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Abstract

An Information Extraction (IE) system analyses a set of doents with the aim of identifying certain
types of entities and relations between them. Most IE systiegat separate potential extractions as
independent. However, in many cases, considering inflleebeaveen different candidate extractions
could improve overall accuracy. For example, phrase répesiinside a documentare usually associated
with the same entity type, the same being true for acronyrdstair corresponding long form. One of
our goals in this thesis is to show how these and potentitiigraypes of correlations can be captured by
a particular type of undirected probabilistic graphicaldab Inference and learning using this graphical
model allows for “collective information extraction” in aay that exploits the mutual influence between
possible extractions. Preliminary experiments on leaytinextract named entities from biomedical and
newspaper text demonstrate the advantages of our approach.

The benefit of doing collective classification comes howetercost: in the general case, exact infer-
ence in the resulting graphical model has an exponential tiomplexity. The standard solution, which
is also the one that we used in our initial work, is to resorapproximate inference. In this proposal
we show that by considering only a selected subset of mutflakinces between candidate extractions,
exact inference can be done in linear time. Consequenthod term goal is to run comparative exper-
iments that would help us choose between the two approaelkast inference with a restricted subset
of mutual influences or approximate inference with the fetlaf influences.

The set of issues that we intend to investigate in future vieitvo fold. One direction refers to
applying the already developed framework to other natarajliage tasks that may benefit from the same
types of influences, such as word sense disambiguation atdfespeech tagging. Another direction
concerns the design of a sufficiently general frameworkwmatld allow a seamless integration of cues
from a variety of knowledge sources. We contemplate usingdesources such as external dictionaries,
or web statistics on discriminative textual patterns. VW ahtend to alleviate the modeling problems
due to the intrinsic local nature of entity features by ekpig syntactic information. All these generic
features will be input to a feature selection algorithm tst tn the end we obtain a model which is both
compact and accurate.
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1 Introduction

Information Extraction (IE) is an important task in natuleguage processing, with many practical appli-
cations. It involves analyzing text documents, identifyparticular types of entities, relations or events, and
populating database slots with information about them. gideomponent of an IE system is that of named
entity recognition - the task of locating references to gpetypes of items in natural-language text. Since
IE systems are difficult and time-consuming to constructstmecent research has focused on empirical
techniques that automatically construct information aotiors by training on supervised corpora (Cardie,
1997, Califf, 1999). Traditionally, IE systems have beairted to recognize names of people, organiza-
tions and locations (MUC (Grishman, 1995), CoNLL (Tjong K8ang & De Meulder, 2003)). Recently,
substantial resources have been allocated for automwgticdtacting information from biomedical corpora,
which has naturally led to the need of locating biologicaljevant entity types, such as genes, proteins,
or diseases. The wide variety of names used in the biomddmalture, coupled with their lack of formal
structure, have made the IE problem especially difficultis Fias further motivated the search for methods
which are able to efficiently use any type of task-relevardviledge. One particular type of knowledge
which is especially useful for recognizing biological ¢iet refers to correlations between the labels of
repeated phrases inside a document, as well as betweerymsr@amd their corresponding long form. In
both cases, the mentioned phrases tend to have the sanydamit For example, Figure 1 shows part of
an abstract from Medline, an online database of biomeditiales. In this abstract, the protein referenced
by 'rpL22 is first introduced by its long namebosomal protein L22’ followed by the short namigplL22’
between parentheses. The presence of the postin’ is a very good indicator that the entire phragms-
somal protein L22is a protein name. AlsopL22’ is an acronym ofribosomal protein L22which increases
the likelihood that it too is a protein name. The same nape2’ occurs later in the abstract in contexts
which do not indicate so clearly the entity type, however &g ase the fact that repetitions of the same
name tend to have the same type inside the same document.

The control of hunman ribosomal protein L22 ( rpL22 ) to enter into the
nucleolus and its ability to be assenbled into the ribosone is

regul ated by its sequence . The nuclear inport of rpL22 depends on
a classical nuclear |ocalization signal of four |ysines at positions
13 - 16 . RpL22 nornally enters the nucleolus via a conpul sory
sequence of KKYLKK ( | - dommin , positions 88 - 93 ) ... Once it

reaches the nucleolus , the question of whether rpL22 is assenbl ed
into the ri bosone depends upon the presence of the N - domain .

Figure 1: Medline abstract with all protein names emphaksize

It is not always the case that repeated phrases have the abhaieFigure 2 shows an example, where
the first occurrence 0€NOS’ is a protein hame, while its second occurrence is not a protaine by itself,
because it is included in another protein naeMOS interaction protein’ Constraining repeated words like
'eNOS’ to have the same label (i.e. eitherside orOutside a protein name) does not solve the problem
either, as shown in Figure 2, where both tokémsic’ and’oxide’ are first tagged a®utside, and then
Inside a protein name. In Section 3.5.2 we show how to caph@edrrelations between the labels of
repeated phrases so that all the exceptions above are tdkeactount.

The capitalization pattern of the name itself is anothefulsedicator, nevertheless it is not sufficient by
itself, as similar patterns are also used for other typesadddical entities such as cell types or aminoacids
(see Figure 3). Therefore, correlations between the latfalepeated phrases, or between acronyms and



Production of nitric oxide ( NO) in endothelial cells is regul ated
by direct interactions of endothelial nitric oxide synthase( eNOS) with
ef fector proteins such as Ca2+ - calmodulin. Here we have used the
yeast two - hybrid systemand identified a novel 34 kDa protein ,
termed NOSIP ( eNOS interaction protein ) , which avidly binds to the
carboxyl terminal region of the eNOS oxygenase donain .

Figure 2: Medline abstract with all protein names emphasize

their long form can provide additional useful informatio@ur intuition is that a method that could use
this kind of information would show an increase in perform@nespecially when doing extraction from
biomedical literature, where phenomena like repetitioms @cronyms are pervasive.

The 5' upstreamregion ( -448 /| -443 ) of the human dipeptidyl peptidase IV
gene pronoter containing a consensus E - box ( CACGITG) was shown to
bi nd upstream stimul atory factor using nuclear extracts from nouse

( 3T3 ) fibroblasts and the human intestinal and hepatic epithelial
cell lines Caco - 2 and Hep& .

Figure 3: Medline abstract with all protein names emphasize

In this proposal, we describe how this type of documentti&newledge can be captured using Re-
lational Markov Networks (RMNSs) (Taskar, Abbeel, & Kolle2002), a version of undirected graphical
models which have already been successfully used to imphavelassification of hyper-linked web pages.
While other types of graphical models, such as Conditioredd®m Fields (CRFs) (Lafferty, McCallum,
& Pereira, 2001), have modeled the entity recognition taskree of token classification, we take the dif-
ferent approach where candidate phrases in a documentaasifidd according to the desired set of entity
types. We then show how this phrase classification appraaglitdtes the modeling of correlations among
labels of candidate entities, with the additional strermgftbhrase based features such as the actual text of
the candidate entity, its capitalization pattern, or samiy with dictionary entries. Experimental results
show that by factoring in global label correlations, thefpenance of the phrase classification approach is
significantly improved.

In a typical application of CRFs, influences between theltab&consecutive tokens are the only cor-
relations considered. This leads to a sequence labelim@gogin which inference can be done efficiently
using dynamic programming algorithms. Compared with CRRs,increased representational power of
RMNs comes at a cost in the time complexity of the inferenger@hms. In our initial work, we resorted to
approximate inference, based on an algorithm which haaajrexhibited competitive performance in other
applications (Murphy, Weiss, & Jordan, 1999). Howeveruhsequent work we have discovered that exact
inference for the phrase classification approach can be effingntly, if no correlations between different
candidate entities are to be considered. Moreover, by gdaicarefully selected subset of document-level
correlations, the same exact inference algorithm can batagdo that its running time remains linear in the
number of candidate entities. We present how to select tirelations that are to be included in the model,
and prove the linear complexity of the inference algorithirew run on the resulting structure.

As short-term goals, we intend to compare the exact inferéhmited set of correlations approach with
the original approach based on approximate inference $éulbf correlations. Another direction that might
lead to improved results is that of using a generalized oersf the belief propagation algorithm, where



messages are passed between sets of nodes, at additioqmltabamal cost (Yedidia, Freeman, & Weiss,
2000), or using alternative approximate-inference method
Long-term goals include:

e Applying the same approach to other natural language tasitanay benefit from document-level
correlations. Two examples are word sense disambiguatd®D) and part-of-speech (POS) tag-
ging. In WSD, the one sense per discourse hypothesis haspveeiously used by Yarowsky in
(Yarowsky, 1995). The RMN framework however is able to imparate this type of knowledge in a
more probabilistic, sound manner. As for the task of POSitaggvhile the benefit of using corre-
lations between tags of repeated words is debatable if Huetas trained and tested on documents
from the same corpora, given its already competitive paréorce, it has nevertheless the potential of
reducing the number of tagging errors on texts from diffesempora.

e Using features based on similarities with existing diciignentries. Such features can be incorporated
in our phrase classification approach in a natural, striightird manner.

e The "web as a corpus” is still an under-utilized idea. In tostext, textual patterns that disambiguate
the type of a candidate entity can be provided to a web seaigine so that statistics derived from
the number of returned hits may be used in order to increaskthystem’s performance.

e Syntactic information has already been proved to incrdasad¢curacy on the task of relation extrac-
tion. Besides designing an IE system for extracting refatigpecific to biomedical entities, we intend
to leverage entity recognition through the use of featuegveld from syntactic parses. Some of these
features have the benefit of encoding long-range deperetendiich cannot be captured from a flat
representation of sentences.

e The previous three goals can be seen as part of the effortsigrda general framework that would
allow the use of information from various knowledge soulicesder to increase the final IE system’s
performance. We intend to increase the robustness of tipiaph through the use of an efficient
feature selection algorithm.

2 Background and Related Work

The task of automatically constructing information extoas has received a lot of attention in the past
decade, and as such we observe a high diversity in the pro@mg®oaches and the learning algorithms
used therein. Nevertheless, a careful analysis revedlsnbst of these systems can be classified into two
basic types of approaches:

¢ Token Classification Word tokens in a document are sequentially classified awliaside or out-
side of a given named entity. Named entities are extracteddiyg token classification and then
assembling maximally contiguous sequences of inside token

e Phrase Classification Candidate phrases from a document are classified as to evhitiby are
instances of some entity types or not. This can be done bgrditarning a multi-class classifier, in
which case the number of classes is equal with the numbertity éypes plus one (for non-entity
phrases), or by separately learning sets of extractioeneattone set of patterns for each of the entity

types.



2.1 Phrase Classification Approaches

Relational learning has been one of the learning paradiged in some of the early IE systems, such as
Rapier (Califf & Mooney, 1999) and SRV (Freitag, 1998). Be{tstems belong to the phrase classification
approach.

2.1.1 Rapier

In RAPIER, the IE task is defined in terms of filling the slots contained template. A template specifies a
particular type of event, such as joint ventures, corpoaatguisitions, or job offerings. For example, a job
offering template contains slots for title, salary, areaxgertise, OS platform required, or job location. The
training data consists of filled templates, one templatedpeument. During testing, the IE system fills the
template slots with data extracted from the document.

For each template slot, a set of rules is learned in a bottprfashion, with each rule composed of
patterns that can make use of limited syntactic informatidore exactly, the extraction rules consist of
three parts:

1. A pre-filler pattern that matches text immediately préngdhe slot filler,
2. A pattern that matches the actual field, and
3. A post-filler pattern that matches the text immediatelijofaing the slot filler.

Each pattern is a sequence of pattern elements of one of pes:tyattern itemsandpattern lists A
pattern item matches exactly one word that satisfies itsti@nts. A pattern list has a maximum length N
and matches 0 to N words, each satisfying a set of constrddetsides constraining on words and their part-
of-speech tags, Rapier can also incorporate semanticiof@ssation, such as that provided by WordNet
(Miller, 1991). Consequently, each constraint is represas a disjunctive list of one or more words, tags
or WordNet synsets.

