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Abstract

Empirical methods for building natural language systems has become an important area of research

in recent years. Most current approaches are based on propositional learning algorithms and have been

applied to the problem of acquiring broad-coverage parsers for relatively shallow (syntactic) represen-

tations. This paper outlines an alternative empirical approach based on techniques from a sub�eld of

machine learning known as Inductive Logic Programming (ILP). ILP algorithms, which learn relational

(�rst-order) rules, are used in a parser acquisition system called Chill that learns rules to control the

behavior of a traditional shift-reduce parser. Using this approach, Chill is able to learn parsers for a va-

riety of di�erent types of analyses, from traditional syntax trees to more meaning-oriented case-role and

database query forms. Experimental evidence shows that Chill performs comparably to propositional

learning systems on similar tasks, and is able to go beyond the broad-but-shallow paradigm and learn

mappings directly from sentences into useful semantic representations. In a complete database-query

application, parsers learned by Chill outperform an existing hand-crafted system, demonstrating the

promise of empricial techniques for automating the construction certain NLP systems.
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1 Introduction

One of the enduring goals of natural language processing is the design of parsers that can translate natural

language inputs into an internal representation suitable for computer manipulation. Traditional work in

NLP has focused on a rationalist approach to the parsing problem, searching for perspicuous, rule-based rep-

resentations of the knowledge required for language processing. Despite progress, traditional NLP has not

yet succeeded in producing accurate, robust, broad-coverage systems for understanding English or other nat-

ural languages. Even the construction of limited-domain applications remains di�cult and time-consuming,

yielding systems that are often ine�cient and incomplete. Fielded systems often have an ad hoc quality

and porting them to new domains can mean essentially starting from scratch. Partially in response to these

di�culties, there has been increasing recent interest in empirical approaches to natural language processing.

The empirical alternative, which has been very successful in speech recognition, replaces hand-generated

rules with models obtained automatically by training over language corpora. Corpus-based methods may be

used to augment the knowledge of a traditional parser, for example by acquiring new case-frames for verbs

(Manning, 1993) or acquiring models to resolve lexical or attachment ambiguities (Lehman, 1994; Hindle

& Rooth, 1993). More radical approaches attempt to replace the hand-crafted components altogether,

extracting all required linguistic knowledge directly from suitable corpora. The more ambitious approach

will be the main focus of this paper, but much of the discussion applies equally well to the more piecemeal

approaches.

Empirical methods e�ectively divide the building of natural language systems into two tasks: annotation

(corpus building), and acquisition. Annotation, is the province of human experts (perhaps with mechanical

help). They must devise a training corpus that demonstrates the type of NL analysis required. For example,

if the desired system is a syntactic parser, then the required corpus is a large sampling of text paired

with the desired syntactic parse trees. Such a corpus is sometimes called a treebank (Marcus, Santorini, &

Marcinkiewicz, 1993). Although some systems have used raw (unannotated) text for grammar acquisition,

those employing annotations have produced more accurate parsers (Periera & Shabes, 1992).

The second task, acquisition, is a machine learning problem. Given a suitable training corpus, learning

algorithms are employed to automatically construct a parser that can map subsequent inputs into the de-
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Figure 1: The parser acquisition problem.

sired representation. The parser acquisition problem is depicted in Figure 1. Development of a successful

parser acquisition system would allow human designers to concentrate on engineering useful representations,

relegating the di�cult issue of constructing a parser for such representations to the acquisition system.

So far, empirical techniques have been employed largely in the attempt to create broad-coverage parsers

for relatively shallow representations, as in part-of-speech tagging (Merialdo, 1994; Charniak, Hendrickson,

Jacobson, & Perkowitz, 1993) and the induction of stochastic context-free grammars (Periera & Shabes,

1992) or transition networks (Miller, Bobrow, Ingria, & Schwartz, 1994). Following in the footsteps of

speech recognition research, these methods eschew traditional, symbolic parsing in favor of statistical and

probabilistic methods. Although several current methods learn some symbolic structures such as decision

trees (Black, Jelineck, La�erty, Magerman, Mercer, & Roukos, 1993; Magerman, 1995) and transformations

(Brill, 1993), more traditional statistical methods dominate.

In fact, the term \parsing" is frequently restricted to the process of determining the syntactic structure

of a sentence as a hierarchy of labeled constituents. Sometimes only the hierarchy itself is considered,

resulting in unlabeled bracketings. However, parsing in this narrow sense represents only a small part of

the understanding problem. Going beyond syntax to uncover important content, such as \who did what to

whom", requires a more semantically oriented representation. Traditional NLP systems often employ case-

role representations or deeper logical forms amenable to manipulation by automated deduction to capture

such content. Dealing with this richer structure within an empirical framework presents an interesting

challenge.

A common thread in previous empirical approaches is that the acquired knowledge is represented in a

propositional form (perhaps with associated probabilities). This means, for example, that a decision about
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how to label a node in a parse tree is made by considering a �xed set of properties (e.g., syntactic category)

about a �xed context of surrounding nodes (e.g., parent and immediate left sibling). The speci�cs of the

decision policy are determined by the acquisition algorithm but the context over which the policy is formed,

and the exact properties that can be tested, are determined a priori by the designer of the acquisition system.

In machine learning, such approaches are often called feature-vector representations, as each decision context

can be speci�ed by a �nite vector of atomic values associated with the various features of interest.

One advantage of propositional approaches is that the corresponding learning algorithms can be im-

plemented very e�ciently, allowing systems to be trained on very large corpora. This is an important

consideration for the construction of broad-coverage, syntactic parsers. However, propositional techniques

can be di�cult to apply in recursive or richly relational domains, for example the kind of logical forms that

are often the target of NLP research utilizing uni�cation grammars.

This paper presents an approach to empirical parser construction that employs learning algorithms for

structured (relational) knowledge representations of the type often employed in traditional NLP. Inductive

Logic Programming (ILP) is a growing sub�eld of machine learning that addresses the problem of learning

�rst-order logic descriptions (Prolog programs) from examples(Lavra�c & D�zeroski, 1994; Muggleton, 1992).

Due to the expressiveness of �rst-order logic, ILP methods can learn relational and recursive concepts that

cannot be represented in the feature-based languages assumed by most machine-learning algorithms. ILP

methods have successfully induced small programs for sorting and list manipulation (Quinlan & Cameron-

Jones, 1993) as well as produced encouraging results on important applications such as predicting protein

secondary structure (Muggleton, King, & Sternberg, 1992). Detailed experimental comparisons of ILP and

feature-based induction have demonstrated the advantages of relational representations in two language

related tasks, text categorization (Cohen, 1995) and generating the past tense of an English verb (Mooney

& Cali�, 1995). Our research attempts to bridge the gap between rational and empirical approaches to NLP

by applying ILP to the problem of parser acquisition.

The main advantage of this approach is its exibility. Given the power of �rst-order rules, there is

less need to hand-engineer appropriate features and contexts over which a system learns. The induction

algorithm can automatically extract the relevant portions of structured contexts and construct new predicates

to represent novel syntactic and/or semantic lexical and phrasal categories that it needs to make parsing
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decisions. With this exibility, a single learning system is able to learn to parse sentences into a wide variety

of representations including syntax trees, case-role mappings, and logical formulations based on predicate

calculus. In contrast to statistical approaches that emphasize broad-coverage with shallow parsing, we are

more interested in using empirical approaches to rapidly construct domain-speci�c parsers that produce

usable semantic representations.

In this paper, we describe and discuss an initial implementation of this approach, called Chill (Con-

structive Heuristics Induction for Language Learning). Chill uses ILP techniques to learn heuristic rules for

controlling a deterministic shift-reduce parser written in Prolog. The next section provides an introduction

to ILP and how it may be used for parser acquisition. Section 3 gives a detailed description of Chill by way

of a simple case-role parsing example. Section 4 presents the details of the ILP induction algorithm used

in Chill. Section 5 presents experimental results demonstrating Chill' performance on case-role mapping

tasks, constructing parse trees for the ATIS corpus from the Penn Treebank, and logical forms for database

queries. Sections 6 and 7 discuss related and future work, and section 8 presents our conclusions.

2 Using ILP for Parser Construction

2.1 Introduction to ILP

ILP research considers the problem of inducing a �rst-order, de�nite-clause logic program from a set of

examples and given background knowledge. As such, it stands at the intersection of the traditional �elds of

machine learning and logic programming.

As a sample ILP task, consider learning the concept of list membership. The input to the learning

system consists of a number of positive and negative instances of the predicate, member/2. 1 Some positive

instances might be: member(1, [1,2]), member(2, [1,2]), member(1,[3,1]), etc..2 While instances

such as member(1,[]), member(2,[1,3]), would serve as negative examples. Additional information is

provided in the form of background relations in terms of which the desired concept is to be learned. In the

case of list membership, this information might include a de�nition of the concept, components/3 which

1We use the standard notation hnamei/hnumberi to indicate the name and arity (number of arguments) for a predicate.

2The square brackets are standard Prolog notation for list construction. Thus, [1,2] is the list containing 1 and 2.
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decomposes a list into its component head and tail. This type of \constructor" predicate is typically used, as

many ILP systems learn function-free clauses; using components/3 eliminates the need for list constructions

(e.g. [XjY]) within learned clauses.3 Given this input, an ILP system attempts to construct a concept

de�nition which entails the positive training examples, but not the negatives. In this case, we hope to learn

the correct de�nition of member, namely:

member(X, List) :- components(List, X, Tail).

member(X, List) :- components(List, Head, Tail), member(X, Tail).

2.1.1 Top-down ILP Algorithms

ILP research has clustered around two basic induction methods, top-down and bottom-up. Top-down ILP

algorithms learn program clauses by searching a space of possible clauses from general to speci�c in a manner

analogous to traditional machine-learning approaches for inducing decision trees. Perhaps the best-known

example is Quinlan's Foil (Quinlan, 1990; Cameron-Jones & Quinlan, 1994) which uses an information

heuristic to guide search through the space of possible program clauses.

Foil learns a program one clause at a time using a greedy-covering algorithm that can be summarized

as follows:

Let positives-to-cover = positive examples.

While positives-to-cover is not empty

Find a clause, C, that covers a preferably large subset of positives-to-cover

but covers no negative examples.

Add C to the developing de�nition.

Remove examples covered by C from positives-to-cover.

A clause covers an example if the head of the clause can be uni�ed with the example, and the body of the

clause is subsequently provable with the background relations.

3The notation [XjY] denotes a Prolog list with the head being X and the tail Y, i.e. X is the �rst element of the list, and Y is

a list of the remaining elements.
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The \�nd a clause" step is implemented by a general-to-speci�c hill-climbing search that adds antecedents

to the developing clause one at a time. At each step, it evaluates possible literals that might be added and

selects one that maximizes an information-gain heuristic based on the sets of positive and negative tuples

covered by the clause. A tuple is simply an instantiation of the variables appearing in the clause when it is

used to cover an example. A single example may give rise to multiple tuples if there are distinct proofs of

the example producing di�erent variable bindings.

