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Abstract

This chapter introduces symbolic machine learning in which decision trees, rules, or case-
based classi�ers are induced from supervised training examples. It describes the representation
of knowledge assumed by each of these approaches and reviews basic algorithms for inducing
such representations from annotated training examples and using the acquired knowledge to
classify future instances. These techniques can be applied to learn knowledge required for a
variety of problems in computational linguistics ranging from part-of-speech tagging and syn-
tactic parsing to word-sense disambiguation and anaphora resolution. Applications to a variety
of these problems are reviewed.

20.1 Introduction

Broadly interpreted, machine learning is the study of computational systems that improve per-

formance on some task with experience (Mitchell, 1997; Langley, 1996). However, the term is

frequently used to refer speci�cally to methods that represent learned knowledge in a declara-

tive, symbolic form as opposed to more numerically-oriented statistical or neural-network training

methods (see chapter 19). In particular, it concerns methods which represent learned knowledge

in the form of interpretable decision-trees, logical rules, and stored instances. Decision trees are

classi�cation functions represented as trees in which the nodes are attribute tests, the branches

are attribute values, and the leaves are class labels. Rules are implications in either propositional

or predicate logic used to draw deductive inferences from data. A variety of algorithms exist for

inducing knowledge in both of these forms from training examples. In contrast, instance-based

(case-based, memory-based) methods simply remember past training instances and make a deci-

sion about a new case based on its similarity to speci�c past examples. This chapter reviews basic

methods for each of these three approaches to symbolic machine learning. Speci�cally, we review

top-down induction of decision trees, rule induction (including inductive logic programming),

and nearest-neighbor instance-based learning methods.

As described in previous chapters, understanding natural language requires a large amount of

knowledge about morphology, syntax, semantics, and pragmatics as well as general knowledge about
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the world. Acquiring and encoding all of this knowledge is one of the fundamental impediments to

developing e�ective and robust language-processing systems. Like the statistical methods described

in the previous chapter, machine learning methods o�er the promise of automating the acquisition

of this knowledge from annotated or unannotated language corpora. A potential advantage of

symbolic learning methods over statistical methods is that the acquired knowledge is represented

in a form that is more easily interpreted by human developers and more similar to representations

used in manually developed systems. Such interpretable knowledge potentially allows for greater

scienti�c insight into linguistic phenomena, improvement of learned knowledge through human

editing, and easier integration with manually developed systems. Each of the machine learning

methods we review has been applied to a variety of problems in computational linguistics includ-

ing morphological generation and analysis, part-of-speech tagging, syntactic parsing, word-sense

disambiguation, semantic analysis, information extraction, and anaphora resolution. We brie
y

survey some of these applications and summarize the current state of the art in the application of

symbolic machine learning to computational linguistics.

20.2 Learning for Categorization

Most machine learning methods concern the task of categorizing examples described by a set of

features. It is generally assumed that a �xed set of n discrete-valued or real-valued features,

ff1; : : : ; fng, are used to describe examples, and that the task is to assign an example to one of m

disjoint categories fc1; : : : ; cmg. For example, consider the task of deciding which of the following

three sense categories is the correct interpretation of the semantically ambiguous English noun

\interest" given a full sentence in which it appears as context (see Chapter 13).

1. c1: readiness to give attention

2. c2: advantage, advancement, or favor
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3. c3: money paid for the use of money

The following might be a reasonable set of features for this problem:

� W+i: the word appearing i positions after \interest" for i = 1; 2; 3

� W�i: the word appearing i positions before \interest" for i = 1; 2; 3

� Ki: a binary-valued feature for a selected keyword for 1 = 1; : : : ; k, where Ki is true if the ith

keyword appears anywhere in the current sentence. Relevant keywords for \interest" might

be, \attracted," \expressed," \payments," \bank" etc..

A learning system is given a set of supervised training examples for which the correct category is

given. For example:

1. c1: \John expressed a strong interest in computers."

2. c2: \Acme Bank charges very high interest."

3. c3: \War in East Timor is not in the interest of the nation."