During testing, phrases are extracted by matching themrmsigtie set of rules learned for each slot.
For the template filling task, extracted phrases which am@ichted are ignored, however the system can
be easily modified to work in a named entity scenario, suchtiieoutput contains all extracted phrases,
duplicates included. Because each pattern is designedtthmphrases, we can view Rapier as belonging
to the generic class of phrase classification approaches.

212 SRV

SRV (Freitag, 1998) too is based on a relational learninggutare. Like FOIL (Quinlan, 1990), it proceeds
in a top-down fashion, starting with the entire set of exarapl! all negative examples and any positive
examples not covered by already induced rules. At each stgpeadily adds predicates, trying to cover as
many positive, and as few negative examples as possiblee Tha set of predefined predicate templates
including tests on the length of the candidate entity ostestfeatures of tokens inside the candidate phrases.
Token features are predefined too and come in two categories:

¢ simplefeatures such as the word, its capitalization pattern,rpifeatures testing whether the token
iS a punctuation sign, or a number.

¢ two relational features - the previous and the next tokens.



As with any phrase classification approach, SRV needs toeaddhe issue of searching through a
typically huge negative examples set. The authors do thisamglling negative examples implicitly, on a
token-by-token basis — examples are indexed based on thesdkey contain. Because a token is generally
shared by many candidate phrases, this leads to a morebleastmrch method.

2.2 Token Classification Approaches
2.2.1 Hidden Markov Models

Another class of approaches to learning IE systems is basétidden Markov Models (HMMs) (Rabiner,
1989). HMMs have been successfully used for speech recogiiefore becoming a model of choice for
other natural language tasks such as POS tagging or namgdrenbgnition. An HMM can be defined
as the stochastic version of a finite state automaton. Thase is a set of states (hidden), with transitions
between them. Given a state, there is a probability didicbwver all possible transitions from that state.
Symbols can be generated from any state, one symbol at aliemed on a symbol emission distribution.
In a typical application of HMMs, a sequence of symbols iegivogether with an HMM that is assumed
to have produced it. The generative process by which the HMddluzes a string of symbols starts by
choosing a distinguished state (referred to as a startaig)sthen transitioning to another state according
the the corresponding transition probability. This precgitransitioning from one state to another continues
until it reaches another distinguished state (referred thafinal state). Each time a transition is made from
a state, a symbol is generated according to that state’sayambission probability distribution. Graphically,
an unrolled HMM can be represented as a directed graph, aguneM4. In this and all subsequent figures,
the X symbols are used to denote observations, whikymbols refer to hidden variables (states or labels).

Yo Yy Yo Y3 Yo-1 Yy
O O o = O O
xl ><2 X3 xn—l xn

Figure 4: Unrolling an HMM as a directed graphical model

One of the questions that an HMM inference algorithm is Ugua&dquired to answer is what is the
sequence of states that is most likely to have generatedea gequence of symbols. For example, in the
case of POS tagging, each state corresponds to a POS tagastsymbols correspond to words. Given
a particular sentence, the POS tagging is defined as the tkelst $equence of states that generated the
sentence.

HMMs are particularly attractive as they have a solid matral foundation, and the associated infer-
ence problem can be solved in time linear with the number sénked symbols using dynamic programming
(the Viterbi algorithm). During learning, if the data isfubbservable (e.g. labeled training data), the HMM
parameters are simply set to their maximum likelihood estié®. If the data is only partially observable i.e.
the states are hidden, the Baum-Welch algorithm, an inatamt of the more general Expectation Maxi-
mization (EM) algorithm (Dempster, Laird, & Rubin, 1977grcbhe used to find a set of parameters such
that the likelihood function is locally optimized.



IE systems based on HMMs belong naturally to the categorpkd#rt classification approaches. The
most likely path through the Markov model leads to a taggihghe input symbols, and consequently
entities are extracted by assembling maximal contiguogsiesees of words which are tagged with the
same entity tag.

There exist numerous IE systems based on HMMs, and with thesmoée diversity of augmentations
to the basic model was introduced in order to better addmssus aspects of the task, such as the need for
adequate representational power, or how to deal with gpahse to insufficient training data.

Nymble. Nymble (Bikel, Schwartz, & Weischedel, 1999) is one of thdiest learning systems for
named entity recognition based on HMMs. It consists of amdiggmodel with one state for each entity
type, together with an additional state for tokens outsitieemtity. Inside each name-class state, words are
generated based on a statistical bigram language modehéreration of name-classes (states) and words
proceeds in three steps, which are repeated until the evdire sequence is observed.

1. Select a name-class, conditioning on the previous ndass-and the previous word.

2. Generate the first word from inside that name-class, bylitioning on the current and previous
name-classes.

3. Generate subsequent words inside the current name-alasse each word is conditioned on its
immediate predecessor.

In this model, words are generally assimilated with ordgrenls of words and word featurés), f),
where features belong to a predefined set of features, siwitlathose used in the SRV system. This further
exacerbates the problem of insufficient training data formeging the model parameters. Consequently, the
authors rely on a multi-level back-off scheme, with weigftis each level of back-off set based on an
empirical formula.

HMMs and Shrinkage. A different approach is proposed in (Freitag & McCallum, 999where a
separate HMM is created for each of the extraction fields. skates in each HMMs are either background
or target states. Prefix and suffix states are distinguisioed dther background states in order to account for
distributional peculiarities in the case of tokens ocagtbefore or after the target field. Similarly, because
certain tokens tend to occur at the beginning or end of thigriemt, the target state is expanded into an array
of parallel paths of varying length. The problem of data sipars alleviated through the use of "shrinkage”,
a statistical technique which combines parameter estgriedm data-sparse states of a complex model with
estimates from data-rich states of a simpler model. Theodattlies on a hierarchy that represents expected
similarity between parameter estimates, with the estisaftéhe complex model at the leaves. In the case of
shrinkage for HMM, subsets of states having similar wordssion distributions are connected to a common
parent. Internal nodes in turn can share a common parer#t, ettieoding weaker similarities between the
corresponding groups of states. Word emission probasiliissociated with states high in the hierarchy
become simpler than those for states below, with the top cifi &éerarchy corresponding to the uniform
distribution. The "shrinkage-based ” parameter estimatieiined as a linear interpolation of the estimates
in all distributions from the leaf to the root. The corresgimg mixture weights are optimized by running
EM on a held out dataset.

HMMs and Structure Learning. The two recently discussed HMM-based systems start witkedegsr
fined model structure, and learning is used only in estirgatie model parameters. For tasks in which the
entities to be extracted are densely represented insideuarcint, as is the case with headers and research
paper references, a single HMM containing states for aiyetyppes may be more appropriate. Variability in
the relative ordering of the fields can be captured in the inpgallowing the same field to be represented
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by more than one state. Learning the structure of such a medeé focus of the approach described in
(Seymore, McCallum, & Rosenfeld, 1999).

2.2.2 Discriminative Models

We have already distinguished between IE approaches bageden classificatiomnd approaches based
on phrase classificationAnother useful dichotomy, orthogonal to the previous as#iat ofgenerativevs.
discriminativemodels. All HMM models reviewed here are generative in thesedhat they try to model
both the observation and hidden state sequences. Howevweagst application of HMMs, the observations
are given, the task being that of "decoding” the hidden statguence. Therefore, a major drawback of
generative models is that modeling effort is spent on olagienmvs, instead of being focused entirely on de-
scribing the state sequence. The attempt to model the cltgsrs while keeping the inference tractable
has led to theutput independence assumptiavhich stipulates that the current observation, given tire ¢
rent state, is independent of previous observations. Usumltext applications, observations correspond
to words, and consequently the output independence assumniptot fair enough. The mismatch between
model assumptions and data becomes even more pronounceatidgaping features, such as word capital-
ization and part-of-speech, are added as observationghé&nimadequacy (McCallum, Freitag, & Pereira,
2000) is due to the way parameters are estimated. In an HMidnpzeters are set to maximize the likelihood
of the observation sequence, while the task is that of piiedithe state sequence given the observations.
All these mismatches and limitations are eliminated inmhsinative approaches, in which the conditional
probability of state sequences given the observationstidze core at the model.

2.2.3 Maximum Entropy Models

The Maximum Entropy (MaxEnt) (Berger, Della Pietra, & DelRietra, 1996) principle has been widely
used to create discriminative probabilistic models fourgtlanguage tasks. The classification problem
is viewed in terms of a random process that produces an ougué y from a finite setY, based on
the contextual informatiorr, a member of a finite seX. In a token classification scenario, this means
associating a tag to each text token, whereas the contexs derived from the text centered at the current
token position. In maximum entropy modeling we are lookiog & probability distributiorp(y|z) that
satisfies a set of constraintg € C derived from a collection of user specified featufgs, y) € F. Each
feature is expressed as a binary function based on the ¢tané¢xhe current token position and its proposed
classificationy. For example, a useful feature in tagging for named entitpgaition is the capitalization
of the token to be classified, and it can be expressed as fllow

1 if current token is capitalized & = Inside,
0 otherwise

filz,y) = {

The constrainC; associated with a feature functighis expressed simply by imposing that the expected
value of f; under the target distributiop(y|z) be the same as the expected valug;ainder the empirical
distributionp(z, y) (derived from the training data):

C%pryfzwy ZP p(ylz) fi(z,y)

T,y

Out of a potentially infinite number of probability distritbons p(y|z) satisfying a particular set of
constraints, the maximum entropy principle dictates thatselect the most "uniform” distribution, where
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a formal measure for the "uniformity” of a distribution isvgn by the information theoretic notion of
conditional entropy (Cover & Thomas, 1991):

H(Y|X) = Zp z) log p(y|x)

Based on the concept of duality from constrained optimizgtit can be shown that the distribution
p(y|z) satisfying the constraintS;, and which also minimizes the conditional entradyY | X), is a mem-
ber of the exponential family:

pyla) = ear (Z Az-fm,y))

whereZ(z) = >, exp (3_; Aifi(z,y)) is a normalizing constant. An additional compelling justtion
for the maximum entropy principle is that the resulting rdigttion is also the model which, among all
log-linear models of the above form, maximizes the liketil@f the parameters given the training sample.

In (Ratnaparkhi, 1996), the authors describe a maximunopytapproach to part-of-speech tagging in
which they introduce a feature templatéu, b) which relates the tags of two consecutive tokens:

1 ify1=a&y =b,
0 otherwise

fla,b)(xt,y,yt-1) = {

They also define a similar feature template relating the tdighree consecutive tokens. Computing
the highest probability label for each token, from left tghti, does not necessarily lead to the most likely
sequence of tags. To alleviate this, the authors use a bemohgerocedure, in which they consider tokens
from left to right, keeping at each position the five sequenaitags concentrating the most probability
mass. A more rigorous approach, which was later used in marirmantropy models for named entity
recognition (Chieu & Ng, 2003), is to use a Viterbi-like aliflom for decoding, which guarantees finding
the most likely labeling of the entire sequence of words.

Maximum Entropy Markov Models. This new type of features, relating tags in consecutivetjoos,
suggests a class of maximum entropy models in which binatyifes may include a test on the class of the
previous token, besides conditioning on the observed iopotext and the mandatory test on the class of
the current token. Each such feature is uniquely identiidyl a conditiory on the observed input; and
the possible instantiationsandb for the current and previous tags,andy; 1, as follows:

1 ifg(z) =1& yr1=a& y =0,
0 otherwise

f<gaaab>(xtaytayt71) = {

One "extreme” case is that when for any given input feagyffer each valid combinations of tags, b),
the above defined compound featytg, a, b) is included in the model. This is a maximum entropy model
in which the same set of input featurg¢ss associated with transitions between any two hiddensstedéad
b. It can be shown that this type of model is in fact equivaleithva Maximum Entropy Markov Model
(MEMM) (McCallum et al., 2000), which means that the sameegiensystem that is currently used for
learning a MaxEnt model, can also be used for learning an MENKbdel by simply providing it with the
appropriate set of features.