Foil considers adding literals for all possible variablizations of each predicate as long as at least one

of the arguments is an existing variable bound by the head or a previous literal in the body. Literals are

evaluated based on the number of positive and negative tuples covered, preferring literals that cover many

positives and few negatives. Let T be the set of tuples covered by a clause, and T 0 the tuples covered after

extending the clause with a literal, L. Let T+ denote the number of positive tuples in the set T and de�ne:

I(T ) = � log2(T+=jT j): (1)

The chosen literal is then the one that maximizes:

gain(L) = s � (I(T )� I(T 0)); (2)

where s is the number of of tuples in T that have extensions in T 0 (i.e. the number of current positive tuples

covered by L). Here I computes the information content of \knowing" that a tuple covered by the current

clause represents a positive example. Gain is the di�erence in the residual information content of the subset

of tuples still covered after adding the antecedent. Many positive tuples in higher concentration (compared

to negative ones) results in better gain.

As an illustration, consider learning the concept of member/2. Initially, positives to cover contains all of

the positive examples provided of list membership. Foil starts with the most general clause: member(A,B)

:- true. This clause covers all of the positive and negative examples; Foil will attempt to make it more

speci�c by adding literals. Since the only background predicate provided is components/3, Foil evaluates all

possible literals which can be formed from this predicate and also recursive literals using member/2. The pos-

sible literals for components take the form: components(A,C,D), components(B,C,D), components(A,B,C),

components(B,A,C), etc. There are 26 unique variablizations to try for this predicate. It is obvious that
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the literal, components(B,A,C) will show positive gain, since it covers a number of positive examples (those

asserting membership of the �rst element of a list) and covers no negative examples. Hence, this literal may

be chosen to generate the clause, member(A,B) :- components(B,A,C). Since the clause covers no negative

examples, it is complete. Foil then uses this as the �rst clause of the learned de�nition, and the covered

examples are removed from positives-to-cover.

In the next iteration, Foil again starts with the clause, member(A,B) :- true and examines all possible

next literals. The previously chosen literal, components(B,A,C), will have no gain since there are no longer

any examples in positives-to-cover which it can cover. However, components(B,C,D)will have some positive

gain. This gain comes from the fact that all positive examples must have a non-empty list for B, but some

of the negative examples will have empty lists or perhaps non-lists in the second argument position. Hence,

the literal covers all of the positives, but excludes some of the negatives. Choosing this literal produces the

clause, member(A,B) :- components(B,C,D). Clearly this clause might still cover many negative examples

(e.g. member(1,[2])), so Foil continues to add literals. Adding the literal member(A,C) makes the clause

consistent with all examples in positives-to-cover and excludes any negative examples. At this point, the

desired two-clause de�nition has been learned.

As described in the above referenced papers, Foil also includes many additional features such as: heuris-

tics for pruning the space of literals searched, methods for including equality, negation as failure, and useful

literals that do not immediately provide gain (determinate literals), pre-pruning and post-pruning of clauses

to prevent over-�tting, and methods for ensuring that induced programs will terminate.

2.1.2 Bottom-up ILP Algorithms

Bottom-up methods search for program clauses by starting with very speci�c clauses and attempting to

generalize them. In logic programs, general clauses may be used to prove speci�c consequences through

resolution theorem proving. Bottom-up induction inverts the resolution process to derive general clauses from

speci�c consequences. The overall e�ect is a compression of the concept de�nition, replacing many speci�c

instances with a few general clauses from which the instances can be derived. A successful representative of

this class is Muggleton and Feng's Golem (Muggleton & Feng, 1992).

Like Foil, Golem may be viewed as a greedy set covering algorithm, where new clauses are hypothesized
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by considering least-general generalizations (LGGs) of more speci�c clauses (Plotkin, 1970). A clause G

subsumes a clause C if there is a substitution for the variables in G that make the literals in G a subset

of the literals in C. Informally, we could turn C into G by dropping some conditions and changing some

constants to variables. If G subsumes C, anything that can be proved from C could also be proved from G,

since G imposes fewer conditions. Hence G is said to be more general than C (assuming C does not also

subsume G, in which case the clauses must be equivalent except for renaming of variables).

The LGG of clauses C1 and C2 is de�ned as the least general clause that subsumes both C1 and C2. An

LGG is easily computed by \matching" compatible literals of the clauses; wherever the literals have di�ering

structure, the LGG contains a variable. When identical pairings of di�ering structures occurs, the same

variable is used for the pair in all locations.

For example, consider two speci�c clauses concerning the concept uncle in the context of some known

familial relationships:

uncle(john,deb) :-

sibling(john,ron), sibling(john,dave),

parent(ron,deb), parent(ron,ben),

male(john), male(dave), female(deb).

uncle(bill,jay):-

sibling(bill,bruce)

parent(bruce,jay), parent(bruce,rach),

male(bill), male(jay).

The LGG of these clauses yields the rather complicated result:

uncle(A,B):-

sibling(A,C), sibling(A,D),

parent(C,B), parent(C,E), parent(C,F), parent(C,E)

male(A), male(G), male(H), male(I).

Here A replaces the pair hjohn,billi, B replaces hdeb,jayi, C replaces hron,brucei, etc. Note that the result

contains four parent literals (two of which are duplicates) corresponding to the four ways of matching the

pairs of parent literals from the original clauses. Similarly, there are four literals for male. In the worst case,

the result of an LGG operation may contain n2 literals for two input clauses of length n. The example LGG
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contains no female literal since the second clause does not contain a compatible literal. Straightforward

simpli�cation of the result by removing redundant literals yields:

uncle(A,B):-

sibling(A,C) parent(C,B), male(A).

This is one of the two clauses de�ning the general concept, uncle/2.

The construction of the LGG of two clauses is in some sense \context free." The resulting generalization

is determined strictly on the form of the input clauses, there is no consideration of potential background

knowledge. In order to take background knowledge into account Golem produces candidate clauses by

considering Relative LGGs (RLGGS) of positive examples with respect to the background knowledge. The

idea is to start with the assumption that any and all background information might be relevant to determining

that a particular instance is a positive example. Thus, each positive example is represented by a clause of the

form: E :- hevery ground facti where hevery ground facti is a conjunction of all true ground literals

that can be derived from the background relations. In the case of member/2, this would include facts such

as components([1],1,[]), components([1,2],1,[2]), components([2],2,[]), etc. An RLGG of two

examples is simply the LGG of the examples' representative clauses. The LGG process serves to generalize

away the irrelevant conditions.

One di�culty of this approach is that interesting background relations will give rise to an in�nite number

of ground facts. For example, there can be no �nite set of facts that completely describes the components/3

relation, since lists may be inde�nitely long. Golem builds initial representative clauses for examples by

considering a �nite subset corresponding to the facts that can be derived from the background predicates

through a �xed number of binary resolutions. The greedy clause construction algorithm of Golem takes the

following form:

Let Pairs = random sampling of pairs of positive examples

Let RLggs = fC :he; e0i 2Pairs and C = RLGG(e; e0) and C consistentg

Let S be set of the pair e; e0 with best cover RLgg in RLggs

Do

Let Examples be a random sampling of positive examples

Let RLggs = fC: e0 2 Examples and C = RLGG(S
S
e0)) and C consistentg

10



Find e0 = which produces greatest cover in RLggs

Let S = S
S
e0

Let Examples = Examples � cover(RLGG(S))

While increasing-cover

Golem starts by taking a sampling of RLGGs of pairs of uncovered positive examples. The RLGG that

covers the most positive examples without covering any negatives is then further generalized through RLGG

with other random samplings of positive examples. The process terminates when all subsequent RLGGs

fail to cover more examples consistently (i.e. without covering negative examples). Like Foil, Golem also

includes a number of �ltering and clause{pruning heuristics to make the search process more e�cient and

prevent over-�tting.

2.2 Overview of CHILL

A straight-forward application of ILP to parser acquisition would be to simply present a corpus of sentences

paired with representations (e.g. parse trees) as a set of positive examples to an ILP system. After learning

a Prolog de�nition for the predicate parse(Sentence, Representation), it can be used to prove goals

having the second argument uninstantiated, thereby producing parses of input sentences. However, there is

no convenient set of negative examples or an obvious set of background relations to provide for use in the

learned clauses. Also, since parsers are very complex programs, it is unlikely that any existing ILP system

could induce a complete parser from scratch that generalizes well to new inputs. The space of logic programs

is simply too large, and the learning problem too unconstrained.

Chill attempts to address this problem by considering parser acquisition as a control-rule learning

problem. Rather than using ILP techniques to directly learn a logic grammar, Chill begins with a well-

de�ned parsing framework and uses ILP to learn control strategies within this framework. Treating language

acquisition as a control-rule learning problem is not in itself a new idea. Berwick (1985) used this approach

to learn grammar rules for a Marcus-style deterministic parser. When the system came to a parsing impasse,

a new rule was created by inferring the correct parsing action and creating a new rule using certain properties

of the current parser state as trigger conditions for its application. In a similar vein, Simmons and Yu (1992)
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controlled a simple shift-reduce parser by storing example contexts consisting of the syntactic categories of

a �xed number of stack and input bu�er locations. New sentences were parsed by matching the current

parse state to the stored examples and performing the action corresponding to the best matching previous

context. More recently, some probabilistic parsing methods have also employed frameworks for learning to

prefer parsing operators based on context (Briscoe & Carroll, 1993; Magerman, 1995). However, all of these

systems use feature-vector representations that have only a limited, �xed-size access to the parsing context.

In Chill, parser states are simply represented as structured logical terms. The exact form of a parser state

depends on the type of representation that the parser is expected to produce but includes the complete

contents of the stack and the remaining input string. The burden of discovering the relevant structural

di�erences in this complex, unbounded context is placed on the ILP learning algorithm.

The input toChill is a set of training instances consisting of sentences paired with the desired parses. The

output is a shift-reduce parser in Prolog that maps sentences into parses. Figure 2 shows the basic components

of the system. During Parser Operator Generation, the training examples are analyzed to formulate an
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overly-general shift-reduce parser that is capable of producing parses from sentences. The initial parser is

overly-general in that it produces a great many spurious analyses for any given input sentence. In Example

Analysis, the overly-general parser is used to parse the training examples to extract contexts in which the

various parsing operators should and should not be employed. Control-Rule Induction then employs a general

ILP algorithm to learn rules that characterize these contexts. Finally, Program Specialization \folds" the

learned control-rules back into the overly-general parser to produce the �nal parser.

The following section explains the details of Chill in the context of a simple case-role mapping problem.

The concreteness and simplicity of this problem allow for a more comprehensible and complete explanation

of the mechanisms employed in Chill. Additional information on how the same general framework is applied

to produce syntactic parse trees and logical queries is provided in section 5.

3 Acquiring a Case-role Parser with Chill

3.1 The Mapping Problem

Case theory (Fillmore, 1968) decomposes a sentence into a proposition represented by the main verb and

various arguments such as agent, patient, and instrument, represented by noun phrases. The basic mapping

problem is to decide which sentence constituents �ll which roles. Though case analysis is only a part of the

overall task of sentence interpretation, the problem is nontrivial even in simple sentences.

