Appears in | JCAI 95 Wrkshop on New Approaches to Learning for
Nat ural Language Processing, pp.79-86, Mtreal, Quebec, Canada, August 1995

A Comparison of Two Methods Employing Inductive Logic
Programming for Corpus-based Parser Construction

John M. Zelle, and Raymond J. Mooney
Department of Computer Sciences
University of Texas
Austin, TX 78712

zelle,mooney@cs.utexas.edu

Abstract

This paper presents results from recent experi-
ments with CHILL, a corpus-based parser acqui-
sition system. CHILL treats grammar acquisition
as the learning of search-control rules within a
logic program. Unlike many current corpus-based
approaches that use propositional or probabilistic
learning algorithms, CHILL uses techniques from
inductive logic programming (ILP) to learn rela-
tional representations. The reported experiments
compare CHILL’s performance to that of a more
naive application of ILP to parser acquisition. The
results show that ILP techniques, as employed in
CHILL, are a viable alternative to propositional
methods and that the control-rule framework is
fundamental to CHILL’s success.

Introduction

Empirical or corpus-based methods for construct-
ing natural language systems has been an area of
growing research interest in the last several years.
The empirical approach replaces hand-generated
rules with models obtained automatically by train-
ing over language corpora. Corpus-based meth-
ods may be used to augment the knowledge of a
traditional parser, for example by acquiring new
case-frames for verbs (Manning 1993) or acquiring
models to resolve lexical or attachment ambigui-
ties (Lehman 1994; Hindle & Rooth 1993). More
radical approaches attempt to replace the hand-
crafted components altogether; constructing com-
plete parsers directly from suitable corpora. Re-
cent approaches to constructing robust parsers from
corpora primarily use statistical and probabilistic
methods such as stochastic grammars (Black, Laf-
ferty, & Roukaos 1992; Periera & Shabes 1992;
Charniak & Carroll 1994) or transition networks
(Miller et al. 1994). These methods eschew

traditional, symbolic parsing in favor of statis-
tical and probabilistic methods. Although sev-
eral current methods learn some symbolic struc-
tures such as decision trees (Black et al. 1993;
Magerman 1994) and transformations (Brill 1993),
statistical methods dominate.

A common thread in all of these approaches is
that the acquired knowledge is represented in a
propositional form (perhaps with associated proba-
bilities). This means for example, a decision about
how to label a node in a parse tree is made by
considering a fixed set of properties (e.g., syntac-
tic category) about a fixed context of surround-
ing nodes (e.g., parent and immediate left sibling).
The exact conditions of the rule(s) are determined
by the acquisition algorithm but the context over
which the rules are formed, and the exact proper-
ties which may be tested are determined a priori by
the designer of the acquisition system. In machine
learning, such approaches are often called feature-
vector representations, as each decision context can
be specified by a finite vector of atomic values as-
sociated with the various features of interest.

In contrast, the CHILL system (Zelle & Mooney
1993; 1994b) uses a framework for learning with
structured representations. Relational representa-
tions have long been a tool of traditional NLP.
Virtually all of this work has utilized hand-crafted
grammars as suitable methods for automating the
construction of relational knowledge bases had not
vet been developed. Now, however, a growing sub-
field of machine learning research called Inductive
Logic Programming (ILP) addresses the problem of
learning first-order logic descriptions (Prolog pro-
grams). Due to the expressiveness of first-order
logic, ILP methods can learn relational and recur-
sive concepts that cannot be represented in the fea-

tural languages assumed by most machine-learning
algorithms. ILP methods have successfully induced
small programs for sorting and list manipulation
(Quinlan & Cameron-Jones 1993) as well as pro-
duced encouraging results on important applica-
tions such as predicting protein secondary struc-
ture (Muggleton, King, & Sternberg 1992). Our
research seeks to apply ILP methods to NLP in a
effort to bridge the gap between traditional NLP
and empirical approaches.

