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Abstract

For most natural language processing tasks, a parser
that maps sentences into a semantic representation
is signi�cantly more useful than a grammar or au-
tomata that simply recognizes syntactically well-
formed strings. This paper reviews our work on us-
ing inductive logic programming methods to learn de-
terministic shift-reduce parsers that translate natural
language into a semantic representation. We focus on
the task of mapping database queries directly into ex-
ecutable logical form. An overview of the system is
presented followed by recent experimental results on
corpora of Spanish geography queries and English job-
search queries.

Introduction

Language learning is frequently interpreted as acquir-
ing a recognizer, a procedure that returns \yes" or \no"
to the question: \Is this string a syntactically well-
formed sentence in the language?". However, a black-
box recognizer is of limited use to a natural language
processing system. A simple recognizer may be useful
to a limited grammar checker or a speech recognizer
that must choose between several word sequences as
possible interpretations of an utterance. But, for most
natural language tasks, sentences need to be trans-
formed into some internal representation that is ac-
tually useful for tasks such as question answering, in-
formation extraction, summarizing, or translation.
Language learning has also been interpreted as ac-

quiring a set of production rules (e.g. S ! NP VP)
that de�ne a formal grammar that recognizes the pos-
itive strings. This is more useful than a black-box rec-
ognizer since it allows a standard syntactic parser to
produce parse trees that may be useful for further pro-
cessing. However, most natural language grammars
assign multiple parses to sentences, most of which do
not correspond to meaningful interpretations. For ex-
ample, any standard syntactic grammar of English will
produce an analysis of \The man ate the pasta with
a fork" that attaches the prepositional phrase \with a

fork" to \pasta" as well as to \ate" despite the fact that
people generally do not consume eating utensils (i.e.
compare \The man ate the pasta with the cheese").
In fact, any standard syntactic English grammar will
produce more than 2n parses of sentences ending in n
prepositional phrases, most of which are usually spuri-
ous (Church & Patil 1982).

A truly useful parser would produce a unique or lim-
ited number of parses that correspond to the meaning-
ful interpretations of a sentence that a human would
actually consider. As a result, the emerging standard
for judging a syntactic parser in computational linguis-
tics is to measure its ability to produce a single best
parse tree for a sentence that agrees with the parse tree
assigned by a human judge (Periera & Shabes 1992;
Brill 1993; Magerman 1995; Collins 1996; Goodman
1996). This approach has been facilitated by the con-
struction of large treebanks of human-produced syntac-
tic parse trees for thousands of sentences, such as the
Penn Treebank (Marcus, Santorini, & Marcinkiewicz
1993), which consists primarily of analyses of sentences
from the Wall Street Journal.

Although useful, syntactic analysis is only part of
the larger problem of natural language understanding.
In this paper, the term \parser" should be interpreted
broadly as any system for mapping a natural language
string into an internal representation that is useful for
some ultimate task, such as answering questions, trans-
lating to another natural language, summarizing, etc..
Parsing can range from producing a syntactic parse
tree to mapping a sentence into unambiguous logical
form. Figure 1 shows examples of three types of parses,
a syntactic parse of a sentence from the ATIS (Airline
Travel Information System) corpus of the Penn tree-
bank, a case-role (agent, patient, instrument) analysis
of a simple sentence, and a logical form for a database
query about U.S. geography. Given the appropriate
database in logical form, the �nal form for the third
example can be directly executed in Prolog to retrieve
an answer to the given question.
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Syntactic Parse Tree

Show me the 
ights that served lunch departing from
San Francisco on April 25th.

s:[np:[*],
vp:[show,

np:[me],
np:[np: [np:[the, flights],

sbar:[that,
s:[np:[t],

vp:[served,
np:[lunch]]]]],

vp:[departing,
pp:[from,

np:[san, francisco]],
pp:[on,

np:[april, '25th']]]]]]

Case-Role Analysis

The man ate the pasta with the fork.

[ate,agt:[man,det:the],pat:[pasta,det:the],

inst:[fork,det:the]]

Executable Logical Form

What is the capital of the state with the largest popu-
lation?

answer(C, (capital(S,C),

largest(P,(state(S),population(S,P))))).