In this case, the values of the relevant features must �rst be determined in a straightforward

manner from the text of the sentence. From these examples, the system must produce a procedure

for accurately categorizing future examples.

Categorization systems are typically evaluated on the accuracy of their predictions as measured

by the percentage of examples that are correctly classi�ed. Experiments for estimating this accuracy

for a particular task are performed by randomly splitting a representative set of labeled examples

into two sets, a training set used to induce a classi�er, and an independent and disjoint test set

used to measure its classi�cation accuracy. Averages over multiple splits of the data into training

and test sets provide more accurate estimates and give information on the variation in performance
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Figure 1: Learning Curves for Disambiguating \Line"

across training and test samples. Since labeling large amounts of training data can be a time-

consuming task, it is also useful to look at learning curves in which the accuracy is measured

repeatedly as the size of the training set is increased, providing information on how well the system

generalizes from various amounts of training data. Figure 1 shows sample learning curves for a

variety of systems on a related task of semantically disambiguating the word \line" into one of six

possible senses (Mooney, 1996). Mitchell (1997) provides a basic introduction to machine learning

including discussion on experimental evaluation.

20.3 Decision Tree Induction

Decision trees are classi�cation functions represented as trees in which the nodes are feature

tests, the branches are feature values, and the leaves are class labels. An example is classi�ed by

starting at the root and recursively traversing the tree to a leaf by following the path dictated by

its feature values. A sample tree for the \interest" problem is shown in Figure 2. For simplicity,

assume that all of the unseen extra branches for W+1 and W+2 are leaves labeled c1. This tree
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Figure 2: Sample Decision Tree for Disambiguating \interest"

can be paraphrased as follows: If the word \bank" appears anywhere in the sentence assign sense

c3; otherwise if the word following \interest" is \rate," assign sense c3, but if the following word

is \of" and the word two before is \in" (as in \...in the interest of..."), then assign sense c2; in all

other cases assign sense c1.

The goal of learning is to induce a decision tree that is consistent with the training data.

Since there are many trees consistent with a given training set, most approaches follow \Occam's

razor" and try to induce the simplest tree according to some complexity measure such as the

number of leaves, or the depth of the tree. Since computing a minimal tree according to such

measures is an NP-hard problem (i.e. a computational problem for which there is no known eÆcent,

polynomial-time algorithm), most algorithms perform a fairly simple greedy search to eÆciently

�nd an approximately minimal tree. The standard approach is a divide-and-conquer algorithm that

constructs the tree top-down, �rst picking a feature for the root of the tree and then recursively

creating subtrees for each value of the selected splitting feature. Pseudocode for such an algorithm

is shown in Figure 3.

The size of the constructed tree critically depends on the heuristic used to pick the splitting

feature. A standard approach is to pick the feature that maximizes the expected reduction in the

entropy, or disorder, of the data with respect to category (Quinlan, 1986). The entropy of a set of
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InduceTree(Examples, Features)
Create a node Root for the tree
If all the examples are in the same category

then return Root labeled with this category as a leaf.
If features are empty

then return Root labeled with the most common category in Examples as a leaf.
Else pick the best splitting feature fi and use it to label Root.
For each possible value vij of fi

Add a branch to Root for the value vij .
Let Examplesij be the subset of Examples with value vj for fi.
If Examplesij is empty

then below the branch add a leaf labeled with the most common category in Examples.
else below the branch add the subtree InduceTree(Examplesij, Features� ffig).

Return Root.

Figure 3: Decision Tree Induction Algorithm

data, S, with respect to category is de�ned as:

Entropy(S) =
mX
i=1

�
jSij

jSj
log2

jSij

jSj
(1)

where Si is the subset of S in category i (1 � i � m). The closer the data is to consisting purely

of examples in a single category, the lower the entropy. A good splitting feature fractions the data

into subsets with low entropy. This is because the closer the subsets are to containing examples

in only a single category, the closer they are to terminating in a leaf, and the smaller will be the

resulting subtree. Therefore, the best split is selected as the feature, fi, that results in the greatest

information gain de�ned as:

Gain(S; fi) = Entropy(S)�
X
j

jSij j

jSj
Entropy(Sij) (2)

where j ranges over the possible values vij of fi, and Sij is the subset of S with value vij for feature

fi. The expected entropy of the resulting subsets is computed by weighting their entropies by their

relative size jSijj=jSj.