A major advantage using ILP techniques is the
resulting flexibility. Given the power of first-order
rules; there 1s less need to hand-engineer appropri-
ate features and contexts over which the system
learns. The induction algorithm can automatically
extract the relevant portions of structured contexts
and construct new predicates to represent novel
syntactic and/or semantic word and phrase cate-
gories that are necessary to perform accurate pars-
ing. Furthermore, the combination of traditional
and empirical approaches allows the insights of tra-
ditional parsing to provide structure or bias to the
learning component. Stronger biases potentially al-
low better results from smaller training corpora.

This paper considers two methods of applying
ILP to the problem of corpus-based parser con-
struction. We present a naive approach based on
the direct induction of logic programs to perform
parsing, and a more sophisticated system, CHILL,
which applies ILP within the context of a fixed
parsing framework. Experimental results demon-
strate that the bias provided by the parsing frame-
work significantly improves the accuracy of the re-
sulting parsers.

Using ILP for Grammar Acquisition
Introduction to ILP

ILP research considers the problem of inducing
a first-order, definite-clause logic program from
a set of examples and given background knowl-
edge(Lavraé & Dzeroski 1994; Muggleton 1992). As
such, i1t stands at the intersection of the traditional
fields of machine learning and logic programming.

As an example ILP task, consider learn-
ing the concept of list membership. The
input to the learning system consists of a
number of positive and negative instances of
the predicate, member/2.! Some positive in-

'We use the standard notation (name)/(number)
to indicate the name and arity (number of arguments)
for a predicate.

stances might be: member (1, [1,2]), member(2,
[1,2]), member(1,[3,1]), etc. While instances
such as member(1,[]), member(2,[1,3]), would
serve as negative examples. Additional infor-
mation is provided in the form background re-
lations in terms of which the desired concept
is to be learned. 1In the case of list member-
ship, this information might include a definition
of the concept, components/3 which decomposes
a list into its component head and tail. This
type of “constructor” predicate is typically used as
many ILP systems learn function-free clauses; using
components/3 eliminates the need for list construc-
tions (e.g. [X|Y]) within learned clauses. Given
this input, an ILP system attempts to construct a
concept definition which entails the positive train-
ing examples, but not the negatives. In this case,
we hope to learn the correct definition of member,
namely:

member(X, List) :- components(List, X, Tail).
member(X, List) :- components(List, Head, Tail),
member(X, Tail).

“Naive” Parser Construction

A straight-forward application of ILP to grammar
acquisition would be to simply present a corpus
of sentences paired with representations as a set
of positive examples to an ILP system. For ex-
ample, we might try to learn a definition of the
concept parse(Sentence,Rep). The induced logic
program, might then be used to prove goals hav-
ing the second argument uninstantiated, effectively
producing parses of sentences provided as input.
There are a number of difficulties with this ap-
proach.

First, 1t is not clear what the other inputs to the
ILP system should be. We do not have a convenient
set of negative examples or a good theory of what
the background relations should be. Both of these
are critical to the success of current ILP algorithms.
Clearly, it is intractable to generate all possible sen-
tences paired with incorrect analyses as a set of
negative examples. Even selecting a manageable—
sized random subset of these negative examples is
unlikely to be sufficient, as such a sample is un-
likely to include the many “near-miss” examples
which are crucial to learning good generalizations.
Rather than attempting to generate a set of explicit
negative examples, we have developed a technique
of quantifying implicit negative examples that ef-
fectively overcomes this difficulty (Mooney & Califf

1995). The problem of providing appropriate back-
ground knowledge has been largely unexplored; in
our experiments, we relied on the ability of the ILP
algorithm to invent suitable background relations.

Even given these other inputs, it seems unlikely
that an uninformed ILP system could produce a
program which generalizes well to new inputs. The
space of logic programs is too large, and the learn-
ing problem too unconstrained to hope that the
results would be useful. In short, the “inductive
leap” is simply too great. Evaluating the success
of the naive approach is, ultimately, an empirical
question. In this paper we compare the naive tech-
nique with a more sophisticated alternative, namely
CHILL, which addresses these issues by consider-
ing grammar acquisition as a control-rule learning
problem.