An MEMM (McCallum et al., 2000) creates an maximum entropydeldor each state in the model.
Thus, for a given state’, the framework learns an exponential model correspondirthe probability of
transitioning to another statefrom s’, given the observation sequenggi.e. p(s|s’, 0). Consequently, if
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Figure 5: Unrolling an MEMM as a directed graphical model

the set of states iS, the MEMM will contain|.S| exponential models. Finding the most likely sequence of
states in this context can be done efficiently using a Vitkei algorithm. The procedure for learning the
parameters is the same as in the MaxEnt case i.e. using legpt@rative Scaling (Della Pietra, Della Pietra,
& Lafferty, 1997) or a gradient based method (the likelihdadiction is concave, and the gradient is simply
the difference between observed and expected featuregjount

2.2.4 Conditional Random Fields

A fundamental problem with MEMMs and other discriminativaov models based on directed graphical
models is that they are biased toward states with few suocesstes. This is the "label bias problem”
(Lafferty et al., 2001), which in a more general form stipetathat states with low entropy next-state dis-
tributions will take little notice of observations. The nimxm entropy model from (Ratnaparkhi, 1996) is
subject to this problem too, as some of the features it usesdirectly associated with transitions (they
contain conditions on labels of consecutive tokens). Thsae for this behavior stems from the fact that
the same probability mass is allocated for modeling thelilagpeecision at each position in the sequence.
A principled solution to this problem is that of ConditiorRhndom Fields (Lafferty et al., 2001), where a
single probability distribution is learned, one that madile joint probability of a label sequence given a
sequence of observations. Informally, this can be viewerfaste state model with unnormalized transition
probabilities. Therefore, some transitions may contgbubre than others to the overall score, depending
on the corresponding observations.

Yo Yy Yo Y3 Y1 Yo
xl x2 X3 xn—l xn

Figure 6: Unrolling a CRF as an undirected graphical model

Inference in CRFs can be done efficiently by accommodatiegctiiresponding forward-backward or
Viterbi algorithms used for HMMs (Rabiner, 1989). Learnitng CRFs parameters can be cast as an op-
timization problem — the likelihood function is concaveusha global maximum can be found efficiently
using standard procedures, such as Improved lterativéin§d@lella Pietra et al., 1997), or gradient based
methods.
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We have started the list of token classification approachéskWM models, which are generative and
can be represented as directed graphical models. We havedatigat conditional models are more appro-
priate for the tagging task, one of their benefits being thay &llow for arbitrary, potentially overlapping
features over the observation sequence. Consequenthawealescribed Maximum Entropy models, a class
of conditional models which we have further shown that itssubes Maximum Entropy Markov Models, a
particular type of conditional Markov models. Although ¢keconditional models offer increased represen-
tational power when compared with HMMs (their generativarderpart), they are all plagued by the "label
bias problem”. This is particularly troublesome, as thebfgm does not occur with HMMs. The solution
came in the form of Conditional Random Fields, a type of wad&d graphical models especially suited
for labeling sequences, which overcomes the label biadgmoby modeling the joint probability over the
entire label sequence given the observation sequence.elnetkt sections we describe a generic type of
undirected graphical models called Relational Markov Neks (RMNs) (Taskar et al., 2002) which can
model more general types of label correlations, and areetprently a suitable framework for our initial
approach to "collective information extraction”.

2.3 Markov Random Fields

Graphical models offer an intuitive representation of ¢bowdal independence between domain variables.
They come in two main flavors:

e Directed Models— well suited to represent temporal and causal relatiossfidayesian Networks,
Neural Networks, HMMSs)

¢ Undirected Models— appropriate for representing statistical correlatiogisvieen variables (Markov
Networks such as CRFs, RMNs, Boltzman Machines)

Markov Random Fields (Markov Networks) are a special cldssdirected graphical models. Below
is their definition, based on the following notation:

e V = a set of vertices used to denote random variables
e G = (V, E) an undirected graph

e N(v) = the set of neighbors of vertexc V

Definition 1 V is said to be a Markov Random Field with respectidf for any vertex, its value depends
only on its neighbors i.eP(V;|V — V;) = P(V;|IN(V;)),VV; € V

For the discriminative version, assum&is the set of observed variables, aridis the set of hidden
variables, such thdt = X U Y.

Definition 2 V is said to be a Conditional Markov Random Field with respedftif P(Y;|X,Y —Y;) =
P(Yi|X,N(Y;)),VY; € Y

Markov Random Fields characterize the underlying undeegraphical model via a local property,
namely the Markov assumption. On the other hand, Gibbs Rarfdelds, which are going to be defined
next, use a global property to characterize the correspgrgliaphical model. The corresponding notation
follows below:
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V = a set of vertices which stand for random variables

G = (V, E) an undirected graph

C(G) = the set of cliques i

V. = the set of vertices in a cliquec C

¢ ={¢.: Ve = Ry, c e C(G)} asetofclique potentials

Definition 3 V is said to be a Gibbs Random Field with respec&td P(V) = % > cec(q) Pe(Ve), where
Z is a normalization constant.

Thus, a Gibbs Random Field is specified numerically by aaiagi potentials with cliques in the graph.
A cligue potential is a function on the set of possible configions of the clique, that associates a positive
number with each configuration. The joint probability diaition over all vertices in the graph is obtained
by taking a product over the clique potentials.

For the discriminative version, assumeis the set of observed variables, aids the set of hidden
variables, such thdf = X U Y, and similarly, for every clique € C(G), letV, = X, UY..

Definiton 4 V is said to be a Conditional Gibbs Random Field with respectGaf P(Y|X) =

ﬁ > eec(a) e(Xe, Ye), whereZ(X) is a normalization constant.

Therefore, whereas a Markov Random Field is an undirecteghigal model characterized by a local
property, a Gibbs Random Field is an undirected graphicadahoonstrained by a global property e.g.
the Gibbs distribution. The following theorem stipulatbattthe two types of graphical models are in fact
equivalent.

Theorem 1 (Hammersley & Clifford, 1971y is a (conditional) MRF with respect t@ if and only if V' is
a (conditional) GRF with respect 1G.

Consequently, one can create a Markov Random Field by simegién underlying probability distribu-
tion that factorizes into potentials over all maximal ckgun the graph.

2.4 Relational Markov Networks

Relational Markov Networks (Taskar et al., 2002) are cood#tl Markov random fields augmented with a
set ofclique templatesA clique template specifies which vertices are to be comukicta clique, associating
the same clique potential with all cliques that it createthimgraph. Thus, a clique template provides at
the same time a procedure for creating edges in the grapha amechanism for tying parameters (clique
potentials) in the model.

In (Taskar et al., 2002), the RMN framework was introducedritter to model correlations between the
class labels of hyperlinked web pages — pages which are Iyt tend to have the same label. The clique
template responsible for this type of correlations is dietibelow:

e Cligue Creation Add an edge (a 2-node clique) between the labels of any twerligked web pages.

e Clique Potentials To all edges created by this template, associate the sarastbtfunctiong. If
the number of possible class labelsNs then¢ can be specified as @i x N table of positive real
valuesi.ep: {1,2,.. ., N} x {1,2,..,N} - R,.
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Figure 7 shows a sample RMN, where the above cliqgue templa#tes eight edges between the labels
of hyperlinked web pageX . The same potentiagl is associated with all these edges. Other clique templates
are responsible for creating edges between each Yalaeld the corresponding local context featureXin

Figure 7: An RMN unrolled, with cliques between hyperlinkedb pages.

The CRFs, as previously illustrated in Figure 6, are theesfoparticular type of RMNSs, in which clique
templates create 3-node cliques between any two consedabels,Y; ; andY;, and their corresponding
contextual featureX;.

Given a set of potentials, doing inference with RMNs maymr&fdwo things:

1. Computing the marginal probabilities for all hidden ahies, or a proper subset of them.
2. Computing the most probable assignment of values toddign variables in the model.

For tree-structured models, the belief propagation algari(Pearl, 1988) computes the marginals over
all hidden variables in time linear with the number of noded adges in the underlying graph. For graphs
with cycles, however, exact inference algorithms, suclhagdin-tree algorithm, have a running time expo-
nential in the size of the largest clique in the triangulageabh. An alternative to exact inference is to do
approximate inference using loopy belief propagation,clvthias shown reasonable performance in many
practical applications (Murphy et al., 1999).

Learning with RMNs means computing the clique potentialdach potential template, given training
data where both the content attributes and the labels aenaas One alternative is to use a gradient
based method in a Maximum Likelihood (ML) or Maximum A Pogier(MAP) setting. For the last type
of estimation, a “shrinkage” prior over the parameters sdygypically a zero-mean Gaussian. Because,
in both cases, the objective function is concave, the opttion procedure is guaranteed to find a global
maximum. An alternative learning method is to us®echastic gradient ascerm the form of a Voted
Perceptron (Collins, 2002). In this case, the objectivection is calculated for a single instance at a time,
and its gradient is approximated with the features counth®iMost Probable Explanation (MPE) labeling,
instead of computing the full feature count expectationvétheless, inference is needed in both learning
scenarios, either for computing marginals over subsetgidehn variables, of for deriving the MPE labeling.

Viewed from the RMN perspective, CRFs are a special typenefli-chain undirected graphical mod-
els, and, as with any linear-chain or tree-structured geaplmodels, both exact inference and parameter
estimation can be solved efficiently.
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3 Completed Research

Of all IE systems mentioned in the previous section, thaSef/more et al., 1999) is able to model influences
between various types of entities based on the order in wthigh occur in the document — in headers of
research papers, for example, the author's name usuallesafter the title. This type of order-based
correlations is captured by learning an HMM structure inchtthe same entity type may be associated with
multiple states in the model, while the set of transitiorflents the order in which various entity types occur
in the training data.

There have been some previous attempts to use global infionmi@om repetitions, acronyms, and
abbreviations during extraction. In (Chieu & Ng, 2003), & seglobal features are used to improve a
Maximum-Entropy tagger; however, these features do ndt Gdpture the mutual influence between the
labels of acronyms and their long forms, or between entjetidons. In particular, they only allow earlier
extractions in a document to influence later ones and notwecsa.

In this section we are going to introduce a collective apgino® Information Extraction which will
allow the incorporation of arbitrary correlations betweka labels of potential extractions from the same
document. For this, we shall use the RMN framework to do etitsa by phrase classification.

3.1 Candidate Entities

Doing phrase classification requires a set of phrases tovsiiér. Throughout this document, we will use

the termscandidate entitiescandidate extractionsor candidate phraseto refer to the set of phrases that
are to be classified as being valid extractions or not. Cenisig as candidate entities all contiguous word
sequences from a document would lead to a quadratic numipgrrages, which would adversely affect the
time complexity of the extraction program. Various heucsexist however which can significantly reduce
the size of the candidate set, and some of them are listed/belo

e H1: In general, named entities have limited length. Therefone, simple way of creating the set of
candidate phrases is to compute the maximum length of atitated entities in the training set, and
then consider as candidates all word sequences whose lisngphio this maximum length. This is
also the approach followed in SRV (Freitag, 1998).

e H2: In the task of extracting protein names from Medline absétawe noticed that, like most en-
tity names, almost all proteins in our data are base noursphrar parts of them. Therefore, such
substrings are used to determine candidate entities. Tid evgsing options, we adopt a very broad
definition of base noun phrase — a maximal contiguous sequafitokens whose POS tags are from
{"3J”, "VBN”", "VBG”, "POS”, "NN”, "NNS”, "NNP”, "NNPS”, "CD” , "=" }, and whose last
word (the head) is tagged either as a noun, or a number. Caadidtractions then consist of base
NPs, together with all their contiguous subsequences kidagla noun or number.

e H3: The CoNLL 2003 English corpus (Tjong Kim Sang & De Meulderp2pcontains four types
of named entities: persons (PER), locations (LOC), orgdmins (ORG), and other (MISC). A more
appropriate heuristic in this case is to consider as catefiddl sequences of proper names, potentially
interspersed with prepositions, commas, conjunctionsbnite articles.