Consider these sentence/case-analysis examples given by McClelland and Kawamoto (1986):

1. The boy hit the window. [hit agt:boy pat:window]

2. The hammer hit the window. [hit inst:hammer pat:window]

3. The hammer moved. [moved pat:hammer]

4. The boy ate the pasta with the cheese. [ate agt:boy pat:pasta accomp:cheese]

5. The boy ate the pasta with the fork. [ate agt:boy pat:pasta inst:fork]

In the �rst sentence, the subject, boy, is an agent. In the second, the subject, hammer, is an instrument.

The role played by the subject must be determined on the grounds that boys are animate and hammers

are not. In the third sentence, the subject, hammer, is interpreted as a patient, illustrating the importance
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of the relationship between the surface subject and the verb. In the last two sentences, the prepositional

phrase could be attached to the verb (making fork an instrument of ate) or the object (cheese is an

accompaniment of pasta), and semantic knowledge is required to make the correct assignment.

3.2 Constructing the Overly-General Parser

Our system adopts a simple shift-reduce framework for case-role mapping (Simmons & Yu, 1992). The

process is best illustrated by way of example. Consider the sentence: \The man ate the pasta." Parsing

Action Stack Contents

[]

(shift) [the]

(shift) [man, the]

(1 det) [[man, det:the]]

(shift) [ate, [man, det:the]]

(1 agt) [[ate, agt:[man, det:the]]]

(shift) [the, [ate, agt:[man, det:the]]]

(shift) [pasta, the, [ate, agt:[man, det:the]]]

(1 det) [[pasta, det:the], [ate, agt:[man, det:the]]]

(2 obj) [[ate, obj:[pasta, det:the], agt:[man, det:the]]]

Figure 3: Shift-Reduce Parsing of \The man ate the pasta."

begins with an empty stack and an input bu�er containing the entire sentence. At each step of the parse,

either a word is shifted from the front of the input bu�er onto the stack, or the top two elements on the

stack are popped and combined to form a new element which is pushed back onto the stack. The sequence of

actions and stack states for our simple example is shown in Figure 3. The action notation (x label), indicates

that the stack items are combined via the role, label, with the item from stack position, x, being the head.

An advantage of assuming such a constrained parsing mechanism is that the form of structure building
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actions is limited. The operations required to construct a given case representation are directly inferable

from the representation. In general, a structure building action is required for each unique case-role that

appears in the analysis. The set of actions required to produce a set of analyses is the union of the actions

required for each individual analysis.

A shift-reduce parser is easily represented as a logic program. The state of the parse is reected by the

contents of the stack and input bu�er. Each distinct parsing action becomes an operator that takes the

current stack and input and produces new ones. Figure 4 shows an overly-general program su�cient to parse

the above example. The parse/2 predicate takes a list of words representing a sentence and returns a case

structure. The parse/4 predicate maps a stack and input bu�er in its �rst two arguments into a new stack

and bu�er in the third and fourth arguments. The mapping is performed by zero or more applications of

simple actions represented by op/4, which takes the current stack and input string and produces an updated

stack and input string. For example, the �rst clause of op/4 implements the (1 agt) action. The reduce/4

predicate simply attaches a value to a head via some label to produce a new structure.

Extending the program to parse further examples is accomplished by adding additional clauses to the

op/4 predicate. Each clause is a direct translation of a required parsing action. As was mentioned earlier,

the identi�cation of the necessary actions is straight-forward. A particularly simple approach is to include

two actions (e.g., (1 agt) and (2 agt) ) for each role used in the training examples; any unnecessary operator

clauses will be removed from the program during the subsequent specialization process.

3.3 Example Analysis

The overly-general parser produces a great many spurious analyses for the training sentences because there

are no conditions specifying when it is appropriate to use the various operators. In order to eliminate

spurious parses, the appropriate context in which each operator should be applied needs to be characterized.

Therefore, Chill specializes the parser by including control heuristics that guide the application of operators.

For each clause of op/4 Chill constructs a de�nition of the concept \subgoals for which this clause is useful".

The de�nition of this concept comprises a set of clauses which examine the stack and input bu�er and are

satis�ed by exactly those states to which the given operator should be applied. The job of example analysis
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parse(S, Parse) :- parse([], S, [Parse], []).

parse(Stack, Input, Stack, Input).

parse(Stack0, In0, Stack, In) :-

op(Stack0, In0, Stack1, In1), parse(Stack1, In1, Stack, In).

op([Top,Second|Rest],In,[NewTop|Rest],In) :- reduce(Top,agt,Second,NewTop).

op([Top,Second|Rest],In,[NewTop|Rest],In) :- reduce(Top,det,Second,NewTop).

op([Top,Second|Rest],In,[NewTop|Rest],In) :- reduce(Second,obj,Top,NewTop).

op(Stack,[Word|Words],[Word|Stack],Words). % Shift operation.

Figure 4: Overly-General Parser for \The man ate the pasta."

is to construct sets of positive and negative control examples from which the appropriate control rules can

be subsequently induced.

A control example is a speci�c subgoal to which a particular operator clause may be applied in the course

of parsing an example. For a given operator, positive control examples represent parse states to which the

operator should be applied. Such examples are generated by �nding the �rst correct parsing of each training

pair with the overly-general parser; any subgoal to which an operator is applied in this successful parse

becomes a positive control example for that operator.

The extraction of negative control examples (subgoals to which an operator should not be applied) is

performed under the assumption that the training corpus is output complete. This means that the set of

training examples includes a pair for every correct parsing for each unique sentence appearing in the set. In

other words, if a sentence used in training is to be treated as having N di�erent readings, then that sentence

must appear N times in the training set, paired once with each possible representation. Whether sentences

should be allowed to have multiple parses is up to the NL system designer. If only the single, best parsing

is preferred, then only one pair per sentence should be provided. If, however, it is desired that the system
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be able to produce multiple parsings for a given sentence, output completeness dictates that all readings of

the training sentences be included in the training set.

The set of positive control examples along with the assumption of output completeness implicitly de�nes

a set of negative control examples. Knowing the set of clauses which should be applied to a given subgoal

identi�es other clauses as those that should not be applied. The exact mechanism for generation of negative

control examples is dependent on whether the �nal parser is intended to produce multiple parses. For parsers

returning only a single parse, the positive examples for a given operator clause are considered negative

examples for all prior clauses which do not have the same positive example. Since only one solution is being

computed, subsequent clauses will not have a chance to match against this particular subgoal, and it need

not be included in their negative example sets. For multiple-output parsers, a positive example for one

clause is considered a negative example for all matching clauses that do not also have that subgoal as a

positive example. This is necessary because subsequent clauses may be matched against this subgoal when

backtracking for more solutions. These subsequent clauses should not be applied unless they lead to a correct

alternative parse (in which case they will also have this subgoal as a positive control example extracted from

the proof of a di�erent training pair).

For the (1 agt) clause of op/4 and the example sentence,\the man ate the pasta," Example Analysis

would extract the single positive control example: op([ate,[man, det:the]], [the,pasta], A, B). This

is the only subgoal to which the (1 agt) reduction is applied in the correct parsing of the sentence. Notice

that A and B are uninstantiated variables since they are outputs from the op/4 clause and are not yet bound

at the time the clause is applied. Allowing for multiple parses, all contexts where the �rst clause of op/4

were not applied would become negative control examples. Thus, the following negative control examples

would be generated for this operator:

op([man,the],[ate,the,pasta], A, B)

op([the,[ate,agt:[man,det:the]]], [pasta], A,B)

op([pasta,the],[ate,agt:[man,det:the]], [], A, B)

op([pasta,det:the],[ate,agt:[man,det:the]], [], A, B)
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3.4 Control-Rule Induction

Once sets of positive and negative control examples have been extracted, the task of the induction component

is to generate a de�nite-clause concept de�nition which covers the positive examples, but not the negative.

This NLP task puts several demands on an ILP algorithm. First, the algorithm must deal gracefully with

highly structured examples; the resulting rules are operating over arbitrarily large parse states. Second, the

algorithm must be able to invent new predicates to make the distinctions that are necessary for accurate

parsing in realistic domains. Experience suggests that it is unlikely a hand-crafted feature set will be complete

enough on its own. Finally, the algorithm must be e�cient enough to deal with thousands of examples. A

single sentence gives rise to many control examples over which induction is performed. Furthermore, each

parsing operator gives rise to a control-rule induction problem. Acquiring a parser over a corpus of even

several hundred sentences gives rise to dozens of induction problems over hundreds or thousands of examples.

At the time Chill was being developed, no existing ILP algorithm met all of these requirements. Chill

employs a novel ILP algorithm which combines elements of both top-down and bottom-up methods. Rules

are initially generated by forming LGGs of clause pairs. Overly-general rules are then specialized by the

addition of literals. In addition, the algorithm includes demand-driven predicate invention which allows it

to create new concepts when necessary to discriminate the positive and negative examples. The details of

the algorithm will be taken up in the next section, for now we'll concentrate on the results of the induction.

Given our example, a control rule that might be learned for the (1 agt) reduction is:

op([X,[Y,det:the]], [the,Z], A, B) :- animate(Y).

animate(man). animate(boy). animate(girl) ....

Here the system has invented a new predicate to help explain the parsing decisions. Of course, the new

predicate would have a system generated name and is called \animate" here for clarity. This rule may be

roughly interpreted as stating: \the agent reduction applies when the stack contains two items, the second

of which is a completed noun phrase whose head is animate."

The output of the Control-Rule Induction phase is a suitable set of control-rules for each clause of op/4.

These control rules are then passed on to the Program Specialization phase.

18



3.5 Program Specialization

The �nal step is to \fold" the control information back into the overly-general parser. A control rule is easily

incorporated into the overly-general program by unifying the head of an operator clause with the head of

the control rule for the clause and adding the induced conditions to the clause body. The de�nitions of any

invented predicates are simply appended to the program. Given the program clause:

op([Top,Second|Rest],In,[NewTop|Rest],In) :- reduce(Top,agt,Second,NewTop).

and the control rule:

op([X,[Y,det:the]], [the,Z], A, B) :- animate(Y).

animate(man). animate(boy). animate(girl) ....

the resulting clause is

op([A,[B,det:the]],C,[D],C) :- animate(B), reduce(A,agt,B,D).

animate(boy). animate(girl). animate(man). animate(lion) . . .

The �nal parser simply consist of the overly-general parser with each operator clause suitably constrained.

Because of the way the control rules are induced, the resulting parser is guaranteed to produce all and only

the correct parses for each of the training examples.

3.6 Discussion of Shift-Reduce Parsing

This is an appropriate point to discuss a number of implications/motivations for the Chill framework. Some

might consider the shift-reduce framework as too limiting for NLP, citing well-known results about the power

of LR(k) grammars. It is important to note, however, that the potential lookahead in our parser is unlimited

since the entire state of the parser (current stack contents and the remaining input) may be examined in

determining which action to perform. Furthermore, the control-rules that are learned to select operators

in a given context are essentially arbitrary logic programs, therefore the class of languages recognized is, in

principle, Turing complete.