Acquisition as Control Rule Learning

Rather than using ILP techniques to directly learn
a logic grammar, CHILL begins with a well-defined
parsing framework and uses ILP to learn control
strategies within this framework. Treating lan-
guage acquisition as a control-rule learning problem
is not in itself a new idea. Berwick (1985) used this
approach to learn grammar rules for a Marcus-style
deterministic parser. When the system came to a
parsing impasse, a new rule was created by inferring
the correct parsing action and creating a new rule
using certain properties of the current parser state
as trigger conditions for its application. In a simi-
lar vein, Simmons and Yu (1992) controlled a sim-
ple shift-reduce parser by storing example contexts
consisting of the syntactic categories of a fixed num-
ber of stack and input buffer locations. New sen-
tences were parsed by matching the current parse
state to the stored examples and performing the
action corresponding to the best matching previ-
ous context. Like the statistical approaches men-
tioned above, these early control-rule acquisition
systems used pre-defined feature-vector representa-
tions. CHILL 1s the first system to use modern ILP
techniques rather than less flexible propositional
approaches.

The input to CHILL is a set of training in-
stances consisting of sentences paired with the de-
sired parses. The output i1s a shift-reduce parser in
Prolog which maps sentences into parses. Figure 1
shows the basic components of the system.

CHILL employs a simple deterministic, shift-
reduce parser with the current parse state repre-
sented by the content of the stack and the remain-

<Sentence, Representation> Prolog

Trainin Parsing -~
Exam Icges [Operator Overg));r;};neral
P Generator

Example
Analysis

Control | Examples

Control Control Program

Rule Specialization

Induction Rules
Final
Parser

Prolog

Figure 1: The CHILL Architecture

ing portion of the input buffer. Parsing opera-
tors are program clauses which take the current
stack and input buffer as input arguments and re-
turn a modified stack and buffer as outputs. Dur-
ing Parser Operator Generation, the training ex-
amples are analyzed to extract all of the general
operators which are required to produce the the
analyses. For example an operator to reduce the
top two items on the stack by attaching the sec-
ond item as an agent of the top is represented by
the clause op([Top,Second|Rest],In,[NewTop|Rest],In)
:- reduce(Top,agt,Second,NewTop). The reduce/4
predicate simply combines Top and Second using
the role agt to produce the new structure for the
top of the stack. In general, one such operator
clause 1s constructed for each attachment-role in
the training examples. The resulting parser is
severely over-general, as the operators contain no
conditions specifying when they should be used;
any operator may be applied to (virtually) any
parse state.

In Example Analysis, the overly-general parser
is used to parse the training examples to extract
contexts in which the various parsing operators
should and should not be employed. These con-
texts form sets of positive and negative control ez-
amples from which the appropriate control rules
can be subsequently induced. A control example
is a “snapshot” of the subgoal to which a partic-
ular operator clause may be applied in the course

of parsing an example. Examples of correct op-
erator applications are generated by finding the
first correct parsing of each training pair with the
overly-general parser; any subgoal to which an op-
erator 1s applied in this successful parse becomes
a positive control example for that operator. For
the agent operator shown above, the sentence “the
man ate the pasta,” would produce a single posi-
tive control example: op([ate, [man, det:thel],
[the,pastal, A, B). This is the only subgoal to
which this operator is applied in the correct parsing

of the sentence. A and B are uninstantiated vari-
ables since they are outputs from the op/4 clause

and are not yet bound at the time the clause is be-
ing applied. The sentence generates the following
negative control examples for this operator:
op([man,thel, [ate,the,pastal,A,B)
op([the,[ate,agt:[man,det:thell], [pastal,4,B)
op([pasta,the,[ate,agt:[man,det:thell],[1,4,B)
op([[pasta,det:thel, [ate,agt: [man,det:thell], [1,4,B)

Note that there are additional parse states
such as op([], [the,man,ate,the,pastal, A,
B) which do not appear in this list. This is because
the agent clause of op/4 requires that its first argu-
ment be a list containing at least two items. Since
the clause cannot match these other subgoals, they
will not be included as negative examples.