Figure 1: Examples of Several Types of Parses

Learning parsers or transducers that can produce
semantic analyses such as case-role assignments or
logical forms is signi�cantly more useful for nat-
ural language processing than learning a syntactic
recognizer or grammar. There has been some re-
search using both neural networks and symbolic induc-
tion to learn parsers that produce case-role analyses
(McClelland & Kawamoto 1986; Miikkulainen 1993;
St. John & McClelland 1990; Zelle & Mooney 1993;
Miikkulainen 1996). Even more useful is a parser that
can map natural language queries into a logical form or
a database query language (e.g. SQL) that can be im-
mediately executed to retrieve an answer to the ques-
tion.
Consequently, our recent research has focused on

learning parsers that map natural language database
queries into an executable logical form. The system
we have developed, called Chill

1 (Zelle 1995), uses
inductive logic programming (ILP) (Muggleton 1992;
Lavra�c & D�zeroski 1994) to learn a deterministic shift-
reduce Prolog parser. Chill has been demonstrated on
learning parsers for each type of analysis represented

1Constructive Heuristics Induction for Language
Learning

in Figure 1. In particular, we have conducted experi-
ments demonstrating that Chill learns parsers for an-
swering English queries for a database on U.S. geogra-
phy that are more accurate than an existing hand-built
system for this application (Zelle & Mooney 1996).2

This paper presents an overview of our approach for
learning parsers and presents new experimental results
on Spanish geography queries and English job-search
queries that demonstrate the robustness of the ap-
proach.

Overview of Chill

A �rst approach to learning a parser in Prolog for the
predicate parse(Sentence, Representation) might
be to use traditional ILP techniques directly. In addi-
tion to the sheer complexity and unconstrained nature
of such a task, there is the di�culty of obtaining neg-
ative examples and background knowledge with which
to guide the learner. Instead, Chill begins with a
well-de�ned parsing framework, shift-reduce parsing,
and uses ILP to learn control strategies within this
framework. By doing so, we are mapping language
learning into standard, traditional concept learning;
we view grammar learning as learning to control the
actions of a parser. Treating language acquisition as
a control learning problem is not in itself a new idea,
as discussed in the section on Related Work. However,
Chill is the �rst system to use ILP techniques that
can directly induce over unbounded lists, stacks, and
trees rather than less 
exible propositional approaches.
The input to Chill is a set of training instances

consisting of sentences paired with the desired parses.
The output is a shift-reduce parser in Prolog that maps
sentences into parses. Chill outputs a simple deter-
ministic, shift-reduce parser. The current parse state is
represented by the contents of the parse stack and the
remaining portion of the input bu�er (Tomita 1986).
Consider producing a case-role analysis (Fillmore

1968) of the sentence: \The man ate the pasta."
Parsing begins with an empty stack and an input bu�er
containing the entire sentence. At each step of the
parse, either a word is shifted from the front of the
input bu�er onto the stack, or the top two elements
on the stack are popped and combined to form a new
element that is pushed back onto the stack. The se-
quence of actions and stack states for our simple exam-
ple is shown Figure 2. The action notation (x label),
indicates that the stack items are combined via the
role label with the item from stack position x being
the head. Choosing the correct action to apply at any
given point in the deterministic parse requires a great

2Previous publications are available on line at
http://www.cs.utexas.edu/users/ml.
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Action Stack Contents
[]

(shift) [the]
(shift) [man, the]
(1 det) [[man, det:the]]
(shift) [ate, [man, det:the]]
(1 agt) [[ate, agt:[man, det:the]]]
(shift) [the, [ate, agt:[man, det:the]]]
(shift) [pasta, the, [ate, agt:[man, det:the]]]
(1 det) [[pasta, det:the], [ate, agt:[man, det:the]]]
(2 obj) [[ate, obj:[pasta, det:the], agt:[man, det:the]]]

Figure 2: Shift-Reduce Case-Role Parsing of \The man
ate the pasta."
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Figure 3: The Chill Architecture

deal of knowledge. This knowledge is encoded in the
rules learned by Chill.
Figure 3 shows the basic components of the Chill

system. First, during Parsing Operator Generation,
the training examples are analyzed to formulate an
overly-general shift-reduce parser that is capable of
producing parses from sentences. Next, in Example
Analysis, the overly-general parser is used to parse
the training examples to extract contexts in which
the various parsing operators are actually useful. The
third step is Control-Rule Induction which employs a
general ILP algorithm to learn rules that characterize
these contexts. Finally, Program Specialization \folds"
the learned control-rules back into the overly-general
parser to produce the �nal parser. The following sub-
sections give details on each of these steps.