Another potential confusion is the labeling of the learned parsers as \deterministic." What does it mean

to say that a parser with (potentially) unbounded look-ahead that can produce multiple parses of a single
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input sentence is deterministic? By this, we mean that the parser does not backtrack to undo an operation

in the search for any single parse. Each action taken during parsing should be a correct step toward �nding

an acceptable interpretation. However, if there are multiple acceptable parses, the parser can backtrack

to �nd an alternative correct action at some point that results in another appropriate analysis. Parsing is

deterministic in the sense that an incorrect action is not applied that later needs to be undone. Although

the parser can, in principle, examine unbounded context, the rule-induction framework favors simple rules

resulting in a bias for the portions of the context su�cient to do accurate parsing. One might consider

the learning problem as a search for the \most deterministic" parser than can correctly parse the training

sentences.

In principle, the general mechanisms of Chill could be used in conjunction with any parsing mechanism

suitably encoded as a logic program. However, deterministic shift-reduce parsing is a very attractive choice

for a number of reasons. First, it is one of the simplest, most constrained mechanisms that has promise for

parsing signi�cant portions of English (Marcus, 1980; Tomita, 1986). Second, it �ts very well with the overall

architecture of acquisition as control-rule learning; creating a deterministic parser is basically an exercise in

identifying relevant control rules. Third, the resulting parsers are very e�cient, increasing their potential

utility for general NLP applications; in the experiments reported in section 5, sentences were parsed very

quickly with no analysis requiring more than a second of CPU time.

Finally, shift-reduce parsing provides a principled control-structure that is representation neutral. Di�er-

ent styles of analysis can be produced by simply inserting di�erent parsing operators. Nevertheless, certain

general properties of language processing such as left-to-right scanning and compositionality are always

maintained. The language processing mechanism provides bias that should simplify the work of the induc-

tive learning component. Instead of having to learn how to build output structures, the learning problem

reduces to identifying \states" of the parser. If these states capture generalities of language processing,

then it is hoped that the inductive learning mechanism can successfully learn to parse into any consistent

compositional representation scheme.
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4 The Induction Algorithm

4.1 Overview

The input to the induction component is a set of positive and negative examples of a concept (in this case,

control examples) expressed as facts, and a set of background predicates expressed as de�nite clauses. In the

experiments conducted with Chill so far, the initial background knowledge has been empty. The output of

the induction is a de�nite-clause concept de�nition which entails the positive examples, but not the negative.

A summary of the induction algorithm is given below; Zelle and Mooney (1994a) and Zelle (1995) presents

additional details along with empirical results on a number of benchmark ILP problems.

Chill employs a compaction algorithm which tries to construct a small, simple program that covers

the positive examples. The algorithm starts with a most speci�c de�nition (the disjunction of the speci�c

positive examples) and introduces generalizations that make the de�nition more compact as determined by

a simple measure of the syntactic size of the program. The search for more general de�nitions is carried

out in a hill-climbing fashion. At each step, a number of possible generalizations are considered; the one

producing the greatest compaction is implemented, and the process repeats.

Generalizations are produced under the notion of empirical subsumption. Intuitively, the algorithm

attempts to construct a clause that, when added to the current de�nition, renders other clauses superuous.

The superuous clauses are then eliminated to produce a more compact de�nition. Formally, we de�ne

empirical subsumption as follows: Given a set C of Clauses fC1,C2, : : :, CNg and a set of positive examples

E provable from C, a clause G empirically subsumes Ci i� 8e 2 E : [(C �Ci)[G ` e]. That is, all examples

in E are still provable if Ci is replaced by G. Throughout this description of the induction algorithm, unless

otherwise noted, the term \subsumption" should be interpreted in this empirical sense.

Figure 5 shows the basic compaction loop. As in Golem, generalizations are constructed from a random

sampling of pairs of clauses in the current de�nition. The best generalization produced from these pairs,

G, is used to reduce the current de�nition, DEF. The reduction is performed by adding G at the top of the

de�nition and then using the standard Prolog proof strategy to �nd the �rst proof of each positive example;

any clause which is not used in one of these proofs is then deleted from the de�nition since it is subsumed

by G.
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DEF := fE :- true j E 2 Posg

Repeat

PAIRS := a sampling of pairs of clauses from DEF

GENS := fG j G = build gen(Ci,Cj ,DEF,Pos,Neg) for hCi; Cji 2 PAIRSg

G := Clause in GENS yielding most compaction

DEF := (DEF�(Clauses subsumed by G)) [ G

Until no further compaction

Figure 5: Basic Induction Algorithm

The algorithm for constructing generalized clauses is outlined in Figure 6. There are three basic processes

involved. First is the construction of a LGG of the input clauses. If this generalization covers no negative

examples, it is returned. If the initial generalization is too general, an attempt is made to specialize it by

adding antecedents. If the expanded clause is still too general, it is passed to a routine which invents a new

predicate that further specializes the clause so that it covers no negative examples. These three processes

are explained in detail in the following subsections.

4.2 Constructing an Initial Generalization

The initial generalization of the input clauses is computed by �nding the LGG of the clauses. For example,

when learning control rules for agent reduction, some initial clauses might be the following:

op([ate,[man,det:the]], [the,pasta], A, B) :- true.

op([hit,[boy,det:the]], [the,man], A, B) :- true.

op([ate,[boy,det:the]], [the,chicken], A, B) :- true.

The �rst and third clauses yield an LGG as follows:

1) op([ate,[man,det:the]], [the,pasta], A, B) :- true.

3) op([ate,[boy,det:the]], [the,chicken], A, B) :- true.

-------------------------------------------------------

LGG: op([ate,[X,det:the]],[the,Y], A, B):- true.
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This LGG is a consistent generalization (it covers no negative examples) and no further processing is required.

Of course, such generalizations are not always consistent. Consider the LGG of the �rst and second clauses:

1) op([ate,[man,det:the]], [the,pasta], A, B) :- true.

2) op([hit,[boy,det:the]], [the,man], A, B) :- true.

-------------------------------------------------------

LGG: op([X,[Y,det:the]],[the,Z],A, B):- true.

This generalization covers potential negatives such as: op([hit,[hammer,det:the]], [the, window], A,

B) where hammer should be attached as an instrument rather than an agent. The generalization requires

further re�nement to prevent coverage of such examples.

Although the initial de�nitions consist of unit clauses (the only antecedent being true), as the de�nition

becomes more compact, the clauses from which LGGs are constructed may contain non-trivial conditions.

However, the construction of clause LGGs is still straight-forward. Unlike the RLGGs used by Golem, the

LGGs in Chill are independent of background knowledge and, since the input clauses are generally small,

they are e�ciently computable. The resulting clause is guaranteed to be at least as general as either input

clause, but may also cover negative examples. This process also e�ectively introduces relevant variables which

decompose the functional structures appearing in the examples. These variables may then be constrained

by adding antecedents to the clause.

4.3 Adding Antecedents

As its name implies, add antecedents attempts to specialize an initial genearlization, GEN, by adding new

literals as antecedents. The goal is to minimize coverage of negative examples while insuring that the clause

still subsumes existing clauses. Add antecedents employs a Foil-like mechanism that adds literals, using

background or previously invented predicates. Antecedents are added one at a time using a hill-climbing

process; at each step a literal is added that maximizes a heuristic gain metric.

The gain metric employed in Chill is a modi�cation of the Foil information-theoretic gain metric. Good

generalizations for Chill are those that subsume many existing clauses. Therefore, the count of positive

tuples (loosely, the number of covered positive examples) in the Foil metric is replaced by an estimate of
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Function build gen(Ci, Cj, DEF, Pos, Neg)

GEN := LGG(Ci,Cj)

CNEGS := Negatives covered by GEN

if CNEGS = fg return GEN

GEN := add antecedents(Pos, CNEGS, GEN)

CNEGS := negatives covered by GEN

if CNEGS = fg return GEN

REDUCED := DEF - (Clauses subsumed by GEN)

CPOS := fe j e 2 Pos ^ REDUCED 6` E g

LITERAL := invent predicate(CPOS, CNEGS, GEN)

GEN := GEN [ LITERAL

return GEN

Figure 6: Build gen Algorithm

the number of clauses in DEF which are subsumed by GEN. This estimate is obtained by associating each

positive example with the �rst clause in DEF that covers it. If GEN covers all of the examples associated with

any clause, that clause is counted as subsumed by GEN.

As an example of this process, consider learning the control rule for the (1 agt) reduction in the presence

of suitable background relations regarding word categories such as person/1 and animate/1. Initially, DEF

contains unit clauses representing the positive control examples. Each example will be associated with

the unit clause which was constructed from it. A sampling of pairs of clauses would then be used to

construct LGGs. As illustrated above, one generalization might be: op([ate,[X,det:the]],[the,Y], A,

B):- true. This clause is not overly-general, and no antecedents need to be added. If this were the best

compacting generalization found from the sampling, it would be added at the top of the de�nition, and all

of the more speci�c clauses subsumed by this generalization would be removed from DEF. Of course, some

unit clauses would remain to cover examples having verbs other than \ate."
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In the next cycle of the compaction loop, the LGG of two clauses may produce op([X,[Y,det:the]],

[the,Z], A, B) :- true. This clause is overly-general, and must be specialized before it can be con-

sidered. The Foil-like component will consider possible new antecedents such as person(X), person(Y),

person(Z), etc. Trying the literal, person(Y) produces the clause: op([X,[Y,det:the]], [the,Z], A,

B) :- person(Y). Presumably, this clause is consistent and will subsume numerous unit clauses in the

current de�nition; therefore, it will have some positive gain. This clause, however, will not subsume the

generalization found in the previous iteration, as some of the examples associated with the "ate" general-

ization will have non-person, animate agents (e.g., op([ate,[lion,det:the]], [the,sheep], A, B)). In

contrast, the clause: op([X,[Y,det:the]], [the,Z], A, B) :- animate(Y) subsumes all of these exam-

ple as well as those subsumed by person(X). Hence, animate(X) is a superior literal according to the gain

metric. When this clause is added to DEF the previous generalization as well as the remaining unit clauses

become superuous. At this point, DEF collapses to this single clause, and the induction is complete.

This discussion has assumed that add antecedents has predicates available which will allow it to com-

pletely discriminate between the positive and negative examples; however, this is not always the case. In

such situations, add antecedents may or may not add a few antecedents before it is unable to extend

the clause further because no literal has positive gain. This partially completed clause is then passed to

invent predicate for completion.

4.4 Inventing New Predicates

A clause passed to invent predicate covers both some positive and some negative examples. The purpose

of inventing a new predicate is to constrain some of the variables appearing in the clause so as to exclude

the negative examples.

Suppose that we are trying to learn the control rule for the (1 agt) reduction, but do not have suitable

background knowledge. Then add antecedentswill be unable to specialize an LGG such as op([X,[Y,det:the]],

[the,Z],A, B) :- true. Using this clause to cover positive and negative examples might result in a set of

variable bindings shown here in tabular form:
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Set X Y Z

Pos ate man pasta

hit boy sheep

moved girl fork

Neg hit hammer window

hit ball pasta

broke bat plate

Note that, while the domains of X and Z have certain values which appear in both positive and negative

examples, the values taken by Y are disjoint. A new concept representing \values of Y that appear in positive

examples" could be used to specialize this clause so as to insure that it does not cover negative examples.