The Control-Rule Induction phase uses a general
first-order induction algorithm to learn a control
rule for each operator. This control rule comprises a
Horn-clause definition that covers the positive con-
trol examples for the operator but not the nega-
tive. There is a growing body of research in induc-
tive logic programming which addresses this prob-
lem. CHILL combines elements from bottom-up
techniques found in systems such as CicoL (Mug-
gleton & Buntine 1988) and GorLEM (Muggleton &
Feng 1992) and top-down methods from systems
like FoIr (Quinlan 1990), and is able to invent new
predicates in a manner analogous to CHAMP (Ki-
jsirikul, Numao, & Shimura 1992). Details of the
CHILL induction algorithm can be found in (Zelle &
Mooney 1993; 1994a). Given our simple example,
a control rule that might be learned for the agent
operator 1s
op([X,[Y,det:thel]l, [thelZ]l, A, B) :-

animate(Y).

animate(man). animate (boy). animate(girl)

Here the system has invented a new predicate to
help explain the parsing decisions. Of course,
the new predicate would have a system generated
name. It is called “animate” here for clarity. This
rule may be roughly interpreted as stating: “the
agent reduction applies when the stack contains
two items, the second of which is a completed noun
phrase whose head is animate.” The output of the

Control-Rule Induction phase is a suitable control-
rule for each clause of op/4. These control rules
are then passed on to the Program Specialization
phase.

The final step, Program Specialization, “folds”
the control information back into the overly-general
parser. A control rule is easily incorporated into the
overly-general program by unifying the head of an
operator clause with the head of the control rule for
the clause and adding the induced conditions to the
clause body. The definitions of any invented pred-
icates are simply appended to the program. Given
the program clause:

op([Top,Second|Rest] ,In, [NewTop|Rest] ,In) :-
reduce (Top, agt,Second, NewTop) .

and the control rule:

op([X,[Y,det:thel]l, [thelZ], A, B) :-
animate(Y).
animate (man) . animate (boy). animate(girl) ...

the resulting clause is

op([A, [B,det:thel], [the|C],[D], [thel|C]) :-
animate(B), reduce(A,agt,[B,det:the],D).
animate (boy). animate(girl). animate (man)...

The final parser is just the overly-general parser
with each operator clause suitably constrained.

CHILL vs. Naive
Experimental Method

In Section 2.2, we noted that the naive applica-
tion of ILP to parser acquisition would be to in-
duce a program directly from the examples of the
parse/2 relation. The advantage gained by the
control-rule framework can be assessed by compar-
ing CHILL to the performance achieved by CHILL’s
ILP component trying to learn the parse/2 relation
directly. These two approaches were compared us-
ing the standard machine learning paradigm of first
choosing a random set of test examples and then
learning and evaluating parsers using increasingly
larger subsets of the remaining examples.

Since the naive approach requires positive and
negative examples of the parse/2 concept, we em-
ployed a version of the induction algorithm which
exploits the output-completeness assumption to
learn in the context of ¢mplicit negative examples
(Mooney & Califf 1995). A complete discussion of
this technique is beyond the scope of this paper,
but the intuition is straightforward. A developing
program is evaluated by using i1t to construct all
possible representations that it can generate from a
given training sentence. Since the training samples

are output-complete, any generated outputs which
are not present in the training set are considered to
be negative examples. Likewise, outputs which are
not complete (contain uninstantiated variables) are
considered to cover many negative examples, since
there could be a large number of incorrect repre-
sentations that they could match.

