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Abstract

An Information Extraction (IE) system analyses a set of documents with the aim of identifying certain
types of entities and relations between them. Most IE systems treat separate potential extractions as
independent. However, in many cases, considering influences between different candidate extractions
could improve overall accuracy. For example, phrase repetitions inside a document are usually associated
with the same entity type, the same being true for acronyms and their corresponding long form. One of
our goals in this thesis is to show how these and potentially other types of correlations can be captured by
a particular type of undirected probabilistic graphical model. Inference and learning using this graphical
model allows for “collective information extraction” in a way that exploits the mutual influence between
possible extractions. Preliminary experiments on learning to extract named entities from biomedical and
newspaper text demonstrate the advantages of our approach.

The benefit of doing collective classification comes howeverat a cost: in the general case, exact infer-
ence in the resulting graphical model has an exponential time complexity. The standard solution, which
is also the one that we used in our initial work, is to resort toapproximate inference. In this proposal
we show that by considering only a selected subset of mutual influences between candidate extractions,
exact inference can be done in linear time. Consequently, a short term goal is to run comparative exper-
iments that would help us choose between the two approaches:exact inference with a restricted subset
of mutual influences or approximate inference with the full set of influences.

The set of issues that we intend to investigate in future workis two fold. One direction refers to
applying the already developed framework to other natural language tasks that may benefit from the same
types of influences, such as word sense disambiguation and part-of-speech tagging. Another direction
concerns the design of a sufficiently general framework thatwould allow a seamless integration of cues
from a variety of knowledge sources. We contemplate using generic sources such as external dictionaries,
or web statistics on discriminative textual patterns. We also intend to alleviate the modeling problems
due to the intrinsic local nature of entity features by exploiting syntactic information. All these generic
features will be input to a feature selection algorithm, so that in the end we obtain a model which is both
compact and accurate.
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1 Introduction

Information Extraction (IE) is an important task in naturallanguage processing, with many practical appli-
cations. It involves analyzing text documents, identifying particular types of entities, relations or events, and
populating database slots with information about them. A basic component of an IE system is that of named
entity recognition - the task of locating references to specific types of items in natural-language text. Since
IE systems are difficult and time-consuming to construct, most recent research has focused on empirical
techniques that automatically construct information extractors by training on supervised corpora (Cardie,
1997; Califf, 1999). Traditionally, IE systems have been trained to recognize names of people, organiza-
tions and locations (MUC (Grishman, 1995), CoNLL (Tjong KimSang & De Meulder, 2003)). Recently,
substantial resources have been allocated for automatically extracting information from biomedical corpora,
which has naturally led to the need of locating biologicallyrelevant entity types, such as genes, proteins,
or diseases. The wide variety of names used in the biomedicalliterature, coupled with their lack of formal
structure, have made the IE problem especially difficult. This has further motivated the search for methods
which are able to efficiently use any type of task-relevant knowledge. One particular type of knowledge
which is especially useful for recognizing biological entities refers to correlations between the labels of
repeated phrases inside a document, as well as between acronyms and their corresponding long form. In
both cases, the mentioned phrases tend to have the same entity label. For example, Figure 1 shows part of
an abstract from Medline, an online database of biomedical articles. In this abstract, the protein referenced
by ’rpL22’ is first introduced by its long name’ribosomal protein L22’, followed by the short name’rpL22’
between parentheses. The presence of the word’protein’ is a very good indicator that the entire phrase’ribo-
somal protein L22’is a protein name. Also,’rpL22’ is an acronym of’ribosomal protein L22’which increases
the likelihood that it too is a protein name. The same name’rpL22’ occurs later in the abstract in contexts
which do not indicate so clearly the entity type, however we can use the fact that repetitions of the same
name tend to have the same type inside the same document.

The control of human ribosomal protein L22 ( rpL22 ) to enter into the
nucleolus and its ability to be assembled into the ribosome is
regulated by its sequence . The nuclear import of rpL22 depends on
a classical nuclear localization signal of four lysines at positions
13 - 16 . RpL22 normally enters the nucleolus via a compulsory
sequence of KKYLKK ( I - domain , positions 88 - 93 ) ... Once it
reaches the nucleolus , the question of whether rpL22 is assembled
into the ribosome depends upon the presence of the N - domain .

Figure 1: Medline abstract with all protein names emphasized.

It is not always the case that repeated phrases have the same label. Figure 2 shows an example, where
the first occurrence of’eNOS’ is a protein name, while its second occurrence is not a protein name by itself,
because it is included in another protein name’eNOS interaction protein’. Constraining repeated words like
’eNOS’ to have the same label (i.e. eitherInside orOutside a protein name) does not solve the problem
either, as shown in Figure 2, where both tokens’nitric’ and ’oxide’ are first tagged asOutside, and then
Inside a protein name. In Section 3.5.2 we show how to capture the correlations between the labels of
repeated phrases so that all the exceptions above are taken into account.

The capitalization pattern of the name itself is another useful indicator, nevertheless it is not sufficient by
itself, as similar patterns are also used for other types of biological entities such as cell types or aminoacids
(see Figure 3). Therefore, correlations between the labelsof repeated phrases, or between acronyms and
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Production of nitric oxide ( NO ) in endothelial cells is regulated
by direct interactions of endothelial nitric oxide synthase ( eNOS ) with
effector proteins such as Ca2+ – calmodulin . Here we have used the
yeast two - hybrid system and identified a novel 34 kDa protein ,
termed NOSIP ( eNOS interaction protein ) , which avidly binds to the
carboxyl terminal region of the eNOS oxygenase domain .

Figure 2: Medline abstract with all protein names emphasized.

their long form can provide additional useful information.Our intuition is that a method that could use
this kind of information would show an increase in performance, especially when doing extraction from
biomedical literature, where phenomena like repetitions and acronyms are pervasive.

The 5’ upstream region ( -448 / -443 ) of the human dipeptidyl peptidase IV
gene promoter containing a consensus E - box ( CACGTG ) was shown to
bind upstream stimulatory factor using nuclear extracts from mouse
( 3T3 ) fibroblasts and the human intestinal and hepatic epithelial
cell lines Caco - 2 and HepG2 .

Figure 3: Medline abstract with all protein names emphasized.

In this proposal, we describe how this type of document-level knowledge can be captured using Re-
lational Markov Networks (RMNs) (Taskar, Abbeel, & Koller,2002), a version of undirected graphical
models which have already been successfully used to improvethe classification of hyper-linked web pages.
While other types of graphical models, such as Conditional Random Fields (CRFs) (Lafferty, McCallum,
& Pereira, 2001), have modeled the entity recognition task as one of token classification, we take the dif-
ferent approach where candidate phrases in a document are classified according to the desired set of entity
types. We then show how this phrase classification approach facilitates the modeling of correlations among
labels of candidate entities, with the additional strengthof phrase based features such as the actual text of
the candidate entity, its capitalization pattern, or similarity with dictionary entries. Experimental results
show that by factoring in global label correlations, the performance of the phrase classification approach is
significantly improved.

In a typical application of CRFs, influences between the labels of consecutive tokens are the only cor-
relations considered. This leads to a sequence labeling scenario, in which inference can be done efficiently
using dynamic programming algorithms. Compared with CRFs,the increased representational power of
RMNs comes at a cost in the time complexity of the inference algorithms. In our initial work, we resorted to
approximate inference, based on an algorithm which has already exhibited competitive performance in other
applications (Murphy, Weiss, & Jordan, 1999). However, in subsequent work we have discovered that exact
inference for the phrase classification approach can be doneefficiently, if no correlations between different
candidate entities are to be considered. Moreover, by adding a carefully selected subset of document-level
correlations, the same exact inference algorithm can be updated so that its running time remains linear in the
number of candidate entities. We present how to select the correlations that are to be included in the model,
and prove the linear complexity of the inference algorithm when run on the resulting structure.

As short-term goals, we intend to compare the exact inference / limited set of correlations approach with
the original approach based on approximate inference / fullset of correlations. Another direction that might
lead to improved results is that of using a generalized version of the belief propagation algorithm, where
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messages are passed between sets of nodes, at additional computational cost (Yedidia, Freeman, & Weiss,
2000), or using alternative approximate-inference methods.

Long-term goals include:� Applying the same approach to other natural language tasks that may benefit from document-level
correlations. Two examples are word sense disambiguation (WSD) and part-of-speech (POS) tag-
ging. In WSD, the one sense per discourse hypothesis has beenpreviously used by Yarowsky in
(Yarowsky, 1995). The RMN framework however is able to incorporate this type of knowledge in a
more probabilistic, sound manner. As for the task of POS tagging, while the benefit of using corre-
lations between tags of repeated words is debatable if the tagger is trained and tested on documents
from the same corpora, given its already competitive performance, it has nevertheless the potential of
reducing the number of tagging errors on texts from different corpora.� Using features based on similarities with existing dictionary entries. Such features can be incorporated
in our phrase classification approach in a natural, straightforward manner.� The ”web as a corpus” is still an under-utilized idea. In thiscontext, textual patterns that disambiguate
the type of a candidate entity can be provided to a web search engine, so that statistics derived from
the number of returned hits may be used in order to increase the IE system’s performance.� Syntactic information has already been proved to increase the accuracy on the task of relation extrac-
tion. Besides designing an IE system for extracting relations specific to biomedical entities, we intend
to leverage entity recognition through the use of features derived from syntactic parses. Some of these
features have the benefit of encoding long-range dependencies which cannot be captured from a flat
representation of sentences.� The previous three goals can be seen as part of the effort to design a general framework that would
allow the use of information from various knowledge sourcesin order to increase the final IE system’s
performance. We intend to increase the robustness of this approach through the use of an efficient
feature selection algorithm.

2 Background and Related Work

The task of automatically constructing information extractors has received a lot of attention in the past
decade, and as such we observe a high diversity in the proposed approaches and the learning algorithms
used therein. Nevertheless, a careful analysis reveals that most of these systems can be classified into two
basic types of approaches:� Token Classification: Word tokens in a document are sequentially classified as being inside or out-

side of a given named entity. Named entities are extracted bydoing token classification and then
assembling maximally contiguous sequences of inside tokens.� Phrase Classification: Candidate phrases from a document are classified as to whether they are
instances of some entity types or not. This can be done by either learning a multi-class classifier, in
which case the number of classes is equal with the number of entity types plus one (for non-entity
phrases), or by separately learning sets of extraction patterns, one set of patterns for each of the entity
types.
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2.1 Phrase Classification Approaches

Relational learning has been one of the learning paradigms used in some of the early IE systems, such as
Rapier (Califf & Mooney, 1999) and SRV (Freitag, 1998). Bothsystems belong to the phrase classification
approach.

2.1.1 Rapier

In RAPIER, the IE task is defined in terms of filling the slots contained in a template. A template specifies a
particular type of event, such as joint ventures, corporateacquisitions, or job offerings. For example, a job
offering template contains slots for title, salary, area ofexpertise, OS platform required, or job location. The
training data consists of filled templates, one template perdocument. During testing, the IE system fills the
template slots with data extracted from the document.

For each template slot, a set of rules is learned in a bottom-up fashion, with each rule composed of
patterns that can make use of limited syntactic information. More exactly, the extraction rules consist of
three parts:

1. A pre-filler pattern that matches text immediately preceding the slot filler,

2. A pattern that matches the actual field, and

3. A post-filler pattern that matches the text immediately following the slot filler.

Each pattern is a sequence of pattern elements of one of two types: pattern itemsandpattern lists. A
pattern item matches exactly one word that satisfies its constraints. A pattern list has a maximum length N
and matches 0 to N words, each satisfying a set of constraints. Besides constraining on words and their part-
of-speech tags, Rapier can also incorporate semantic classinformation, such as that provided by WordNet
(Miller, 1991). Consequently, each constraint is represented as a disjunctive list of one or more words, tags
or WordNet synsets.

During testing, phrases are extracted by matching them against the set of rules learned for each slot.
For the template filling task, extracted phrases which are duplicated are ignored, however the system can
be easily modified to work in a named entity scenario, such that the output contains all extracted phrases,
duplicates included. Because each pattern is designed to match phrases, we can view Rapier as belonging
to the generic class of phrase classification approaches.