In general, separating the positive and negative examples may require simultaneously constraining mul-

tiple variables. In the table above, X and Z taken together do separate the examples even though they do

not do so individually. Chill uses an approach similar to Champ (Kijsirikul, Numao, & Shimura, 1992),

employing a greedy algorithm to �nd a small set of variables that are su�cient for separation. The search

begins with an empty set of variables and adds variables one at a time, preferring variables that eliminate

overlap with negative examples and minimize the cardinality of the set of postive tuples. The instantiations

of these variables determine sets of positive and negative examples for the new concept. The induction

algorithm is then recursively invoked with these examples to learn a de�nition of the new concept.

Returning to the example, Invent predicatewill select the single variable Y and create positive examples

p1(man), p1(boy) and p1(girl), along with the negative examples p1(hammer), p1(ball), and p1(bat).

Calling the top-level induction algorithm on these examples produces no compaction, so the learned de�nition

of p1 will just be a listing of the positive examples. Finally, build gen completes its clause by adding the

�nal literal p1(Y) which is the newly invented predicate representing animate. Once a predicate has been

invented and found useful for compressing the de�nition, it is made available for use in further generalizations.

This enables the induction of clauses having multiple invented antecedents.

As discussed by Zelle and Mooney (1994a) and Zelle (1995), the actual implementation of Chill is

somewhat more complex since it includes numerous enhancements to improve e�ciency. An exact analysis
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of the computational complexity is di�cult; like all practical ILP systems, the search performed here uses

many heuristics. All of the fundamental components have polynomial time complexity except that the top-

down Foil-like component is exponential in the arity of the background predicates. Since predicate arity is

generally small (1 to 4 arguments is typical) this is generally not a signi�cant problem. Chill is implemented

in Prolog and utilizes the Prolog inference engine to test example coverage. This use of general theorem

proving does result in relatively high constant time and space factors. This probably makes the current

implementation of Chill impractical for corpora containing many thousands of sentences. It is, however,

quite tractable for hundreds of sentences. Chill running on a SPARCstation 2, was able to induce parsers

for the experiments reported below in CPU times ranging from several minutes to a few hours.4.

5 Experimental Results

Chill has been tested on a number of parsing tasks ranging from simple case-role mapping problems to the

construction of a complete database-query application. The following subsections discuss several of these

experiments.

5.1 Case-Role Mapping

Chill was �rst tested on arti�cial data for case-role mapping previously used to demonstrate certain language

processing abilities of arti�cial neural networks (McClelland & Kawamoto, 1986; Miikkulainen & Dyer, 1991).

The corpus consists of 1475 sentence/case-structure pairs produced from a set of 19 sentence templates such

as \The HUMAN ate the FOOD with the UTENSIL", where the capitalized items are replaced with words of

the given category. The corpus actually contains 1390 unique sentences, some of which admit two meaningful

analyses. Therefore, the parser was trained to produce multiple outputs where each unique sentence was

treated as a single example and the training corpus was insured to be output complete.

Training and testing followed the standard paradigm of generating learning curves by �rst choosing a

random set of test examples (in this case 740) and then creating parsers using increasingly larger subsets

of the remaining examples. The reported results are averages over �ve random training/test splits. During

4The code for Chill is being made available electronically at ftp://ftp.cs.utexas.edu/pub/mooney/chill/
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testing, the learned parser was used to enumerate all analyses for a given test sentence. Parsing of a sentence

can fail in two ways: an incorrect analysis may be generated, or a correct analysis may not be generated.

In order to account for both types of errors, we measured Accuracy = (C
P
+ C

A
)=2, where P is the number

of distinct analyses produced, C is the number of the produced analyses which were correct, and A is the

number of correct analyses possible for the sentence. This measure can be viewed as an average of the

parser's precision and recall for a given sentence.

Chill performs very well on this learning task as demonstrated by the learning curve shown in Figure 7.

The system achieves 92% accuracy on novel sentences after seeing only 150 training sentences. Training on

650 sentences required less than an hour of CPU time and generated a set of parsing operators comprising

about 60 lines of Prolog code that achieved 98% accuracy.
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Figure 7: Learning Curve for Arti�cial Case-Role Corpus

Direct comparison with previous results is di�cult, since the neural-network systems produce only a

single parse for each sentence, and overall sentence accuracy is often not reported. The closest comparison

can be made with the results of Miikkulainen and Dyer (1991) where an accuracy of 95% was achieved in

assigning words to case slots after training with 1439 of the 1475 pairs. Chill produces totally correct

analyses for a greater percentage of complete sentences with far less training data and CPU time.
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It is also noteworthy that Chill consistently invented interpretable word classes. One example, the

invention of animate, has already been presented. This concept is implicit in the analyses presented to the

system, since only animate objects are assigned to the agent role. Other invented classes clearly picked up

on the distribution of words in the input sentences. The system regularly invented semantic classes such as

human, food, and possession which were used for noun generation in the corpus.

Phrase classes useful to making parsing distinctions were also invented. For example, the structure

instrumental phrase was invented as:

instr_phrase([]).

instr_phrase([with, the, X]) :- instrument(X).

instrument(fork). instrument(bat). ...

Where the class, instrument was itself an invented category. It was not necessary in parsing to distinguish

between instruments of di�erent verbs, hence instruments of various verbs such as hitting and eating are

grouped together. Where the semantic relationship between words is required to make parsing distinctions,

such relationships can be learned. Chill created one such relation: can possess(X,Y) :- human(X),

possession(Y); which reects the distributional relationship between humans and possessions present in

the corpus. Notice that this invented rule itself contains two invented word categories.

5.2 Syntactic Parsing of the ATIS Corpus

In another set of experiments, Chill was used to generate syntactic parsers from an extant treebank. The

purpose of our experiments was to investigate whether the approach was su�ciently general and robust to

handle syntactic parsing of realistic data. There are two facets to this question, �rst is whether the parsers

learned by Chill generalize well to novel text. An additional issue is whether the induction mechanism can

e�ciently process the numbers of examples required to achieve adequate performance on relatively large,

complex corpora.
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5.2.1 Applying CHILL to ATIS

We selected as our test corpus a portion of the ATIS dataset from a preliminary version of the Penn Treebank

(speci�cally, the sentences in the �le ti tb)(Marcus et al., 1993). We chose this particular data because it

represents realistic input from human-computer interaction, and because it has been used in several other

studies on automated grammar acquisition (Brill, 1993; Periera & Shabes, 1992) that can serve as a basis

for comparison to Chill. The corpus contains 729 sentences with an average length of 10.3 words.

s:[np:[*],

vp:[show,

np:[me],

np:[np:[np:[the, flights],

sbar:[that,

s:[np:[t],

vp:[served,

np:[lunch]]]]],

vp:[departing,

pp:[from,

np:[san, francisco]],

pp:[on,

np:[april, '25th']]]]]]

Figure 8: Example ATIS Treebank Analysis

Experiments were actually performed with three variations of this corpus in order to test the bene�t of

adding information in the form of part-of-speech tags. The three versions were: untagged, tagged and tags-

only. In the untagged corpus, words appeared in sentences without any attached part-of-speech labeling.

The tagged version associated part-of-speech tags with each word. Finally, the tags-only version replaced

words with their corresponding tags; parsing of tag sequences is common in previous corpus-based syntactic

30



parsing.

The ATIS corpus concerns queries regarding air-travel information. An example analysis of the sentence,

\Show me the ights that served lunch departing from San Francisco on April 25th" is shown in Figure 8.

The analysis is a fairly sophisticated syntactic parse tree representation. As illustrated by this example,

analyses may contain various types of empty constituents such as the implied subject of a command or the

trace left by NP movement.

One complication in using this data is that sentences are parsed only to the phrase level, leaving the in-

ternal structure of NPs unanalyzed and allowing arbitrary-arity constituents. Rather than forcing the parser

to learn reductions for arbitrary length constituents, Chill was restricted to binary-branching structures.

This simpli�es the parser and allows for a more direct comparison to previous experiments that use binary

bracketings (Brill, 1993; Periera & Shabes, 1992).

Making the treebank analyses compatible with the binary parser required completion of the parses into

binary-branching structures. This was accomplished by automatically introducing special internal nodes

in a right-linear fashion. For example, the noun-phrase, np:[the,big,orange,cat], would be elaborated

as: np:[the,int(np):[big, int(np):[orange, cat]]]. The special labels (int(np) for noun phrases,

int(s) for sentences, etc.) permits restoration of the original structure by merging internal nodes. Using

this technique, the resulting parses can be compared directly with treebank parses.

The learning component of Chill remained exactly the same as in the case-role experiments except

that the initial Parsing Operator Generator was modi�ed to produce operators appropriate for the syntactic

analyses of the Penn Treebank. As in case-role parsing, building an overly-general parser from a set of

training examples is accomplished by constructing clauses for the op/4 predicate. As an example, consider

a phrase, [np[npa trip] [ppto [np dallas]]]. We represent such an analysis as a Prolog term of the form:

np:[np:[a, trip], pp:[to, np:[dallas]]]. The operations and associated clauses required to parse the

phrase are as follows (the notation, reduce(N) Cat, indicates that the top N stack elements are combined

to form a constituent with label, Cat):

reduce(2) pp:

op([S1,S2|Ss], Words, [pp:[S2,S1]|Ss], Words).

reduce(2) np:
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op([S1,S2|Ss], Words, [np:[S2,S1]|Ss], Words).

reduce(1) np:

op([S1|Ss], Words, [np:[S1]|Ss], Words).

shift: op(Stack, [Word|Words], [Word|Stack], Words).

If the sentence analyses include empty categories (detectable as lexical tokens that appear in the analyses,

but not in the sentence), each empty marker is introduced via its own shift operator which does not consume

a word from the input bu�er.

Our initial experiments used this simple representation of parsing actions (Zelle & Mooney, 1994b).

However, improved results were obtained by specializing the operators, e�ectively increasing the number

of operators, but reducing the complexity of the control-rule induction task for each operator. The basic

idea was to index the operators based on some relevant portion of the parsing context. For example, in the

experiments where lexical tags were used, the operators were indexed according to the syntactic category

at the front of the input bu�er. A single operator like op(Stack, [Word|Words], [Word|Stack], Words)

becomes multiple operators in slightly di�ering contexts such as:

op(Stack, [detjWs], [detjStack], Ws)

op(Stack, [nnjWs], [nnjStack], Ws)

op(Stack, [tojWs], [tojStack], Ws)

op(Stack, [npjWs], [npjStack], Ws)

In experiments without lexical categories, the operators were indexed according to the top two phrase

categories on the stack. Words which had not yet been reduced to a phrase were indexed as having the

category word.

Since, the corpus provides a single preferred parse for each sentence, Chill was applied in single-parse

mode, as explained in section 3.3. The operators were placed in order of increasing frequency of use as

determined from the training set. This allows for learning control rules that take advantage of defaults,

where the typically simpler conditions for applying more exceptional operators are tested �rst and control

falls through to more generally applicable rules by default.
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5.2.2 ATIS Results

Obviously, the most stringent measure of accuracy is the proportion of test sentences for which the produced

parse tree exactly matches the treebanked parse for the sentence (exact-match accuracy). Sometimes, how-

ever, a parse can be useful even if it is not perfectly accurate. A parse with a few incorrect attachments

or labelings may still convey the information required for some tasks. Indeed, the treebank itself is not

completely consistent in the handling of some structures.