Results for Case-Role Mapping

In one experiment, CHILL and naive were compared
on an artificial data set for case-role mapping that
has been used to demonstrate certain language pro-
cessing abilities of artificial neural networks (Mi-
ikkulainen & Dyer 1991). This task involves a
corpus of 1475 sentence/case-structure pairs origi-
nally presented in (McClelland & Kawamoto 1986).
The corpus was produced from a set of 19 sentence
templates, generating sentences such as “The HU-
MAN ate the FOOD with the UTENSIL” | where
the capitalized items are replaced with words of
the given category. The sample actually comprises
1390 unique sentences, some of which allow multi-
ple analyses. Since our parser is capable (through
backtracking) of generating all legal parses for an
input, training was done considering each unique
sentence as a single example, and insuring that the
training corpus was output complete.

Our results reflect averages over five trials using
different testing sets of 740 sentences each. Dur-
ing testing, the parser was used to enumerate all
analyses for a given test sentence. Parsing of a sen-
tence can fail in two ways: an incorrect analysis
may be generated, or a correct analysis may not
be generated. In order to account for both types
of inaccuracy, a metric was introduced to calcu-
late the “average correctness” for a given test sen-
tence as follows: Accuracy = ($4%)/2 where P is
the number of distinct analyses produced, C' is the
number of the produced analyses which were cor-
rect, and A i1s the number of correct analyses pos-
sible for the sentence. This measure can be viewed
as an average of the parser’s precision and recall for
a given sentence.

Figure 2 shows the average learning curves of
these two systems. Both are able to learn this
simple task very accurately, significantly outper-
forming the previous neural network approaches.
The results show that the naive approach performs
only slightly worse than CHILL for small examples
sets, and becomes indistinguishable as the sample
grows. Inspection of the resulting programs showed
that the induction algorithm was fairly accurately

100

90
80
70 b +
60

sof i

Accuracy

4t [
30 [
20 Ff Chill +—
Naive -

10

.
0 100 200 300 400 500 600 700
Training Examples

Figure 2: CHILL vs. Naive Simple Case-role Task

recreating the template-and-filler style of program
which was used to generate this corpus. This pro-
vides strong evidence of the power of the ILP in-
duction algorithm for inducing programs from ex-
amples exhibiting regular structure. The next sub-
section considers a more realistic task.

Parsing the Penn Tree-bank

Applying CHILL A second set of experiments
was carried out using a portion of the ATIS dataset
from a preliminary version of the Penn Tree-bank
(specifically, the sentences in the file ti_tb)(Mar-
cus, Santorini, & Marcinkiewicz 1993). We chose
this particular data because it represents realistic
input from human-computer interaction, and be-
cause 1t has been used in a number of other stud-
ies on automated grammar acquisition (Brill 1993;
Periera & Shabes 1992) that can serve as a ba-
sis for comparison to CHILL. The corpus contains
729 sentences with an average length of 10.3 words.
The experiments reported here were performed us-
ing strings of lexical categories, rather than words
as input.

The learning component of CHILL remained ex-
actly the same as in the case-role experiments ex-
cept that the initial Parsing Operator Generator
was modified to produce operators appropriate for
the syntactic analyses of the Penn Tree-bank. Asin
case-role parsing, building an overly-general parser
from a set of training examples is accomplished
by constructing clauses for the op predicate. For
example, an operator to reduce a prepositional
phrase might look like: op([S1,S2[Ss], Words,
[pp: [S2,51]11Ss], Words).

Our initial experiments used this simple rep-
resentation of parsing actions (Zelle & Mooney
1994b). However, better results were obtained by
making the operators more specific, effectively in-
creasing the number of operators, but reducing the
complexity of the control-rule induction task for
each operator. The basic idea was to index the
operators based on some relevant portion of the
parsing context. In these experiments, the opera-
tors were indexed according to the syntactic cat-
egory at the front of the input buffer. As an
example, the general “shift” operator op(Stack,
[Word|Words], [Wordl|Stack], Words) becomes
multiple operators in slightly differing contexts
such as:

op(Stack, [det|Ws], [det|Stack]l, Ws)
op(Stack, [nn|Ws], [nn|Stack], Ws)
op(Stack, [to|Ws], [to|Stack], Ws)
op(Stack, [np|Ws], [np|Stack], Ws)

One other change from the case-role experiments
is that the corpus only provides a single parse for
each sentence. CHILL was applied in the single-
parse mode. The operators were placed in order
of increasing frequency as indicated by the train-
ing set. This allows the learning of control rules
which take advantage of “default” effects where
specific exceptions are learned first before control
falls through to the more generally applicable rules.