2.1.2 SRV

SRV (Freitag, 1998) too is based on a relational learning procedure. Like FOIL (Quinlan, 1990), it proceeds
in a top-down fashion, starting with the entire set of examples - all negative examples and any positive
examples not covered by already induced rules. At each step it greedily adds predicates, trying to cover as
many positive, and as few negative examples as possible. There is a set of predefined predicate templates
including tests on the length of the candidate entity or tests on features of tokens inside the candidate phrases.
Token features are predefined too and come in two categories:� simplefeatures such as the word, its capitalization pattern, binary features testing whether the token

is a punctuation sign, or a number.� two relational features - the previous and the next tokens.
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As with any phrase classification approach, SRV needs to address the issue of searching through a
typically huge negative examples set. The authors do this byhandling negative examples implicitly, on a
token-by-token basis – examples are indexed based on the tokens they contain. Because a token is generally
shared by many candidate phrases, this leads to a more tractable search method.

2.2 Token Classification Approaches

2.2.1 Hidden Markov Models

Another class of approaches to learning IE systems is based on Hidden Markov Models (HMMs) (Rabiner,
1989). HMMs have been successfully used for speech recognition before becoming a model of choice for
other natural language tasks such as POS tagging or named entity recognition. An HMM can be defined
as the stochastic version of a finite state automaton. Thus, there is a set of states (hidden), with transitions
between them. Given a state, there is a probability distribution over all possible transitions from that state.
Symbols can be generated from any state, one symbol at a time,based on a symbol emission distribution.
In a typical application of HMMs, a sequence of symbols is given, together with an HMM that is assumed
to have produced it. The generative process by which the HMM produces a string of symbols starts by
choosing a distinguished state (referred to as a starting state), then transitioning to another state according
the the corresponding transition probability. This process of transitioning from one state to another continues
until it reaches another distinguished state (referred to as the final state). Each time a transition is made from
a state, a symbol is generated according to that state’s symbol emission probability distribution. Graphically,
an unrolled HMM can be represented as a directed graph, as in Figure 4. In this and all subsequent figures,
theX symbols are used to denote observations, whileY symbols refer to hidden variables (states or labels).

Y1 Y2 Y Y Y3 n−1 n

1X X2 X3 Xn−1 Xn

.  .  .

.  .  .

Y0

Figure 4: Unrolling an HMM as a directed graphical model

One of the questions that an HMM inference algorithm is usually required to answer is what is the
sequence of states that is most likely to have generated a given sequence of symbols. For example, in the
case of POS tagging, each state corresponds to a POS tag, whereas symbols correspond to words. Given
a particular sentence, the POS tagging is defined as the most likely sequence of states that generated the
sentence.

HMMs are particularly attractive as they have a solid mathematical foundation, and the associated infer-
ence problem can be solved in time linear with the number of observed symbols using dynamic programming
(the Viterbi algorithm). During learning, if the data is fully observable (e.g. labeled training data), the HMM
parameters are simply set to their maximum likelihood estimates. If the data is only partially observable i.e.
the states are hidden, the Baum-Welch algorithm, an instantiation of the more general Expectation Maxi-
mization (EM) algorithm (Dempster, Laird, & Rubin, 1977), can be used to find a set of parameters such
that the likelihood function is locally optimized.
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IE systems based on HMMs belong naturally to the category of token classification approaches. The
most likely path through the Markov model leads to a tagging of the input symbols, and consequently
entities are extracted by assembling maximal contiguous sequences of words which are tagged with the
same entity tag.

There exist numerous IE systems based on HMMs, and with them awhole diversity of augmentations
to the basic model was introduced in order to better address various aspects of the task, such as the need for
adequate representational power, or how to deal with sparsity due to insufficient training data.

Nymble. Nymble (Bikel, Schwartz, & Weischedel, 1999) is one of the earliest learning systems for
named entity recognition based on HMMs. It consists of an ergodic model with one state for each entity
type, together with an additional state for tokens outside any entity. Inside each name-class state, words are
generated based on a statistical bigram language model. Thegeneration of name-classes (states) and words
proceeds in three steps, which are repeated until the entireword sequence is observed.

1. Select a name-class, conditioning on the previous name-class and the previous word.

2. Generate the first word from inside that name-class, by conditioning on the current and previous
name-classes.

3. Generate subsequent words inside the current name-class, where each word is conditioned on its
immediate predecessor.

In this model, words are generally assimilated with orderedpairs of words and word featureshw; fi,
where features belong to a predefined set of features, similar with those used in the SRV system. This further
exacerbates the problem of insufficient training data for estimating the model parameters. Consequently, the
authors rely on a multi-level back-off scheme, with weightsfor each level of back-off set based on an
empirical formula.

HMMs and Shrinkage. A different approach is proposed in (Freitag & McCallum, 1999), where a
separate HMM is created for each of the extraction fields. Thestates in each HMMs are either background
or target states. Prefix and suffix states are distinguished from other background states in order to account for
distributional peculiarities in the case of tokens occurring before or after the target field. Similarly, because
certain tokens tend to occur at the beginning or end of the fragment, the target state is expanded into an array
of parallel paths of varying length. The problem of data sparsity is alleviated through the use of ”shrinkage”,
a statistical technique which combines parameter estimates from data-sparse states of a complex model with
estimates from data-rich states of a simpler model. The method relies on a hierarchy that represents expected
similarity between parameter estimates, with the estimates of the complex model at the leaves. In the case of
shrinkage for HMM, subsets of states having similar word emission distributions are connected to a common
parent. Internal nodes in turn can share a common parent, thus encoding weaker similarities between the
corresponding groups of states. Word emission probabilities associated with states high in the hierarchy
become simpler than those for states below, with the top of each hierarchy corresponding to the uniform
distribution. The ”shrinkage-based ” parameter estimate is defined as a linear interpolation of the estimates
in all distributions from the leaf to the root. The corresponding mixture weights are optimized by running
EM on a held out dataset.

HMMs and Structure Learning. The two recently discussed HMM-based systems start with a prede-
fined model structure, and learning is used only in estimating the model parameters. For tasks in which the
entities to be extracted are densely represented inside a document, as is the case with headers and research
paper references, a single HMM containing states for all entity types may be more appropriate. Variability in
the relative ordering of the fields can be captured in the model by allowing the same field to be represented
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by more than one state. Learning the structure of such a modelis the focus of the approach described in
(Seymore, McCallum, & Rosenfeld, 1999).

2.2.2 Discriminative Models

We have already distinguished between IE approaches based on token classificationand approaches based
onphrase classification. Another useful dichotomy, orthogonal to the previous one,is that ofgenerativevs.
discriminativemodels. All HMM models reviewed here are generative in the sense that they try to model
both the observation and hidden state sequences. However, in most application of HMMs, the observations
are given, the task being that of ”decoding” the hidden statesequence. Therefore, a major drawback of
generative models is that modeling effort is spent on observations, instead of being focused entirely on de-
scribing the state sequence. The attempt to model the observations while keeping the inference tractable
has led to theoutput independence assumption, which stipulates that the current observation, given the cur-
rent state, is independent of previous observations. Usually, in text applications, observations correspond
to words, and consequently the output independence assumption is not fair enough. The mismatch between
model assumptions and data becomes even more pronounced if overlapping features, such as word capital-
ization and part-of-speech, are added as observations. Another inadequacy (McCallum, Freitag, & Pereira,
2000) is due to the way parameters are estimated. In an HMM, parameters are set to maximize the likelihood
of the observation sequence, while the task is that of predicting the state sequence given the observations.
All these mismatches and limitations are eliminated in discriminative approaches, in which the conditional
probability of state sequences given the observations liesat the core at the model.

2.2.3 Maximum Entropy Models

The Maximum Entropy (MaxEnt) (Berger, Della Pietra, & DellaPietra, 1996) principle has been widely
used to create discriminative probabilistic models for natural language tasks. The classification problem
is viewed in terms of a random process that produces an outputvalue y from a finite setY , based on
the contextual informationx, a member of a finite setX. In a token classification scenario, this means
associating a tagy to each text token, whereas the contextx is derived from the text centered at the current
token position. In maximum entropy modeling we are looking for a probability distributionp(yjx) that
satisfies a set of constraintsCi 2 C derived from a collection of user specified featuresfi(x; y) 2 F . Each
feature is expressed as a binary function based on the context x at the current token position and its proposed
classificationy. For example, a useful feature in tagging for named entity recognition is the capitalization
of the token to be classified, and it can be expressed as follows:fi(x; y) = � 1 if current token is capitalized &y = Inside;0 otherwise:

The constraintCi associated with a feature functionfi is expressed simply by imposing that the expected
value offi under the target distributionp(yjx) be the same as the expected value offi under the empirical
distribution ~p(x; y) (derived from the training data):Ci !Xx;y ~p(x; y)fi(x; y) =Xx;y ~p(x)p(yjx)fi(x; y)

Out of a potentially infinite number of probability distributions p(yjx) satisfying a particular set of
constraints, the maximum entropy principle dictates that we select the most ”uniform” distribution, where
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a formal measure for the ”uniformity” of a distribution is given by the information theoretic notion of
conditional entropy (Cover & Thomas, 1991):H(Y jX) = �Xx;y ~p(x)p(yjx) log p(yjx)

Based on the concept of duality from constrained optimization, it can be shown that the distributionp(yjx) satisfying the constraintsCi, and which also minimizes the conditional entropyH(Y jX), is a mem-
ber of the exponential family: p(yjx) = 1Z(x)exp Xi �ifi(x; y)!
whereZ(x) = Py exp (Pi �ifi(x; y)) is a normalizing constant. An additional compelling justification
for the maximum entropy principle is that the resulting distribution is also the model which, among all
log-linear models of the above form, maximizes the likelihood of the parameters given the training sample.

In (Ratnaparkhi, 1996), the authors describe a maximum entropy approach to part-of-speech tagging in
which they introduce a feature templatefha; bi which relates the tags of two consecutive tokens:fha; bi(xt; yt; yt�1) = � 1 if yt�1 = a & yt = b;0 otherwise:

They also define a similar feature template relating the tagsof three consecutive tokens. Computing
the highest probability label for each token, from left to right, does not necessarily lead to the most likely
sequence of tags. To alleviate this, the authors use a beam search procedure, in which they consider tokens
from left to right, keeping at each position the five sequences of tags concentrating the most probability
mass. A more rigorous approach, which was later used in maximum entropy models for named entity
recognition (Chieu & Ng, 2003), is to use a Viterbi-like algorithm for decoding, which guarantees finding
the most likely labeling of the entire sequence of words.

Maximum Entropy Markov Models. This new type of features, relating tags in consecutive positions,
suggests a class of maximum entropy models in which binary features may include a test on the class of the
previous token, besides conditioning on the observed inputcontext and the mandatory test on the class of
the current token. Each such feature is uniquely identifiable by a conditiong on the observed inputxt and
the possible instantiationsa andb for the current and previous tags,yt andyt�1, as follows:fhg; a; bi(xt; yt; yt�1) = � 1 if g(xt) = 1 & yt�1 = a & yt = b;0 otherwise:

One ”extreme” case is that when for any given input featureg, for each valid combinations of tagsha; bi,
the above defined compound featurefhg; a; bi is included in the model. This is a maximum entropy model
in which the same set of input featuresg is associated with transitions between any two hidden states a andb. It can be shown that this type of model is in fact equivalent with a Maximum Entropy Markov Model
(MEMM) (McCallum et al., 2000), which means that the same generic system that is currently used for
learning a MaxEnt model, can also be used for learning an MEMMmodel by simply providing it with the
appropriate set of features.

An MEMM (McCallum et al., 2000) creates an maximum entropy model for each state in the model.
Thus, for a given states0, the framework learns an exponential model corresponding to the probability of
transitioning to another states from s0, given the observation sequenceo, i.e. p(sjs0; o). Consequently, if
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Y1 Y2 Y Y Y3 n−1 n

1X X2 X3 Xn−1 Xn

.  .  .