Table 1 below shows the candidate entities generated by HIH&non a fragment from a Medline
abstract. Similarly, Table 2 shows candidate entities gead by H1 and H3 on a fragment from a CoNLL
document. Both H2 and H3 are strong heuristics, in the sdraetey drastically reduce the number of
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candidate entities. In the next sections, we shall focufienask of extracting protein names from Medline
abstracts.

\ “the control of humarribosomal protein L22 (rpL22 ) “ |

o theo the controlo the control ofo the control of human the control of

H1 | human ribosomal ... o ribosomal ribosomal proteir ribosomal protein L22

o ribosomal protein L22 ¢ ribosomal protein L22 (rpL22 ... 0 L2200 122 (o
oL22 (rpL220 L22 (rpL22)o ...0rpL22 orpL22)o0) o

H2 o controlo human ribosomal proteissthuman ribosomal protein L22

o ribosomal proteir ribosomal protein L22 o protein L220 L22 o rpL22 o

Table 1: Candidate Extractions: Medline.

“Israel gavePalestinian Presidentyasser Arafat permission on Thursday* \

o Israel o Israel gave> Israel gave Palestinianlsrael gave Palestinian
H1 | President ... o Palestiniano Palestinian PresidentPalestinian President Yassgr
o Palestinian President Yasser Arafat. o Yassero Yasser Arafat o President
Yasser Arafat permission... o ono on Thursday Thursdaye
H3 o Israel o Palestiniano Palestinian PresidentPalestinian President Yasser
o Palestinian President Yasser Aradad®resident President Yasser
o President Yasser ArafatYasser Yasser Arafat o Arafato

Table 2: Candidate Extractions: CoNLL.

3.2 Entity Features

The set of features associated with each candidate is basthe deature templates introduced in (Collins,
2002), used there for training a ranking algorithm on theasttons returned by a maximum-entropy tagger.
Many of these features use the concepivofd type which allows a different form of token generalization
than POS tags. Thshort typeof a word is created by replacing any maximal contiguous seces of
capital letters with 'A, of lower-case letters with 'a’, drof digits with '0’. For example, the wordiGF-1
would be mapped to typ&-0.

Consequently, each token positidin a candidate extraction provides three types of inforomatithe
word itselfw;, its POS tag;, and its short type;. The full set of features types is listed in Table 3, where
we consider a generic candidate extraction as a sequence afwordswowy ...wy,.

Each feature template instantiates numerous featuresexample, the candidate extractiotfDAC1
enzyme’has the head wordiD=enzymethe short typeST=AQa, the prefixePF=A0 andPF=A0_a, and
the suffixesSF=aandSF=AQa. All other features depend on the left or right context of ¢inéity. Feature
values that occur less than three times in the training datéltered out.

3.3 The RMN Framework for Entity Recognition

Given a collection of documeniB, we associate with each documént D a set of candidate entitiesE,
in our case a restricted set of token sequences from the dodui8ection 3.1). Each entity e d.FE is
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Description | Feature Template

Head Word W(n)
Text W(g)-W(1)----W(p)

Short Type 8(0)-8(1)----5(n)

Bigram Left w(—_1)-W(0) W(—1)-5(0)
(4 bigrams) S(—1)-W(0) 8(—1)-5(0)
Bigram Right W(n)-Wn+1) W(n)-S(n+1)
(4 bigrams) | $(n)-Wni1)  S(n)-S(nt1)
Trigram Left W(_2)-W(_1)-W(g)

(8 trigrams) S(—2)-8(=1)-5(0)

Trigram Right W(n)-W(n+1)-W(n+2)

(8 trigrams) 8(n)-8(n+1)-5(n+2)

POS Left t-1)

POSRight | ¢,
Prefix 5(0) (
(n+1 prefixes)| s(g)-sq)

Suffix S(n)  S(n-1)-5(n)
(n+1 suffixes) | s(0)-s(1)

Table 3: Feature Templates.

characterized by a predefined set of boolean attribuf&gSection 3.2), the same for all candidate entities.
One particular attribute is.label which is set to 1 ife is considered a valid extraction, and 0 otherwise.
In this document model, labels are the only hidden varialdled the inference procedure will try to find a
most probable assignment of values to labels, given thecumodel parameters.

Each document is associated with an undirected graphicdeinaith nodes corresponding directly to
entity attributes, one node for each attribute of each cteientity in the document. The set of edges is
created by matchinglique templateagainst the entire set of entitiédsE. A clique template is a procedure
that finds all subsets of entities satisfying a given consfrafter which, for each entity subset, it connects
a selected set of attribute nodes so that they form a clique.

Formally, there is a set of clique templat@swith each template € C specified by:

1. A matching operatah/, for selecting subsets of entitiek],(E) C 2%

2. A selected set of featuret = (X,, Y.), the same for all subsets of entities returned by the majchin
operator.X. denotes the observed features, whilgefers to the hidden labels.

3. A clique potentiaky. which gives the compatibility of each possible configunatad values for the
features inS, s.t. ¢.(s) > 0,Vs € S..

Given a setE of nodes,M.(E) consists of subsets of entities whose attribute nétiesre to be con-
nected in a clique. In previous applications of RMNs, theseld subsets of entities for a given template
have the same size; however, some of our clique templatesmatgh a variable number of entities. The
setS. may contain the same attribute from different entities. dllgufor each entity in a matching set, its
label is included inS.. All these will be illustrated with examples in Sections ard 3.5 where the clique
templates used in our model are described in detail.
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Depending on the number of hidden label&inwe define two categories of clique templates:

e Local Templatesare all templates € C for which |Y.| = 1. They model the correlations between
an entity’s observed features and its label.

¢ Global Templatesare all templateg € C for which |Y.| > 1. They capture influences between
multiple entities from the same document.

After the graph model for a documedihas been completed with cliques from all templates, thegsrob
bility distribution over the random field of hidden entitypksd.Y given the observed featurdsX is given

by the Gibbs distribution:

1
P(d.Y]d.X) = 74X CGHCGGAHd.E) ¢c(G.X,,G.Y,) 1)

whereZ(d.X) is the normalizing partition function:

z@dx)=> [ ][] ¢c(GX.GY.) 2)

Y c€C GeM.(d.E)

3.4 Local Cliqgue Templates

As described in the previous section, the role of local ditemplates is to model correlations between an
entity’s observed features (see Table 3) and its label.ftHr &ltering, we are left withh distinct boolean
featuresf;, one way to model these correlations is to introdidecal (clique) template& T, LT, ..., LT},

A templateLT; would then be defined as follows:

1. The matching operatav/; is set to match any single-entity Set}.

2. The collection of attributess; corresponding to a singleton entity set} is defined to beS; =
(X:,Y:) = ({e-fi}, {e.label}). This amounts to introducing in the RMN graphattribute nodes for
each candidate entity, which are to be connected by tloeal templates to the corresponding entity
label node. The 2-node cliques created by:aémplates around one entity are illustrated in Figure 8.

3. The potential; associated with all 2-node cliques created by templ&tewould consist in 2 x 2
table (as botle. f; ande.label have cardinality 2 — assuming only one entity type is to beaektd,
we need only two values for the label attribute).

€/abel

Figure 8: RMN generated by local templates.
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Each entity has the label node connected to its own sét lmhary feature nodes. This leads to an
excessive number of nodes in the model, most of which hausevatro. The number of nodes can be
reduced if, for each entity, we include in the graphical maady those nodes for which the corresponding
feature variable has value 1. Consequently, the table ia$sdavith the local potential will be reduced from
4 to 2 values, specifying now the compatibility between tlegtture and the two possible values for the
entity label.

Factor Graphs. An alternative, useful representation for Markov randortd§ies provided by factor
graphs (Kschischang, Frey, & Loeliger, 2001). These ararbitp graphs which express how a global func-
tion of many variables (the probabilit#(d.Y'|d.X) in Equation 1) factors into a product of local functions
(the potentialspc(G.X,, G.Y.) in Equation 1). Factor graphs subsume many different typesaphical
models, including Bayesian networks and Markov randomsdielthe sum/max-product algorithm used for
inference in factor graphs generalizes a wide variety obritlyms including the forward/backward algo-
rithm, the Viterbi algorithm, and Pearl’s belief propagatialgorithm (Pearl, 1988). To obtain the factor
graph for a given Markov random field, we copy all original eedrom the MRF, referred henceforth as
variable nodesand create potential noddor each instantiated clique potential. Each potentialenedhen
linked to all variable nodes from the associated clique.

In the case of local clique potentials, given that all featnodes have value 1, we can eliminate them
from the equivalent factor graph representation. Whatfisthen is a variable node for the entity label,
together with nodes for potential functions, one potemt@de for each entity feature whose value has been
observed to be 1. As an example, Figure 9 shows that part ¢d¢ka graph which is generated around the
entity label forHDAC1 enzyme’(with variable nodes figured as empty circles and potentides figured as
black squares).

€label

]

(pHD=enzyme (pPF=AO_a (pSF=AO_a
Per=no QsF-a

Figure 9: Factor Graph for local templates.

Note that the factor graph above has an equivalent RMN grapsisting of a one-node clique only, on
which it is hard to visualize the various potentials invalvel' here are cases where different factor graphs
may vield the same underlying RMN graph, which makes thefagptaph representation preferable.

3.5 Global Cliqgue Templates

Global clique templates enable us to model hypothesizedeinfles between entities from the same doc-
ument. They connect the label nodes of two or more entitigschw in the factor graph, translates into
potential nodes connected to at least two label nodes. Iexpariments we use three global templates:
Overlap Template (OT): No two entity names overlap in the text i.e if the span of onéeis [sy, 1]
and the span of another entity[is, 2], ands; < sg, thene; < ss.
Repeat Template (RT): If multiple entities in the same document are repetitionshef same name,
their labels tend to have the same value (i.e. most of therpratein names, or most of them are not protein
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names). Later we discuss situations in which repetitiote@fame protein name are not tagged as proteins,
and design an approach to handle this.

Acronym Template (AT): It is common convention that a protein is first introduced tsylong name,
immediately followed by its short-form (acronym) in pareeses.

3.5.1 The Overlap Template

The definition of acandidate extractiorirom Section 3.1 leads to many overlapping entities. Forgla,
'glutathione S - transferasé$ a base NP, and it generates five candidate extractigingthione’, 'glutathione
S’, 'glutathione S - transferas€'S - transferasg¢’and'transferase’ If 'glutathione S - transferaséias label-value
1, the other four entities should all have label-value Oalose they overlap with it.

This type of constraint is enforced by the overlap templatioHows:

1. TheMor operator matches any two overlapping candidate enfitieses }.

2. The set of attributeSor selected by this template for two overlapping entities, es} is Sor =
(Xor,Yor) = (0,{ei1.label,eq.label}). This translates in the factor graph into a potential node
connected to the two selected label nodes.

3. The potential functioor is set so that at most one of the overlapping entities can laget-value
1, asillustrated in Table 4.

‘ por H e1.label =0 ‘ er.label =1 ‘
es.label =0 1 1
es.label = 1 1 0

Table 4: Overlap Potential.

Continuing with the previous example, becaugetathione S’and’S - transferaseare two overlapping
entities, the factor graph model will contain an overlapeptial node connected to the label nodes of these
two entities.

An alternative solution for the overlap template is to ceeatpotential node for each token position
that is covered by at least two candidate entities in the e, and connect it to their label nodes. The
difference in this case is that the potential node will bensmred to a variable number of entity label nodes.
However this second approach has the advantage of creaiveg potential nodes in the document factor
graph, which results in faster inference.