Parsing Operator Generation

In the Prolog parsing shell, parsing operators are pro-
gram clauses that take the current stack and input

bu�er as input arguments and return a modi�ed stack
and bu�er as outputs. During Parser Operator Gen-
eration, the training examples are analyzed to extract
all of the general operators that are required to pro-
duce the analyses. For example, an operator to reduce
the top two items on the stack by attaching the second
item as an agent of the top is represented by the clause
op([Top,Second|Rest],In,[NewTop|Rest],In) :-

reduce(Top,agt,Second,NewTop).

The arguments of the op predicate are the current
stack, current input bu�er, new stack and new input
bu�er. The reduce predicate simply combines Top and
Second using the role agt to produce the new structure
for the top of the stack. In general, one such operator
clause is constructed for each case-role slot in the train-
ing examples. The resulting parser is severely over-
general, as the operators contain no conditions speci-
fying when they should be used; any operator may be
applied to virtually any parse state resulting in many
spurious parses.

Example Analysis

In Example Analysis, the overly-general parser is used
to parse the training examples to extract contexts in
which the various parsing operators should and should
not be employed. The context consists of the parse
stack and the remaining (natural language) input.
These contexts form sets of positive and negative con-
trol examples from which the appropriate control rules
can be induced in the third stage. A control example
gives the context that held when a particular operator
was applied in the course of parsing an example. Ex-
amples of correct operator applications are generated
by �nding the �rst correct parsing of each training pair
with the overly-general parser; any context to which an
operator is applied in this successful parse becomes a
positive control example for that operator. Negative
examples are generated by making a closed-world as-
sumption. Any context to which the operator could
have applied during parsing, but was not, is used as
a negative example. Analyzing the examples is eased
by the deterministic nature of the parser. If an op-
erator is used in the derivation of the correct parse,
it is a correct example of that operator's application.
Additional analyses may be found by backtracking.

For the reduce agt operator shown above, the
sentence \The man ate the pasta." would produce
a single positive control example: op([ate,[man,

det:the]], [the,pasta], A, B). Note that the
�rst two arguments correspond to the stack contents
and input after applying the third shift action in Fig-
ure 2. This is the only subgoal to which this operator
is applied in the correct parsing of the sentence. The
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variables A and B are uninstantiated since they are out-
puts from the op clause and are not yet bound at the
time the clause is being applied. The sentence gener-
ates the following negative control examples for this
operator:

op([man,the],[ate,the,pasta],A,B)

op([the,[ate,agt:[man,det:the]]],[pasta],A,B)

op([pasta,the,[ate,agt:[man,det:the]]],[],A,B)

op([[pasta,det:the],[ate,agt:[man,det:the]]],

[],A,B)

Note that we have transformed the training examples,
which were all positive examples of correct parses, into
control examples that contain both positive and nega-
tive examples.

Control-Rule Induction

At this stage, we are ready to apply ILP techniques
to induce control rules for each operator. This is the
Control-Rule Induction phase, which uses the control
examples generated during the previous stage as input
to the induction algorithm. The algorithm attempts to
learn a concept de�nition for each operator that will
classify the context in which it is actually useful. The
control rules are comprised of a de�nite-clause de�ni-
tion that covers the positive control examples for the
operator but not the negative.
ILP methods allow the system to induce over the

unbounded context of the complete stack and remain-
ing input string. There is no need to reduce this
context to a predetermined, �xed set of features as
required by propositional approaches such as neural-
networks or decision trees. Chill's ILP algorithm
combines elements from bottom-up techniques found
in systems such as Cigol (Muggleton & Buntine 1988)
and Golem (Muggleton & Feng 1992), and top-down
methods from systems like Foil (Quinlan 1990), and is
able to invent new predicates in a manner analogous to
Champ (Kijsirikul, Numao, & Shimura 1992). Details
of the Chill induction algorithm together with experi-
mental comparisons to Golem and Foil are presented
by (Zelle & Mooney 1994) and (Zelle 1995).
Given our running example, a control rule that can

be learned for the reduce agt operator is

op([X,[Y,det:the]], [the|Z], A, B) :-

animate(Y).

animate(man). animate(boy). animate(girl) ....