The resulting algorithm is computationally very eÆcient (linear in the number of examples) and

in practice can quickly construct relatively small trees from large amounts of data. The basic algo-
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bank ! c3
: bank ^ W+1=in ! c1
W+1=rate ! c3
: bank ^ W+1=of ^ W�2=in ! c2

Figure 4: Sample Rules for Disambiguating \interest"

rithm has been enhanced to handle many practical problems that arise when processing real data,

such as noisy data, missing feature values, and real-valued features (Quinlan, 1993). Consequently,

decision-tree methods are widely used in data mining applications where very large amounts of

data need to be processed (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). The most e�ective recent

improvement to decision-tree algorithms have been methods for constructing multiple alternative

decision trees from the same training data, and then classifying new instances based on a weighted

vote of these multiple hypotheses (Quinlan, 1996).

20.4 Rule Induction

Classi�cation functions can also be symbolically represented by a set of rules, or logical implications.

This is equivalent to representing each category in disjunctive normal form (DNF), i.e. a disjunction

of conjunctions of feature-value pairs, where each rule is a conjunction corresponding to a disjunct in

the formula for a given category. For example, the decision tree in Figure 2 can also be represented

by the rules in Figure 4, assuming that c1 is the default category that is assigned if none of the rules

apply.

Decision trees can be translated into a set of rules by creating a separate rule for each path from

the root to a leaf in the tree (Quinlan, 1993). However, rules can also be directly induced from

training data using a variety of algorithms (Mitchell, 1997; Langley, 1996). The general goal is to

construct the smallest rule-set (the one with the least number of symbols) that is consistent with

the training data. Again, the problem of learning the minimally-complex hypothesis is NP-hard,

and therefore heuristic search is typically used to induce only an approximately-minimal de�nition.
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InduceRules(Examples, Features)
Let S = ;
For each category ci do

Let P be the subset of Examples in ci.
Let N be the subset of Examples not in ci.
Until P is empty do

Let R = ConstructRule(P ,N ,Features)
Let S = S [ fR! cig
Let C be the subset of P covered by R.
Let P = P � C

Return S

Figure 5: Rule-Induction Covering Algorithm

The standard approach is to use a form of greedy set-covering, where at each iteration, a new rule is

learned that attempts to cover the largest set of examples of a particular category without covering

examples of other categories. These examples are then removed, and additional rules are learned

to cover the remaining examples of the category. Pseudocode for this process is shown in Figure 5,

where ConstructRule(P , N , Features) attempts to learn a conjunction covering as many of the

positive examples in P as possible without covering any of the negative examples in N .

There are two basic approaches to implementing ConstructRule. Top-down (general-to-speci�c)

approaches start with the most general \empty" rule (True! ci), and repeatedly specialize it until

it no longer covers any of the negative examples in N . Bottom-up (speci�c-to-general) approaches

start with a very speci�c rule whose antecedent consists of the complete description of one of the

positive examples in P , and repeatedly generalize it until it begins covering negative examples in

N . Since top-down approaches tend to construct simpler (more general) rules, they are generally

more popular. Figure 6 presents a top-down algorithm based on the approach used in the Foil

system (Quinlan, 1990). At each step, a new condition, fi = vij , is added to the rule and the

examples that fail to satisfy this condition are removed. The best specializing feature-value pair

is selected based on preferring to retain as many positive examples as possible while removing as

many negatives as possible. A gain heuristic analogous to the one used in decision trees can be
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ConstructRule(P , N , Features)
Let A = ;
Until N is empty do

For each feature-value pair fi = vij
Let Pij be the subset of P with value vij for feature fi
Let Nij be the subset of N with value vij for feature fi