CHILL Results: Obviously, the most stringent
measure of accuracy is the proportion of test sen-
tences for which the produced parse tree exactly
matches the tree-banked parse for the sentence.
Sometimes, however, a parse can be useful even if
it 1s not perfectly accurate; the tree-bank itself 1s
not completely consistent in the handling of various
structures.

To better gauge the partial accuracy of the
parser, we adopted a procedure for returning and
scoring partial parses. If the parser runs into a
“dead-end” while parsing a test sentence, the con-
tents of the stack at the time of impasse is returned
as a single, flat constituent labeled S. Since the
parsing operators are ordered and the shift opera-
tor is invariably the most frequently used operator
in the training set, shift serves as a sort of default
when no reduction action applies. Therefore, at the
time of impasse, all of the words of the sentence will
be on the stack, and partial constituents will have
been built. The contents of stack reflect the partial
progress of the parser in finding constituents.

Partial scoring of trees 1s computed by determin-
ing the extent of overlap between the computed
parse and the correct parse as recorded in the tree-

Lexical Tags: Overall Parse Accuracy
LY T — T

[T
80 [o o)
70

60 . o

50 -

Accuracy

40+

30t

20 1 Correct +—
f Partial ~+—-
0-Cross -8-

i
10 ¢ Consistent -x

.
0 100 200 300 400 500 600
Training Examples

Figure 3: CHILL ATIS Results

bank. Two constituents are said to match if they
span exactly the same words in the sentence. If con-
stituents match and have the same label, then they
are 1dentical. The overlap between the computed
parse and the correct parse is computed by trying to
match each constituent of the computed parse with
some constituent in the correct parse. If an identi-
cal constituent is found, the score is 1.0, a matching
constituent with an incorrect label scores 0.5. The
sum of the scores for all constituents is the overlap
score for the parse. The accuracy of the parse 1s
then computed as Accuracy = (% + %)/2
where O is the overlap score, Found i1s the number
of constituents in the computed parse, and Correct
is the number of constituents in the correct tree.
The result is an average of the proportion of the
computed parse that is correct and the proportion
of the correct parse that was actually found.

Another accuracy measure, which has been used
in evaluating systems that bracket the input sen-
tence into unlabeled constituents, is the proportion
of constituents in the parse that do not cross any
constituent boundaries in the correct tree (Black
1991). We have computed the number of sentences
with parses containing no crossing constituents, as
well as the proportion of constituents which are
non-crossing over all test sentences. This gives a
basis of comparison with previous bracketing re-
sults, although it should be emphasized that CHILL
is designed for the harder task of actually producing
labeled parses, and is not optimized for bracketing.

The average learning curves over 5 trials using in-
dependent testing sets of 204 sentences are shown in
Figure 3. Correctis the percentage of test sentences

90

80

70

60

50

Accuracy

40
chill +—

Naive —+-
30

,,,,,,,,,,,,,,,,,,,,

——————————

10

300
Training Examples

Figure 4: CHILL vs. Induction on ATIS Corpus

with parses that matched the tree-banked parse ex-
actly. Partial is partial correctness using the over-
lap metric. 0-Cross is the proportion of test sen-
tences having no constituents that cross constituent
boundaries in the correct parsing. Finally, Consis-
tent shows the overall percentage of constituents
that are consistent with the tree-bank (i.e. cross
no constituents in the correct parse).