Here the system has invented a new predicate to help
explain the parsing decisions. The new predicate would
have a system generated name, but is called \animate"
here for clarity. This rule may be roughly interpreted
as stating: \the agent reduction applies when the stack
contains two items, the second of which is a completed

noun phrase whose head is animate." The output of
the Control-Rule Induction phase is a suitable control-
rule for each general operator generated during Pars-
ing Operator Generation. These control rules are then
passed on to the Program Specialization phase.

Program Specialization

The �nal step, Program Specialization, \folds" the
control information back into the overly-general parser.
A control rule is easily incorporated into the overly-
general program by unifying the head of an operator
clause with the head of the control rule for the clause
and adding the induced conditions to the clause body.
The de�nitions of any invented predicates are simply
appended to the program. Given the program clause:

op([Top,Second|Rest],In,[NewTop|Rest],In) :-

reduce(Top,agt,Second,NewTop).

and the control rule above, the resulting clause is

op([A,[B,det:the]],[the|C],[D],[the|C]) :-

animate(B), reduce(A,agt,[B,det:the],D).

animate(boy). animate(girl). animate(man)...

The �nal parser is just the overly-general parser with
each operator clause suitably constrained. This spe-
cialized parser is guaranteed to produce all of and only
the preferred parse(s) for each of the training examples
that could be parsed by the overly-general parser.

Parsing Framework

Some might consider the shift-reduce framework too
limiting for NLP, citing well-known results about the
power of LR(k) grammars. It is important to note,
however, that the potential lookahead in our parser is
unlimited since the entire state of the parser (current
stack contents and remaining input) may be examined
in determining which action to perform. Furthermore,
the control-rules that are learned are essentially arbi-
trary logic programs, therefore the class of languages
recognized is, in principle, Turing complete.

Parsing into Logical Form

For simplicity, the above discussion focused on parsing
into case-role representations; however, Chill is fairly
easily adapted to produce other types of output such as
executable logical forms. Adapting the system requires
identifying operators that allow the shift-reduce parser
to construct outputs in the desired format.
Logical queries are built using three simple opera-

tor types. First, a word or phrase at the front of the
input bu�er suggests that a certain structure should
be part of the result. The appropriate structure is
pushed onto the stack. For example, the word \capi-
tal" might cause the capital/2 predicate to be pushed
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on the stack. This type of operation is performed by an
introduce operator and is very similar to a shift op-
eration. Initially, the logical structures are introduced
with new variables as arguments. These variables may
be uni�ed with variables appearing in other stack items
using a co-reference operator. For example, the sec-
ond argument of the capital/2 structure may be uni-
�ed with the �rst argument of an answer/2 predicate.
Finally, a stack item may be embedded into the argu-
ment of another stack item to form conjunctive goals;
this is performed by a conjoin operation.
Figure 4 shows the sequence of states the parser goes

through in parsing the sentence, \What is the capi-
tal of Texas?" The state of the parser is shown as a
term of the form: ps(Stack,Input) where Stack is
a list of constituents comprising the current stack and
Input are the remaining words of the input bu�er. The
answer predicate is automatically placed on the parse
stack of each sentence parsed, as it is a required com-
ponent of the �nal logical query.
For each operator class, the individual operators re-

quired to parse the training examples are easily in-
ferred during Parser Operator Generation. The nec-
essary introduce operators are determined by exam-
ining what structures occur in each query and which
words in the corresponding sentence can introduce
those structures. This requires a semantic lexicon
that gives for each word the logical structures it can
introduce. Ambiguous words produce multiple op-
erators, one for introducing each possible meaning.
Co-reference operators are constructed by �nding the
shared variables in the training queries; each shar-
ing requires an appropriate operator instance. Fi-
nally, conjoin operations are indicated by the term-
embedding exhibited in the training examples.
Once the appropriate set of unconstrained initial op-

erators are constructed, Chill proceeds to learn con-
trol rules that constrain the operators to produce only
the desired output for each of the training examples.
For ambiguous words, for example, control rules are
learned that select the appropriate meaning based on
context. The resulting parser can then be tested on
its ability to produce accurate logical forms for novel
sentences.

