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Inductive Logic Programming (ILP) is the intersection of Machine Learning and

Logic Programming in which the learner's hypothesis space is the set of logic pro-

grams. There are two major ILP approaches: top-down and bottom-up. The former

searches the hypothesis space from general to speci�c while the latter the other way

round. Integrating both approaches has been demonstrated to be more e�ective.

Integrated ILP systems were previously developed for two tasks: learning seman-

tic parsers (Chillin), and mining relational data (Progol). Two new integrated

ILP systems for these tasks that overcome limitations of existing methods will be

presented.

Cocktail is a new ILP algorithm for inducing semantic parsers. For this

task, two features of a parse state, functional structure and context, provide im-
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portant information for disambiguation. A bottom-up approach is more suitable

for learning the former, while top-down is better for the latter. By allowing both

approaches to induce program clauses and choosing the best combination of their

results, Cocktail learns more e�ective parsers. Experimental results on learn-

ing natural-language interfaces for two databases demonstrate that it learns more

accurate parsers than Chillin, the previous best method for this task.

Beth is a new integrated ILP algorithm for relational data mining. The

Inverse Entailment approach to ILP, implemented in the Progol and Aleph sys-

tems, starts with the construction of a bottom clause, the most speci�c hypothesis

covering a seed example. When mining relational data with a large number of back-

ground facts, the bottom clause becomes intractably large, making learning very

ineÆcient. A top-down approach heuristically guides the construction of clauses

without building a bottom clause; however, it wastes time exploring clauses that

cover no positive examples. By using a top-down approach to heuristically guide

the construction of generalizations of a bottom clause, Beth combines the strength

of both approaches. Learning patterns for detecting potential terrorist activity is a

current challenge problem for relational data mining. Experimental results on arti-

�cial data for this task with over half a million facts show that Beth is signi�cantly

more eÆcient at discovering such patterns than Aleph and m-Foil, two leading

ILP systems.
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Chapter 1

Introduction

Machine learning concerns with the question of how to construct computer programs

that automatically improve with experience (a.k.a. learning algorithms) (Mitchell,

1997). Many a successful machine learning application has been developed in the

past three, perhaps even �ve, decades of research, ranging from programs that can

automatically translate a piece of text in one language to another, to programs

that can read aloud a given piece of text, e.g. in English, to aid blind people, to

data-mining programs that learn to detect fraudulent credit card transactions.

1.1 Attribute Value Learning and Limitations

Earlier work in machine learning focused on tasks that involve the learning of clas-

si�cation functions from data represented by a vector of attributes and their values

(a.k.a. attribute-value representation) (Michalski, 1983; Quinlan, 1986; Rumelhart,

Hinton, & Williams, 1986). For example, a system could learn to classify face im-

ages, represented as bitmaps, based on which person was pictured. Another exam-
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ple would be the learning of association rules that predict the products a customer

would purchase (a.k.a. purchasing behavior) based on the customer's \attributes"

like gender, age, career, hobbies, and, perhaps, even the customer's prior purchasing

behavior. Most of these earlier work can be summarized under the title \attribute

value learning" in which the representation of an object (i.e. training example) is

in the form of a vector of values (one for each attribute). One popular approach is

learning with neural networks in which the attribute values are numerical. Yet, an-

other popular approach is \symbolic machine learning" in which attribute values can

be either numerical or simply a symbol (i.e. a sequence of alphanumerical charac-

ters). Attribute value learning in this framework has come to be called propositional

learning since these systems �nd expressions equivalent to sentences in propositional

logic.

Fortunately or unfortunately, as the nature of problems becomes more so-

phisticated, so is the expressiveness (of the learning system) required to capture and

represent objects or concepts to be learned. We are going to focus on tasks that re-

quire a more complicated representation framework than that of propositional logic.

More precisely, we will focus on two tasks which require something not o�ered in

propositional logic. The �rst one is semantic parser acquistion which requires the

use of function terms since the state of a parser is most conveniently represented as

a tree structure of various objects like the list of words in the input bu�er and so

on (Zelle & Mooney, 1993). The second task is data mining with multi-relational

databases which requires the use of variables and predicates to capture relational

knowledge embedded in the relational tables (D�zeroski & Lavra�c, 2001). Unfortu-

nately, none of these features is available in propositional logic.
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1.2 Inductive Logic Programming

The next level of expressiveness in terms of the power of representation is o�ered by

the framework in �rst-order logic. However, even �rst-order logic is more expressive

than necessary. Only a subset of �rst-order logic that is commonly called Horn

clause �rst-order logic, in which sentences are in the form of \if-then rules" for more

eÆcient inference, is already suÆcient for our purpose. Fortunately, an e�ective

mechanism of its computation has been formulated in the well-developed framework

of SLDNF-resolution in logic programming 1 (Doets, 1994) and implemented in

Prolog (Bratko, 1990).