.  .  .

Y0

Figure 5: Unrolling an MEMM as a directed graphical model

the set of states isS, the MEMM will contain jSj exponential models. Finding the most likely sequence of
states in this context can be done efficiently using a Viterbi-like algorithm. The procedure for learning the
parameters is the same as in the MaxEnt case i.e. using Improved Iterative Scaling (Della Pietra, Della Pietra,
& Lafferty, 1997) or a gradient based method (the likelihoodfunction is concave, and the gradient is simply
the difference between observed and expected feature counts).

2.2.4 Conditional Random Fields

A fundamental problem with MEMMs and other discriminative Markov models based on directed graphical
models is that they are biased toward states with few successor states. This is the ”label bias problem”
(Lafferty et al., 2001), which in a more general form stipulates that states with low entropy next-state dis-
tributions will take little notice of observations. The maximum entropy model from (Ratnaparkhi, 1996) is
subject to this problem too, as some of the features it uses are indirectly associated with transitions (they
contain conditions on labels of consecutive tokens). The reason for this behavior stems from the fact that
the same probability mass is allocated for modeling the labeling decision at each position in the sequence.
A principled solution to this problem is that of ConditionalRandom Fields (Lafferty et al., 2001), where a
single probability distribution is learned, one that models the joint probability of a label sequence given a
sequence of observations. Informally, this can be viewed asa finite state model with unnormalized transition
probabilities. Therefore, some transitions may contribute more than others to the overall score, depending
on the corresponding observations.

Y1 Y2 Y Y Y3 n−1 n.  .  .

.  .  .

Y0

X1 X2 X3 Xn−1 Xn

Figure 6: Unrolling a CRF as an undirected graphical model

Inference in CRFs can be done efficiently by accommodating the corresponding forward-backward or
Viterbi algorithms used for HMMs (Rabiner, 1989). Learningthe CRFs parameters can be cast as an op-
timization problem – the likelihood function is concave, thus a global maximum can be found efficiently
using standard procedures, such as Improved Iterative Scaling (Della Pietra et al., 1997), or gradient based
methods.
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We have started the list of token classification approaches with HMM models, which are generative and
can be represented as directed graphical models. We have argued that conditional models are more appro-
priate for the tagging task, one of their benefits being that they allow for arbitrary, potentially overlapping
features over the observation sequence. Consequently, we have described Maximum Entropy models, a class
of conditional models which we have further shown that it subsumes Maximum Entropy Markov Models, a
particular type of conditional Markov models. Although these conditional models offer increased represen-
tational power when compared with HMMs (their generative counterpart), they are all plagued by the ”label
bias problem”. This is particularly troublesome, as the problem does not occur with HMMs. The solution
came in the form of Conditional Random Fields, a type of undirected graphical models especially suited
for labeling sequences, which overcomes the label bias problem by modeling the joint probability over the
entire label sequence given the observation sequence. In the next sections we describe a generic type of
undirected graphical models called Relational Markov Networks (RMNs) (Taskar et al., 2002) which can
model more general types of label correlations, and are consequently a suitable framework for our initial
approach to ”collective information extraction”.

2.3 Markov Random Fields

Graphical models offer an intuitive representation of conditional independence between domain variables.
They come in two main flavors:� Directed Models – well suited to represent temporal and causal relationships (Bayesian Networks,

Neural Networks, HMMs)� Undirected Models– appropriate for representing statistical correlations between variables (Markov
Networks such as CRFs, RMNs, Boltzman Machines)

Markov Random Fields (Markov Networks) are a special class of undirected graphical models. Below
is their definition, based on the following notation:� V = a set of vertices used to denote random variables� G = (V;E) an undirected graph� N(v) = the set of neighbors of vertexv 2 V
Definition 1 V is said to be a Markov Random Field with respect toG if for any vertex, its value depends
only on its neighbors i.e.P (VijV � Vi) = P (VijN(Vi)), 8Vi 2 V

For the discriminative version, assumeX is the set of observed variables, andY is the set of hidden
variables, such thatV = X [ Y .

Definition 2 V is said to be a Conditional Markov Random Field with respect toG if P (YijX;Y � Yi) =P (YijX;N(Yi)), 8Yi 2 Y
Markov Random Fields characterize the underlying undirected graphical model via a local property,

namely the Markov assumption. On the other hand, Gibbs Random Fields, which are going to be defined
next, use a global property to characterize the corresponding graphical model. The corresponding notation
follows below:
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� V = a set of vertices which stand for random variables� G = (V;E) an undirected graph� C(G) = the set of cliques inG� V
 = the set of vertices in a clique
 2 C� � = f�
 : V
 ! R+; 
 2 C(G)g a set ofclique potentials

Definition 3 V is said to be a Gibbs Random Field with respect toG if P (V ) = 1Z P
2C(G) �
(V
), whereZ is a normalization constant.

Thus, a Gibbs Random Field is specified numerically by associating potentials with cliques in the graph.
A clique potential is a function on the set of possible configurations of the clique, that associates a positive
number with each configuration. The joint probability distribution over all vertices in the graph is obtained
by taking a product over the clique potentials.

For the discriminative version, assumeX is the set of observed variables, andY is the set of hidden
variables, such thatV = X [ Y , and similarly, for every clique
 2 C(G), let V
 = X
 [ Y
.
Definition 4 V is said to be a Conditional Gibbs Random Field with respect toG if P (Y jX) =1Z(X)P
2C(G) �
(X
; Y
), whereZ(X) is a normalization constant.

Therefore, whereas a Markov Random Field is an undirected graphical model characterized by a local
property, a Gibbs Random Field is an undirected graphical model constrained by a global property e.g.
the Gibbs distribution. The following theorem stipulates that the two types of graphical models are in fact
equivalent.

Theorem 1 (Hammersley & Clifford, 1971)V is a (conditional) MRF with respect toG if and only ifV is
a (conditional) GRF with respect toG.

Consequently, one can create a Markov Random Field by specifying an underlying probability distribu-
tion that factorizes into potentials over all maximal cliques in the graph.

2.4 Relational Markov Networks

Relational Markov Networks (Taskar et al., 2002) are conditional Markov random fields augmented with a
set ofclique templates. A clique template specifies which vertices are to be connected in a clique, associating
the same clique potential with all cliques that it creates inthe graph. Thus, a clique template provides at
the same time a procedure for creating edges in the graph, anda mechanism for tying parameters (clique
potentials) in the model.

In (Taskar et al., 2002), the RMN framework was introduced inorder to model correlations between the
class labels of hyperlinked web pages – pages which are hyperlinked tend to have the same label. The clique
template responsible for this type of correlations is detailed below:� Clique Creation Add an edge (a 2-node clique) between the labels of any two hyperlinked web pages.� Clique Potentials To all edges created by this template, associate the same potential function�. If

the number of possible class labels isN , then� can be specified as anN � N table of positive real
values i.e.� : f1; 2; :::; Ng � f1; 2; :::; Ng ! R+.
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Figure 7 shows a sample RMN, where the above clique template creates eight edges between the labelsY
of hyperlinked web pagesX. The same potential� is associated with all these edges. Other clique templates
are responsible for creating edges between each labelYi and the corresponding local context features inXi.

Y 1

X 1

Y 3

����

��

��

Y 2 Y4

Y 6

Y 5

Y 7X 2

X 3

X 5

X 7

X 6

φφ
φ

φ

φ φ φ
X 4

φ

Figure 7: An RMN unrolled, with cliques between hyperlinkedweb pages.

The CRFs, as previously illustrated in Figure 6, are therefore a particular type of RMNs, in which clique
templates create 3-node cliques between any two consecutive labels,Yt�1 andYt, and their corresponding
contextual featuresXt.

Given a set of potentials, doing inference with RMNs may refer to two things:

1. Computing the marginal probabilities for all hidden variables, or a proper subset of them.

2. Computing the most probable assignment of values to all hidden variables in the model.

For tree-structured models, the belief propagation algorithm (Pearl, 1988) computes the marginals over
all hidden variables in time linear with the number of nodes and edges in the underlying graph. For graphs
with cycles, however, exact inference algorithms, such as the join-tree algorithm, have a running time expo-
nential in the size of the largest clique in the triangulatedgraph. An alternative to exact inference is to do
approximate inference using loopy belief propagation, which has shown reasonable performance in many
practical applications (Murphy et al., 1999).

Learning with RMNs means computing the clique potential foreach potential template, given training
data where both the content attributes and the labels are observed. One alternative is to use a gradient
based method in a Maximum Likelihood (ML) or Maximum A Posteriori (MAP) setting. For the last type
of estimation, a “shrinkage” prior over the parameters is used, typically a zero-mean Gaussian. Because,
in both cases, the objective function is concave, the optimization procedure is guaranteed to find a global
maximum. An alternative learning method is to usestochastic gradient ascentin the form of a Voted
Perceptron (Collins, 2002). In this case, the objective function is calculated for a single instance at a time,
and its gradient is approximated with the features counts onthe Most Probable Explanation (MPE) labeling,
instead of computing the full feature count expectation. Nevertheless, inference is needed in both learning
scenarios, either for computing marginals over subsets of hidden variables, of for deriving the MPE labeling.

Viewed from the RMN perspective, CRFs are a special type of linear-chain undirected graphical mod-
els, and, as with any linear-chain or tree-structured graphical models, both exact inference and parameter
estimation can be solved efficiently.
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3 Completed Research

Of all IE systems mentioned in the previous section, that of (Seymore et al., 1999) is able to model influences
between various types of entities based on the order in whichthey occur in the document – in headers of
research papers, for example, the author’s name usually comes after the title. This type of order-based
correlations is captured by learning an HMM structure in which the same entity type may be associated with
multiple states in the model, while the set of transitions reflects the order in which various entity types occur
in the training data.

There have been some previous attempts to use global information from repetitions, acronyms, and
abbreviations during extraction. In (Chieu & Ng, 2003), a set of global features are used to improve a
Maximum-Entropy tagger; however, these features do not fully capture the mutual influence between the
labels of acronyms and their long forms, or between entity repetitions. In particular, they only allow earlier
extractions in a document to influence later ones and not vice-versa.

In this section we are going to introduce a collective approach to Information Extraction which will
allow the incorporation of arbitrary correlations betweenthe labels of potential extractions from the same
document. For this, we shall use the RMN framework to do extraction by phrase classification.

3.1 Candidate Entities

Doing phrase classification requires a set of phrases to start with. Throughout this document, we will use
the termscandidate entities, candidate extractions, or candidate phrasesto refer to the set of phrases that
are to be classified as being valid extractions or not. Considering as candidate entities all contiguous word
sequences from a document would lead to a quadratic number ofphrases, which would adversely affect the
time complexity of the extraction program. Various heuristics exist however which can significantly reduce
the size of the candidate set, and some of them are listed below:� H1: In general, named entities have limited length. Therefore,one simple way of creating the set of

candidate phrases is to compute the maximum length of all annotated entities in the training set, and
then consider as candidates all word sequences whose lengthis up to this maximum length. This is
also the approach followed in SRV (Freitag, 1998).� H2: In the task of extracting protein names from Medline abstracts, we noticed that, like most en-
tity names, almost all proteins in our data are base noun phrases or parts of them. Therefore, such
substrings are used to determine candidate entities. To avoid missing options, we adopt a very broad
definition of base noun phrase – a maximal contiguous sequence of tokens whose POS tags are fromf”JJ”, ”VBN”, ”VBG”, ”POS”, ”NN”, ”NNS”, ”NNP”, ”NNPS”, ”CD” , ”–” g, and whose last
word (the head) is tagged either as a noun, or a number. Candidate extractions then consist of base
NPs, together with all their contiguous subsequences headed by a noun or number.� H3: The CoNLL 2003 English corpus (Tjong Kim Sang & De Meulder, 2003) contains four types
of named entities: persons (PER), locations (LOC), organizations (ORG), and other (MISC). A more
appropriate heuristic in this case is to consider as candidates all sequences of proper names, potentially
interspersed with prepositions, commas, conjunctions or definite articles.