3.5.2 The Repeat Template

We could specify the potential for the repeat template imailar 2 x 2 table, this time leaving the table
entries to be learned, given that assigning the same lalbepétitions is not a hard constraint. However we
can do better by noting that the vast majority of cases wheepeated protein name is not also tagged as a
protein happens when it is part of a larger phrase ithi@gged. For examplé&iDAC1 enzyme’is a protein
name, therefortHDAC1’ is not tagged in this phrase, even though it may have beerdgggviously in the
abstract where it was not followed byhzyme’. We need a potential that allows two entities with the same
text to have different labels if the entity with label-valQés inside another entity with label-value 1. But a
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candidate entity may be inside more than one “includingitgrdnd the number of including entities may
vary from one candidate extraction to another. Using thengta from Section 3.5.1, the candidate entity
'glutathione’is included in two other entitiesglutathione S’and’glutathione S - transferase’

In order to instantiate potentials over variable numberabtl nodes, we introducelagical OR clique
templatethat matches a variable number of entities. When this tepteatches a subset of entities
e1,ea, ..., en, it Will create an auxiliary OR entitgpg, with a single attributeepg.label. The potential
function ¢or is set so that it assigns a non-zero potential only whegilabel = eq.label V eg.label V ... V
en.label. The cliques are only created as needed, e.g. when theaayx@R entity is required by repeat
and acronym cligue templates.

Figure 10 shows the factor graph for a sample instantiatidheorepeat template using the OR template.
Here,u andv represent two same-text entities,, us, ... u, are all entities that include, andvy, v, ...,
vy, are entities that include. To avoid clutter, all entities in this and subsequent fagraphs stand for
their corresponding label features. The potential fumctig; can either be preset to prohibit unlikely label
configurations, or it can be learned to represent an appatepsoft constraint. In our experiments, it was
learned since this gave slightly better performance.

RT
O
u uOr \ \6r
Qo @
'K O ---O
u, U u, Vvqy Vo Vin

Figure 10: Repeat Factor Graph.

Following the previous example, suppose that the phigsethione’ occurs inside two base NPs in
the same documenitlutathione S - transferasend’glutathione antioxidant systemThen the first occurrence
of 'glutathione’ will be associated with the entity, and correspondingly its including entities will g
= 'glutathione S’anduy = 'glutathione S - transferase’Similarly, the second occurrence 'gfutathione’ will
be associated with the entity while the including entities will be, = ’glutathione antioxidantand v, =
'glutathione antioxidant system’

3.5.3 The Acronym Template

One approach to the acronym template would be to use an elgorithm for identifying acronyms and
their long forms in a document, and then define a potentiadtian that would favor label configurations

in which both the acronym and its definition have the samel.lakne such algorithm is described in
(Schwartz & Hearst, 2003), achieving a precisiord6% at a recall rate 082%. However, because this
algorithm would miss a significant number of acronyms, weehdecided to implement a softer version as
follows: detect all situations in which a single word is ersgd between parentheses, such that the word
length is at least 2 and it begins with a letter. Latenote the corresponding entity. Lt uo, ...,u, be all
entities that end exactly before the open parenthesisisifdfa situation in which is an acronym, then one
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of the entitiesu; is its corresponding long form. Consequently, we use a &g template to introduce
the auxiliary entityup g, and connect it ta’s node label through an acronym potentied T, as illustrated
in Figure 11.

NS
Uy, v
Qo
O
u, U, u,

Figure 11: Acronym Factor Graph.

For example, consider the phrage antioxidant superoxide dismutase - 1 ( SOQWhere bothsuperoxide
dismutase - 1and’SOD1’ are tagged as proteinssOD1’ satisfies our criteria for acronyms, thus it will be
associated with the entityin Figure 11. The candidate long forms are= 'antioxidant superoxide dismutase
- 1’, ug ='superoxide dismutase - landug = 'dismutase - 1

3.6 Inference in Factor Graphs
There are two problems that need to be addressed when warikingRMNSs:
1. Inference: Usually, two types of quantities are needed from an RMN model

e The marginal distribution for a hidden variable, or for aseiof hidden variables in the graph-
ical model.

e The most probable assignment of values to all hidden vaasaibl the model.

2. Learning: As the structure of the RMN model is already defined by itsudigemplates, learning
refers to finding the clique potentials that maximize thelltkood over the training data. Inference

is usually performed multiple times during the learningoainm, which means that an accurate, fast
inference procedure is doubly important.

In our setting, given the clique potentials, the inferertep $or the factor graph associated with a document
involves computing the most probable assignment of valudset hidden labels of all candidate entities:

d.Y* =arg max P(d.Y|d.X) (3)

whereP(d.Y |d.X) is defined as in Equation 1. A brute-force approach is exdudimce the number of
possible label configurations is exponential in the numifeandidate entities. The sum-product algorithm
(Kschischang et al., 2001) is a message-passing algoritlaincan be used for computing the marginal
distribution over the label variables in factor graphs withcycles, and with a minor change (replacing
the sum operator used for marginalization with a max oper@t@an also be used for deriving the most
probable label assignment. In our case, in order to get asliagyaph, we would have to use local templates
only. However, it has been observed that the algorithm aftewerges in general factor graphs, and when
it converges, it gives a good approximation to the correatgmals. The algorithm works by altering the

23



Appear s in PhD Proposal, Oct 2004 (Also Appears as Technical Report TR-05-02),

belief at each label node by repeatedly passing messagesdrethe node and all potential nodes connected
to it (Kschischang et al., 2001).

The time complexity of computing messages from a potenbdkerto a label node is exponential in the
number of label nodes attached to the potential. Since thisih” can be large for OR potential nodes (and
also for the second solution to overlap potential nodes,diep required optimization. Fortunately, due to
the special form of the OR and overlap potentials (high degifesparsity), and the normalization before
each message-passing step, these special cases can beéetbimfinear-time. For example, the formulae
for computing the OR messages for the sum-product algorétershown in Figure 12 (to avoid clutter,
and¢ stand forepg andgpr respectively).

po—e(0) = Hﬁe,-—mﬁ(o)
i=1
ﬂqﬁ—re(l) = 1- ﬂqﬁ—re(o)
bo—e;(0) = poe(l) +
ﬂ'qﬁ—re(o)
oo (0) (to—e(0) — pg—e(1))
Ho—re; (1) = ﬂqﬁ—re(l)

Figure 12: Messages in OR Factor Graph.

3.7 Learning Potentials in Factor Graphs
Following a maximum likelihood estimation, we shall use libg-linear representation of potentials:
¢C(G-Xc, GY;;) = e-Tp{chc(G~Xca GY;:)} (4)

Let w be the concatenated vector of all potential parametgrsOne approach to finding the maximum-
likelihood solution forw is to use a gradient-based method, which requires comptitengradient of the
log-likelihood with respect to potential parameters. It can be shown that this gradient is equal with the
difference between the empirical countsfpfind their expectation under the current set of parameters

VL(w,D) = f(d.X,dY) > > fo(dX,dY')Py(dY'|d.X) (5)
deD deD d.Y'

The expectation in the second term is expensive to compimes & requires summing over all possible
configurations of candidate entity labels from a given doenin To circumvent this complexity, we used
Collins’ voted perceptron approach (Collins, 2002), wigeh be seen as approximating the full expectation
of f. with thef, counts for the most likely labeling under the current parinsav.

VIL(w,D)~ Y fo(dX,dY) > fo(d.X,dY,) (6)

deD deD

The Voted Perceptron algorithm is detailed in Table 5. Atestepi in the algorithm, inference is performed
using the current parameters, so that we get the most likely labelidgy;. The parameters are then updated
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based on the difference between the features counts cotdhputire ideal labeling.Y and those computed
on the current most likely labeling Y;. The final set of parameters is the average taken over thenpéees
at all stepg in the algorithm.

Input: a set of document®, number of epoch¥’,
learning rate.
setparametersuy = 0
setcounteri = 0
fort =1...T
for every documend € D
d.Y; = argmaxgy Py, (d.Y'|d.X)
wit1 = w; +n* [f(d.X,dY) — f(d.X,d.Y;)]
t=1+1
Output: w = 7 ;Wi

Table 5: The Voted Perceptron Algorithm.

In all our experiments, the perceptron was run for 50 epagfib,a learning rate set at 0.01.

3.8 Experimental Results

We have tested the RMN approach on two datasets that havehbedrtagged for human protein names.
The first dataset is Yapéwhich consists of 200 Medline abstracts. Of these, 147 haea bandomly se-
lected by posing a query containing the (Mesh) tepnagein binding interaction andmolecularto Medline,
while the rest of 53 have been extracted randomly from the BENrpus (Collier, Park, Ogata, Tateisi,
Nobata, T.Ohta, Sekimizu, Imai, lbushi, & Tsuijii, 1999). clintains a total of 3713 protein references.
The second dataset is Aintedthich has been previously used for training the proteirrautéon extraction
systems in (Bunescu, Ge, Kate, Marcotte, Mooney, Ramaniofad)y2004). It consists of 225 Medline ab-
stracts, of which 200 are known to describe interactiong/éeh human proteins, while the other 25 do not
refer to any interaction. There are 4084 protein refereircHss dataset. We compared the performance of
three systems. T-RMN is the RMN approach using local templates and the overlaplas GLT-RMN

is the full RMN approach, using both local and global temgdaandCRF, which uses a CRF for labeling
token sequences. We used the CRF implementation from (Me@aR002) with the set of tags and fea-
tures used by the Maximum-Entropy tagger described in (Beunet al., 2004). All Medline abstracts were
tokenized and then POS tagged using Brill’s tagger (Brii93). Each extracted protein name in the test
data was compared to the human-tagged data, with the pwsitidken into account. Two extractions are
considered a match if they consist of the same characteeregun the same position in the text. Results
are shown in Table 6 which give average precision (P), r¢Bglland F-measure (F) using 10-fold cross
validation.

p— #correct extractions R— #correct extractions F — 2PxR
- #extractions — #annotated extractions = = P+R -

These tables show that, in terms of F-measure, the use oélgletmplates for modeling influences
between possible entities from the same document signifycanproves extraction performance over the

TURL:www.sics.se/humle/projects/prothalt/
2URL: ftp.cs.utexas.edu/mooney/bio-data/
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Yapex Aimed

Method Precision| Recall | F-measureg | Method Precision| Recall | F-measure
LT-RMN 70.79 53.81 | 61.14 LT-RMN 81.33 72.79 | 76.82
GLT-RMN | 69.71 65.76 | 67.68 GLT-RMN | 82.79 80.04 | 81.39
CRF 72.45 58.64 | 64.81 CRF 85.37 75.90 | 80.36

Table 6: Extraction Performance on two protein datasets.

local approach (a one-tailed paired t-test for statistiighificance results in a value less tha.01 on
both datasets). There is also a small improvement over CGRifsthe results being statistically significant
only for the Yapex dataset, corresponding tp zalue 0f0.02. We hypothesize that further improvements
to the LT-RMN approach would push the GLT-RMN performancerettiigher. The tagging scheme used
by CRFs, in which each token is assigned a tag, is essend#lgrent from the RMN approach, where
candidate extractions are either rejected or acceptedhdnagging approach used by CRFs, extracted
entities are available only after tagging is complete, éhgrmaking it difficult to account for influences
between them during tagging.

Figures 13 and 14 shows the precision-recall curves formtbelttasets. These were obtained by varying
a threshold on the extraction confidence, which is the piosterobability that its label is 1 as computed by
the sum-product algorithm.

100 (=

90

80 |-

Precision (%)

70

60 - -

50 1 1 1 1

Recall (%)

Figure 13: Precision Recall Curves on Yapex.

We also explored using a global template that captured titetecy for candidate entities whose phrases
are coordinated to have the same label. An example is showigime 15 where the two entitiesNOS’
and’NOSIP are coordinated through the conjunctiand’. This template did not improve performance since
detecting whether two NPs are coordinated is difficult, drdrhethods we tried introduced too many false
coordinations.
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Figure 14: Precision Recall Curves on Aimed.

Coi mmunopr eci pitation studi es denonstrated the
specific interaction of eNOS and NOSIP in vitro and
invivo ...

Figure 15: Coordinated phrases eNOS and NOSIP have the sditydabel.