Inductive logic programming (ILP) is the intersection of machine learning

and logic programming, which concerns developing learning algorithms within the

framework of Horn clause �rst-order logic (Lavrac & Dzeroski, 1994a). The past

decade of research in ILP has produced two major approaches: 1) top-down and

2) bottom-up. The former is characterized by searching the hypothesis space in

a general to speci�c manner (Quinlan, 1990) while the latter in a speci�c to gen-

eral order (Bain & Muggleton, 1992). Bottom-up approaches were pioneered by

Stephen Muggleton who started the �rst workshop for Inductive Logic Program-

ming in 1991, which became popular within the machine learning community in

Europe and subsequently the ESPRIT (Ecoles) Project 2 started with a view to

promoting the development of techniques and applications in ILP. Quite a few use-

ful ILP systems were developed under this project, which were also applied to many

interesting areas. One of the more interesting applications was, perhaps, in the now

1Selection-rule driven Linear Resolution for De�nite clauses extended with Negation as Failure
2The latest \descendant" is the ESPRIT IV Project.
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rapidly growing decipline called bioinformatics that concerns machine aided drug

design (Finn, Muggleton, Page, & Srinivasan, 1998). The top-down approach was

�rst started by Ross Quinlan who developed the well known learning system C4.5

(Quinlan, 1986), from which the basic approach was extended to handling Horn

clause logic in the system called Foil (Quinlan, 1990) that was also applied to

many interesting research problems like text categorization, for instance. Today,

ILP has already become a well established decipline within machine learing with

many di�erent areas of useful applications, even started merging with other areas

of research like probabilistic reasoning (Kersting & Raedt, 2001).

1.3 Integrating Top-down and Bottom-up Approaches

in ILP

The most popular top-down approach in ILP has to be Foil (or mFoil) while

Golem probably represents the best bottom-up approach in ILP. There were two

earlier ILP algorithms based on the idea of combining top down and bottom up ap-

proaches: 1) Chillin (Zelle & Mooney, 1994), which is based largely on combining

Golem and Foil, and 2) Progol (Muggleton, 1995), which is based on combining

Foil with a framework called Inverse Entailment (originated from bottom-up ap-

proaches). They represented the best \ILP hybrids" to the author's knowledge; the

former was applied to semantic parser acquisition (Zelle & Mooney, 1993) and the

latter to pharmacophore discovery in bioinformatics (Finn et al., 1998) and other

tasks as well. However, each of them has their own shortcomings. More precisely,

Chillin's particular way of combining Golem and Foil makes it diÆcult to uti-

4



lize background knowledge that would normally/intuitively be given to a typical

top-down ILP system, which negatively a�ected the accuracy achieved on the task.

Progol has to construct a (huge) bottom clause before starting to look for a hy-

pothesis in a Foil-like manner, which makes learning ineÆcient in domains with

a large number of facts in the background knowledge. In this thesis, we are go-

ing to present more advanced techniques on combining top-down and bottom-up

approaches, one for each type of domains, that can overcome these various short-

comings encountered in these earlier ILP hybrids.

1.4 Application of ILP in Semantic Parser Acquisition

One of the goals in Arti�cial Intelligence (AI) is the developement of systems with

abilities of processing natural languages like that of human beings, which spawned

a sub-�eld in AI called Natural Language Processing (NLP). The more well known

tasks in NLP among many others are parsing and speech recognition. Parsing can

be broadly and very roughly divided into two areas: 1) syntactic parsing and 2) se-

mantic parsing. The former emphasizes recognizing and manipulating the syntactic

structures of natural language sentences while the latter the meaning or possible

interpretations of natural language sentences. We will only focus on the latter in

this thesis.

Semantic parsing refers to the process of mapping a natural language input

(a sentence) to some structured meaning representation which is suitable for ma-

nipulation by a machine (Allen, 1995). For example, in building a natural language

interface (NLI) for a commercial database, one may want to map a user data re-

quest expressed in a natural language to the underlying database access language

5



like SQL. The target query which is expressed in SQL, in this case, would serve as

the meaning representation for the user request. The choice of a semantic repre-

sentation language is entirely domain dependent since as of now there has not been

developed a \univeral" semantic representation language which is expressive enough

to handle the world of possible meaning structures. Semantic parsing is a diÆcult

problem in natural language processing (NLP) since anyone who attempts to ap-

proach it would necessarily have to tackle the very diÆcult task of natural language

understanding.