Table 1 below shows the candidate entities generated by H1 and H2 on a fragment from a Medline
abstract. Similarly, Table 2 shows candidate entities generated by H1 and H3 on a fragment from a CoNLL
document. Both H2 and H3 are strong heuristics, in the sense that they drastically reduce the number of
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candidate entities. In the next sections, we shall focus on the task of extracting protein names from Medline
abstracts.

“the control of humanribosomal protein L22 ( rpL22 ) “Æ theÆ the controlÆ the control ofÆ the control of humanÆ the control of
H1 human ribosomalÆ ... Æ ribosomalÆ ribosomal proteinÆ ribosomal protein L22Æ ribosomal protein L22 (Æ ribosomal protein L22 ( rpL22Æ ... Æ L22 Æ L22 ( ÆÆ L22 ( rpL22Æ L22 ( rpL22 )Æ ... Æ rpL22 Æ rpL22 )Æ ) Æ
H2 Æ controlÆ human ribosomal proteinÆ human ribosomal protein L22Æ ribosomal proteinÆ ribosomal protein L22 Æ protein L22Æ L22 Æ rpL22 Æ

Table 1: Candidate Extractions: Medline.

“ Israel gavePalestinianPresidentYasser Arafat permission on Thursday“Æ Israel Æ Israel gaveÆ Israel gave PalestinianÆ Israel gave Palestinian
H1 PresidentÆ ... Æ PalestinianÆ Palestinian PresidentÆ Palestinian President YasserÆ Palestinian President Yasser ArafatÆ ... Æ YasserÆ Yasser Arafat Æ President

Yasser Arafat permissionÆ ... Æ onÆ on ThursdayÆ ThursdayÆ
H3 Æ Israel Æ PalestinianÆ Palestinian PresidentÆ Palestinian President YasserÆ Palestinian President Yasser ArafatÆ PresidentÆ President YasserÆ President Yasser ArafatÆ YasserÆ Yasser Arafat Æ ArafatÆ

Table 2: Candidate Extractions: CoNLL.

3.2 Entity Features

The set of features associated with each candidate is based on the feature templates introduced in (Collins,
2002), used there for training a ranking algorithm on the extractions returned by a maximum-entropy tagger.
Many of these features use the concept ofword type, which allows a different form of token generalization
than POS tags. Theshort typeof a word is created by replacing any maximal contiguous sequences of
capital letters with ’A’, of lower-case letters with ’a’, and of digits with ’0’. For example, the wordTGF-1
would be mapped to typeA-0.

Consequently, each token positioni in a candidate extraction provides three types of information: the
word itselfwi, its POS tagti, and its short typesi. The full set of features types is listed in Table 3, where
we consider a generic candidate extraction as a sequence ofn+ 1 wordsw0w1:::wn.

Each feature template instantiates numerous features. Forexample, the candidate extraction’HDAC1
enzyme’has the head wordHD=enzyme, the short typeST=A0a, the prefixesPF=A0 andPF=A0 a, and
the suffixesSF=aandSF=A0 a. All other features depend on the left or right context of theentity. Feature
values that occur less than three times in the training data are filtered out.

3.3 The RMN Framework for Entity Recognition

Given a collection of documentsD, we associate with each documentd 2 D a set of candidate entitiesd:E,
in our case a restricted set of token sequences from the document (Section 3.1). Each entitye 2 d:E is
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Description Feature Template

Head Word w(n)
Text w(0) w(1) ::: w(n)
Short Type s(0) s(1) ::: s(n)
Bigram Left w(�1) w(0) w(�1) s(0)
(4 bigrams) s(�1) w(0) s(�1) s(0)
Bigram Right w(n) w(n+1) w(n) s(n+1)
(4 bigrams) s(n) w(n+1) s(n) s(n+1)
Trigram Left w(�2) w(�1) w(0) :::
(8 trigrams) s(�2) s(�1) s(0)
Trigram Right w(n) w(n+1) w(n+2) :::
(8 trigrams) s(n) s(n+1) s(n+2)
POS Left t(�1)
POS Right t(n+1)
Prefix s(0) s(0) s(1) :::
(n+1 prefixes) s(0) s(1) ::: s(n+1)
Suffix s(n) s(n�1) s(n) :::
(n+1 suffixes) s(0) s(1) ::: s(n+1)

Table 3: Feature Templates.

characterized by a predefined set of boolean attributese:F (Section 3.2), the same for all candidate entities.
One particular attribute ise:label which is set to 1 ife is considered a valid extraction, and 0 otherwise.
In this document model, labels are the only hidden variables, and the inference procedure will try to find a
most probable assignment of values to labels, given the current model parameters.

Each document is associated with an undirected graphical model, with nodes corresponding directly to
entity attributes, one node for each attribute of each candidate entity in the document. The set of edges is
created by matchingclique templatesagainst the entire set of entitiesd:E. A clique template is a procedure
that finds all subsets of entities satisfying a given constraint, after which, for each entity subset, it connects
a selected set of attribute nodes so that they form a clique.

Formally, there is a set of clique templatesC, with each template
 2 C specified by:

1. A matching operatorM
 for selecting subsets of entities,M
(E) � 2E
2. A selected set of featuresS
 = hX
; Y
i, the same for all subsets of entities returned by the matching

operator.X
 denotes the observed features, whileY
 refers to the hidden labels.

3. A clique potential�
 which gives the compatibility of each possible configuration of values for the
features inS
, s.t.�
(s) � 0;8s 2 S
.

Given a setE of nodes,M
(E) consists of subsets of entities whose attribute nodesS
 are to be con-
nected in a clique. In previous applications of RMNs, the selected subsets of entities for a given template
have the same size; however, some of our clique templates maymatch a variable number of entities. The
setS
 may contain the same attribute from different entities. Usually, for each entity in a matching set, its
label is included inS
. All these will be illustrated with examples in Sections 3.4and 3.5 where the clique
templates used in our model are described in detail.
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Depending on the number of hidden labels inY
, we define two categories of clique templates:� Local Templatesare all templates
 2 C for which jY
j = 1. They model the correlations between
an entity’s observed features and its label.� Global Templatesare all templates
 2 C for which jY
j > 1. They capture influences between
multiple entities from the same document.

After the graph model for a documentd has been completed with cliques from all templates, the proba-
bility distribution over the random field of hidden entity labelsd:Y given the observed featuresd:X is given
by the Gibbs distribution:P (d:Y jd:X) = 1Z(d:X) Y
2C YG2M
(d:E)�C(G:X
; G:Y
) (1)

whereZ(d:X) is the normalizing partition function:Z(d:X) =XY Y
2C YG2M
(d:E)�C(G:X
; G:Y
) (2)

3.4 Local Clique Templates

As described in the previous section, the role of local clique templates is to model correlations between an
entity’s observed features (see Table 3) and its label. If, after filtering, we are left withh distinct boolean
featuresfi, one way to model these correlations is to introduceh local (clique) templatesLT1; LT2; :::; LTh.
A templateLTi would then be defined as follows:

1. The matching operatorMi is set to match any single-entity setfeg.
2. The collection of attributesSi corresponding to a singleton entity setfeg is defined to beSi =hXi; Yii = hfe:fig; fe:labelgi. This amounts to introducing in the RMN graphh attribute nodes for

each candidate entity, which are to be connected by theh local templates to the corresponding entity
label node. The 2-node cliques created by allh templates around one entity are illustrated in Figure 8.

3. The potential�i associated with all 2-node cliques created by templateLTi would consist in a2 � 2
table (as bothe:fi ande:label have cardinality 2 – assuming only one entity type is to be extracted,
we need only two values for the label attribute).

...
ee

elabel

e
1 f  f  2 hf  

Figure 8: RMN generated by local templates.
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Each entity has the label node connected to its own set ofh binary feature nodes. This leads to an
excessive number of nodes in the model, most of which have value zero. The number of nodes can be
reduced if, for each entity, we include in the graphical model only those nodes for which the corresponding
feature variable has value 1. Consequently, the table associated with the local potential will be reduced from
4 to 2 values, specifying now the compatibility between thatfeature and the two possible values for the
entity label.

Factor Graphs. An alternative, useful representation for Markov random fields is provided by factor
graphs (Kschischang, Frey, & Loeliger, 2001). These are bipartite graphs which express how a global func-
tion of many variables (the probabilityP (d:Y jd:X) in Equation 1) factors into a product of local functions
(the potentials�C(G:X
; G:Y
) in Equation 1). Factor graphs subsume many different types of graphical
models, including Bayesian networks and Markov random fields. The sum/max-product algorithm used for
inference in factor graphs generalizes a wide variety of algorithms including the forward/backward algo-
rithm, the Viterbi algorithm, and Pearl’s belief propagation algorithm (Pearl, 1988). To obtain the factor
graph for a given Markov random field, we copy all original nodes from the MRF, referred henceforth as
variable nodes, and create apotential nodefor each instantiated clique potential. Each potential node is then
linked to all variable nodes from the associated clique.

In the case of local clique potentials, given that all feature nodes have value 1, we can eliminate them
from the equivalent factor graph representation. What is left then is a variable node for the entity label,
together with nodes for potential functions, one potentialnode for each entity feature whose value has been
observed to be 1. As an example, Figure 9 shows that part of thefactor graph which is generated around the
entity label for’HDAC1 enzyme’(with variable nodes figured as empty circles and potential nodes figured as
black squares).

elabel

φHD=enzyme

φPF=A0

φPF=A0_a

φSF=a

φSF=A0_a

...

Figure 9: Factor Graph for local templates.

Note that the factor graph above has an equivalent RMN graph consisting of a one-node clique only, on
which it is hard to visualize the various potentials involved. There are cases where different factor graphs
may yield the same underlying RMN graph, which makes the factor graph representation preferable.

3.5 Global Clique Templates

Global clique templates enable us to model hypothesized influences between entities from the same doc-
ument. They connect the label nodes of two or more entities, which, in the factor graph, translates into
potential nodes connected to at least two label nodes. In ourexperiments we use three global templates:

Overlap Template (OT): No two entity names overlap in the text i.e if the span of one entity is [s1; e1℄
and the span of another entity is[s2; e2℄, ands1 � s2, thene1 < s2.

Repeat Template (RT): If multiple entities in the same document are repetitions ofthe same name,
their labels tend to have the same value (i.e. most of them areprotein names, or most of them are not protein
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names). Later we discuss situations in which repetitions ofthe same protein name are not tagged as proteins,
and design an approach to handle this.

Acronym Template (AT): It is common convention that a protein is first introduced by its long name,
immediately followed by its short-form (acronym) in parentheses.

3.5.1 The Overlap Template

The definition of acandidate extractionfrom Section 3.1 leads to many overlapping entities. For example,
’glutathione S - transferase’is a base NP, and it generates five candidate extractions:’glutathione’, ’glutathione
S’, ’glutathione S - transferase’, ’S - transferase’, and’transferase’. If ’glutathione S - transferase’has label-value
1, the other four entities should all have label-value 0, because they overlap with it.

This type of constraint is enforced by the overlap template as follows:

1. TheMOT operator matches any two overlapping candidate entitiesfe1; e2g.
2. The set of attributesSOT selected by this template for two overlapping entitiesfe1; e2g is SOT =hXOT ; YOT i = h;; fe1:label; e2:labelgi. This translates in the factor graph into a potential node

connected to the two selected label nodes.

3. The potential function�OT is set so that at most one of the overlapping entities can havelabel-value
1, as illustrated in Table 4. �OT e1:label = 0 e1:label = 1e2:label = 0 1 1e2:label = 1 1 0

Table 4: Overlap Potential.

Continuing with the previous example, because’glutathione S’and ’S - transferase’are two overlapping
entities, the factor graph model will contain an overlap potential node connected to the label nodes of these
two entities.

An alternative solution for the overlap template is to create a potential node for each token position
that is covered by at least two candidate entities in the document, and connect it to their label nodes. The
difference in this case is that the potential node will be connected to a variable number of entity label nodes.
However this second approach has the advantage of creating fewer potential nodes in the document factor
graph, which results in faster inference.