To better gauge the partial accuracy of the parser, we adopted a procedure for returning and scoring

partial parses. If the parser runs into a \dead-end" while parsing a test sentence, the contents of the stack at

the time of impasse is returned as a single, at constituent labeled S. Since the parsing operators are ordered

and the shift operator is invariably the most frequently used, shift serves as a default when no reduction

action applies. Therefore, at the time of impasse, all of the words in the sentence will be on the stack, and

partial constituents will have been built. The contents of the stack reect the partial progress of the parser

in �nding constituents.

The resulting parse is then scored based on the overlap between the computed parse and the correct parse

as recorded in the treebank. Two constituents are said to match if they span exactly the same words in the

sentence. If constituents match and have the same label, then they are identical. The overlap between the

computed parse and the correct parse is computed by trying to match each constituent of the computed parse

with some constituent in the correct parse. If an identical constituent is found, the score is 1.0, a matching

constituent with an incorrect label scores 0.5. The sum of the scores for all constituents is the overlap score,

O, for the parse. The partial-match accuracy of the parse is then computed as ( O
Found

+ O
Correct

)=2 where

Found is the number of constituents in the computed parse, and Correct is the number of constituents in

the correct tree. The result is an average of the proportion of the computed parse that is correct and the

proportion of the correct parse that was actually found.

Another accuracy measure, which has been used in evaluating systems that bracket the input sentence

into unlabeled constituents, is the proportion of constituents in the generated parse that do not cross any

constituent boundaries in the correct tree (Black & et. al., 1991). Of course, this measure only allows for
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Figure 9: Tags-only ATIS Learning Curves

direct comparison of systems that generate binary-branching parse trees.5 After ensuring that the output of

the parser is binary-branching using the method described above, we computed the percentage of sentences

with parses containing no crossing constituents (zero crossing brackets accuracy), as well as the proportion

of constituents that are non-crossing over all test sentences (consistent brackets accuracy). This gives a basis

of comparison with previous bracketing results, although it should be emphasized that Chill is designed

for the harder task of actually producing complete labeled parses, and is not directly optimized for the

bracketing task.

Learning curves for the ATIS corpus showing these various accuracy measures are shown in Figures 9

and 10. Results are averaged over �ve random training/test splits. The learning curves for the tagged and

tags-only versions were not signi�cantly di�erent, so only the latter results are shown.

The results for the tags-only version are very encouraging. After training on 525 sentences, Chill

constructed a parser comprising over 1500 lines of Prolog that generated completely correct parses for 41%

of the novel testing sentences. Using the partial-match metric, Chill's parses garnered an average accuracy

of over 84%. Even though Chill is designed for the much more di�cult task of building complete, labeled

5A tree containing a single, at constituent covering the entire sentence always produces a perfect crossing score.
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Figure 10: Untagged ATIS Learning Curves

parses, the �gures for zero crossing brackets and consistent brackets compare favorably with those reported in

previous studies with the ATIS corpus. Brill (1993) reports 60% and 91%, respectively. Chill scores higher

on zero crossing brackets (64%) and slightly lower (90%) on consistent brackets. This is understandable

as Brill's transformation learner tries to optimize the latter value, while Chill's preference for sentence

accuracy might tend to improve the former (since correctly parsed sentences have no crossing brackets).

Chill's bracketing �gures are also very similar to the recent results reported by Goodman (1996a) in his

replication study of two stochastic grammar approaches with the ATIS corpus. With a larger set of 700

training examples, he also reports 64% zero crossing brackets and 90% consistent brackets for the approach

of Periera and Shabes (1992) and 66% zero crossing and 90% consistent for the approach of Bod (1993). 6

A comparison with the curves for the untagged version show that considerable advantage is gained by

using word-class tags, rather than the actual words. This is to be expected as tagging signi�cantly reduces

the variety in the input. The results for untagged use no special mechanism for handling previously unseen

words occurring in the testing examples. Achieving 72% partial match accuracy under these conditions

6Note that Goodman was unable to reproduce the higher accuracies originally reported by Bod and attributes Bod's results

to an extremely fortuitous choice of test set. Goodman, like us and unlike authors of the previous studies, averages over multiple

training/test splits and underlines the importance of this methodology.
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seems quite good. Statistical approaches relying on n-grams or probabilistic context-free grammars would

have di�culty due to the large number of terminal symbols (around 400) appearing in the modest-sized

training corpus. The data for lexical selection would be too sparse to adequately train the pre-de�ned models.

Similarly, the transformational approach of (Brill, 1993) is limited to bracketing strings of lexical classes, not

words. Chill's ability to learn something useful in the untagged rests on the learning mechanism's ability

to automatically construct and attend to just those features of the input that are most useful in guiding

parsing. Still, it is clear that considerably more training data would be required to signi�cantly improve

accuracy in the untagged case.

It should also be noted that the system created new categories in both situations. In the untagged ex-

periments, Chill regularly created categories for preposition, verb, form-of-to-be, etc.. With tagged

input, various tags were grouped into classes such as the verb and noun forms. In both cases, the sys-

tem also formed numerous categories and relations that seemed to defy any simple linguistic explanation.

Nevertheless, these categories were apparently helpful in parsing of new text.

Beyond the created word categories, it is di�cult to ascertain signi�cant linguistic insight from the rules

learned by Chill in these experiments. The resulting rule-bases were very large (thousands of lines of Prolog

code), and represented choices made at a relatively low level (that of control decisions, not grammar rules).

Furthermore, the deterministic, single-parse framework used in these experiments produced sets of rules that

were highly inter-related and context dependent.

The ATIS study shows that Chill achieves results comparable to those of systems designed speci�cally for

learning syntactic bracketings. Somewhat surprisingly, this is accomplished by learning a more traditional

symbolic, deterministic parser rather than a probabilistic grammar. The learned parser is particularly

e�cient since, unlike probabilistic parsers, it performs no real search through the space of possible parses.

However, the current computational requirements of ILP training prevents testing the existing system on

huge corpora of long sentences, (e.g. the Wall Street Journal portions of the Penn Treebank). However, the

construction of large, broad-coverage parsers for relatively shallow representations is not the only, nor perhaps

even the most useful, application of empirical techniques. Syntactic parsing is only a small component of the

larger understanding problem. In practice, most natural language systems are concerned with deeper, more

semantically-oriented issues. Another application of empirical techniques is in developing more specialized
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parsers for mapping sentences in domain-speci�c sublanguages into useful meaning representations. The

next subsection addresses this possibility.

5.3 Parsing Database Queries into Logical Form

Evaluating parser acquisition systems using arti�cial metrics such as matching treebank analyses is open to

a number of criticisms. While the metrics are certainly useful in making rough comparisons, the results must

be interpreted with caution. Often systems are not run on identical corpora, and even when the corpora

are the same, they may be \cleaned up" in di�erent ways (Goodman, 1996a). It is also unclear how one

should compare systems that are tuned for optimizing di�erent metrics (e.g., focusing on bracketings rather

than labeled parse trees) (Goodman, 1996b). It is even less clear that these measures accurately reect

actual di�erences in performance of real language processing tasks. It is not necessarily the case that a

system scoring 80% on some parsing metric will produce better �nal application results than one achieving

70%. The acid test is whether an empirical approach allows for the construction of better natural language

systems, or perhaps allows designers to build comparable systems with less time and expertise.

In this section, we report on experiments using Chill to engineer a natural language front-end for a

simple database. The database task provides a good metric as it is easily evaluable. The gold standard

is simply whether the system produces the correct output for a given question, a determination that is

straight-forward for many database domains. There is no need to fret about the accuracy of partial metrics

or engage in philosophical debates over the usefulness of various intermediate representations.

5.3.1 Overview of the Problem

For the database-query task, the input toChill consists of sentences paired with executable database queries.

The query language considered here is a logical form similar to the types of meaning representation typically

produced by logic grammars (Warren & Pereira, 1982; Abramson & Dahl, 1989). The semantics of the

representation is grounded in a query interpreter that executes queries and retrieves relevant information from

the database. The choice of a logical query language rather than the more ubiquitous SQL was made because

the former provides a more straight-forward, compositional mapping from natural language utterances|a

property that is necessary for the Chill approach. Of course, once a sentence has been parsed into an

37



What is the capital of the state with the largest population?

answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What are the major cities in Kansas?

answer(C, (major(C), city(C), loc(C,S), equal(S,stateid(kansas)))).

What state has the most rivers running through it?

answer(S, most(S, R, (state(S), river(R), traverse(R,S)))).

How many people live in Iowa?

answer(P, (population(S,P), equal(S, stateid(iowa)))).

Figure 11: Sample Database Queries

unambiguous logical form, translation into another database-query formalism should be easily automatable.

The domain of the chosen database is United States geography. The choice was motivated by the

availability of an existing natural language interface for a simple geography database. This system, called

Geobase was supplied as an example application with a commercial Prolog available for PCs, speci�cally

Turbo Prolog 2.0 (Borland International, 1988). Having such an example provides a database already coded

in Prolog for which a front-end can be built; it also serves as a convenient benchmark against which Chill's

performance can be compared.

The Geobase data contains about 800 Prolog facts asserting relational tables for basic information about

U.S. states, including: population, area, capital city, neighboring states, major rivers, major cities, and

highest and lowest points along with their elevation. The database also contains information concerning the

lengths of rivers and the population of cities.

Figure 11 shows a sample of questions in English and the associated query representations. The queries

are expressed using the Prolog conventions of capitalized identi�ers representing logical variables and commas

representing conjunction.

Development of the database application required work on two components: a framework for parsing

into the logical query representations, and a speci�c query language for the geography database. The �rst
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component is domain-independent and consists of algorithms for parsing operator generation and example

analysis to infer the required operators and parse the training examples. The resulting parsing framework

is quite general and could be used to generate parsers for a wide range of logic-based representations.

The second component, which is domain speci�c, is a query language having a vocabulary su�cient

for expressing interesting questions about geography. The database application itself comprises a parser

produced by Chill coupled with an interpreter for the query language. The speci�c query language for

these experiments (hereafter referred to as Geoquery) was initially developed by considering a sample of 50

sentences. A simple query interpreter was developed concurrently with the query language, thus insuring

that the representations were grounded in the database-query task.

Once the query language and parsing framework were designed, a corpus of sentence/query pairs was

developed by having uninformed subjects generate sample questions for the system. An analyst then con-

structed an appropriate query for each question, resulting in a corpus of 250 pairs which was used to evaluate

the performance of Chill on this task.

5.3.2 The Query Language, Geoquery

The query language is basically a �rst-order logical form augmented with some higher-order predicates or

meta-predicates, for handling issues such as quanti�cation over implicit sets. This general form of represen-

tation is useful for many language processing tasks. The particular constructs of Geoquery, however, were

not designed around any notion of appropriateness for representation of natural language in general, but

rather as a direct method of compositionally translating English sentences into unambiguous, logic-oriented

database queries. Thus Geoquery is an example of an task-speci�c meaning representation language.