In order to evaluate the applicability of our method to ottygres of narrative, we also tried it on the
CoNLL 2003 English corpus (Tjong Kim Sang & De Meulder, 2008)jich contains four types of named
entities: persons (PER), locations (LOC), organizati@RG), and other (MISC). Consequently the number
of label values increased from two to five (with a label-vatii® to indicate none of the four categories).
For the global approach we used the same overlap templat mwodlified version of the repeat template in
which the OR potential was replaced with a different type aikptial (SEL) that allows at most one of the
including entities to have a non-zero label-value. The S&fliable (replacing the OR variable) is forced to
have label-value 0 if all including entities have labelu&b, otherwise it selects the one label-value that is
not 0. The resulting repeat template, besides handlingt epetitions, is also able to capture correlations
between entity types, when one entity repetition is inctldeanother entity with a potentially different
type. For example, it is common in this corpus to have counényes repeated inside organization names
in the same document, as is “Japan” in “Bank of Japan”, orddaduminium Federation”.

The overall results are shown in Table 7, with the global apph exhibiting improvement over the
local approach, albeit less pronounced than in the biorakdiemain. This results are still under some
of the best published results on the same corpus - howeveichondiries were used in our experiments,
and no custom feature selection was performed — the fearplates were the same as those used in the
biomedical extraction.
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\ Method \ Precision\ Recall\ F-measurq

LT-RMN 82.15 78.13 | 80.09
GLT-RMN | 83.17 81.44 | 82.30

| CRF | 8157 |80.08 | 80.82 |

Table 7: Extraction Performance on CoNLL.

4 Current Research

The sum-product algorithm is guaranteed to do exact inferdéor factor graphs without cycles. However,

it happens very often that the factor graphs generated bggpnoach contain cycles, even when only the
overlap template is used (i.e. the LT-RMN model). For examiblw,wyws is a sequence of three nouns,

the entire sequence, together with all its subsequencdishegiome candidate entities. We shall use the
letter e to denote these candidate entities, as follows:

e unigram entitiese; < w1, ea < wa, €3 < w3
e bigram entitiesies < wiws, €23 — wows
e trigram entitiesie;23 + wywows

The corresponding set of overlapping pair§(is; , e12), (e1, e123), (€2, €12), (€2, ea3), (e2, e123), (e3, €23),
(e3,e123), (€12, €23), (e12,€123), (€23, €123)}. The overlap template will create a two-node clique between
the two nodes from each overlapping pair in the RMN factoplras illustrated in Figure 16. Of all cycles
contained in this graph, we have emphasized using thick lime cyclee; — e;o — ea — e1235 — e1, With the
corresponding factor graph illustrated on the right.

€,
Por
€10
€23
€,
€3
Por Por @or
€123

Figure 16: RMN and factor graph with cycles due to overlaguai potentials

In the next section, we are going to show that exact infereaoebe done for the local model (LT-RMN)
in linear time, based on the junction-tree algorithm (Cow@awid, Lauritzen, & Spiegelhalter, 1999) and
the sparsity of a different version of the overlap potential

28



4.1 Local models

The original overlap template used in our approach createsige between any two overlapping entities.
The constraint that entities should not overlap can alsobimreed with a different type of overlap template,
as follows. For a token positionin the document, lek; be the set of candidate entities whose span includes
that position. The overlap template is then defined so tlatedchi, it connects the labels of all entities
in E; in a clique, with an associated potential that is non-zedy aien at most one entity fron; has
label-value 1. Thus, ifE;| = n, then the corresponding overlap potential can be specifiedtable with
2™ entries, of whichn 4 1 are set on 1, the rest being set to 0. This makes the poteaiila very sparse
(a linear number of non-zero entries), a fact that will bedusger in the inference algorithm. Notice that
this version of the overlap template can match a variablelbsurof entities, depending on the number of
overlapping entities at each token position.

Continuing with the same noun phrase exampjasws, the sets of overlapping entities corresponding
to the three token positions are:

1. By = {e1,e12,€123}
2. By = {ey, €12, €23, €123}
3. B3 = {e3, €23, €123}

The overlap template creates three cliques, corresponditig three set&;, F», andE3. This results
in the same graph as that from Figure 16, containing numesgeles, which again means that the belief
propagation algorithm (or the sum-product algorithm in ¢ggiivalent factor graph) is not guaranteed to
result in exact inference.

4.1.1 Exact, linear time inference

The junction tree algorithm (Cowell et al., 1999) is a geheation of the sum-product algorithm that can be
used for exact inference in general graphs. It is based ojutiztion tree representation, which is a singly
connected graph whose nodes are clusters of nodes fromitieabgraph. The usability of the junction
tree algorithm is however limited by the fact that its timenmiexity is exponential in the size of the largest
cluster, which can get very large, especially when the oaiggraph has cycles.

Definition 5 (Cowell etal., 1999H = (H.V, H.E) is a cluster graph folG = (G.V,G.E) if HV C 2¢'V
e.g. any vertex in H is a cluster of vertices froma.

Definition 6 (Cowell et al., 1999) A cluster grapH is ajunction tree for G if it has the following three
properties:

1. singly connected:there is exactly one path between each pair of clusters.
2. covering: for each cliqueA of G there is some clustat such thatd C C.

3. running intersection: for each pair of cluster€ andC’ that contain a vertex € G.V, each cluster
on the unique path betwe&hand C’ also contain. =
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In order to create a cluster graph having the running intéicse property, one needs toangulatethe
original graph. Triangulation refers to adding sufficient additional edges such that thplgcontains no
chordlesscycles i.e. cycles of four or more distinct vertices withaushort-cut. The cluster nodes in the
junction tree are simply maximal cliques in the trianguliaggaph. It is usually the process of triangulation
which leads to arbitrarily large cliques in the trianguthtgaph, which translates into arbitrarily large cluster
nodes in the junction tree. Fortunately, as the next theassarts, the graphs created by the overlap template
are already triangulated (e.chordal:

Theorem 2 Let wyws...w, be a word sequence, arbitrarily long (it may be the entireusggre of words
from a document). LeF be an arbitrary set of candidate entities, affl the set of overlapping entities at
positioni, wherel < ¢ < n. LetG be the graph created by the application of the overlap tetepéag.
the result of creating: cliques, one clique for each;, for all 1 < i < n. Then the overlap graply is a
chordal graph.=

For example, it can be verified easily that the overlap gragfigure 16 is a chordal graph. We do not
include the proof of this theorem here, as it will not be useedatly in creating the junction tree associated
with an overlap graph. Instead, we are going to create acp&aticluster graph and show that it is a junction
tree for the overlap graph by verifying directly the threepgerties from Definition 6, as in the following
theorem:

Theorem 3 Keeping with the notation from Theorem 2, etbe a cluster graph fot7, defined as follows:
e HV = {E;|]1 < i< n} e.g. the sets of overlapping entities are vertices in thetelugraph.

e HE = {(E;,Ei;+1)|1 < i < n — 1} e.g. connect clusters corresponding to consecutive positi
only (resulting in a list of clusters).

ThenH is a junction tree foIG. =

The result of applying this procedure on the overlap grapFigure 16 is illustrated in Figure 17.
Ellipses denoteluster nodeswhile rectanglesdeparator nodésare used to show the intersection between
adjacent cluster nodes. It can be easily verified that tragusiction tree.

E
2
€, /
e
e e
23 €53 123
€123

Figure 17: Sample junction tree.
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Proof of Theorem 3. The first two properties from Definition 6 are obviously vexifi What is left
for proof is the running intersection property. Lt andE; be two cluster nodes. Assume without loss of
generality that < j. Lete be a vertex in the original grapfi such thate € E; ande € E;. Lete.l and
e.r be the left and respectively right boundaries of entity the word sequence. Using the definition of the
overlapping sets; € E; < el <i <er,ande € Ej & el < j < e.r. Let E; be a cluster node on the
path betweers; andE;. Because of the way in whicH was createdk should be a position betweémnd
ji.e.i < k < j. Atthis point, we have these three inequalities:

e cl<i<er
e el <j<er
e 1 <k<y

Based on these inequalities, we get that< i < k < j < e.r, thereforee.l < k < e.r. This implies that
e € Ey. As E;; was an arbitrary cluster on the path betwdgrand E;, this means thall has the running
intersection property. Thereforél is a junction tree for7. m

Both Theorem 2 and Theorem 3 are important because they $tamvhe size of the largest cluster in
the junction tree (i.e. itsvidth) is actually the size of the largest overlapping clique ia dhiginal graph.
Because the inference algorithm using junction trees i®imegal exponential in this size, and because the
size of the largest overlapping clique can be linear in thalmer of candidate entities, this means that exact
inference using the generic junction tree algorithm i$ eponential in the number of candidate entities.
However, as Theorem 3 shows, for any overlapping graphe theists a junction tree whose clusters are
exactly the overlapping cliques. Because of the speciah fwirthe overlap clique potential (a sparse table,
with only n 4+ 1 non-zero entries, whereis the size of the clique), the messages sent between twoeadja
cluster nodesn the junction tree can be computed in time linear in the sfzée cluster. We therefore have
an exact inference algorithm based on message propagatiene:

e The computation of any message takes time linear in the $itte @djacent cluster nodes.

e Assuming a two-phase propagation schedule (Jensen, tenyrig& Olesen, 1990), the total number
of messages is twice the number of cluster nodes.

e Assuming the length of any candidate entity is less than airmam length (as is the norm in in-
formation extraction), the sum of all cluster sizes in thecpion tree is linear in the total number of
candidate entities.

Based on the three facts above, the overall time complexitheomessage propagation algorithm in the
junction tree structure from Theorem 3 is linear in the nundieandidate entities.

4.1.2 Learning Algorithm

Because the overlap template potential is fixed, the onlgriatl values that need to be learned are those
used by local templates. Based on the same notation as ii0I$8ct, we use the log-linear representation
for a local template potentiab. = exp(w.f.). Being an exponential model, the gradient of the log-
likelihood objective functionZ(w, D) with respect to the weight vecter.. is the difference between the
observed and expected counts of the feature vdgtor
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_ OL(w, D)

V.L(w, D) 5 = ) fldX,dY) =D fe(dX,dY)Py(dY'dX)  (7)
We deD deDd.y’
= D feldX,dY) =Y Eyfe(d)] ®)
deD deD

While the first term in Equation 8 is easy to compute, the sederm is usually expensive to compute
in general graphical models. In the current setting howeweill make use of the fact that all potentials
involved are local potentials. Therefore, we can write:

foldX,dY)= > f(e X, eY) (9)

ecd.E

Consequently, the expectation term in Equation 8 can battewias follows:

Bulfed)] = > Y foeX, eY)Py(dY]d.X) (10)
d.Y ecd.E
= Y ) Py(dYdX)fe(e.X,eY) (11)
ecd.E d.Y
- Z Z( Z Pw(d.Yd.X)) fo(e.X,eY) (12)
ecd.E eY \d.Y~eY
= Y ) Py(eY]dX)fe(e X, eY) (13)
ecd.E eY

The expressiod.Y ~ e.Y above refers to all labelings af consistent with a particular entity labelY.
The termP,(e.Y |d.X) in the last equation is the marginal distribution for an tgriabel e.Y", which can
be easily computed after running belief propagation in threion tree, by selecting a cluster node con-
taining e and marginalizing the cluster distribution over all othatitees from the same cluster. Because
the junction tree algorithm computes all clusters’ mardistributions at once, this means that computing
the expectation tern,,[ f.(d)] takes time linear in the number of candidate entitles. Based on the last
equation, the final formula for the gradient is:

VeL(w,D)=> Y <fc(e.X,e.Y) - ZPw(e.Y’|d.X)fc(e.X,e.Y’)) (14)

deD ecd.E e.Y'

with a total computation time linear in the number of cantidantities.

Based on this formulation, any gradient-based method carsée for maximizing the likelihood func-
tion. In our implementation we used L-BFGS, a limited-meynquasi-Newton method (Liu & Nocedal,
1989), which has shown very good performance elsewhere§&$taeira, 2003).