3.5.2 The Repeat Template

We could specify the potential for the repeat template in a similar 2 � 2 table, this time leaving the table
entries to be learned, given that assigning the same label torepetitions is not a hard constraint. However we
can do better by noting that the vast majority of cases where arepeated protein name is not also tagged as a
protein happens when it is part of a larger phrase thatis tagged. For example,’HDAC1 enzyme’is a protein
name, therefore’HDAC1’ is not tagged in this phrase, even though it may have been tagged previously in the
abstract where it was not followed by’enzyme’. We need a potential that allows two entities with the same
text to have different labels if the entity with label-value0 is inside another entity with label-value 1. But a
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candidate entity may be inside more than one “including” entity, and the number of including entities may
vary from one candidate extraction to another. Using the example from Section 3.5.1, the candidate entity
’glutathione’ is included in two other entities:’glutathione S’and’glutathione S - transferase’.

In order to instantiate potentials over variable number of label nodes, we introduce alogical OR clique
templatethat matches a variable number of entities. When this template matches a subset of entitiese1; e2; :::; en, it will create an auxiliary OR entityeOR, with a single attributeeOR:label. The potential
function�OR is set so that it assigns a non-zero potential only wheneOR:label = e1:label_ e2:label _ :::_en:label. The cliques are only created as needed, e.g. when the auxiliary OR entity is required by repeat
and acronym clique templates.

Figure 10 shows the factor graph for a sample instantiation of the repeat template using the OR template.
Here,u andv represent two same-text entities,u1, u2, ... un are all entities that includeu, andv1, v2, ...,vm are entities that includev. To avoid clutter, all entities in this and subsequent factor graphs stand for
their corresponding label features. The potential function �RT can either be preset to prohibit unlikely label
configurations, or it can be learned to represent an appropriate soft constraint. In our experiments, it was
learned since this gave slightly better performance.

1 u2u v1 2v

φ φ
u u v v

or or

or or

RT
φ

un vm
... ...

Figure 10: Repeat Factor Graph.

Following the previous example, suppose that the phrase’glutathione’ occurs inside two base NPs in
the same document,’glutathione S - transferase’and’glutathione antioxidant system’. Then the first occurrence
of ’glutathione’ will be associated with the entityu, and correspondingly its including entities will beu1
= ’glutathione S’andu2 = ’glutathione S - transferase’. Similarly, the second occurrence of’glutathione’will
be associated with the entityv, while the including entities will bev1 = ’glutathione antioxidant’andv2 =
’glutathione antioxidant system’.

3.5.3 The Acronym Template

One approach to the acronym template would be to use an extantalgorithm for identifying acronyms and
their long forms in a document, and then define a potential function that would favor label configurations
in which both the acronym and its definition have the same label. One such algorithm is described in
(Schwartz & Hearst, 2003), achieving a precision of96% at a recall rate of82%. However, because this
algorithm would miss a significant number of acronyms, we have decided to implement a softer version as
follows: detect all situations in which a single word is enclosed between parentheses, such that the word
length is at least 2 and it begins with a letter. Letv denote the corresponding entity. Letu1, u2, ...,un be all
entities that end exactly before the open parenthesis. If this is a situation in whichv is an acronym, then one
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of the entitiesui is its corresponding long form. Consequently, we use a logical OR template to introduce
the auxiliary entityuOR, and connect it tov’s node label through an acronym potential�AT , as illustrated
in Figure 11.

1 u2u

φ
u v

or

or

un

...

φAT

Figure 11: Acronym Factor Graph.

For example, consider the phrase’the antioxidant superoxide dismutase - 1 ( SOD1 )’, where both’superoxide
dismutase - 1’and ’SOD1’ are tagged as proteins.’SOD1’ satisfies our criteria for acronyms, thus it will be
associated with the entityv in Figure 11. The candidate long forms areu1 = ’antioxidant superoxide dismutase
- 1’, u2 = ’superoxide dismutase - 1’, andu3 = ’dismutase - 1’.

3.6 Inference in Factor Graphs

There are two problems that need to be addressed when workingwith RMNs:

1. Inference: Usually, two types of quantities are needed from an RMN model:� The marginal distribution for a hidden variable, or for a subset of hidden variables in the graph-
ical model.� The most probable assignment of values to all hidden variables in the model.

2. Learning: As the structure of the RMN model is already defined by its clique templates, learning
refers to finding the clique potentials that maximize the likelihood over the training data. Inference
is usually performed multiple times during the learning algorithm, which means that an accurate, fast
inference procedure is doubly important.

In our setting, given the clique potentials, the inference step for the factor graph associated with a document
involves computing the most probable assignment of values to the hidden labels of all candidate entities:d:Y � = argmaxd:Y P (d:Y jd:X) (3)

whereP (d:Y jd:X) is defined as in Equation 1. A brute-force approach is excluded, since the number of
possible label configurations is exponential in the number of candidate entities. The sum-product algorithm
(Kschischang et al., 2001) is a message-passing algorithm that can be used for computing the marginal
distribution over the label variables in factor graphs without cycles, and with a minor change (replacing
the sum operator used for marginalization with a max operator) it can also be used for deriving the most
probable label assignment. In our case, in order to get an acyclic graph, we would have to use local templates
only. However, it has been observed that the algorithm oftenconverges in general factor graphs, and when
it converges, it gives a good approximation to the correct marginals. The algorithm works by altering the
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belief at each label node by repeatedly passing messages between the node and all potential nodes connected
to it (Kschischang et al., 2001).

The time complexity of computing messages from a potential node to a label node is exponential in the
number of label nodes attached to the potential. Since this “fan-in” can be large for OR potential nodes (and
also for the second solution to overlap potential nodes), this step required optimization. Fortunately, due to
the special form of the OR and overlap potentials (high degree of sparsity), and the normalization before
each message-passing step, these special cases can be computed in linear-time. For example, the formulae
for computing the OR messages for the sum-product algorithmare shown in Figure 12 (to avoid clutter,e
and� stand foreOR and�OR respectively).

e

φ
µe−>φ

µφ −>e

...
ene1

...
ei

µ −>φ ei µei −>φ

Appears in PhD Proposal, Oct 2004 (Also Appears as Technical Report TR-05-02),

.
Appears in PhD Proposal, Oct 2004 (Also Appears as Technical Report TR-05-02),

.

Figure 12: Messages in OR Factor Graph.

3.7 Learning Potentials in Factor Graphs

Following a maximum likelihood estimation, we shall use thelog-linear representation of potentials:�C(G:X
; G:Y
) = expfw
f
(G:X
; G:Y
)g (4)

Let w be the concatenated vector of all potential parametersw
. One approach to finding the maximum-
likelihood solution forw is to use a gradient-based method, which requires computingthe gradient of the
log-likelihood with respect to potential parametersw
. It can be shown that this gradient is equal with the
difference between the empirical counts off
 and their expectation under the current set of parametersw.rL(w;D) = Xd2D f
(d:X; d:Y )�Xd2DXd:Y 0 f
(d:X; d:Y 0)Pw(d:Y 0jd:X) (5)

The expectation in the second term is expensive to compute, since it requires summing over all possible
configurations of candidate entity labels from a given document. To circumvent this complexity, we used
Collins’ voted perceptron approach (Collins, 2002), whichcan be seen as approximating the full expectation
of f
 with thef
 counts for the most likely labeling under the current parametersw.rL(w;D) �Xd2D f
(d:X; d:Y )�Xd2D f
(d:X; d:Yw) (6)

The Voted Perceptron algorithm is detailed in Table 5. At each stepi in the algorithm, inference is performed
using the current parameterswi, so that we get the most likely labelingd:Yi. The parameters are then updated
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based on the difference between the features counts computed on the ideal labelingd:Y and those computed
on the current most likely labelingd:Yi. The final set of parameters is the average taken over the parameters
at all stepsi in the algorithm.

Input: a set of documentsD, number of epochsT ,
learning rate�.

setparametersw0 = 0
setcounteri = 0
for t = 1:::T

for every documentd 2 Dd:Yi = argmaxd:Y 0 Pwi(d:Y 0jd:X)wi+1 = wi + � � [f(d:X; d:Y )� f(d:X; d:Yi)℄i = i+ 1
Output: w = 1T jDjPi wi

Table 5: The Voted Perceptron Algorithm.

In all our experiments, the perceptron was run for 50 epochs,with a learning rate set at 0.01.

3.8 Experimental Results

We have tested the RMN approach on two datasets that have beenhand-tagged for human protein names.
The first dataset is Yapex1 which consists of 200 Medline abstracts. Of these, 147 have been randomly se-
lected by posing a query containing the (Mesh) termsprotein binding, interaction, andmolecularto Medline,
while the rest of 53 have been extracted randomly from the GENIA corpus (Collier, Park, Ogata, Tateisi,
Nobata, T.Ohta, Sekimizu, Imai, Ibushi, & Tsujii, 1999). Itcontains a total of 3713 protein references.
The second dataset is Aimed2 which has been previously used for training the protein interaction extraction
systems in (Bunescu, Ge, Kate, Marcotte, Mooney, Ramani, & Wong, 2004). It consists of 225 Medline ab-
stracts, of which 200 are known to describe interactions between human proteins, while the other 25 do not
refer to any interaction. There are 4084 protein referencesin this dataset. We compared the performance of
three systems:LT-RMN is the RMN approach using local templates and the overlap template,GLT-RMN
is the full RMN approach, using both local and global templates, andCRF, which uses a CRF for labeling
token sequences. We used the CRF implementation from (McCallum, 2002) with the set of tags and fea-
tures used by the Maximum-Entropy tagger described in (Bunescu et al., 2004). All Medline abstracts were
tokenized and then POS tagged using Brill’s tagger (Brill, 1995). Each extracted protein name in the test
data was compared to the human-tagged data, with the positions taken into account. Two extractions are
considered a match if they consist of the same character sequence in the same position in the text. Results
are shown in Table 6 which give average precision (P), recall(R), and F-measure (F) using 10-fold cross
validation. P = #correct extractions#extractions ; R = #correct extractions#annotated extractions; F = 2P�RP+R :

These tables show that, in terms of F-measure, the use of global templates for modeling influences
between possible entities from the same document significantly improves extraction performance over the

1URL:www.sics.se/humle/projects/prothalt/
2URL: ftp.cs.utexas.edu/mooney/bio-data/
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Yapex Aimed
Method Precision Recall F-measure Method Precision Recall F-measure
LT-RMN 70.79 53.81 61.14 LT-RMN 81.33 72.79 76.82
GLT-RMN 69.71 65.76 67.68 GLT-RMN 82.79 80.04 81.39
CRF 72.45 58.64 64.81 CRF 85.37 75.90 80.36

Table 6: Extraction Performance on two protein datasets.

local approach (a one-tailed paired t-test for statisticalsignificance results in ap value less than0:01 on
both datasets). There is also a small improvement over CRFs,with the results being statistically significant
only for the Yapex dataset, corresponding to ap value of0:02. We hypothesize that further improvements
to the LT-RMN approach would push the GLT-RMN performance even higher. The tagging scheme used
by CRFs, in which each token is assigned a tag, is essentiallydifferent from the RMN approach, where
candidate extractions are either rejected or accepted. In the tagging approach used by CRFs, extracted
entities are available only after tagging is complete, thereby making it difficult to account for influences
between them during tagging.

Figures 13 and 14 shows the precision-recall curves for the two datasets. These were obtained by varying
a threshold on the extraction confidence, which is the posterior probability that its label is 1 as computed by
the sum-product algorithm.
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Figure 13: Precision Recall Curves on Yapex.

We also explored using a global template that captured the tendency for candidate entities whose phrases
are coordinated to have the same label. An example is shown inFigure 15 where the two entities’eNOS’
and’NOSIPare coordinated through the conjunction’and’. This template did not improve performance since
detecting whether two NPs are coordinated is difficult, and the methods we tried introduced too many false
coordinations.

26



 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

P
re

ci
si

on
 (

%
)

Recall (%)

GLT-RMN
LT-RMN

Figure 14: Precision Recall Curves on Aimed.

Coimmunoprecipitation studies demonstrated the
specific interaction of eNOS and NOSIP in vitro and
in vivo ...