Experimental Results

Geography Queries

Our initial results involve a database for United States
geography for which a hand-coded natural-language
interface already exists. The existing system, called
Geobase was supplied as a sample application with
Turbo Prolog 2.0 (Borland International 1988). This
system provides a database already coded in Prolog

Parse State Operation Type

ps([answer(_,_):[]],

[what,is,the,capital,of,texas,?]) shift

ps([answer(_,_):[what]],

[is,the,capital,of,texas,?]) shift

ps([answer(_,_):[is,what]],

[the,capital,of,texas,?]) shift

ps([answer(_,_):[the,is,what]],

[capital,of,texas,?]) introduce

ps([capital(_,_):[],

answer(_,_):[the,is,what]],

[capital,of,texas,?]) co-reference

ps([capital(_,A):[],

answer(A,_):[the,is,what]],

[capital,of,texas,?]) shift

ps([capital(_,A):[capital],

answer(A,_):[the,is,what]],

[of,texas,?]) shift

ps([capital(_,A):[of,capital],

answer(A,_):[the,is,what]],

[texas,?]) shift/introduce

ps([equal(_,stateid(texas)):[texas],

capital(_,A):[of,capital],

answer(A,_):[the,is,what]],

[?]) co-reference

ps([equal(B,stateid(texas)):[texas],

capital(B,A):[of,capital],

answer(A,_):[the,is,what]],

[?]) conjoin

ps([equal(B,stateid(texas)):[texas],

answer(A,capital(B,A)):[the,is,what]],

[?]) shift

ps([equal(B,stateid(texas)):[?,texas],

answer(A,capital(B,A)):[the,is,what]],

[]) shift

ps(['EndOfInput',

equal(B,stateid(texas)):[?,texas],

answer(A,capital(B,A)):[the,is,what]],

[]) conjoin

ps(['EndOfInput',

answer(A,(capital(B,A),

equal(B,stateid(texas)))):[the,is,what]],

[])

Figure 4: Sequence of Parse States for \What is the
capital of Texas?"

and also serves as a convenient benchmark against
which Chill's performance can be compared. The
database contains about 800 Prolog facts asserting re-
lational tables for basic information about U.S. states,
including: population, area, capital city, neighboring
states, major rivers, major cities, and highest and low-
est points along with their elevation.

The natural language data for the experiment was
gathered by asking uninformed subjects to generate
sample questions for the system. An analyst then
paired the questions with appropriate logical queries
to generate an experimental corpus of 250 examples.
The original questions were collected in English, and
the example in Figure 1 is taken from this corpus. The
English queries were recently translated into Spanish
to provide a new test corpus for the system. Additional
examples from the corpus in both English and Spanish
are given in Figure 5.

Experiments were then performed by training on
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What state has the most rivers running through it?
>Cual estado tiene mas rios corriendo por el?
answer(S, most(S, R, (state(S), river(R),

traverse(R,S)))).

How many people live in Iowa?
>Cuantas personas viven en Iowa?
answer(P, (population(S,P),

equal(S, stateid(iowa)))).

What are the major cities in Kansas?
>Que son las ciudades mayores en Kansas?
answer(C, (major(C), city(C), loc(C,S),

equal(S,stateid(kansas)))).

Figure 5: Sample Geography Queries in English and
Spanish
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Figure 6: Chill Accuracy on Geography Queries

random subsets of either the English or Spanish cor-
pus and evaluating the resulting parser on 25 unseen
examples (in the same language as the training sen-
tences). The parser was judged to have processed a
new sentence correctly when the generated query pro-
duced exactly the same �nal answer from the database
as the answer from the query provided by the analyst.
Hence, the metric is a true measure of the performance
for a complete database-query application in this do-
main.

Figure 6 shows the accuracy of Chill's parsers
over a ten trial average. The line labeled \Geobase"
shows the average accuracy of the Geobase system
on the English test sets. The \English" curve shows
that Chill outperforms the hand-built English system
when trained on 175 or more examples. Most of the
\errors" Chill makes on novel questions are due to an
inability to parse the query rather than generation of
an incorrect answer. After 225 training examples, only
slightly over 2% of novel English questions on average

are actually answered incorrectly. The remaining 30%
of the questions that are not answered correctly are
simply unable to be parsed. In these cases, the user
might be asked to rephrase the question or just told
the question was not understood.