The results are very encouraging. After train-
ing on 525 sentences, CHILL constructed completely
correct parses for 41% of the novel testing sen-
tences. Using the partial scoring metric, CHILL’s
parses garnered an average accuracy of over 84%.
The figures for O-cross and consistent compare very
favorably with those reported in studies of auto-
mated bracketing for the ATIS corpus. Brill (1993)
reports 60% and 91.12%, respectively. CHILL scores
higher on the percentage of sentences with no cross-
ing violations (64%) and slightly lower (90%) on the
total percentage of non-crossing constituents. This
is understandable as Brill’s transformation learner
tries to optimize the latter value, while CHILL’s
preference for sentence accuracy might tend to im-
prove the former (since correctly parsed sentences
are consistent).

Comparison On this less-structured, real-world
corpora, the advantage of the control-rule frame-
work over the naive approach becomes readily ap-
parent. Figure 4 shows the results for the partial
accuracy metric of the two systems in the ATIS
experiment. Here CHILL has an overwhelming ad-
vantage, achieving 84% accuracy compared to the
20% accuracy of induction with implicit negatives.
Clearly, providing the shift-reduce parsing frame-

work significantly eases the task of the inductive
component.

Future Work

Obviously, there 1s much room for improvement in
the results reported here. Improving the accuracy
of the resulting parsers requires progress on two
fronts. One way to improve accuracy is to use larger
training sets. Making this practical requires further
improvements in the efficiency of the induction al-
gorithm. Another avenue to improvement is the
incorporation of more language-specific biases into
the induction process. The shift-reduce framework
of the current system is a rather weak bias com-
pared to the types of restrictions which might be
found in a “principles and parameters” based ap-
proach. A tighter integration of linguistic insights
with ILP methods could probably create more effi-
cient learning systems for language tasks.

There is also considerable room for improvement
in the methods used to evaluate CHILL and empir-
ical techniques in general. So far, these systems
have tended to be evaluated on artificial metrics—
an approach open to numerous criticisms. In the
future we plan to apply CHILL in the development
of a complete NL database-query application. This
application will serve as a testbed where issues of
overall utility can be more effectively addressed.

We are also investigating the extension of these
methods to deal with a broader range of NLP is-
sues. On the lexical side, we are investigating new
methods of parsing operator generation. These op-
erators will allow the creation of deeper semantic
representations that replace words with semantic
tokens and infer information not explicitly given in
the sentence. We also believe that ILP techniques
might be usefully applied in learning larger dis-
course structures and information extraction tasks.
We view CHILL as a mere starting point in the in-
vestigation of the usefulness of relational learning
techniques for NLP in general.

Conclusions

In this paper we have argued that ILP techniques
offer a more flexible approach to learning in natu-
ral language systems than do feature-vector rep-
resentations. Experimental results with CHILL,
show that ILP techniques perform as well or bet-
ter than propositional approaches on some compa-
rable tasks. One of the major attractions of ILP
is the ease with which it may be integrated with
traditional, symbolic parsing methods. Indeed, the

experiments demonstrate that the traditional shift-
reduce framework used by CHILL is fundamental to
CHILL’s success in learning realistic language pro-
cessing tasks.

Acknowledgments This research was supported
by the National Science Foundation under grant IRI-
9310819 and the Texas Advanced Research Program
under grant ARP-003658-114.

References

Black, E.; Jelineck, F.; Lafferty, J.; Magerman, D.;
Mercer, R.; and Roukos, S. 1993. Towards history-
based grammars: Using richer models for probabilistic
parsing. In Proceedings of the 31st Annual Meeting of
the Association for Computational Linguistics, 31-37.

Black, E.; Lafferty, J.; and Roukaos, S. 1992. Develop-
ment and evaluation of a broad-coverage probabilistic
grammar of English-language computer manuals. In
Proceedings of the 30th Annual Meeting of the Associ-
ation for Computational Linguistics, 185-192.

Black, E. e. 1991. A procedure for quantitatively com-
paring the syntactic coverage of English grammars. In
Proceedings of the Fourth DARPA Speech and Natural
Language Workshop, 306-311.

Brill, E. 1993. Automatic grammar induction and
parsing free text: A transformation-based approach.
In Proceedings of the 81st Annual Meeting of the As-
sociation for Computational Linguistics, 259-265.