Figure 15: Coordinated phrases eNOS and NOSIP have the same entity label.

In order to evaluate the applicability of our method to othertypes of narrative, we also tried it on the
CoNLL 2003 English corpus (Tjong Kim Sang & De Meulder, 2003)which contains four types of named
entities: persons (PER), locations (LOC), organizations (ORG), and other (MISC). Consequently the number
of label values increased from two to five (with a label-valueof 0 to indicate none of the four categories).
For the global approach we used the same overlap template anda modified version of the repeat template in
which the OR potential was replaced with a different type of potential (SEL) that allows at most one of the
including entities to have a non-zero label-value. The SEL variable (replacing the OR variable) is forced to
have label-value 0 if all including entities have label-value 0, otherwise it selects the one label-value that is
not 0. The resulting repeat template, besides handling exact repetitions, is also able to capture correlations
between entity types, when one entity repetition is included in another entity with a potentially different
type. For example, it is common in this corpus to have countrynames repeated inside organization names
in the same document, as is “Japan” in “Bank of Japan”, or “Japan Aluminium Federation”.

The overall results are shown in Table 7, with the global approach exhibiting improvement over the
local approach, albeit less pronounced than in the biomedical domain. This results are still under some
of the best published results on the same corpus - however no dictionaries were used in our experiments,
and no custom feature selection was performed – the feature templates were the same as those used in the
biomedical extraction.
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Method Precision Recall F-measure

LT-RMN 82.15 78.13 80.09
GLT-RMN 83.17 81.44 82.30

CRF 81.57 80.08 80.82

Table 7: Extraction Performance on CoNLL.

4 Current Research

The sum-product algorithm is guaranteed to do exact inference for factor graphs without cycles. However,
it happens very often that the factor graphs generated by ourapproach contain cycles, even when only the
overlap template is used (i.e. the LT-RMN model). For example, if w1w2w3 is a sequence of three nouns,
the entire sequence, together with all its subsequences, will become candidate entities. We shall use the
lettere to denote these candidate entities, as follows:� unigram entities:e1  w1, e2  w2, e3  w3� bigram entities:e12  w1w2, e23  w2w3� trigram entities:e123  w1w2w3

The corresponding set of overlapping pairs isf(e1; e12), (e1; e123), (e2; e12), (e2; e23), (e2; e123), (e3; e23),(e3; e123), (e12; e23), (e12; e123), (e23; e123)g. The overlap template will create a two-node clique between
the two nodes from each overlapping pair in the RMN factor graph, as illustrated in Figure 16. Of all cycles
contained in this graph, we have emphasized using thick lines the cyclee1 � e12 � e2 � e123 � e1, with the
corresponding factor graph illustrated on the right.
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φOT

Figure 16: RMN and factor graph with cycles due to overlap clique potentials

In the next section, we are going to show that exact inferencecan be done for the local model (LT-RMN)
in linear time, based on the junction-tree algorithm (Cowell, Dawid, Lauritzen, & Spiegelhalter, 1999) and
the sparsity of a different version of the overlap potential.
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4.1 Local models

The original overlap template used in our approach creates an edge between any two overlapping entities.
The constraint that entities should not overlap can also be enforced with a different type of overlap template,
as follows. For a token positioni in the document, letEi be the set of candidate entities whose span includes
that position. The overlap template is then defined so that, for eachi, it connects the labels of all entities
in Ei in a clique, with an associated potential that is non-zero only when at most one entity fromEi has
label-value 1. Thus, ifjEij = n, then the corresponding overlap potential can be specified as a table with2n entries, of whichn + 1 are set on 1, the rest being set to 0. This makes the potential table very sparse
(a linear number of non-zero entries), a fact that will be used later in the inference algorithm. Notice that
this version of the overlap template can match a variable number of entities, depending on the number of
overlapping entities at each token position.

Continuing with the same noun phrase examplew1w2w3, the sets of overlapping entities corresponding
to the three token positions are:

1. E1 = fe1; e12; e123g
2. E2 = fe2; e12; e23; e123g
3. E3 = fe3; e23; e123g
The overlap template creates three cliques, correspondingto the three setsE1, E2, andE3. This results

in the same graph as that from Figure 16, containing numerouscycles, which again means that the belief
propagation algorithm (or the sum-product algorithm in theequivalent factor graph) is not guaranteed to
result in exact inference.

4.1.1 Exact, linear time inference

The junction tree algorithm (Cowell et al., 1999) is a generalization of the sum-product algorithm that can be
used for exact inference in general graphs. It is based on thejunction tree representation, which is a singly
connected graph whose nodes are clusters of nodes from the original graph. The usability of the junction
tree algorithm is however limited by the fact that its time complexity is exponential in the size of the largest
cluster, which can get very large, especially when the original graph has cycles.

Definition 5 (Cowell et al., 1999)H = (H:V;H:E) is a cluster graph forG = (G:V;G:E) if H:V � 2G:V
e.g. any vertex in H is a cluster of vertices from G.�
Definition 6 (Cowell et al., 1999) A cluster graphH is a junction tree for G if it has the following three
properties:

1. singly connected:there is exactly one path between each pair of clusters.

2. covering: for each cliqueA ofG there is some clusterC such thatA � C.

3. running intersection: for each pair of clustersC andC 0 that contain a vertexv 2 G:V , each cluster
on the unique path betweenC andC 0 also containsv. �
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In order to create a cluster graph having the running intersection property, one needs totriangulate the
original graph. Triangulation refers to adding sufficient additional edges such that the graph contains no
chordlesscycles i.e. cycles of four or more distinct vertices withouta short-cut. The cluster nodes in the
junction tree are simply maximal cliques in the triangulated graph. It is usually the process of triangulation
which leads to arbitrarily large cliques in the triangulated graph, which translates into arbitrarily large cluster
nodes in the junction tree. Fortunately, as the next theoremasserts, the graphs created by the overlap template
are already triangulated (e.g.chordal):

Theorem 2 Let w1w2:::wn be a word sequence, arbitrarily long (it may be the entire sequence of words
from a document). LetE be an arbitrary set of candidate entities, andEi the set of overlapping entities at
position i, where1 � i � n. LetG be the graph created by the application of the overlap template e.g.
the result of creatingn cliques, one clique for eachEi, for all 1 � i � n. Then the overlap graphG is a
chordal graph.�

For example, it can be verified easily that the overlap graph in Figure 16 is a chordal graph. We do not
include the proof of this theorem here, as it will not be used directly in creating the junction tree associated
with an overlap graph. Instead, we are going to create a particular cluster graph and show that it is a junction
tree for the overlap graph by verifying directly the three properties from Definition 6, as in the following
theorem:

Theorem 3 Keeping with the notation from Theorem 2, letH be a cluster graph forG, defined as follows:� H:V = fEij1 � i � ng e.g. the sets of overlapping entities are vertices in the cluster graph.� H:E = f(Ei; Ei+1)j1 � i � n � 1g e.g. connect clusters corresponding to consecutive positions
only (resulting in a list of clusters).

ThenH is a junction tree forG. �
The result of applying this procedure on the overlap graph inFigure 16 is illustrated in Figure 17.

Ellipses denotecluster nodes, while rectangles (separator nodes) are used to show the intersection between
adjacent cluster nodes. It can be easily verified that this isa junction tree.
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e23
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Figure 17: Sample junction tree.
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Proof of Theorem 3. The first two properties from Definition 6 are obviously verified. What is left
for proof is the running intersection property. LetEi andEj be two cluster nodes. Assume without loss of
generality thati < j. Let e be a vertex in the original graphG such thate 2 Ei ande 2 Ej . Let e:l ande:r be the left and respectively right boundaries of entitye in the word sequence. Using the definition of the
overlapping sets,e 2 Ei , e:l � i � e:r, ande 2 Ej , e:l � j � e:r. LetEk be a cluster node on the
path betweenEi andEj . Because of the way in whichH was created,k should be a position betweeni andj i.e. i < k < j. At this point, we have these three inequalities:� e:l � i � e:r� e:l � j � e:r� i < k < j
Based on these inequalities, we get thate:l � i < k < j � e:r, thereforee:l < k < e:r. This implies thate 2 Ek. AsEk was an arbitrary cluster on the path betweenEi andEj, this means thatH has the running
intersection property. Therefore,H is a junction tree forG. �

Both Theorem 2 and Theorem 3 are important because they show that the size of the largest cluster in
the junction tree (i.e. itswidth) is actually the size of the largest overlapping clique in the original graph.
Because the inference algorithm using junction trees is in general exponential in this size, and because the
size of the largest overlapping clique can be linear in the number of candidate entities, this means that exact
inference using the generic junction tree algorithm is still exponential in the number of candidate entities.
However, as Theorem 3 shows, for any overlapping graph, there exists a junction tree whose clusters are
exactly the overlapping cliques. Because of the special form of the overlap clique potential (a sparse table,
with only n+1 non-zero entries, wheren is the size of the clique), the messages sent between two adjacent
cluster nodesin the junction tree can be computed in time linear in the sizeof the cluster. We therefore have
an exact inference algorithm based on message propagation,where:� The computation of any message takes time linear in the size of the adjacent cluster nodes.� Assuming a two-phase propagation schedule (Jensen, Lauritzen, & Olesen, 1990), the total number

of messages is twice the number of cluster nodes.� Assuming the length of any candidate entity is less than a maximum length (as is the norm in in-
formation extraction), the sum of all cluster sizes in the junction tree is linear in the total number of
candidate entities.

Based on the three facts above, the overall time complexity of the message propagation algorithm in the
junction tree structure from Theorem 3 is linear in the number of candidate entities.

4.1.2 Learning Algorithm

Because the overlap template potential is fixed, the only potential values that need to be learned are those
used by local templates. Based on the same notation as in Section 3.7, we use the log-linear representation
for a local template potential�
 = exp(w
f
). Being an exponential model, the gradient of the log-
likelihood objective functionL(w;D) with respect to the weight vectorw
 is the difference between the
observed and expected counts of the feature vectorf
:
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r
L(w;D) = �L(w;D)�w
 = Xd2D f
(d:X; d:Y )�Xd2DXd:Y 0 f
(d:X; d:Y 0)Pw(d:Y 0jd:X) (7)= Xd2D f
(d:X; d:Y )�Xd2DEw[f
(d)℄ (8)

While the first term in Equation 8 is easy to compute, the second term is usually expensive to compute
in general graphical models. In the current setting however, we’ll make use of the fact that all potentials
involved are local potentials. Therefore, we can write:f
(d:X; d:Y ) = Xe2d:E f
(e:X; e:Y ) (9)

Consequently, the expectation term in Equation 8 can be rewritten as follows:Ew[f
(d)℄ = Xd:Y Xe2d:E f
(e:X; e:Y )Pw(d:Y jd:X) (10)= Xe2d:EXd:Y Pw(d:Y jd:X)f
(e:X; e:Y ) (11)= Xe2d:EXe:Y  Xd:Y�e:Y Pw(d:Y jd:X)! f
(e:X; e:Y ) (12)= Xe2d:EXe:Y Pw(e:Y jd:X)f
(e:X; e:Y ) (13)

The expressiond:Y � e:Y above refers to all labelings ofd consistent with a particular entity labele:Y .
The termPw(e:Y jd:X) in the last equation is the marginal distribution for an entity label e:Y , which can
be easily computed after running belief propagation in the junction tree, by selecting a cluster node con-
taining e and marginalizing the cluster distribution over all other entities from the same cluster. Because
the junction tree algorithm computes all clusters’ marginal distributions at once, this means that computing
the expectation termEw[f
(d)℄ takes time linear in the number of candidate entitiesd:E. Based on the last
equation, the final formula for the gradient is:r
L(w;D) = Xd2D Xe2d:E f
(e:X; e:Y )�Xe:Y 0 Pw(e:Y 0jd:X)f
(e:X; e:Y 0)! (14)

with a total computation time linear in the number of candidate entities.
Based on this formulation, any gradient-based method can beused for maximizing the likelihood func-

tion. In our implementation we used L-BFGS, a limited-memory quasi-Newton method (Liu & Nocedal,
1989), which has shown very good performance elsewhere (Sha& Pereira, 2003).