Given P , N , Pij , and Nij , pick the best specializing feature-value pair, fi = vij
Let A = A [ ffi = vijg
Let P = Pij
Let N = Nij

Return the conjunction of feature-value pairs in A

Figure 6: Top-Down Rule Construction Algorithm

de�ned as follows:

Gain(fi = vij ; P;N) = jPij j(log2(
jPij j

jPij j+ jNij j
)� log2(

jP j

jP j+ jN j
)) (3)

where Pij and Nij are as de�ned in Figure 6. The �rst term, jPij j, encourages coverage of a

large number of positives and the second term encourages an increase in the percentage of covered

examples that are positive (decrease in the percentage of covered examples that are negative).

This and similar rule learning algorithms have been demonstrated to eÆciently induce small and

accurate rule sets from large amounts of realistic data. Like decision-tree methods, rule-learning

algorithms have also been enhanced to handle noisy data and real-valued features (Clark & Niblett,

1989; Cohen, 1995). More signi�cantly, they also have been extended to learn rules in �rst-order

predicate logic, a much richer representation language. Predicate logic allows for quanti�ed variables

and relations and can represent concepts that are not expressible using examples described as feature

vectors. For example, the following rules, written in Prolog syntax (where the conclusion appears

�rst), de�ne the relational concept of an uncle:

uncle(X,Y) :- brother(X,Z), parent(Z,Y).

uncle(X,Y) :- husband(X,Z), sister(Z,W), parent(W,Y).

The goal of inductive logic programming (ILP) or relational learning is to infer rules of this sort given
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a database of background facts and logical de�nitions of other relations (Lavrac & Dzeroski, 1994).

For example, an ILP system can learn the above rules for uncle (the target predicate) given a set

of positive and negative examples of uncle relationships and a set of facts for the relations parent,

brother, sister, and husband (the background predicates) for the members of a given extended family,

such as:

uncle(Tom,Frank),uncle(Bob,John), :uncle(Tom,Cindy), :uncle(Bob,Tom)

parent(Bob,Frank), parent(Cindy,Frank), parent(Alice,John), parent(Tom,John),

brother(Tom,Cindy), sister(Cindy,Tom), husband(Tom,Alice), husband(Bob,Cindy).

Alternatively, logical de�nitions for brother and sister could be supplied and these relations could

be inferred from a more complete set of facts about only the \basic" predicates: parent, spouse,

and gender.

The rule construction algorithm in Figure 6 is actually a simpli�cation of the method used in

the Foil ILP system (Quinlan, 1990). In the case of predicate logic, Foil starts with an empty

rule for the target predicate (P (X1; : : : ;Xr) : �:) and repeatedly specializes it by adding conditions

to the antecedent of the rule chosen from the space of all possible literals of the following forms:

� Qi(V1; : : : ; Vr)

� not(Qi(V1; : : : ; Vr))

� Xi = Xj

� not(Xi = Xj)

where Qi are the background predicates, Xi are the existing variables used in the current rule, and

V1; : : : ; Vr are a set of variables where at least one is an existing variable (one of the Xi) but the

others can be newly introduced. A slight modi�cation of the Gain heuristic in equation 3 is used

to select the best literal.
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ILP systems have been used to successfully acquire interesting and comprehensible rules for a

number of realistic problems in engineering and molecular biology, such as determining the cancer-

causing potential of various chemical structures (Bratko & Muggleton, 1995). Unlike most methods

which require \feature engineering" to reformat examples into a �xed list of features, ILP methods

can induce rules directly from unbounded data structures such as strings, stacks, and trees (which

are easily represented in predicate logic). However, since they are searching a much larger space

of possible rules in a more expressive language, they are computationally more demanding and

therefore are currently restricted to processing a few thousand examples compared to the millions

of examples that can be potentially handled by feature-based systems.