Semantic parsing has been an interesting problem in NLP as it would very

likely be part of any interesting NLP applications, particularly those that would

require translation of a natural language input to a speci�c command. Research in

semantic parsing with a focus on developing natural language interfaces for database

querying started in the 70's (Woods, 1970; Waltz, 1978) and carries on to the 90's

(Miller, Stallard, Bobrow, & Schwartz, 1996; Zelle, 1995; Kuhn & De Mori, 1995).

With the advent of the \information age", the availabilty of such applications would

de�nitely widen the \information delivery bottleneck". Online database access in

natural languages makes information available to users who do not necessarily pos-

sess the knowledge of the underlying database access language and therefore makes

information a lot more accessible. One great potential impact would be on the utility

of the World Wide Web where information could be delivered through NLIs imple-

mented as Web pages. The success of semantic parsing techiques would de�nitely

be the cornerstone of a prospering development of such interesting applications. 3

There has been a resurgence of empirical approaches to natural language

3Even though building NLIs to databases is being emphasized here, we by no means imply that
it would be the only important application of semantic parsing.
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processing since the late 1980's. The success of such approaches in areas like speech

recognition (Rabiner, 1989; Bahl, Jelinek, & Mercer, 1983), part-of-speech tagging

(Charniak, Hendrickson, Jacobson, & Perkowitz, 1993), syntactic parsing (Ratna-

parkhi, 1999; Manning & Carpenter, 1997; Charniak, 1996; Collins, 1997; Pereira

& Shabes, 1992), and text or discourse segmentation (Litman, 1996) is evidential.

In fact, it has been coined a \revolution" within the NLP community (Hirschberg,

1998). There are reasons why such approaches have experienced a resurgence: 1)

the success in information and networking technology has made large volumes of

real world corpora of text available (which could serve the role of \raw data" in

any empirical approach) and 2) empirical approaches have proven successful to de-

velop systems that satisfy some of the desirable properties of an NLP application,

namely a) acquisition, automatically acquiring knowledge (domain speci�c or not)

that would be necessary for the task, b) coverage, handling the potentially wide

range of possibilities that could arise in the application, c) robustness, accommodat-

ing real data which may not be \perfect" (like having noise) and still being able to

perform reasonably well, d) portability, easily applicable to a di�erent task in a new

domain (Armstrong-Warwick, 1993). A system called Chill, which employed an

empirical approach to semantic parser acquisition, was developed and demonstrated

to perform better than hand-crafted parsers in several domains (Zelle & Mooney,

1993).

One of the factors, perhaps the largest one, a�ecting the performance of a

system like Chill is the quality of the induction algorithm embedded in it. In

Chill, we used an induction algorithm called Chillin, which has the problem

mentioned before. We developed a new ILP algorithm we call Cocktail, which is
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based also on the idea of integrating top-down and bottom-up approaches in ILP

like Chillin. However, unlike Chillin which, perhaps, put too much weight on

the bottom-up approach than the top-down approach making it diÆcult to utilize

background knowledge, Cocktail gives equal weight to each type of ILP approach.

Each ILP algorithm employed, one from each of the ILP approaches, in the system

retains its respective strength. Signi�cant improvement in Chill's performance is

achieved using such a new ILP algorithm.

1.5 Application of ILP in Relational Data Mining

Knowledge discovery in databases (KDD) is the (non-trivial) process of identifying

valid, novel, potentially useful, and understandable patterns in data (D�zeroski &

Lavra�c, 2001). Data mining (DM) is, perhaps, the \central" step in the KDD

process, which concerns applying computational techniques (in the form of a learning

algorithm) to actually �nd patterns in the data. Other steps involve preparation of

data (maybe as well as collection of data) and evaluation of discovered patterns.

Most existing data mining approaches look for patterns in a single table of

data (Agrawal, Imielinski, & Swami, 1993). Relational data mining approaches, on

the other hand, look for patterns that involve multiple relations from a relational

database (Finn et al., 1998). The data taken as input by these approaches thus

typically consists of several tables and not just one table. ILP is particularly suit-

able for learning relational knowledge from these relational databases due to the

ease with which relational information is represented under the framework of Horn

clause �rst-order logic. We will look at a novel kind of relational data mining called

link discovery in which interesting patterns are learned from a very large relational
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database with many tables and many relations represented as Prolog facts.