The system learned for Spanish is only slightly less
accurate after 225 training examples, as indicated by
the \Spanish" curve in the �gure. However, the Span-
ish corpus is learned more quickly. After 125 training
examples, the Spanish parser outperforms the hand-
built parser and the learned English parser, but the
learned English version climbs ahead at 225 examples.
For the Spanish version, only slightly over 3% of novel
questions on average are actually answered incorrectly
after 225 training examples.

Job Queries

As part of an on-going project, we are using learning
methods to develop systems for extracting information
from a USENET newsgroup and answering natural-
language questions about the resulting database. We
hope to �eld an application on the world-wide-web that
will attract a signi�cant number of users and therefore
serve as a source of larger amounts of realistic language
data for training and testing. The speci�c application
we are currently pursuing is a system that can process
computer job announcements posted to the newsgroup
misc.jobs.offered, extract a database of available
jobs, and then answer natural language queries such
as \What jobs are available in California for C++ pro-
grammers paying over $100,0000 a year?"

In order to attract a su�cient number of initial users,
we must �rst build a prototype that is reasonably ac-
curate. Questions that this initial system is unable
to parse will then be collected, annotated, and used
to retrain the system to improve its coverage. In this
way, learning techniques can be used to automatically
improve and extend a system, based on data collected
during actual use. In order to construct the initial sys-
tem, we have developed a corpus of sample queries that
were arti�cially generated from a hand-built grammar
of question templates. Examples of templates from this
grammar are shown in Figure 7, where square brack-
ets indicate an optional word, curly braces indicate the
choice of one word, and angle brackets indicate the oc-
currence of a word from that category. Only some of
the many possibilities are given.

Random examples are then generated from this
grammar to create an initial corpus of queries for test-
ing the system. Examples of these arti�cially gener-
ated queries are shown in Figure 8 paired with the
associated query language representation.

A corpus of 750 such queries was generated for initial
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Show me [the] jobs in f<location> j <area> j
<language>g [on <platform>].

Show me [f<company> j <area> j <language> j
<title> j <location> j <platform>g]
jobs [for f<company> j <salary> j <degree>g].

What jobs are there fwith <company> j
for an <area> specialist j using <language>g?

Figure 7: Sample Job-Query Templates

What jobs are there in Austin for Lamreen Inc.?
answer(J, (job(J), loc(J,C),

equal(C, austin), company(J,I),

equal(I,'Lamreen Inc.'))).

Are there any jobs at Lion's Time using C++ on
Windows 95?

answer(A, (job(A), company(A,B),

equal(B,'Lion''s Time'), language(A,C),

equal(C,'c++'), platform(A,D),

equal(D,'windows 95'))).

Show me California C jobs in 3D graphics.
answer(J, (loc(J,S), equal(S, california),

language(J,L), equal(L,C), job(J),

area(J, A), equal(A,'3d graphics'))).

Figure 8: Sample Job Queries

experimentation. Experiments were performed analo-
gously to those for the Geoquery corpus, testing the
ability of the learned parser to generate queries for
50 novel sentences. Figure 9 shows the accuracy of
Chill's parsers over a ten trial average. In this case
we had no hand-built system to compare to.
After 700 training examples, 89.7% of the novel ex-

amples could be parsed into queries that returned the
correct job(s) from the database, an encouraging re-
sult. The number of questions answered incorrectly is
slightly higher in this domain than in the geography
domain; 5% of the novel queries are actually answered
incorrectly. This is in part due to the job/1 predicate
present in the query of every training example in this
corpus. It is not too hard for Chill to learn a parser
that will introduce this predicate, and no others, into
almost any query. This would lead to all jobs being
retrieved from the database, when in fact only a few
were requested. This predicate is needed to maintain
the 
exibility of the query language, and investigation
is needed to determine a way to improve this result.