In conclusion, we have introduced a discriminative model for information extraction based on phrase
classification, in which exact inference is linear in the number of candidate phrases, and where both ML and
MAP learning can be done efficiently. The overall approach issimple, and can be summarized as follows:

1. Candidate Entities: Based on the generic heuristic H1, or alternative domain-specific heuristics,
create a set of candidate entitiesd:E, for each document in the corpus,d 2 D.
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2. Junction Tree: Assemble the set of candidate entities into cluster nodesEi, one node for each token
positioni in the document. Each clusterEi contains candidate entities that span over positioni. Link
cluster nodes corresponding to consecutive positions. Theresult is a list of cluster nodes, which by
Theorem 3 is a junction tree for the original overlap graph. Depending on the set of candidate entities,
some positions in the document may result in empty clusters,which split the junction tree into two
or more smaller trees. This is also the case when the documentis split in sentences first - because no
entity can belong to two different sentences, each sentencewill have its own separate junction tree.

3. Cluster Potentials: Initialize each cluster potential with an overlap potential. Due to sparsity, if the
cluster size isn, the cluster potential can be represented using onlyn+ 1 numbers. Multiply all local
template potentials for each entity into one and only one cluster potential. If there is more than one
cluster containing the entity, choose one at random.

4. Inference: Run a message propagation algorithm on the resulting set of junction trees, using a two-
phase propagation schedule.

5. Learning: Use a gradient based method in a ML or MAP setting, based on thegradient formula in
Equation 14.

Compared with CRFs, this has the additional benefit of allowing the incorporation of phrase-based
features. In a recent work, (Cohen & Sarawagi, 2004) have introduced a conditional version for segmental
semi-Markov models (Ge, 2002) to achieve a similar aim, showing that the phrase classification approach
can lead to better performance vs. CRFs, especially when training data is small, because of a more natural
use of phrase based features, such as similarities with existing dictionaries. Compared with their work,
where sentences are modeled as Markov sequences of segments, our approach is more direct in modeling
the extraction task as one of phrase classification. We explicitly model the entire set of candidate entities
by including a node for each entity label in the graphical model. This has the advantage of allowing the
incorporation ofglobal correlations between labels of different entities from thesame document, as will be
detailed in Section 5.1.

4.1.3 Experimental Results

In Tables 8 and 9 we compare the performance of the (approximate) inference algorithm in factor graphs
(FG) with that of the (exact) inference algorithm in junction trees (JT) on the two protein data sets. In both
cases, exact inference leads to better results.

Method Precision Recall F-measure

LT–RMN (FG) 70.79 53.81 61.14
LT–RMN (JT) 72.08 57.46 63.95

Table 8: Extraction Performance on Yapex.
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Method Precision Recall F-measure

LT–RMN (FG) 81.33 72.79 76.82
LT–RMN (JT) 81.76 75.11 78.29

Table 9: Extraction Performance on Aimed.

5 Proposed Work

5.1 Restricted global models

The global phrase model is an extension of the local phrase model. While in the local model the overlap
clique template is the only template introducing cliques between the labels of different entities, in the global
model any type of global clique template can be used. Unfortunately, adding new cluster nodes in the
junction tree representation so that it has thecoveringproperty with respect to the global phrase model may
easily break thesingly connectedproperty. Sometimes adding just one cluster node results ina cycle, as
illustrated in Figure 18. The new cluster nodeE may have been introduced, for instance, in order to model
the repetition of two candidate entitiesu 2 Ei andv 2 Ej.

EEi j

E

Figure 18: Introducing a cycle in the junction tree.

However, if the set of candidate entities is the result of applying a strong heuristic, like H2 or H3 from
Section 3.1, then some of the positions in the text will result in empty clusters, which have the benefit
of breaking cycles, as illustrated in Figure 19. There, the cluster for positionk is empty. As defined in
Theorem 3, a cluster nodeEk contains all candidate entities overlapping at positionk in the text. ThenEk
is anempty clusterif no candidate entities overlap at positionk. If H2 is used, this may be because the word
at positionk was tagged as a preposition, verb, or other part of speech different from those used by H2.

EEi j

E

Ek

Figure 19: Empty clusters break cycles.

This means that, depending on the heuristic used to create the set of candidate entities, at least a subset
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of the global label correlations can be introduced in the model such that the inference remains linear in the
number of entities. Both H2 and H3 give rise to many empty clusters. In general, both heuristics result in
models composed of many small junction trees, which can therefore be connected into larger junction trees
using global label correlations.

5.1.1 Exact, linear time inference

Even though they allow updating the model with global dependencies such that it remains tractable, heuris-
tics H2 and H3 have the drawback that sometimes they may miss real entity names. In the case of H2 for
example, a candidate entity cannot contain parentheses, however our corpus contains a few entity names like
’V (1a) receptor’, or ’interleukin 10 (IL-10) receptor’, which violate this assumption. Because the local phrase
model may be able to learn patterns like “allow a close parenthesis in an entity name if it is followed by the
word receptor”, we propose to eliminate domain-specific heuristics like H2 and H3 and to assign their role
to the local phrase model. The extraction process will then proceed in two steps:

1. Local Extraction. Using only the local phrase model and the generic heuristic H1, perform exact
inference based on the junction-tree representation. At each positionk in the text, the probability that
the corresponding cluster is “empty” e.g.P (e:label = 0;8e 2 Ek) is readily available as one of the
marginals computed during inference. Eliminate from the junction-tree all cluster nodes for which
this probability is above a predefined threshold� 2 [0; 1℄. This will result in a forest of junction-trees
that will be the input for the next step. From the remaining clusters remove all candidate entities that
were contained in any of the eliminated clusters.

2. Global Extraction. Connect separate junction-trees through cluster nodes corresponding to global
correlations, as illustrated in Figure 19. Stop when no global correlation can be added without intro-
ducing a cycle in the model. Perform exact inference in the resulting junction-tree, this time in order
to recover the most probable assignment of labels to candidate extractions, and output this as the final
extraction.

Thus, instead of coming up with a domain-specific heuristic to restrict the set of candidate extractions,
we can use the local phrase model to automatically learn the heuristic. The threshold� could be set up based
on development data. Lower values for� will break the junction-tree into many smaller trees, whichwill
allow many global correlations to be used. However, eliminating too many cluster nodes increases the risk
of eliminating true entities. On the other hand, a value of� too close to 1 will eliminate only a few clusters
from the junction-tree, and correspondingly very few global correlations can be used. Another question
is that of which subset of global correlations to be used in Step 2. For the repeat template, an obvious
choice, better than randomly choosing global correlations, is to include in the selected pairs of repetitions as
many “locally extracted” entities as possible, giving priority to repetitions for which the local phrase model
assigns conflicting labels (by “locally extracted” entity we mean an entity that would be extracted by the
local phrase model).

5.1.2 Learning Algorithm

Learning the parameters for the global phrase model mirrorsthe two steps used in inference:

1. Local Model. Learn first the parameters for the local model, exactly as described in Section 4.1.2.
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2. Global Model. Keeping the local parameters fixed, learn the global parameters e.g. the potentials
for the global templates. The training data is first madeconsistentwith the set of candidate entities
that resulted from the application of the local model with threshold� . This means eliminating from
training data all entities not contained in the set of candidate entities. This step will ensure that the
likelihood of the global parameters with respect to the training data is not identically zero. Then
global parameters are estimated so that they maximize the log-likelihood using a procedure similar to
that used for the local parameters.

A definite short term goal is to implement the restricted global model, and to compare its performance
with that of the factor graph implementation of the unrestricted global model from Section 3.5. We expect
that the potential loss in accuracy caused by the model ignoring some of the global correlations will be
compensated by the increase in accuracy due to exact inference. There are also numerous approximate
inference methods that exploit the structure of the graphical model and the associated potentials in order to
obtain results closer to the exact version, so that the inference step is still tractable. In (Yedidia et al., 2000),
the authors introduce generalized versions of the belief propagation algorithm, where messages are passed
between sets of nodes, at additional computational cost. Depending on the choice of the basic sets of nodes,
the resulting inference algorithm is shown to lead to significantly better approximations versus the original
belief propagation algorithm. We intend to experiment withthis and other alternative approximate inference
methods, by suitably adapting them to our approach to information extraction.

5.2 Collective classification for WSD and POS tagging

Information Extraction is only one of the natural language tasks that can benefit from document level cor-
relations - two other obvious examples are word sense disambiguation (WSD) and part-of-speech (POS)
tagging. In WSD, given a text document, the task is to annotate all content words from the document with
the appropriate sense, selected from a sense inventory suchas WordNet. POS tagging can be seen as a coarse
version of WSD, where the sense inventory is limited to a set of syntactic categories like noun, adjective,
verb, adverb, pronoun, preposition, conjunction, etc. (for an exhaustive list, see (Santorini, 1990)). The
one-sense-per-discourse hypothesis (Yarowsky, 1995) specifies that multiple occurrences of the same word
in one document tend to have the same sense. This can be easilymodeled in an RMN model by connecting
any pair of repeated words through an undirected edge. For the task of POS tagging, current state-of-the-art
results are obtained with algorithms like CRFs (Lafferty etal., 2001) that assume a Markov dependency
between consecutive tags. This means that by adding an edge between the tags of two repeated words, the
resulting graphical model may contain cycles, which are hard to accommodate in the inference algorithm.
Besides resorting to approximate inference, we can also uselinear time exact inference in a restricted ver-
sion of the global model, as described in Section 5.1. This would lead to the graphical model depicted in
Figure 20, where black nodes correspond to high confidence tags, and arcs connect tag nodes for pairs of
repeated words.

Figure 20: High confidence tags break cycles.

Given the already competitive performance of POS tagging algorithms, the advantage of using document
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level correlations between tags in POS tagging should be most evident when the learned model is applied
on documents whose narrative is different from that in the training corpora. One example would be training
the POS tagger on the Penn Treebank Corpus (Marcus, Santorini, & Marcinkiewicz, 1993) and testing it on
gold-standard POS tagged Medline abstracts from the GENIA corpus (Collier et al., 1999).

5.3 Using the web to improve information extraction

The web can provide additional evidence regarding the classof a candidate entity. If the task is that of
recognizing protein names, andx is a candidate entity, then one may argue that the phrase pattern “ x is a
protein” is likely to have been used in a document on the web, ifx is indeed a protein name. Consequently,
a search engine should be able to return that document when searching for the phrase“ x is a protein”.
Another reasonable hypothesis is that the more hits a searchengine gets for this pattern, the more likely it is
that “x” is a protein name.

There is however a problem with the pattern above – the predicate nominal“protein” is often too general,
and consequently it is not used to introduce a protein instance so often as one would expect. Instead, people
tend to introduce a protein namex using a predicate nominal describing a subclass or a family of proteins,
as in“ x is an enzyme”, or “ x is a eukaryotic transcription regulatory factor”. This is in agreement with the
well known principles of categorization introduced by Rosch in (Rosch, 1978), which postulate a basic-level
of categories that provide maximum information with minimum cognitive effort. Moreover, even when the
generic term“protein” is used, it is often preceded by a modifier, as in“ x is a giant protein”, or by a
sequence of modifiers, as in“ x is a general eukaryotic protein”. To account for an arbitrary sequence of
modifiers preceding the name of a protein family, one would need a search engine capable to answer queries
containing wild cards, which is beyond current technology.Ideally, we would need a search engine able to
answer queries of the form“ x is anphyi” , wherenphyi denotes any noun phrase headed byy. Such tools
have only begun to appear, and their coverage is still very limited. One notable example is the Linguist’s
Search Engine (Resnik & Elkiss, 2003), which currently indexes a corpus of three million sentences from
the Internet Archive.

To accommodate the query types supported by current search engines, we shall limit ourselves to using
phrase patterns of the type“ x is ap” , wherep is a particular class of proteins, instantiated from an already
available ontology of proteins, such as that from the Gene Ontology Database (Gene Ontology Consortium,
2000).