Charniak, E., and Carroll, G. 1994. Context-sensitive
statistics for improved grammatical language models.
In Proceedings of the Twelfth National Conference on
Artificial Intelligence.

Hindle, D., and Rooth, M. 1993. Structural ambi-
guity and lexical relations. Computational Linguistics
19(1):103-120.

Kijsirikul, B.; Numao, M.; and Shimura, M. 1992.
Discrimination-based constructive induction of logic
programs. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, 44-49.

Lavrag, N., and DZeroski, S., eds. 1994. Inductive
Logic Programming: Techniques and Applications. El-
lis Horwood.

Lehman, J. F. 1994. Toward the essential nature of
satistical knowledge in sense resolution. In Proceed-
ings of the Twelfth National Conference on Artificial
Intelligence.

Magerman, D. M. 1994. Natrual Lagnuage Parsing as
Statistical Pattern Recognition. Ph.D. Dissertation,
Stanford University.

Manning, C. D. 1993. Automatic acquisition of a large
subcategorization dictionary from corpora. In Proceed-
ings of the 31st Annual Meeting of the Association for
Computational Linguistics, 235-242.

Marcus, M.; Santorini, B.; and Marcinkiewicz, M.
1993. Building a large annotated corpus of en-
glish: The Penn treebank. Computational Linguistics
19(2):313-330.

McClelland, J. L., and Kawamoto, A. H. 1986. Mech-
anisms of sentence processing: Assigning roles to con-
stituents of sentences. In Rumelhart, D. E., and Mc-
Clelland, J. L., eds., Parallel Distributed Processing,
Vol. II. Cambridge, MA: MIT Press. 318-362.

Miikkulainen, R., and Dyer, M. G. 1991. Natural
language processing with modular PDP networks and
distributed lexicon. Cognitive Science 15:343-399.

Miller, S.; Bobrow, R.; Ingria, R.; and Schwartz, R.
1994. Hidden understanding models of natural lan-
guage. In Proceedings of the 32nd Annual Meeting of
the Association for Computational Linguistics, 25-32.

Mooney, R. J., and Califf, M. E. 1995. Induction of
first-order decision lists: Results on learning the past
tense of English verbs. Journal of Artificial Intelli-
gence Research in press.

Muggleton, S., and Buntine, W. 1988. Machine inven-
tion of first-order predicates by inverting resolution. In
Proceedings of the Fifth International Conference on
Machine Learning, 339-352.

Muggleton, S., and Feng, C. 1992. Efficient induction
of logic programs. In Muggleton, S., ed., Inductive

Logic Programming. New York: Academic Press. 281-
297.

Muggleton, S.; King, R.; and Sternberg, M. 1992. Pro-
tein secondary structure prediction using logic-based
machine learning. Protein Engineering 5(7):647-657.

Muggleton, S. H., ed. 1992. Inductive Logic Program-
ming. New York, NY: Academic Press.

Periera, F., and Shabes, Y. 1992. Inside-outside rees-
timation from partially bracketed corpora. In Proceed-
ings of the 30th Annual Meeting of the Association for
Computational Linguistics, 128—135.

Quinlan, J. R., and Cameron-Jones, R. M. 1993.
FOIL: A midterm report. In Proceedings of the Eu-
ropean Conference on Machine Learning, 3—20.

Quinlan, J. 1990. Learning logical definitions from
relations. Machine Learning 5(3):239-266.

Zelle, J. M., and Mooney, R. J. 1993. Learning seman-
tic grammars with constructive inductive logic pro-
gramming. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, 817-822.

Zelle, J. M., and Mooney, R. J. 1994a. Combining
top-down and bottom-up methods in inductive logic
programming. In Proceedings of the Fleventh Interna-
tional Conference on Machine Learning.

Zelle, J. M., and Mooney, R. J. 1994b. Inducing de-
terministic Prolog parsers from treebanks: A machine
learning approach. In Proceedings of the Twelfth Na-
tional Conference on Artificial Intelligence, 748-753.