In conclusion, we have introduced a discriminative modelififormation extraction based on phrase
classification, in which exact inference is linear in the temof candidate phrases, and where both ML and
MAP learning can be done efficiently. The overall approadirigple, and can be summarized as follows:

1. Candidate Entities: Based on the generic heuristic H1, or alternative doma&tifp heuristics,
create a set of candidate entitigé€/, for each document in the corpuse D.
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2. Junction Tree: Assemble the set of candidate entities into cluster ndgjesne node for each token
positioni in the document. Each clusté&l; contains candidate entities that span over positidrink
cluster nodes corresponding to consecutive positions.r@$idt is a list of cluster nodes, which by
Theorem 3 is a junction tree for the original overlap grapbp@nding on the set of candidate entities,
some positions in the document may result in empty clustngh split the junction tree into two
or more smaller trees. This is also the case when the documsyplit in sentences first - because no
entity can belong to two different sentences, each senteilideave its own separate junction tree.

3. Cluster Potentials: Initialize each cluster potential with an overlap potentlaue to sparsity, if the
cluster size i, the cluster potential can be represented using arlyl numbers. Multiply all local
template potentials for each entity into one and only onstelupotential. If there is more than one
cluster containing the entity, choose one at random.

4. Inference: Run a message propagation algorithm on the resulting sehofipn trees, using a two-
phase propagation schedule.

5. Learning: Use a gradient based method in a ML or MAP setting, based ogrtdient formula in
Equation 14.

Compared with CRFs, this has the additional benefit of aligwthe incorporation of phrase-based
features. In a recent work, (Cohen & Sarawagi, 2004) havedated a conditional version for segmental
semi-Markov models (Ge, 2002) to achieve a similar aim, shgwhat the phrase classification approach
can lead to better performance vs. CRFs, especially whanngadata is small, because of a more natural
use of phrase based features, such as similarities withirgxidictionaries. Compared with their work,
where sentences are modeled as Markov sequences of segmerdgproach is more direct in modeling
the extraction task as one of phrase classification. Weatlplmodel the entire set of candidate entities
by including a node for each entity label in the graphical elodrhis has the advantage of allowing the
incorporation ofglobal correlations between labels of different entities fromshene document, as will be
detailed in Section 5.1.

4.1.3 Experimental Results

In Tables 8 and 9 we compare the performance of the (appree)nr#erence algorithm in factor graphs
(FG) with that of the (exact) inference algorithm in junctivees (JT) on the two protein data sets. In both
cases, exact inference leads to better results.

| Method | Precision| Recall | F-measur¢

LT-RMN (FG) | 70.79 | 53.81 | 61.14
LT-RMN (JT) | 72.08 | 57.46 | 63.95

Table 8: Extraction Performance on Yapex.
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\ Method \ Precision\ Recall\ F-measurq

LT-RMN (FG) | 81.33 72.79 | 76.82
LT-RMN (JT) | 81.76 75.11 | 78.29

Table 9: Extraction Performance on Aimed.

5 Proposed Work

5.1 Restricted global models

The global phrase model is an extension of the local phrastemaVhile in the local model the overlap
clique template is the only template introducing cliquesveen the labels of different entities, in the global
model any type of global cligue template can be used. Unfately, adding new cluster nodes in the
junction tree representation so that it has¢beeringproperty with respect to the global phrase model may
easily break thesingly connectegbroperty. Sometimes adding just one cluster node resulisciycle, as
illustrated in Figure 18. The new cluster noBemay have been introduced, for instance, in order to model
the repetition of two candidate entitiesc £; andv € E;.

E. E

00004

V

E

Figure 18: Introducing a cycle in the junction tree.

However, if the set of candidate entities is the result ofidpg a strong heuristic, like H2 or H3 from
Section 3.1, then some of the positions in the text will regsulempty clusterswhich have the benefit
of breaking cycles, as illustrated in Figure 19. There, tluster for positionk is empty. As defined in
Theorem 3, a cluster nodg;, contains all candidate entities overlapping at posifan the text. Thenk,
is anempty clusteif no candidate entities overlap at positibnlf H2 is used, this may be because the word
at positionk was tagged as a preposition, verb, or other part of speefehatif from those used by H2.

E, E,
O“/OOO/

E

E

Figure 19: Empty clusters break cycles.

This means that, depending on the heuristic used to creagetiof candidate entities, at least a subset
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of the global label correlations can be introduced in the @hadch that the inference remains linear in the
number of entities. Both H2 and H3 give rise to many emptytehss In general, both heuristics result in
models composed of many small junction trees, which caretbier be connected into larger junction trees
using global label correlations.

5.1.1 Exact, linear time inference

Even though they allow updating the model with global degewtes such that it remains tractable, heuris-
tics H2 and H3 have the drawback that sometimes they may e@d¢®ntity names. In the case of H2 for
example, a candidate entity cannot contain parenthesegvieo our corpus contains a few entity names like
'V (1a) receptor,; or 'interleukin 10 (IL-10) receptor’which violate this assumption. Because the local phrase
model may be able to learn patterns like “allow a close paesis in an entity name if it is followed by the
word receptof, we propose to eliminate domain-specific heuristics likeahd H3 and to assign their role
to the local phrase model. The extraction process will theeged in two steps:

1. Local Extraction. Using only the local phrase model and the generic heuristic gérform exact
inference based on the junction-tree representation. &t pasitionk in the text, the probability that
the corresponding cluster is “empty” e.8(e.label = 0,Ve € E}) is readily available as one of the
marginals computed during inference. Eliminate from thecjion-tree all cluster nodes for which
this probability is above a predefined threshold [0, 1]. This will result in a forest of junction-trees
that will be the input for the next step. From the remainingstgrs remove all candidate entities that
were contained in any of the eliminated clusters.

2. Global Extraction. Connect separate junction-trees through cluster nodesspamding to global
correlations, as illustrated in Figure 19. Stop when no gllabrrelation can be added without intro-
ducing a cycle in the model. Perform exact inference in tkaltimg junction-tree, this time in order
to recover the most probable assignment of labels to catededdractions, and output this as the final
extraction.

Thus, instead of coming up with a domain-specific heurigtiestrict the set of candidate extractions,
we can use the local phrase model to automatically learngbgdtic. The threshold could be set up based
on development data. Lower values fowill break the junction-tree into many smaller trees, whiaiti
allow many global correlations to be used. However, eliimgatoo many cluster nodes increases the risk
of eliminating true entities. On the other hand, a value @jo close to 1 will eliminate only a few clusters
from the junction-tree, and correspondingly very few glotarrelations can be used. Another question
is that of which subset of global correlations to be used ep&t. For the repeat template, an obvious
choice, better than randomly choosing global correlati@i® include in the selected pairs of repetitions as
many “locally extracted” entities as possible, giving pitypto repetitions for which the local phrase model
assigns conflicting labels (by “locally extracted” entitywnean an entity that would be extracted by the
local phrase model).

5.1.2 Learning Algorithm

Learning the parameters for the global phrase model mither$wo steps used in inference:

1. Local Model. Learn first the parameters for the local model, exactly asritesdd in Section 4.1.2.
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2. Global Model. Keeping the local parameters fixed, learn the global pammetg. the potentials
for the global templates. The training data is first madasistentwith the set of candidate entities
that resulted from the application of the local model withetholdr~. This means eliminating from
training data all entities not contained in the set of caatticentities. This step will ensure that the
likelihood of the global parameters with respect to thenirgy data is not identically zero. Then
global parameters are estimated so that they maximize ¢hkielihood using a procedure similar to
that used for the local parameters.

A definite short term goal is to implement the restricted glaodel, and to compare its performance
with that of the factor graph implementation of the unrest global model from Section 3.5. We expect
that the potential loss in accuracy caused by the model igm@ome of the global correlations will be
compensated by the increase in accuracy due to exact inferefhere are also numerous approximate
inference methods that exploit the structure of the grapmmdel and the associated potentials in order to
obtain results closer to the exact version, so that theénfar step is still tractable. In (Yedidia et al., 2000),
the authors introduce generalized versions of the bel@bggation algorithm, where messages are passed
between sets of nodes, at additional computational cogieding on the choice of the basic sets of nodes,
the resulting inference algorithm is shown to lead to sigaiitly better approximations versus the original
belief propagation algorithm. We intend to experiment wiitis and other alternative approximate inference
methods, by suitably adapting them to our approach to irdtion extraction.

5.2 Collective classification for WSD and POS tagging

Information Extraction is only one of the natural languageks that can benefit from document level cor-
relations - two other obvious examples are word sense digaiaion (WSD) and part-of-speech (POS)
tagging. In WSD, given a text document, the task is to anaatfitcontent words from the document with
the appropriate sense, selected from a sense inventorasWbrdNet. POS tagging can be seen as a coarse
version of WSD, where the sense inventory is limited to a §slyotactic categories like noun, adjective,
verb, adverb, pronoun, preposition, conjunction, etcr &o exhaustive list, see (Santorini, 1990)). The
one-sense-per-discourse hypothesis (Yarowsky, 1998)figsethat multiple occurrences of the same word
in one document tend to have the same sense. This can beraasi®jed in an RMN model by connecting
any pair of repeated words through an undirected edge. Edatk of POS tagging, current state-of-the-art
results are obtained with algorithms like CRFs (Laffertyakt 2001) that assume a Markov dependency
between consecutive tags. This means that by adding an etigedn the tags of two repeated words, the
resulting graphical model may contain cycles, which arelharaccommodate in the inference algorithm.
Besides resorting to approximate inference, we can alsdinessr time exact inference in a restricted ver-
sion of the global model, as described in Section 5.1. Thiglevtead to the graphical model depicted in
Figure 20, where black nodes correspond to high confidemyse gnd arcs connect tag nodes for pairs of

repeated words.

O——0O0—-20 L O O O—0 @ —0O

Figure 20: High confidence tags break cycles.

Given the already competitive performance of POS taggiggrahms, the advantage of using document
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level correlations between tags in POS tagging should be& evident when the learned model is applied
on documents whose narrative is different from that in thaing corpora. One example would be training
the POS tagger on the Penn Treebank Corpus (Marcus, SanfoNtarcinkiewicz, 1993) and testing it on
gold-standard POS tagged Medline abstracts from the GENIpus (Collier et al., 1999).

5.3 Using the web to improve information extraction

The web can provide additional evidence regarding the désscandidate entity. If the task is that of
recognizing protein names, ands a candidate entity, then one may argue that the phraserpait is a
protein” is likely to have been used in a document on the web,#findeed a protein name. Consequently,
a search engine should be able to return that document wiaechgeg for the phraséz is a protein”.
Another reasonable hypothesis is that the more hits a seagihe gets for this pattern, the more likely it is
that “z” is a protein name.

There is however a problem with the pattern above — the palirominafprotein” is often too general,
and consequently it is not used to introduce a protein instan often as one would expect. Instead, people
tend to introduce a protein nameusing a predicate nominal describing a subclass or a farhipyateins,
as in“ z is an enzyme’or“ x is a eukaryotic transcription regulatory factor'This is in agreement with the
well known principles of categorization introduced by Rost(Rosch, 1978), which postulate a basic-level
of categories that provide maximum information with minimaognitive effort. Moreover, even when the
generic ternt‘protein” is used, it is often preceded by a modifier, as inis a giant protein’, or by a
sequence of modifiers, as irx is a general eukaryotic protein”To account for an arbitrary sequence of
modifiers preceding the name of a protein family, one wouktiresearch engine capable to answer queries
containing wild cards, which is beyond current technoldggally, we would need a search engine able to
answer queries of the forfhz is anp(y)”, wherenp(y) denotes any noun phrase headed,bguch tools
have only begun to appear, and their coverage is still venitdd. One notable example is the Linguist’s
Search Engine (Resnik & Elkiss, 2003), which currently ietea corpus of three million sentences from
the Internet Archive.

To accommodate the query types supported by current seagites, we shall limit ourselves to using
phrase patterns of the type is ap” , wherep is a particular class of proteins, instantiated from anaalye
available ontology of proteins, such as that from the GenwIlOgy Database (Gene Ontology Consortium,
2000).