The number of hits returned by the search engine for a particular pattern can be used to compute various
quantities such as thepointwise mutual information (pmi), which has been previously used for computing
word association norms (Church & Hanks, 1990). For the pattern “ x is ay” , this amounts to computing:pmi(x; y) = Hits(0x is a y0)Hits(0x0) �Hits(0y0)

If x1 andx2 are two candidate entities, andy is the generic name “protein”, then the fact thatpmi(x1; y) >pmi(x2; y) could be used to assert thatx1 is more likely to be a protein name thanx2. The samepmi mea-
sure has been used in conjunction with web or large corpora searches for measuring the similarity of pairs
of words (Turney, 2001), for computing the semantic orientation of reviews (Turney, 2002), or for solving
associative anaphora (Bunescu, 2003).

This, or other similar measures, could be integrated in the IE system as additional features. However,
given the big number of candidate entities considered by theIE system when doing extraction, it would be
highly inefficient to perform a web search for each of them. This leads to a scenario in which, first, the
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normal IE system is applied on a document, after which the confidence for each extraction is updated based
on the statistics collected by the search engine on the corresponding discriminative patterns.

5.4 Flexible use of external dictionaries

Named entity recognition can also benefit from the use of external dictionaries. In our previous work
(Bunescu et al., 2004), we used a dictionary of more than 70,000 protein names to improve the perfor-
mance of a maximum entropy tagger. One way of using the dictionary in a token classification approach
is to find all dictionary entries that occur in the document and pre-tag the tokens of those occurrences with
a special tag. Features can then be defined so that they take into account this tag. The main drawback of
this approach is that the document may contain phrases whichdo not exist in the dictionary, yet they are
very similar with entries in the dictionary. We would like touse the intuition that phrases which are similar
with dictionary entries are likely to be valid named entities. For example, assume that the task is to extract
protein names, and the current document contains the phrase’USF–2’, which is missing from the dictionary.
Instead, the dictionary contains the similar entry’USF–1’. This indicates that, at least from an orthographic
point of view, ’USF–2’ could be a protein name. In (Bunescu et al., 2004) we capturedthis by generalizing
the dictionary entries – numbers, single Roman letters, andGreek letters were replaced with a correspond-
ing generic tag, that would match any number, single Roman letter or Greek letter respectively. Following
the example above, the entry’USF–1’ would be generalized to’USF–hni’ , where the taghni can match any
number. As a result, this generalized entry would eventually match the phrase’USF–2’ in the document.
While this approach worked well for protein tagging, it has two main drawbacks:� Incompleteness: The document may contain phrases which aresimilar with dictionary entries, yet

they are not matched by any of the generalized dictionary entries.� Specificity: The generalizations used are very domain specific. They may not be relevant for other
domains, or, even if they can be used in another domain, they may be just a subset of the relevant
generalizations.

Ideally, we would like to use a measure of the similarity of each candidate entity with entities in the
dictionary, a measure that would be learned for each domain.This similarity measure cannot be used
in a token classification approach, which lacks the concept of candidate entities, nevertheless it is very
straightforward to integrate it in a phrase classification approach. There, the similarity of a candidate entity
with entries in an external dictionary would be just anotherlocal feature for that entity. A similar approach
has been used in (Cohen & Sarawagi, 2004), where the authors defined the similarity between a text segment
and a dictionary to be the maximum similarity between that segment and entries in the dictionary. As for
the actual similarity metric to use in our model, we conducted a preliminary experiment in which we used a
cosine similarity metric. This did not lead to any improvement in accuracy, mainly because common tokens
which occur in protein names, such as numbers or Greek letters, were getting too high a similarity with the
dictionary. Yet these tokens cannot be protein names by themselves. This suggests an approach where the
similarity metric is learned, so that tokens like these get alow similarity with the dictionary. We contemplate
using adaptive similarity measures, based on the ideas introduced in (Bilenko & Mooney, 2003). One issue
that needs to be addressed is the lack of “well defined” training examples. In (Bilenko & Mooney, 2003),
the authors show how similarity metrics can be learned, assuming a training set composed of pairs of strings
which are known to be similar (positive examples) or dissimilar (negative examples). This kind of training
examples are missing in our approach, where all we are given is a dictionary of entity names, together with
a set of candidate entities partitioned in two subsets: trueentities and spurious entities. Nevertheless, we
can assemble a weakly labeled dataset as follows:

38



� Negatives: Consider as negative examples all pairs consisting of a spurious candidate entity and a
dictionary entry.� Positives: Consider as positive examples all pairs consisting of a true candidate entity and a dictionary
entry, such that they share a minimum number of tokens. This list of positive examples may be later
replaced by, or augmented with, manually labeled pairs of similar entities.

For the special case of recognizing protein names, we can also use the fact that the protein dictionary
is organized in clusters of names, where all names from a cluster are synonyms corresponding to the same
protein. Therefore, we may consider as positive examples all pairs of synonyms from the same cluster which
share a minimum number of tokens.

5.5 Feature selection

The task of feature selection refers to finding a subset of features, out of a usually large collection of features,
such that they capture the relevant properties of the data. In a supervised learning setting, this reduces to
choosing that set of features which best model the labels in the training data. In this case, the final aim
of feature selection is to construct classifiers which are both compact and accurate. In Maximum Entropy
models, features selection has been commonly done using a simple frequency-based cut-off. This is also
the method that we used in our initial RMN model for information extraction (Bunescu & Mooney, 2004).
There, we have ignored all features which do not occur at least three times in the training data. Recently,
we have run an experiment in which we used only a subset of the features proposed in (Bunescu & Mooney,
2004) (also repeated in Section 3.2 of this proposal). More exactly, we used the following feature templates:
the text of the candidate entity, its short type, the word andthe POS tag preceding/following the entity, the
first and last words in the candidate entity, and any word occurring inside the entity. This time we considered
all features generated by the above templates in the training data, irrespective of their actual frequency. The
results on the Yapex dataset are summarized in Table 10.

Method Precision Recall F-measure

LT-RMN 73.90 54.90 63.00
GLT-RMN 74.16 63.48 68.40

CRF 72.45 58.64 64.81

Table 10: Extraction Performance on Yapex.

The results for both the local and global models are slightlybetter than those presented in Table 6 for the
same dataset. This suggests that, besides making the model more compact, an appropriate feature selection
algorithm may also lead to a non-negligible increase in performance. Likelihood-based feature induction
algorithms, as introduced in (Della Pietra et al., 1997) andfurther extended to conditional random fields
in (McCallum, 2003) can be seen as a particular way of doing feature selection. We intend to use feature
induction in our setting, which means that we need to start with a set of atomic, local features, such as
the word preceding an entity, the entity head, and others. New features, such as bigrams or trigrams, can
be created from conjunction of atomic features. As explained in (McCallum, 2003), the set of features is
incrementally updated by iterating the following four steps (initially, the set of features is empty):

1. Consider a set of newly proposed features. This may contain both atomic features or conjunctions of
features.
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2. Select for inclusion only those features which bring the highest gain in the likelihood function.

3. Train the weights for all included features.

4. Iterate back to the first step, until a stopping criterion is met.

5.6 Relation extraction and syntactic information

Until now we have focused on the task of named entity recognition. A natural next step is that of identify-
ing relations between extracted entities. The types of relations can be very diverse, ranging fromperson–
affiliation andorganization–location, occurring frequently in newspaper corpora, toprotein–protein interac-
tionsor subcellular–localization, which are common in biomedical corpora. Current best results for relation
extraction are obtained with methods that make use of syntactic information. In (Ray & Craven, 2001), the
authors show how information from the shallow parses of sentences can be represented into the states of a
Hidden Markov Model, leading to increased extraction performance for two binary relations in the biomedi-
cal domain. This is however a generative model, and consequently subsequent approaches tried to exploit the
additional strengths of discriminative models. In (Zelenko, Aone, & Richardella, 2003), the authors define
convolution kernels on shallow parse trees where nodes are augmented with relation roles. Deeper syntactic
information is used in (Culotta & Sorensen, 2004), where relation roles are used to annotate nodes in a
dependency tree representation of sentences, with experimental results showing significant error reduction
over the corresponding bag-of-words approach. Based on these ideas, we intend to create a discriminative
model for the task of extracting protein-protein interactions from Medline abstracts – the challenge here is
in coming up with a model that is robust enough to parsing errors. These errors are more numerous in the
case of biomedical corpora, given that most state-of-the-art parsers are trained on newspaper corpora.

The two discriminative relation extractors referenced above assume that the entities used for instantiating
relation roles have already been tagged. However, the same syntactic information that is used for extracting
relations can also help in entity recognition. In Table 11 weillustrate the’accuse’frame as instantiated in a
set of sentences from the CoNLL 2003 corpus.

1) (Syria) [accused] (Israel) on Wednesday of launching a hysterical campaign ...
2) (Sharif) [accused] (Bhutto) of corruption and nepotism ...
3) (Ernesto Samper) [accused] (the government) of indifference ...
4) (Iran ) [hasaccused] (Iraq ) of violating the ceasefire ...
5) (Jordan) [hasaccused] (Iraq ) and a local pro-Baghdad party for the country’s ...
6) (China) [on Thursdayaccused] (Taipei) of spoiling the atmosphere ...
7) (India ) [has oftenaccused] (Pakistan) of abetting militancy in the valley ...
8) (Loyola de Palacio) [had earlieraccused] (Fischler) at an EU farm ministers’ meeting ...
9) (Judgeson the island) [hadaccused] (Paris) of taking a lax stance ...
10) (Bob Dole) [Wednesdayaccused] (the Clintonadministration ) of ignoring ...
11) (Benjamin Netanyahu) [hasaccused] (opposition leaderPeres) ...
12) (An Iraqi Kurdish guerrillagroup) [on Saturdayaccused] (Iraqi governmentforces) of ...
13) (The rulingSocialist Party) [last weekaccused] (Serbia’sopposition) of ...
14) (Freddy Pinas, a Surinamese-born visitor from the Netherlands,) [accused] (Brunswijk ) ...
15) (Hasina, speaking to a group of engineers in Dhaka on Monday,) [accused] (the BNP) of ...

Table 11: ’accuse’ frame instantiations in CoNLL.
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The head of the’accuse’verb phrase is figured in italics, while the heads of the argument phrases are
figured in bold. Notice that in the’accuse’frame, both arguments are either persons, organizations, country
names or capital cities. If a syntactic parse is available, this constraint can be easily modeled by a binary
feature which is set to one if the candidate entity is the headof an argument of’accuse’. The corresponding
weight is then given a large value only when the candidate entity is labeled either as a person, organization,
country name or capital city. Without using a parse, this constraint is enforced much more weakly, because
of the presence of long range dependencies – examples more tothe bottom of the table have more words
occurring between the argument heads and the verb’accuse’. A binary feature which is set to one if the can-
didate entity is followed by the verb’accuse’would be triggered correctly only for the first three sentences.
The same feature would be triggered also for spurious candidate entities such as’Thursday’, ’Wednesday’,
’Saturday’, ’week’ (sentences 6, 10, 12, and 13 respectively). Introducing a feature for the second word
following the candidate entity leads to the same problem.

Based on the observations above, we intend to create a robustdiscriminative model that would use
information derived from syntactic parses for both entity and relation extraction.

6 Conclusion

We presented a phrase–based approach to collective information extraction in which correlations between
the labels of candidate entities in a document were modeled by a relational Markov network. Preliminary ex-
periments on extracting named entities from biomedical andnewspaper corpora demonstrate the advantages
of our approach. We then argued for an alternative representation of document–level correlations based on
junction–trees that would allow for efficient, exact inference. This has the potential of further increasing
the extraction accuracy. In future work we intend to use the same approach for other natural language tasks
that may benefit from the same type of correlations, such as part-of-speech tagging and word sense disam-
biguation. We also contemplate integrating in our system features originating from additional knowledge
sources, such as external dictionaries, web statistics on discriminative patterns, or syntactic parsing. The
huge number of potential features motivates the use of a feature selection algorithm. A natural next step is
to augment the current system such that it performs both entity and relation extraction.
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