The most basic constructs of the query representation are the terms used to represent the objects ref-

erenced in the database and the basic relations between them. The basic forms are listed in Figure 12.

The objects of interest are states, cities, rivers and places (either a high-point of low-point of a state). In

�rst-order representations, such objects would typically be represented by unique constants; however, it is

easier to treat these objects as terms, for example using stateid(texas) to represent the state of Texas.

This has the e�ect of \typing" the basic objects and making it easier to remember the representation for

potentially ambiguous names (e.g. stateid(missouri) vs. riverid(missouri)). Cities are represented
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Type Form Example

country countryid(CountryName) countryid(usa)

city cityid(CityName, StateAbbrev) cityid(austin,tx)

state stateid(StateName) stateid(texas)

river riverid(RiverName) riverid(colorado)

place placeid(PlaceName) placeid(pacific)

Figure 12: Basic Objects in Geoquery

using a two argument term with the second argument containing the abbreviation of the state. This is done

to insure uniqueness, since di�erent states may have cities of the same name (e.g. cityid(columbus,oh)

vs. cityid(columbus,ga)). This convention also allows a natural form for expressing partial information;

a city known only by name is given an uninstantiated variable for its second term.

The basic relations are shown in Figure 13. The use of these relations should be self-evident. One pos-

sible exception is the relation equal/2. It is used to indicate that a certain variable is bound to a ground

term representing an object in the database. For example, a phrase like \the capital of Texas" translates to

(capital(S,C), equal(S, stateid(texas))) rather than the more traditional capital(stateid(texas),C).

The use of equal allows objects to be introduced at the point where they are actually named in the sentence.

Although the basic predicates provide most of the expressiveness of Geoquery, meta-predicates are re-

quired to form complete queries. A list of the implemented meta-predicates is shown in Figure 14. These

predicates are distinguished in that they take completely-formed conjunctive goals as one of their arguments.

The most important of the meta-predicates is answer/2. This predicate serves as a \wrapper" for query

goals indicating the variable whose binding is of interest (i.e. answers the question posed). Executing a

query of the form: answer(X,Goal) where X is a variable appearing in Goal results in a listing of all the

unique values taken on by X for all possible proofs of Goal generated through backtracking. Many queries

do not require any other meta-predicates for their expression. The other meta-predicates provide for the

quanti�cation over and selection of extremal elements from implicit sets.
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Form Predicate

capital(C) C is a capital (city).

city(C) C is a city.

major(X) X is major.

place(P) P is a place.

river(R) R is a river.

state(S) S is a state.

capital(C) C is a capital (city).

area(S,A) The area of S is A.

capital(S,C) The capital of S is C.

equal(V,C) variable V is ground term C.

density(S,D) The (population) density of S is P

elevation(P,E) The elevation of P is E.

high point(S,P) The highest point of S is P.

higher(P1,P2) The elevation of P1 is greater than that of P2.

loc(X,Y) X is located in Y.

low point(S,P) The lowest point of S is P.

len(R,L) The length of R is L.

next to(S1,S2) S1 is next to S2.

size(X,Y) The size of X is Y.

traverse(R,S) R traverses S.

Figure 13: Basic Predicates in Geoquery
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Form Explanation

answer(V,Goal) V is the variable of interest in Goal.

largest(V, Goal) Goal produces only the solution maximizing size of V

smallest(V,Goal) Analogous to largest.

highest(V,Goal) Analogous to largest (with elevation).

lowest(V,Goal) Analogous to highest.

longest(V,Goal) Analogous to largest (with length).

shortest(V,Goal) Analogous to longest.

count(D,Goal,C) C is count of unique bindings for D satisfying Goal.

most(X,D,Goal) Goal produces only the X maximizing count of D

fewest(X,D,Goal) Analogous to most.

Figure 14: Meta-Predicates in Geoquery
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5.3.3 A Parsing Framework for Queries

Although the logical representations of Geoquery look very di�erent from parse-trees or case-structures

discussed in previous sections, they are amenable to the same general parsing scheme as that used for the

shallower representations. Adapting Chill to work with this representation requires only the identi�cation

and implementation of suitable operators for the construction of Geoquery-style analyses.

Logical queries are built in the shift-reduce framework using three simple operator types. Initially, a word

or phrase at the front of the input bu�er suggests that a certain structure should be part of the result. The

appropriate structure is pushed onto the stack. For example, the word \capital" might cause the capital/2

predicate to be pushed on the stack. This type of operation is performed by an introduce operator and is

very similar to the simple shift operation employed for parse-tree analyses (A direct analogue of \shift" is

still used to keep track of the actual words of the sentence. This will be explained in the following example).

Initially, the logical structures are introduced with new (not co-referenced) variables. These variables may

be uni�ed with variables appearing in other stack items through a co-reference operator. For example,

the �rst argument of the capital/2 structure may be uni�ed with the argument of a previously introduced

state/1 predicate. Finally, a stack item may be embedded into the argument of another stack item to form

conjunctive goals inside of meta-predicates; this is performed by a conjoin operation.

Figure 15 shows the sequence of states the parser goes through in parsing the sentence, \What is the

capital of Texas?" The state of the parser is shown as a term of the form: ps(Stack,Input) where Stack

is a list of constituents comprising the current stack and Input are the remaining words of the input bu�er.

The individual stack items are shown one per line, and the state of the input bu�er is on the last line of each

parse state. Each stack item contains a portion of the query structure being built and a list of the words

that have been shifted from the input while the stack item has been at the top of the stack. This is done

so that the actual words used to introduce various structures are available to serve as context for forming

control rules. The word list is maintained in reverse order and packaged with the query structure via the

:/2 functor.

The query extracted from state 14 is: answer(A, (capital(B, A), equal(B, stateid(texas)))).

The parse sequence illustrates all of the basic operation types that are used to construct queries from
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Parse State Operation Type

1. ps([answer(_,_):[]],

[what,is,the,capital,of,texas,?]) shift

2. ps([answer(_,_):[what]],

[is,the,capital,of,texas,?]) shift

3. ps([answer(_,_):[is,what]],

[the,capital,of,texas,?]) shift

4. ps([answer(_,_):[the,is,what]],

[capital,of,texas,?]) introduce

5. ps([capital(_,_):[],

answer(_,_):[the,is,what]],

[capital,of,texas,?]) co-reference

6. ps([capital(_,A):[],

answer(A,_):[the,is,what]],

[capital,of,texas,?]) shift

7. ps([capital(_,A):[capital],

answer(A,_):[the,is,what]],

[of,texas,?]) shift

8. ps([capital(_,A):[of,capital],

answer(A,_):[the,is,what]],

[texas,?]) shift/introduce

9. ps([equal(_,stateid(texas)):[texas],

capital(_,A):[of,capital],

answer(A,_):[the,is,what]],

[?]) co-reference

10. ps([equal(B,stateid(texas)):[texas],

capital(B,A):[of,capital],

answer(A,_):[the,is,what]],

[?]) conjoin

11. ps([equal(B,stateid(texas)):[texas],

answer(A,capital(B,A)):[the,is,what]],

[?]) shift

12. ps([equal(B,stateid(texas)):[?,texas],

answer(A,capital(B,A)):[the,is,what]],

[]) shift

13. ps(['EndOfInput',

equal(B,stateid(texas)):[?,texas],

answer(A,capital(B,A)):[the,is,what]],

[]) conjoin

14. ps(['EndOfInput',

answer(A,(capital(B,A),

equal(B,stateid(texas)))):[the,is,what]],

[])

Figure 15: Sequence of Parse States for \What is the capital of Texas?"
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sentences. The initial state consists of the answer/2 structure on the stack and the input bu�er containing

the sentence.

The most common operation is a shift, which simply transfers a word from the input bu�er to the word

list of the top item on the stack. This operation accounts for the results in states 2, 3, 4, 7, 8, 12, and

13 of the example parse. In the case of state 13, an attempt to shift from an empty input bu�er puts a

special end-of-input marker on the stack. Query structures are introduced at the point where their presence

is indicated by lexical items at the front of the input bu�er. For example, state 5 shows the result of the

word \capital" introducing the capital/2 structure. State 9 results from a special operator combining a

shift with an introduce to handle the state-name at the front of the bu�er. Parsing variables are uni�ed

via co-referencing operators, as demonstrated in states 6 and 10. The conjoin operator embeds one stack

item into the argument of another. States 11 and 14 are the product of conjoin operations.

For each class of operator, the overly-general operators required to parse any given example may be

easily inferred. The necessary introduce operators are determined by examining what structures occur

in the given query and which words that can introduce those structures appear in the training sentence.

Co-reference operators are constructed by �nding the shared variables in the training queries; each sharing

requires an appropriate operator instance. Finally, conjoin operations are indicated by the term-embedding

exhibited in the training examples.

Using this simple framework, logical queries can be constructed in a compositional fashion using shift-

reduce style parsing. It is important to note that only the operator generation phase of Chill is modi�ed

to work with this representation; the control-rule learning component remains unchanged.

5.3.4 Experimental Results

Sample questions in English were obtained by distributing a questionnaire to 50 uninformed subjects. The

questionnaire provided the basic information from the online tutorial supplied for Geobase (the existing

system), including a verbatim list of the type of information in the database, and sample questions that the

system could answer. The subjects were then asked to write down �fteen questions that they expected the

system to be capable of answering. A total of 484 questions were gathered. Of these, 284 were discarded, re-

sulting in a corpus of 250 questions with an average length of 7.8 words. Of the 284 questions discarded, 261
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were either unanswerable from the information provided in the database (e.g. \What is the most polluted

river?"), or were exact duplicates of included questions. The remaining 23 sentences were potentially answer-

able, but required queries outside the scope of the Geoquery representation. As mentioned above, Geoquery

was originally designed to cover a corpus of 50 sentences. The fact that over 90% of the relevant questions

eventually gathered were representable is a metric of the relative generality of Geoquery representations.

For evaluation purposes, the corpus was split into training sets of 225 examples with the remaining 25

held-out for testing. Chill was run using default values for various parameters. This test di�ered from

previous ones in that some background knowledge was provided to the control-rule learning component.

This background information comprised predicates from the database itself for recognizing state, city and

river names.

Testing employed the most stringent standard for accuracy, namely whether the application produced

the correct answer to a question. Each test sentence was parsed to produce a query. This query was then

executed to extract an answer from the database. The extracted answer was then compared to the answer

produced by the correct query associated with the test sentence. Identical answers were scored as a correct

parsing, any discrepancy resulted in a failure. For queries that resulted in multiple answers, the order of

solutions was considered unimportant. Figure 16 shows the accuracy of Chill's parsers over a 10 trial

average. The line labeled \Geobase" shows the average accuracy of the Geobase system on these 10 testing

sets of 25 sentences. The curves show that Chill outperforms the existing system when trained on 175 or

more examples. In the best trial, Chill's induced parser comprising 1100 lines of Prolog code achieved 84%

accuracy in answering novel queries.

In this application, it is important to distinguish between two modes of failure. The system could either

fail to parse a sentence entirely, or it could produce a query which retrieves an incorrect answer. The former

case represents a \softer" failure, since the application can be smart enough to indicate the sentence was

unparsable and request a paraphrase. The parsers learned by Chill for Geoquery produced few spurious

parses. Figure 17 shows the probability that a test sentence will produce a spurious parse as a function of

training set size. Again, for training sets of 175 examples or more, Chill outperforms the original Geobase

interface.