20.5 Instance-Based Categorization

Unlike most approaches to learning for categorization, instance-based learning methods (also

called case-based or memory-based methods) do not construct an abstract function de�nition, but

rather categorize new examples based on their similarity to one or more speci�c training examples

(Aha, Kibler, & Albert, 1991; Stan�ll & Waltz, 1986). Training generally requires just storing the

training examples in a database, although it may also require indexing the examples to allow for

eÆcient retrieval. Categorizing new test instances is performed by determining the closest examples

in the database according to some distance metric.

For real-valued features, the standard approach is to use Euclidian distance, where the distance

between two examples is de�ned as:

d(x; y) =

vuut
nX
i=1

(fi(x)� fi(y))2 (4)

where fi(x) is the value of the feature fi for example x. For discrete-valued features, the di�erence,

(fi(x)� fi(y)), is generally de�ned to be 1 if they have the same value for fi and 0 otherwise (i.e.

the Hamming distance). In order to compensate for di�erences in scale between di�erent features,
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KNN(Example, TrainingExamples, k)
For each TrainingExample in TrainingExamples

Compute d(Example; T rainingExample)
Let Neighbors be the k TrainingExamples with the smallest value for d
Let c be the most common category of the examples in Neighbors.
Return c

Figure 7: K-Nearest-Neighbor Categorization Algorithm

the values of all features are frequently rescaled to the interval [0,1]. Intuitively, such distance

measures are intended to measure the dissimilarity of two examples.

A standard algorithm for categorizing new instances is the k-nearest neighbor method (Cover

& Hart, 1967). The k closest examples to the test example according to the distance metric are

found, and the example is assigned to the majority class for these examples. Pseudocode for this

process is shown in Figure 7. The reason for picking k examples instead of just the closest one is to

make the method robust by basing decisions on more evidence than just one example, which could

be noisy. To avoid ties, an odd value for k is normally used, typical values are 3 and 5.

The basic nearest-neighbor method has been enhanced with techniques for weighting features in

order to emphasize attributes that are most useful for categorization, and for selecting a subset of

examples for storage in order to reduce the memory requirements of retaining all training examples

(Stan�ll & Waltz, 1986; Aha et al., 1991; Cost & Salzberg, 1993).

20.6 Applications to Computational Linguistics

Decision tree learning, rule induction, and instance-based categorization have been applied to a

range of problems in computational linguistics. This sections surveys applications to a variety of

problems in language-processing starting with morphological and lexical problems and ending with

discourse-level tasks.
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20.6.1 Morphology

Symbolic learning has been applied to several problems in morphology (see Chapter 2). In par-

ticular, decision-tree and ILP methods have been applied to the problem of generating the past

tense of an English verb, a task frequently studied in cognitive science and neural networks as a

touchstone problem in language acquisition. In fact, there has been signi�cant debate whether

or not rule-learning is an adequate cognitive model of how children learn this task (Rumelhart &

McClelland, 1986; Pinker & Prince, 1988; MacWhinney & Leinbach, 1991). Typically, the problem

is studied in its phonetic form, in which a string of phonemes for the present tense is mapped to a

string of phonemes for the past tense. The problem is interesting since one must learn the regular

transformation of adding \ed," as well as particular irregular patterns such as that illustrated by

the examples \sing" ! sang," \ring" ! \rang," and \spring" ! \sprang."

Decision-tree algorithms were applied to this task and found to signi�cantly outperform previous

neural-network models in terms of producing correct past-tense forms for independent test words

(Ling & Marinov, 1993; Ling, 1994). In this study, verbs were restricted to 15 phonemes encoded

using the UNIBET ASCII standard, and 15 separate trees were induced, one for producing each of

the output phoneme positions using all 15 of the input phonemes as features. Below is the encoding

for the mapping \act" ! \acted," where underscore is used to represent a blank.