The number of hits returned by the search engine for a p&atipattern can be used to compute various
guantities such as thaointwise mutual information (pmiyhich has been previously used for computing
word association norms (Church & Hanks, 1990). For the patte is ay”, this amounts to computing:

() Hits('zisay')
mi(z,y) =
P Y Hits('z'") * Hits('y')

If z; andz4 are two candidate entities, apds the generic name “protein”, then the fact thati(z,, y) >
pmi(za,y) could be used to assert that is more likely to be a protein name than. The samemi mea-
sure has been used in conjunction with web or large corp@aises for measuring the similarity of pairs
of words (Turney, 2001), for computing the semantic origataof reviews (Turney, 2002), or for solving
associative anaphora (Bunescu, 2003).

This, or other similar measures, could be integrated in Eheylstem as additional features. However,
given the big number of candidate entities considered byEhs/stem when doing extraction, it would be
highly inefficient to perform a web search for each of them.isTeads to a scenario in which, first, the
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normal IE system is applied on a document, after which théidence for each extraction is updated based
on the statistics collected by the search engine on thesmwneling discriminative patterns.

5.4 Flexible use of external dictionaries

Named entity recognition can also benefit from the use ofreatedictionaries. In our previous work
(Bunescu et al., 2004), we used a dictionary of more thanODOotein names to improve the perfor-
mance of a maximum entropy tagger. One way of using the diatioin a token classification approach
is to find all dictionary entries that occur in the documerd are-tag the tokens of those occurrences with
a special tag. Features can then be defined so that they takacicount this tag. The main drawback of
this approach is that the document may contain phrases vdaiaiot exist in the dictionary, yet they are
very similar with entries in the dictionary. We would like ige the intuition that phrases which are similar
with dictionary entries are likely to be valid named engti€-or example, assume that the task is to extract
protein names, and the current document contains the pluase2’, which is missing from the dictionary.
Instead, the dictionary contains the similar ent’igF-1". This indicates that, at least from an orthographic
point of view,"USF-2’ could be a protein name. In (Bunescu et al., 2004) we capturedy generalizing
the dictionary entries — numbers, single Roman letters,Gueek letters were replaced with a correspond-
ing generic tag, that would match any number, single Romiderler Greek letter respectively. Following
the example above, the enttySF-1’ would be generalized t&dSF<n)’, where the tagn) can match any
number. As a result, this generalized entry would eventualhtch the phras#&JSF-2’ in the document.
While this approach worked well for protein tagging, it ha® tmain drawbacks:

e Incompleteness: The document may contain phrases whickirarkar with dictionary entries, yet
they are not matched by any of the generalized dictionanyesnt

e Specificity: The generalizations used are very domain §ipecihey may not be relevant for other
domains, or, even if they can be used in another domain, tteybma just a subset of the relevant
generalizations.

Ideally, we would like to use a measure of the similarity offeaandidate entity with entities in the
dictionary, a measure that would be learned for each domaims similarity measure cannot be used
in a token classification approach, which lacks the concémandidate entities, nevertheless it is very
straightforward to integrate it in a phrase classificatippraach. There, the similarity of a candidate entity
with entries in an external dictionary would be just anotloeal feature for that entity. A similar approach
has been used in (Cohen & Sarawagi, 2004), where the autbfinged the similarity between a text segment
and a dictionary to be the maximum similarity between thgtsent and entries in the dictionary. As for
the actual similarity metric to use in our model, we condd@spreliminary experiment in which we used a
cosine similarity metric. This did not lead to any improverhia accuracy, mainly because common tokens
which occur in protein names, such as numbers or Greekdett@re getting too high a similarity with the
dictionary. Yet these tokens cannot be protein names bygtkes. This suggests an approach where the
similarity metric is learned, so that tokens like these detesimilarity with the dictionary. We contemplate
using adaptive similarity measures, based on the ideasdunted in (Bilenko & Mooney, 2003). One issue
that needs to be addressed is the lack of “well defined” tigiexamples. In (Bilenko & Mooney, 2003),
the authors show how similarity metrics can be learned,ragga training set composed of pairs of strings
which are known to be similar (positive examples) or diskEiminegative examples). This kind of training
examples are missing in our approach, where all we are givardictionary of entity names, together with
a set of candidate entities partitioned in two subsets: eéniities and spurious entities. Nevertheless, we
can assemble a weakly labeled dataset as follows:
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e Negatives: Consider as negative examples all pairs comgisf a spurious candidate entity and a
dictionary entry.

e Positives: Consider as positive examples all pairs cangisff a true candidate entity and a dictionary
entry, such that they share a minimum number of tokens. Wtisf positive examples may be later
replaced by, or augmented with, manually labeled pairsroilai entities.

For the special case of recognizing protein names, we canuaks the fact that the protein dictionary
is organized in clusters of names, where all names from &etlase synonyms corresponding to the same
protein. Therefore, we may consider as positive examplesab of synonyms from the same cluster which
share a minimum number of tokens.

5.5 Feature selection

The task of feature selection refers to finding a subset tdifes, out of a usually large collection of features,
such that they capture the relevant properties of the data. Supervised learning setting, this reduces to
choosing that set of features which best model the labelkértraining data. In this case, the final aim
of feature selection is to construct classifiers which arl sompact and accurate. In Maximum Entropy
models, features selection has been commonly done usimgpesfrequency-based cut-off. This is also
the method that we used in our initial RMN model for infornoatiextraction (Bunescu & Mooney, 2004).
There, we have ignored all features which do not occur at khase times in the training data. Recently,
we have run an experiment in which we used only a subset otttares proposed in (Bunescu & Mooney,
2004) (also repeated in Section 3.2 of this proposal). Mraetty, we used the following feature templates:
the text of the candidate entity, its short type, the word #nedPOS tag preceding/following the entity, the
first and last words in the candidate entity, and any word wtwinside the entity. This time we considered
all features generated by the above templates in the tgpdais, irrespective of their actual frequency. The
results on the Yapex dataset are summarized in Table 10.

\ Method \ Precision\ Recall\ F-measure{

LT-RMN 73.90 54.90 | 63.00
GLT-RMN | 74.16 63.48 | 68.40

| CRF | 72.45 | 5864 | 6481 |

Table 10: Extraction Performance on Yapex.

The results for both the local and global models are slighetyer than those presented in Table 6 for the
same dataset. This suggests that, besides making the modetompact, an appropriate feature selection
algorithm may also lead to a non-negligible increase ingrarance. Likelihood-based feature induction
algorithms, as introduced in (Della Pietra et al., 1997) aurther extended to conditional random fields
in (McCallum, 2003) can be seen as a particular way of doiagufe selection. We intend to use feature
induction in our setting, which means that we need to statth wiset of atomic, local features, such as
the word preceding an entity, the entity head, and othersv fdatures, such as bigrams or trigrams, can
be created from conjunction of atomic features. As expthine(McCallum, 2003), the set of features is
incrementally updated by iterating the following four s€mitially, the set of features is empty):

1. Consider a set of newly proposed features. This may eobtath atomic features or conjunctions of
features.
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2. Select for inclusion only those features which bring tighést gain in the likelihood function.
3. Train the weights for all included features.

4. lterate back to the first step, until a stopping criter@miet.

5.6 Relation extraction and syntactic information

Until now we have focused on the task of named entity recamgmitA natural next step is that of identify-
ing relations between extracted entities. The types ofiogls can be very diverse, ranging frquerson—
affiliation andorganization—locationoccurring frequently in newspaper corporaptotein—protein interac-
tionsor subcellular—localizationwhich are common in biomedical corpora. Current best te$oit relation
extraction are obtained with methods that make use of sfyofaformation. In (Ray & Craven, 2001), the
authors show how information from the shallow parses ofesergs can be represented into the states of a
Hidden Markov Model, leading to increased extraction peni@nce for two binary relations in the biomedi-
cal domain. This is however a generative model, and consdlgjiseibsequent approaches tried to exploit the
additional strengths of discriminative models. In (Zelenkone, & Richardella, 2003), the authors define
convolution kernels on shallow parse trees where nodesugraented with relation roles. Deeper syntactic
information is used in (Culotta & Sorensen, 2004), wherati@h roles are used to annotate nodes in a
dependency tree representation of sentences, with exgrtahresults showing significant error reduction
over the corresponding bag-of-words approach. Based @e fideas, we intend to create a discriminative
model for the task of extracting protein-protein interacti from Medline abstracts — the challenge here is
in coming up with a model that is robust enough to parsingrerréhese errors are more numerous in the
case of biomedical corpora, given that most state-of-theaxsers are trained on newspaper corpora.

The two discriminative relation extractors referencedvatmssume that the entities used for instantiating
relation roles have already been tagged. However, the samtectic information that is used for extracting
relations can also help in entity recognition. In Table 1liNustrate theaccuse'frame as instantiated in a
set of sentences from the CoNLL 2003 corpus.

1) (Syria) [accusetl(Israel) on Wednesday of launching a hysterical campaign ...

2) (Sharif) [accusefl(Bhutto) of corruption and nepotism ...

3) (Ernesto Sampej [accusetl(the governmen) of indifference ...

4) (Iran) [hasaccusei(Iraq) of violating the ceasefire ...

5) (Jordan) [hasaccusetl(Iraq) and a local pro-Baghdad party for the country’s ...

6) (China) [on Thursdayaccusefl(Taipei) of spoiling the atmosphere ...

7) (India) [has oftenaccusell(Pakistan) of abetting militancy in the valley ...

8) (Loyola de Palacig [had earlieraccusedl(Fischler) at an EU farm ministers’ meeting ...
9) (Judgeson the island) [ha@ccusetl (Paris) of taking a lax stance ...

10) (Bob Dole) [Wednesdayccuset(the Clintonadministration) of ignoring ...

11) (Benjamin Netanyahu) [hasaccusetl(opposition leadePeres ...

12) (Anlraqi Kurdish guerrillagroup) [on Saturdayaccused(Iragi governmentorces) of ...
13) (The rulingSocialist Party) [last weekaccuse(l(Serbia’'sopposition) of ...

14) (Freddy Pinas a Surinamese-born visitor from the Netherlandagcsedl (Brunswijk ) ...
15) (Hasina, speaking to a group of engineers in Dhaka on Mondaggusetl (the BNP) of ...

Table 11: 'accuse’ frame instantiations in CoNLL.
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The head of theaccuse’'verb phrase is figured in italics, while the heads of the amnunphrases are
figured in bold. Notice that in theccuse’frame, both arguments are either persons, organizationsiry
names or capital cities. If a syntactic parse is availaliis, ¢onstraint can be easily modeled by a binary
feature which is set to one if the candidate entity is the lefah argument ofaccuse: The corresponding
weight is then given a large value only when the candidatiéydatlabeled either as a person, organization,
country name or capital city. Without using a parse, thisst@int is enforced much more weakly, because
of the presence of long range dependencies — examples mtre bmttom of the table have more words
occurring between the argument heads and the'wechse! A binary feature which is set to one if the can-
didate entity is followed by the verlccuse'would be triggered correctly only for the first three sentnc
The same feature would be triggered also for spurious cataientities such a@¥hursday’, 'Wednesday;
'Saturday; 'week’ (sentences 6, 10, 12, and 13 respectively). Introducingaturfe for the second word
following the candidate entity leads to the same problem.

Based on the observations above, we intend to create a rdisgsiminative model that would use
information derived from syntactic parses for both entitg aelation extraction.

6 Conclusion

We presented a phrase—based approach to collective informextraction in which correlations between
the labels of candidate entities in a document were modsgled&lational Markov network. Preliminary ex-
periments on extracting named entities from biomedicalrevdspaper corpora demonstrate the advantages
of our approach. We then argued for an alternative reprasentof document—level correlations based on
junction—trees that would allow for efficient, exact infiece. This has the potential of further increasing
the extraction accuracy. In future work we intend to use #mesapproach for other natural language tasks
that may benefit from the same type of correlations, such dspapeech tagging and word sense disam-
biguation. We also contemplate integrating in our systeatufes originating from additional knowledge
sources, such as external dictionaries, web statisticismnimdinative patterns, or syntactic parsing. The
huge number of potential features motivates the use of areatlection algorithm. A natural next step is
to augment the current system such that it performs bothyeamd relation extraction.
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