The terrible events of September 11, 2001 have sparked increased develop-

ment of information technology that can aid intelligence agencies in detecting and

preventing terrorism. The Evidence Extraction and Link Discovery (EELD) pro-

gram of the Defense Advanced Research Projects Agency (DARPA) is one attempt

to develop new computational methods for addressing this problem. More precisely,

Link Discovery (LD) is the task of identifying known, complex, multi-relational pat-

terns that indicate potentially threatening activities in large amounts of relational

data. Some of the input data for LD comes from Evidence Extraction (EE), which is

the task of obtaining structured evidence data from unstructured, natural-language

documents (e.g. news reports), other input data comes from existing relational

databases (e.g. �nancial and other transaction data). Finally, Pattern Learning

(PL) concerns the automated discovery of new relational patterns for detecting po-

tentially threatening activities in large amounts of multi-relational data.

Progol (Muggleton, 1995) is considered to be the state-of-the-art ILP al-

gorithm in tackling problems in relational data mining. It was applied on various

problems in bioinformatics which was the largest ILP problem before link discovery

to the author's knowledge. As we shall see, link discovery has an unprecedented

explosion in the amount of data, in terms of the total number of background facts.

The problem is so large that state-of-the-art ILP algorithms become ineÆcient in

computation. Like we mentioned, Progol constructs a huge bottom clause, which

makes the search space of hypotheses unnecessarily large. We will present our new

approach (also based on integrating the two approaches in ILP) we call Beth that

was designed to speci�cally address this issue. We will experimentally demonstrate
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that such a new approach can signi�cantly improve the eÆciency of link discovery.

1.6 Reducing Complexity of Theorem Proving in ILP

Every ILP system has to tackle the problem of theorem proving in Horn clause

logic since �nding the set of positive and negative training examples covered by

a clause is the prerequisite to computing the heuristic value of the clause (e.g., m-

estimate or statistical signi�cance), which is an essential part in the search for a good

clause. However, simply proving an ordinary clause takes much time as theorem

proving is an NP hard problem in general (Cook, 1971). Query transformation

(Costa, Srinivasan, Camacho, Blockeel, B.Demoen, Janssens, Struyf, Vandecasteele,

& Laer, 2002) concerns developing techniques that transform a given clause by

appropriately inserting cut operators (!) and once=1 predicates so that the resulted

clause becomes much easier to prove. We are going to overview two state-of-the-art

techniques called cut-transformation and once-transformation before we proceed

to present our own algorithm based on these techniques we call incremental cut-

and-once transformation that is theoretically more eÆcient. Although we did not

actually employ our own algorithm in our ILP systems for the sake of simplicity

in the implementation of Beth, we present the idea as a theoretical result (or

contribution) in the thesis.

1.7 Organization of Thesis

Two ILP hybrids, Chillin and Progol, have been applied to semantic parser

acquisition and problems in relational data mining respectively. Each of them has
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its own shortcomings; the former negatively a�ected the accuracy of the parser while

the latter led to ineÆciency in learning. In this thesis, we are going to present two

more advanced techniques re combining top-down and bottom-up approaches in

ILP, namely Cocktail and Beth, which can overcome the shortcomings of these

earlier ILP hybrids.

The rest of the thesis is organized as follows. Chapter 2 will give a brief in-

troduction to Inductive Logic Programming. An empirical approach to NLP called

Chill will be overviewed in Chapter 3. The new ILP algorithm Cocktail devel-

oped for further improving Chill's performance is given in Chapter 4. In Chap-

ter 5, we will address the data mining problem called link discovery as mentioned

and present our new ILP algorithm that substantially boosted the eÆciency of link

discovery. After that, we will give an introduction to query transformation, from

which we employed the techniques in our ILP systems, along with our theoretical

contribution (the incremental cut-and-once transformation) in Chapter 6. We will

then brie
y review some related work or research problems in Chapter 7 followed by

a discussion on possible future research work in Chapter 8. Finally, we will present

our conclusions in Chapter 9.
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Chapter 2

Background on Inductive Logic

Programming

2.1 Preliminaries

We will start by giving some basic concepts and de�nitions from the theory of logic

programming. Please refer to (Lloyd, 1984) for more details. We assume basic

knowledge of �rst-order logic and its vocabulary.