&,k,t,_,_,_,_,_,_,_,_,_,_,_,_ => &,k,t,I,d,_,_,_,_,_,_,_,_,_,_

ILP rule-learning algorithms have also been applied to this problem and shown to outperform

decision trees (Mooney & Cali�, 1995). In this case, a de�nition for the predicate Past(X,Y),

was learned for mapping an unbounded list of UNIBET phonemes to a corresponding list for the

past tense (e.g. Past([&,k,t],[&,k,t,I,d])) using a predicate for appending lists as part of the

background. A de�nition was learned in the form of a decision list in which rules are ordered and the
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�rst rule that applies is chosen. This allows �rst checking for exceptional cases and falling through

to a default rule if none apply. The ILP system learns a very concise and comprehensible de�nition

for the past-tense transformation using this approach. Similar ILP methods have also been applied

to learning morphology in other European languages (Manandhar, Dzeroski, & Erjavec, 1998;

Kazakov & Manandhar, 1998).

20.6.2 Part-of-Speech Tagging

Tagging each word with its appropriate part-of-speech (POS) based on context is a useful �rst step

in syntactic analysis (see chapter 11). In addition to statistical methods that have been successfully

applied to this task, decision tree induction (Marquez, Padro, & Rodriguez, 1999), rule induction

(Brill, 1995), and instance-based categorization (Daelemans, Zavrel, Berck, & Gillis, 1996) have

also been successfully used to learn POS taggers.

The features used to determine the POS of a word generally include the POS tags in a window

of 2 to 3 words on either side. Since during testing these tags must also be determined by the

classi�er, either only the previous tags are used, or an iterative procedure is used to repeatedly

update all tags until convergence is reached. For known words, a dictionary provides a set of possible

POS categories. For unknown words, all POS categories are possible but additional morphological

features such as the last few characters of the word and whether or not it is capitalized are typically

used as additional input features. Using such techniques, symbolic learning systems can obtain high

accuracies similar to those obtained by other POS tagging methods, i.e. in the range of 96{97%.

20.6.3 Word-Sense Disambiguation

As illustrated by the \interest" problem introduced earlier, machine learning methods can be ap-

plied to determining the sense of an ambiguous word based on context (see Chapter 13). As also

illustrated by this example, a variety of features can be used as helpful cues for this task. In partic-
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ular, collocational features that specify words that appear in speci�c locations a few words before

or after the ambiguous word are useful features, as are binary features indicating the presence of

particular words anywhere in the current or previous sentence. Other potentially useful features

include the parts of speech of nearby words, and general syntactic information, such as whether an

ambiguous noun appears as a subject, direct object, or indirect object.

Instance-based methods have been applied to disambiguating a variety of words using a com-

bination of all of these types of features (Ng & Lee, 1996). A feature-weighted version of nearest

neighbor was used to disambiguate 121 di�erent nouns and 70 verbs chosen for being both frequent

and highly-ambiguous. Fine-grained senses from WordNet were used, resulting in an average

of 7.8 senses for the nouns and 12 senses for the verbs. The training set consisted of 192,800 in-

stances of these words found in text sampled from the Brown corpus and the Wall Street Journal

and labeled with correct senses. Testing on an independent set of 14,139 examples from the Wall

Street Journal gave an accuracy of 68.6% compared to an accuracy of 63.7% from choosing the

most common sense, a standard baseline for comparison. Since WordNet is known for making

�ne sense distinctions, these results may seem somewhat low. For some easier problems the results

were more impressive, such as disambiguating \interest" into one of 6 fairly �ne-grained senses with

an accuracy of 90%.

Decision-tree and rule induction have also been applied to sense disambiguation. Figure 1 shows

results for disambiguating the word \line" into one of six senses using only binary features repre-

senting the presence or absence of all known words in the current and previous sentence (Mooney,

1996). Tree learning (C4.5), rule learning (PFOIL), and nearest neighbor perform comparably

on this task and somewhat worse than simple neural network (Perceptron) and statistical (Naive

Bayes) methods. A more recent project presents results on learning decision trees to disambiguate

all content words in a �nancial corpus with an average accuracy of 77% (Paliouras, Karkaletsis, &
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Spyropoulos, 1999).