Related Work

(Berwick 1985) also used the approach of treating lan-
guage acquisition as a control learning problem, by
learning control rules for a Marcus-style determinis-
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Figure 9: Chill Accuracy on Job Query Domain

tic parser (Marcus 1980). When the system came to
a parsing impasse, a new rule was created by infer-
ring the correct parsing action and creating a new rule
using certain properties of the current parser state
as trigger conditions for its application. In a simi-
lar vein, (Simmons & Yu 1992) controlled a simple
shift-reduce parser by storing example contexts con-
sisting of the syntactic categories of a �xed number
of stack and input bu�er locations. New sentences
were parsed by matching the current parse state to the
stored examples and performing the action performed
in the best matching training context. Finally, (Mi-
ikkulainen 1996) presents a connectionist approach to
language acquisition that learns to control a neural-
network parsing architecture that employs a continu-
ous stack. Like the statistical approaches mentioned
previously, these control acquisition systems all used
feature-vector representations.

Most systems di�er from Chill along two fronts:
type of analysis provided and type of training input
required. Chill learns parsers that produce complete,
labeled parse trees; other systems have learned to pro-
duced simple bracketings of input sentences (Periera
& Shabes 1992; Brill 1993), or probabilistic language
models that assign sentences probabilities (Charniak
& Carroll 1994). While Chill requires only a suit-
ably annotated corpus, other approaches have uti-
lized an existing, complex, hand-crafted grammar that
over-generates (Black et al. 1993; Black, La�erty, &
Roukos 1992). Chill's ability to invent new categories
also allows actual words to help make parsing deci-
sions, whereas many systems are limited to represent-
ing sentences as strings of lexical categories (Brill 1993;
Charniak & Carroll 1994).

The approach of (Magerman 1994; 1995) is more
similar to Chill. His system produces parsers from
annotated corpora of sentences paired with syntactic
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representations. Parsing is treated as a problem of
statistical pattern recognition. Chill di�ers from this
approach mainly in its 
exibility. Magerman's system
is hand-engineered for the particular representation be-
ing produced. Given this hand-crafting of features and
rules, it is unclear how easily the approach could be
adapted to di�ering representation schemes.

One approach that learns more semantically oriented
representations is the hidden understanding models of
(Miller et al. 1994). This system learns to parse into
tree-structured meaning representations. These rep-
resentations are similar to syntactic parse trees except
that the nodes may be labeled by conceptual categories
as in the analyses produced by semantic grammars.
This approach was recently extended to construct a
complete interface with separate statistically trained
modules for syntactic, semantic and discourse analy-
sis (Miller et al. 1996). However, the mapping to
a �nal semantic representation employs two separate
modules, requiring each training sentence to be labeled
with both a parse tree and a semantic frame. Chill
maps directly into logical form and does not require
annotating sentences with any additional intermediate
representations. The hidden understanding model uti-
lizes a propositional approach which renders it inca-
pable of modeling phenomena requiring nonlocal refer-
ences, a situation that does not hold for Chill, which
may examine any aspect of the parse context.

Future Work and Conclusions

There are still issues remaining to be resolved in using
Chill to develop NLP systems. Particularly in the
job query domain, work remains to be done. Query-
ing an expanded database, and \data mining" type
queries will be investigated. For example, a user might
want to know \How many jobs were posted in the last
two months requiring a C++ programmer?". Both the
training data and database language would need up-
dating to handle such a query. Lowering the number
of incorrect parses produced in the jobs domain is also
a goal. Putting the system on the world-wide-web to
monitor its performance on actual user's queries is the
next logical step. Finally, we are working on methods
to map from natural language sentences directly into
SQL queries.

The ability to induce black-box recognizers or
generic production-rule grammars is of limited util-
ity to natural language processing. To signi�cantly
aid many natural language tasks, an e�cient parser
(transducer) that translates sentences into meaning-
ful semantic representations is required. Chill uses
inductive logic programming to induce parsers that
translate sentences into semantic representations given

a training corpus of I/O pairs. In particular, it is ca-
pable of learning parsers for mapping natural language
queries directly into executable logical form and can
thereby construct complete natural-language database
interfaces.
This paper has presented recent results on two new

tasks, processing Spanish geography queries and En-
glish job queries, demonstrating the robustness of the
system to construct a range of database interfaces.
We hope that this work will challenge and encour-
age others interested in grammar learning to look
more closely at the query mapping problem. Towards
this end, our data is available on our WWW page at
http://www.cs.utexas.edu/users/ml/.
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