A clause is a set of literals. A positive literal is an un-negated literal. For

example, l(A;B) is a positive literal. A negative literal is a literal preceded by the

classical negation. For example :l(A;B) is a negative literal. Some use an overline

to represent classical negation. So, l(A;B) is another way to represent the negative

literal :l(A;B).

A Horn clause C is a set of literals (implicitly representing a disjunction)

with at most one positive literal and therefore it takes the form: H  B where H,
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the head of C, is a literal and B, the body of C, is a set of literals. For example,

D : f(A;B)  p(B;C); q(C;A) is a Horn clause. However, D can also be written

as this set of literals: ff(A;B); p(B;C); q(C;A)g.

Given a clause H  B, the set of variables in H are called head variables.

For example, the set of head variables for the clause f(A;B)  p(B;C); q(C;A) is

fA;Bg.

The close world assumption says that if a literal L cannot be inferred from

a given set of background knowledge BK, then L is not satis�able under BK, i.e.

BK 6j= L.

Negation as Failure (denoted as not) is a form of negation implemented in

Prolog based on the close world assumption. It is logically di�erent from classical

negation :.

A Horn clause is de�nite if there is no negation as failure not nor classical

negation : in the body of the clause. For example, given two clauses C1 : H  L1; L2

and C2 : H  notL1; L2, only C1 is a de�nite clause.

A Horn clause is range restricted if and only if its head variables all appear

in the body of the clause. For example, f(A;B)  p(B;C); q(C;A) is a range

restricted clause but f(A;B) p(B;C); q(C;D) is not a range restricted clause.

A Horn clause is function free if there exists no function terms anywhere in

the clause. For example, f(A;B)  p(B;C); q(C;A) is a function free clause but

f(g(A); B)  p(B;C); q(C;A) is not a function free clause because the function

term g(A) appears in the head of the clause.

A substitution is a set of bindings of the form: V=c where c is a constant and

V is a variable. For example, fA=a;B=bg is a substitution which binds the variable
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A to the constant a and the variable B to the constant b.

We use the notation T� to denote the result of binding all the variables in

the term T according to the substitution �. For example, suppose T = f(A;B) and

� = fA=a;B=bg, then T� = f(a; b).

A clause C �-subsumes (�) a clause D if there exists substitution � such

that C� � D. For example, the clause C : f(A;B)  p(B;G); q(G;A) �-subsumes

the clause D : f(a; b)  p(b; g); q(g; a); t(a; d) by the substitution fA=a;B=b;G=gg.

Therefore, C � D.

A solution to a literal L is a substitution � such that the given background

knowledge BK j= L�. For example, if the given set of background knowledge is BK =

fp(a1; b1); p(a2; b2); p(a3; b3)g, the literal p(X;Y ) has three solutions: fX=a1; Y=b1g,

fX=a2; Y=b2g, and fX=a3; Y=b3g.

A substitution � satis�es a set of literals S for a given set of background

knowledge BK if BK j= S�.

The Prolog cut (!) is a procedural operator used to prevent backtracking to

avoid unnecessary non-determinacy.

The followings are some basic de�nitions from the literature in Inductive

Logic Programming such as (Lavrac & Dzeroski, 1994a) and (Muggleton, 1995).

The target predicate is the predicate of the concept that one wants to learn.

For example, in learning the concept grandparent(X;Y ) (X is the grandparent of

Y ), grandparent is the target predicate.

Given a clause H  B, the depth of a variable V (variable depth) d(V ) is

de�ned as: 1) for each V which appears in H, d(V ) = 0 and 2) From left to right,

for each literal L 2 B, if Vmax is the variable with the maximum known depth in L,
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then every variable Vi in L whose depth is to be calculated, d(Vi) = d(Vmax)+1. For

example, given the clause f(A;B) g(A;D); p(A;D;E); q(E;R;A;B), the variable

depth of d(A) = 0; d(B) = 0; d(D) = 1; d(E) = 2; d(R) = 3.

The variable depth bound on a given clause is the maximum depth a variable

can have for any variable which appears in the clause.

Recall bound is the maximum number of alternative solutions of a predicate

L.

The clause length is the total number of literals in the body of the clause.

A set of background knowledge is de�ned extentionally if it is represented as

a set of ground literals like fgrandparent(Bob; Susan); grandparent(Tom;Mary)g.