20.6.4 Syntactic Parsing

Perhaps the most well-studied problem in computational linguistics is the syntactic analysis of

sentences (see Chapters 4 and 12). In addition to statistical methods that have been success-

fully applied to this task, decision tree induction (Magerman, 1995; Hermjakob & Mooney, 1997;

Haruno, Shirai, & Ooyama, 1999), rule induction (Brill, 1993), and instance-based categorization

(Cardie, 1993; Argamon, Dagan, & Krymolowski, 1998) have also been successfully employed to

learn syntactic parsers.

One of the �rst learning methods applied to parsing the Wall Street Journal (WSJ) corpus of

the Penn treebank (Marcus, Santorini, & Marcinkiewicz, 1993) employed statistical decision trees

(Magerman, 1995). Using a set of features describing the local syntactic context including the POS

tags of nearby words and the node labels of neighboring (previously constructed) constituents,

decision trees were induced for determining the next parsing operation. Instead of growing the

tree to completely �t the training data, pruning was used to create leaves for subsets that still

contained a mixture of classes. These leaves were then labeled with class-probability distributions

estimated from the subset of the training data reaching that leaf. During testing, the system

performs a search for the highest probability parse, where the probability of a parse is estimated

by the product of the probabilities of its individual parsing actions (as determined by the decision

tree). After training on approximately 40,000 WSJ sentences and testing on 1,920 additional ones,

the system obtained a labeled precision (percentage of constructed constituents that were correct)

and labeled recall (percentage of correct constituents that were found) of 84%.
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20.6.5 Semantic Parsing

Learning methods have also been applied to mapping sentences directly into logical form (see

Chapter 5) by inducing a parser from training examples consisting of sentences paired with semantic

representations. Below is a sample training pair from an application involving English queries about

a database of U.S. geography:

What is the capital of the state with the highest population?

answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

Unfortunately, since constructing useful semantic representations for sentences is very diÆcult

unless restricted to a fairly speci�c application, there is a noticeable lack of large corpora annotated

with detailed semantic representations.

However, ILP has been used to induce domain-speci�c semantic parsers written in Prolog from

examples of natural-language questions paired with logical Prolog queries (Zelle & Mooney, 1996;

Ng & Zelle, 1997). In this project, parser induction is treated as a problem of learning rules

to control the actions of a generic shift-reduce parser. During parsing, the current context is

maintained in a stack and a bu�er containing the remaining input. When parsing is complete, the

stack contains the representation of the input sentence. There are three types of operators used to

construct logical forms. One is the introduction onto the stack of a predicate needed in the sentence

representation due to the appearance a word or phrase at the front of the input bu�er. A second

type of operator uni�es variables appearing in di�erent stack items. Finally, an item on the stack

may be embedded as an argument of another one. ILP is used to learn conditions under which each

of these operators should be applied, using the complete stack and input bu�er as context, so that

the resulting parser deterministically produces the correct semantic output for all of the training

examples.
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Posting from Newsgroup

Telecommunications. SOLARIS Systems Administrator. 38-44K. Immediate need

Leading telecommunications firm in need of an energetic individual to fill the

following position in the Atlanta office:

SOLARIS SYSTEMS ADMINISTRATOR

Salary: 38-44K with full benefits

Location: Atlanta Georgia, no relocation assistance provided

Filled Template

computer_science_job

title: SOLARIS Systems Administrator

salary: 38-44K

state: Georgia

city: Atlanta

platform: SOLARIS

area: telecommunications

Figure 8: Information Extraction Example

This technique has been used to induce natural-language interfaces to several database-query

systems, such as the U.S. geography application illustrated above. In one experiment using a corpus

of 250 queries annotated with logical form, after training on 225 examples, the system was able to

answer an average of 70% of novel queries correctly compared to 57% for an interface developed by

a human programmer. Similar results were obtained for semantic parsing of other languages after

translating the corpus into Spanish, Turkish, and Japanese (Thompson & Mooney, 1999).

