-

wards history-based grammars: Using richer models for probabilistic parsing. In
Proceedings of the 31st Annual Meeting of the Association for Computational Lin-

guistics, pages 31{37, Columbus, Ohio, 1993.
4. E. Black, J. La�erty, and S. Roukaos. Development and evaluation of a broad-

coverage probabilistic grammar of English-language computer manuals. In Proceed-
ings of the 30th Annual Meeting of the Association for Computational Linguistics,
pages 185{192, Newark, Delaware, 1992.

5. Borland International. Turbo Prolog 2.0 Reference Guide. Borland International,
Scotts Valley, CA, 1988.

6. E. Brill. Automatic grammar induction and parsing free text: A transformation-
based approach. In Proceedings of the 31st Annual Meeting of the Association for

Computational Linguistics, pages 259{265, Columbus, Ohio, 1993.
7. Eugene Charniak and Glenn Carroll. Context-sensitive statistics for improved

grammatical language models. In Proceedings of the Twelfth National Conference

on Arti�cial Intelligence, Seattle, WA, August 1994.
8. D. Hindle and M. Rooth. Structural ambiguity and lexical relations. Computa-

tional Linguistics, 19(1):103{120, 1993.
9. B. Kijsirikul, M. Numao, and M. Shimura. Discrimination-based constructive in-

duction of logic programs. In Proceedings of the Tenth National Conference on

Arti�cial Intelligence, pages 44{49, San Jose, CA, July 1992.
10. N. Lavra�c and S. D�zeroski, editors. Inductive Logic Programming: Techniques and

Applications. Ellis Horwood, 1994.
11. Jill Fain Lehman. Toward the essential nature of satistical knowledge in sense resol-

ution. In Proceedings of the Twelfth National Conference on Arti�cial Intelligence,
Seattle, WA, August 1994.

12. David M. Magerman. Natrual Lagnuage Parsing as Statistical Pattern Recognition.
PhD thesis, Stanford University, 1994.

13. Christopher D. Manning. Automatic acquisition of a large subcategorization dic-
tionary from corpora. In Proceedings of the 31st Annual Meeting of the Association

for Computational Linguistics, pages 235{242, Columbus, Ohio, 1993.
14. M. Marcus, B. Santorini, and M.A. Marcinkiewicz. Building a large annotated

corpus of English: The Penn treebank. Computational Linguistics, 19(2):313{330,
1993.

15. J. L. McClelland and A. H. Kawamoto. Mechanisms of sentence processing: As-
signing roles to constituents of sentences. In D. E. Rumelhart and J. L. McClelland,
editors, Parallel Distributed Processing, Vol. II, pages 318{362. MIT Press, Cam-
bridge, MA, 1986.

16. R. Miikkulainen and M. G. Dyer. Natural language processing with modular PDP
networks and distributed lexicon. Cognitive Science, 15:343{399, 1991.

17. Scott Miller, Robert Bobrow, Robert Ingria, and Richard Schwartz. Hidden under-
standing models of natural language. In Proceedings of the 32nd Annual Meeting

of the Association for Computational Linguistics, pages 25{32, 1994.
18. R. J. Mooney and M. E. Cali�. Induction of �rst-order decision lists: Results on

learning the past tense of English verbs. Journal of Arti�cial Intelligence Research,
3:1{24, 1995.

19. S. Muggleton and W. Buntine. Machine invention of �rst-order predicates by in-
verting resolution. In Proceedings of the Fifth International Conference on Machine

Learning, pages 339{352, Ann Arbor, MI, June 1988.
20. S. Muggleton and C. Feng. E�cient induction of logic programs. In S. Muggleton,

editor, Inductive Logic Programming, pages 281{297. Academic Press, New York,
1992.

21. S. Muggleton, R. King, and M. Sternberg. Protein secondary structure prediction
using logic-based machine learning. Protein Engineering, 5(7):647{657, 1992.

22. S. H. Muggleton, editor. Inductive Logic Programming. Academic Press, New
York, NY, 1992.

23. F. Periera and Y. Shabes. Inside-outside reestimation from partially bracketed
corpora. In Proceedings of the 30th Annual Meeting of the Association for Com-

putational Linguistics, pages 128{135, Newark, Delaware, 1992.
24. J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proceedings

of the European Conference on Machine Learning, pages 3{20, Vienna, 1993.
25. J.R. Quinlan. Learning logical de�nitions from relations. Machine Learning,

5(3):239{266, 1990.
26. R. F. Simmons and Y. Yu. The acquisition and use of context dependent grammars

for English. Computational Linguistics, 18(4):391{418, 1992.
27. J. M. Zelle. Using Inductive Logic Programming to Automate the Construction of

Natural Language Parsers. PhD thesis, University of Texas, Austin, TX, August
1995.

28. J. M. Zelle and R. J. Mooney. Learning semantic grammars with constructive
inductive logic programming. In Proceedings of the Eleventh National Conference

on Arti�cial Intelligence, pages 817{822, Washington, D.C., July 1993.
29. J. M. Zelle and R. J. Mooney. Combining top-down and bottom-up methods in

inductive logic programming. In Proceedings of the Eleventh International Confer-

ence on Machine Learning, pages 343{351, New Brunswick, NJ, July 1994.
30. J. M. Zelle and R. J. Mooney. Inducing deterministic Prolog parsers from tree-

banks: A machine learning approach. In Proceedings of the Twelfth National Con-

ference on Arti�cial Intelligence, pages 748{753, Seattle, WA, August 1994.
31. John M. Zelle, Cynthia A. Thompson, Mary Elaine Cali�, and Raymond J.

Mooney. Inducing logic programs without explicit negative examples. In Proceed-

ings of the Fifth International Workshop on Inductive Logic Programming, 1995.