The training time required to achieve these results was relatively small; Chill was able to learn parsers
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Figure 16: Geoquery: Accuracy

for the largest trials in less than 25 minutes of CPU time on a SPARCstation 5.

5.3.5 Discussion

While the Geobase system probably does not represent a state-of-the-art standard for natural language

database query systems, neither is it a \straw-man." Geobase uses a semantics-based parser which scans

for words corresponding to the entities and relationships encoded in the database. Rather than relying on

extensive syntactic analysis, the system attempts to match sequences of entities and associations in sentences

with an entity-association network describing the schemas present in the database. The result is a relatively

robust parser, since many words can simply be ignored.

Using Chill to construct a natural language application certainly does not eliminate the initial need

for human expertise. The design of the query language is a nontrivial task and portions of the parsing

\shell" must be �lled-in with information from the database at hand. Part of this information included a

lexicon relating words that appear in potential queries to the logical query structures used to express their
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Figure 17: Geoquery: Percentage of Spurious Parses

\meaning." However, the design of these components relies strictly on the local considerations which arise in

single examples. The problem of devising rules which are consistent across many examples is placed entirely

on the learning component. Thus, the analyst is freed to concentrate on issues such as expressiveness of the

representation rather than implementation of a grammar.

The learning curves for Chill clearly suggest that training on larger corpora will improveChill's parsers.

Similarly, traditional parser construction techniques involve the collection of examples and \tweaking" of

the grammar to account for the new information. Often this is followed by extensive regression testing to

insure that the changes did not damage performance on prior examples, since it is very hard to predict all

the inter-related e�ects produced by isolated changes. The real promise of empirical techniques is that they

might automate the grammar improvement step allowing construction of parsers that are consistent across

a much larger range of natural language inputs than could be achieved with hand-crafted rules. Although

the principle has been amply demonstrated for problems such as word-class tagging and syntactic analysis,

these results suggest similar advantages at the level of a complete NL application.
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6 Related Work

Although there has been a substantial amount of recent research in empirical approaches to parser construc-

tion, much of this work addresses somewhat di�erent problems. One major di�erence is the type of analysis

provided. Chill learns parsers that produce complete, labeled parse trees; other systems have learned to pro-

duced simple bracketings of input sentences (Periera & Shabes, 1992; Brill, 1993), or probabilistic language

models which assign sentences probabilities (Charniak & Carroll, 1994). Another dimension of variation is

the type of input provided to the learning system. While Chill requires only a suitably annotated corpus,

other approaches have utilized an existing, complex, hand-crafted grammar that over-generates (Black et al.,

1993; Black, La�erty, & Roukaos, 1992). Chill's ability to invent new categories also allows the use of actual

words to make parsing decisions, whereas many systems are limited to representing sentences as strings of

lexical categories (Brill, 1993; Charniak & Carroll, 1994).

The approach of Magerman (1994, 1995) is more similar to Chill. His system produces parsers from

annotated corpora of sentences paired with syntactic representations. Parsing is treated as a problem of sta-

tistical pattern recognition. This involves the coding of parse-tree topography with a �nite set of construction

features. Associated with each feature is a �xed set of parse-tree context information that is examined to

determine the feature's value for a given node. The actual assignment of trees to sentences is performed by

heuristic search through the space of possible parse-tree derivations guided by learned probabilistic decision

trees. The learned grammars were shown to signi�cantly outperform hand-crafted counterparts on a real-

world parsing task involving text from technical manuals. Chill di�ers from this approach mainly in its

exibility. Magerman's system is hand-engineered for the particular representation being produced. As an

example, the parse-tree encoding scheme includes a feature for conjunction which was speci�cally intro-

duced to improve the performance of the system. The system also includes a set of hand-generated rules for

determining what properties a node in the parse tree will inherit from other nodes. Given this hand-crafting

of features and rules, it is unclear how easily the approach could be adapted to di�ering representation

schemes.

One approach that learns more semantically oriented representations is the hidden understanding models

of Miller et al. (1994). This system learns to parse into tree-structured meaning representations. These
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representations are similar to syntactic parse trees except that the nodes may be labeled by conceptual

categories as in the analyses produced by semantic grammars. The statistical model employs a separate

component for determining what is said (the ordering of concepts) and how it is said (the choice of words).

Each of these components is modeled with a probabilistic transition network. These networks are trained

using extensions of standard statistical estimate-maximize algorithms. With a bootstrapping procedure

which utilized the acquisition system to help annotate portions of the ATIS corpus, a single annotator was

able to produce 200 annotated sentences a day. Training on 900 of these sentences produced a parser which

achieved 61% exact-match accuracy on the remaining 100 sentences. This approach was recently extended

to construct a complete interface with separate statistically trained modules for syntactic, semantic and

discourse analysis (Miller, Stallard, Bobrow, & Schwartz, 1996). However, the mapping to a �nal semantic

representation employs two separate modules, requiring each training sentence to be labeled with both a

parse tree and a semantic frame. Chill maps directly into logical form and does not require annotating

sentences with any additional intermediate representations. An experimental comparison with Chill would

require running both systems on identical corpora; however, there are some other general di�erences worth

noting. The hidden understanding model utilizes a propositional approach which forces it to make certain

Markov-like assumptions. Thus, it is incapable of modeling phenomena requiring nonlocal references, a

situation that does not hold for Chill, which may examine any aspect of the parse context. A related

limitation is that the ordering of concepts in tree-structured representations must match the order of words

in the sentence. This makes it awkward to handle some forms of linguistic movement. In theory, Chill can

work with any representation for which suitable parsing operators can be inferred.

Kuhn and De Mori (1995) propose a method for learning semantic mappings using Semantic Classi�cation

Trees (SCTs). SCTs are variants of traditional decision trees in which nodes contain restricted regular

expression representations that are matched against input queries. Semantic mapping is performed by

translating each possible component of the desired output frame into a classi�cation question. A forest of

SCTs is then learned to determine the features that should be present in the output. The approach was

demonstrated on a portion of the ATIS task, mapping inputs into frames that were then translated into SQL.

The approach di�ers from Chill on a number of dimensions. First, the input to the semantic component

is not raw words, but minimally pre-parsed text, in this respect, it is similar to the multi-step approach of
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Miller et al. (1996), although the parsing stage was hand-coded, and somewhat less ambitious. Second, the

method requires the output mapping to be cast as a series of classi�cation problems. This propositional

restriction is su�cient for simple, at SQL queries, but it is unclear how the technique would be applied to

more sophisticated, nested queries.

Overall, Chill is unique in it's exibility to employ the same general learning system to construct a

variety of parsers without the need to engineer a �xed set of relevant features a priori. The same general

system can construct parsers for producing syntactic parses, case analyses, and semantic logical forms given

little more than a corpus of input/output pairs.

7 Future Work

Improving the accuracy of the parsers learned by Chill requires progress on two fronts. One obvious

approach is to use much larger training sets. However, making this practical requires further improvements

in the e�ciency of the induction algorithm. The most di�cult of the trials reported in this paper already

required up to 8 hours of CPU time on a SPARCstation 2. Another avenue is to incorporate more language-

speci�c biases into the induction process. The shift-reduce framework of the current system is a rather

weak bias compared to restrictions commonly considered in a \principles-and-parameters" approach. A nice

feature of ILP methods is that they employ a traditional symbolic representations and can exploit prior

background knowledge. Our initial research has focussed on what could be accomplished by placing most

of the burden on a very general learning component. Providing the system with background knowledge and

tighter constraints could allow more accurate induction from fewer examples.

When parsing into logical form, Chill currently requires a semantic lexicon that maps words into pred-

icates and/or terms that are then composed to produce a �nal output. We are currently developing tech-

niques that automatically acquire this lexicon from the training corpus using a symbolic induction algorithm

(Thompson, 1995). We are also exploring the use of ILP methods in constructing rules for information

extraction (the task of identifying speci�c items in a natural language text (Lehnert & Sundheim, 1991)).

ILP techniques can potentially induce more complex patterns than previous learning methods applied to this

task (Rilo�, 1996; Soderland, Fisher, Aseltine, & Lehnert, 1995). By inducing unbounded relational patterns
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that characterize the context surrounding particular phrases, concise rules for extracting information can be

learned from a training corpus of �lled templates (Cali� & Mooney, 1997).

A signi�cant problem for empirical NLP in general is corpus construction. Annotating large corpora

with parse trees, logical forms, or �lled templates, is a di�cult and time consuming task. The use of

active learning, speci�cally selective sampling (Cohn, Atlas, & Ladner, 1994; Lewis & Catlett, 1994), could

potentially ease this problem. Not all training examples are equally useful to a learning system, and by

carefully selecting useful examples, annotation e�ort can be dramatically reduced. This approach has been

successfully employed in training part-of-speech taggers (Engelson & Dagan, 1996) and we intend to explore

it's use in parsing and information extraction.

8 Conclusions

This paper has presented Chill, a system that uses relational learning methods to induce traditional, shift-

reduce parsers from corpora, complementing the results of recent statistical methods. We believe the primary

strength of corpus-based methods is not the particular approach or type of parser employed (e.g., statistical,

connectionist, or symbolic), but the fact that real data are used to automatically construct complex parsers.

The presented experimental results suggest that Chill performs comparably to previous approaches on

similar tasks.

We believe that the main advantage of an inductive logic programming approach is the resulting exibility.

Chill is capable of learning to parse into standard syntactic representations as well as more meaning-oriented

case structures and logical forms for database querying. In addition, Chill is able to learn using highly

structured contexts and can automatically create new predicates necessary to support accurate parsing.

These abilities reduce the need for the feature-engineering common in propositional approaches. Of course,

this does not obviate the need for engineering representations suitable to a particular task, but once repre-

sentations have been devised based on usefulness to the task, the learning component assumes the burden of

identifying and exploiting relevant structural di�erences. A further potential attraction of the ILP approach

is the ease with which it may be integrated with traditional, symbolic parsing methods. While this work has

used a shift-reduce framework, other NLP work may also bene�t from the direct application of relational
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learning methods.

Chill represents an alternative to the broad-but-shallow paradigm that dominates current work in em-

pirical NLP. The results from the geography database application presented here suggest that empirical

methods may also be useful in the rapid development of smaller, domain-speci�c parsers that produce use-

ful �nal representations. For some tasks, it may be feasible to automatically construct virtually the entire

linguistic component of a complex natural-language system. One could envision, for example, collecting a

sample of database queries that are actually submitted to an information system in the course of normal

use, pairing these with the English sentences that express them, and presenting these to a Chill-like system

to generate a natural language front-end. Automated generation of natural language interfaces could be an

exciting application of empirical techniques, but is only possible when the learning system is able to learn the

mapping from strings of words into useful representations for the task at hand. We believe the techniques

employed in Chill, namely parser acquisition as control-rule learning and relational learning algorithms are

signi�cant step in this direction. Chill is really just a starting point in the investigation of ILP learning

techniques in natural language processing.
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