20.6.6 Information Extraction

Information extraction is a form of shallow text processing that locates a speci�ed set of rel-

evant items in a natural-language document (see Chapter 30). Figure 8 shows an example of

extracting values for a set of labeled slots from a job announcement posted to an Internet news-

group. Information extraction systems require signi�cant domain-speci�c knowledge and are time-

consuming and diÆcult to build by hand, making them a good application for machine learning.

A number of rule-induction methods have recently been applied to learning patterns for in-
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Pre-�ller: Filler: Post-�ller:
1) tag: fnn,nnpg 1) word: undisclosed 1) sem: price
2) list: length 2 tag: jj

Figure 9: Sample Learned Information-Extraction Rule

formation extraction (Soderland, 1999; Freitag, 1998; Cali� & Mooney, 1999). Given training

examples of texts paired with �lled templates, such as that shown in Figure 8, these systems learn

pattern-matching rules for extracting the appropriate slot �llers from text. Some systems assume

that the text has been preprocessed by a POS tagger or a syntactic parser, others use only patterns

based on unprocessed text. Figure 9 shows a sample rule constructed for extracting the transaction

amount from a newswire article about corporate acquisition (Cali� & Mooney, 1999). This rule

extracts the value \undisclosed" from phrases such as \sold to the bank for an undisclosed amount"

or \paid Honeywell an undisclosed price". The pre-�ller pattern consists of two pattern elements:

1) a word whose POS is noun or proper noun, and 2) a list of at most two unconstrained words.

The �ller pattern requires the word \undisclosed" tagged as an adjective. The post-�ller pattern

requires a word in the WordNet semantic category \price".

Such systems have acquired extraction rules for a variety of domains, including apartment ads,

university web pages, seminar announcements, terrorist news stories, and job announcements. After

training on a couple of hundred examples, such systems are generally able to learn rules as accurate

as those resulting from a time-consuming human development e�ort. The standard metrics for

evaluating information extraction are precision, the percentage of extracted �llers that are correct,

and recall, the percentage of correct �llers that are successfully extracted. On most tasks that have

been studied, current systems are generally able to achieve precisions in the mid 80% range and

recalls in the mid 60% range.
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20.6.7 Anaphora Resolution

Resolving anaphora, or identifying multiple phrases that refer to the same entity, is another dif-

�cult language-processing problem (see chapter 14). Anaphora resolution can be treated as a

categorization problem by classifying pairs of phrases as either co-referring or not. Given a corpus

of texts tagged with co-referring phrases, positive examples can be generated as all co-referring

phrase pairs and negative examples as all phrase pairs within the same document that are not

marked as co-referring. Both decision-tree (Aone & Bennett, 1995; McCarthy & Lehnert, 1995)

and instance-based methods (Cardie, 1992) have been successfully applied to resolving various types

of anaphora.

In particular, decision-tree induction has been used to construct systems for general noun-phrase

co-reference resolution. Examples are described using features of both of the individual phrases,

such as the semantic and syntactic category of the head noun; as well as features describing the

relationship between the two phrases, such as whether the �rst phrase proceeds the second and

whether the semantic class of the �rst phrase subsumes that of the second. In one experiment

(Aone & Bennett, 1995), after training on 1,971 anaphora from 295 texts and testing on 1,359

anaphora from an additional 200 texts, the learned decision tree obtained a precision (percentage

of co-references found that were correct) of 86.7% and a recall (percentage of true co-references that

were found) of 69.7%. These results were superior to those obtained using a previous, hand-built

co-reference procedure (precision 72.9%, recall 66.5%).

20.7 Further Reading and Relevant Resources

Introductory textbooks on machine learning include Mitchell (1997) and Langley (1996). Also

useful are the collection of early papers assembled by Shavlik and Dietterich (1990). A recent

special issue on natural language learning of the Machine Learning journal is presented by Cardie
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and Mooney (1999). Some websites with useful machine-learning pointers are:

http://www.aic.nrl.navy.mil/~ aha/research/machine-learning.html and

http://www.ai.univie.ac.at/oefai/ml/ml-resources.html. Also see the Association of Computational

Linguistics' special interest group on Natural Language Learning at http://ilk.kub.nl/~ signll/.
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