It is de�ned intentionally if it is represented as a Horn clause theory with quanti�ed

variables. For example, fgrandparent(X;Y ) parent(X;Z); parent(Z; Y )g and a

set of grounded facts (grounded literals) de�ning the parent relationship serve as an

intentionally de�ned set of background knowledge.

2.2 Problem De�nition

Inductive Logic Programming (ILP) is a growing sub�eld in AI at the intersection of

machine learning and logic programming. The problem is de�ned as follows. Given

a set of examples (represented as ground literals) � = �+ [ �� consisting of positive

and negative examples of a target concept, and background knowledge B, �nd an

hypothesis H 2 L (the language of hypotheses) such that the following conditions

hold 1 (Muggleton & Raedt, 1994).

Prior Satis�ability. B ^ �� 6j= 2

1This problem setting is also called the normal semantics of ILP.
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Posterior Satis�ability. B ^H ^ �� 6j= 2

Prior Necessity. B 6j= �+

Posterior SuÆciency. B ^H j= �+

where 2 represents logical falsity (a contradiction). The suÆciency criterion is also

called completeness with regard to positive examples and the posterior satis�ability

criterion is also known as consistency with the negative examples. Due to the

use of a more expressive �rst-order formalism, ILP techniques are proven to be

more e�ective in tackling problems that require learning relational knowledge than

traditional propositional approaches (Quinlan, 1990).

There are two major approaches in the design of ILP learning algorithms:

top-down and bottom-up. Both approaches can be viewed more generally as a kind

of set covering algorithm. However, they di�er in the way a clause is constructed.

In a top-down approach, one builds a clause in a general to speci�c order where the

search usually starts with the most general clause and successively specializes it with

background predicates according to some search heuristic. A representative example

of this approach would be the Foil algorithm (Quinlan, 1990; Cameron-Jones &

Quinlan, 1994). In a bottom-up approach, the search begins at the other end of

the space where it starts with the most speci�c hypothesis, the set of examples,

and constructs the clauses in a speci�c to general order by generalizing the more

speci�c clauses. We will brie
y review a number of earlier ILP systems based on

this approach.
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2.3 Top Down Approach

Top-down ILP methods learn programs by generating clauses one after the other,

and generate clauses by means of specialization. We are going to review two popular

systems that have been developed in the past decade of research in ILP.

2.3.1 Foil and mFoil

Foil (Quinlan, 1990) may be one of the earliest top-down rule learning algorithms

which use a hypothesis space more expressive than that of traditional propositional

rule learning algorithms like, for instance, C4.5 rules (Quinlan, 1993). More pre-

cisely, Foil learns a function-free �rst-order Horn clause de�nition of a target con-

cept given the background predicates which are de�ned extensionally. Foil contains

an outer loop, which in each iteration, �nds a clause that covers a portion of the

positive examples and are consistent with the negative examples. The loop stops

when the set of clauses found covers all the positive examples. The inner loop builds

a single clause, starting with the most general hypothesis and adding literals to it

until it covers no negative examples. Literals are ranked using the information gain

metric and the literal that maximizes gain is chosen. More formally, let T+ denote

the number of positive tuples in the set T , the information of T is de�ned as:

I(T ) = � log2(T+= j T j): (2.1)

And, the information gain of a literal L is de�ned as:

Gain(L) = s � (I(T )� I(T 0)) (2.2)

where s is the number of tuples in T that have extensions in T 0 (i.e. the number of

current positive tuples covered by L) and T 0 is the new training set created from T
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and L. Figure 2.1 summarizes the Foil algorithm.

Like Foil, mFoil (Lavrac & Dzeroski, 1994b) is a top-down ILP algorithm.

However, it uses a more direct accuracy estimate, the m-estimate (Cestnik, 1990),

to measure the expected accuracy of a clause which is de�ned as

accuracy(C) =
s+m � p+

n+m
(2.3)

where C is a clause, s is the number of positive examples covered by the clause, n

is the total number of examples covered, p+ is the prior probability of the class �,

and m is a parameter.

mFoil was designed with handling imperfect data in mind. It uses a pre-

pruning algorithm which checks if a re�nement of a clause can be possibly signi�cant.

If so, it is retained in the search. The signi�cant test is based on the likelihood ratio

statistic. Suppose a clause covers n examples, s of which are positive examples, the

value of the statistic is calculated as follows:

Likelihood Ratio = 2n(q+ log
q+

p+
+ q� log

q�

p�
) (2.4)

where p+ and p� are the prior probabilities of the class� and	 respectively, q+ = s
n
,

and q� = 1� q+. This is distributed approximately as �2 with 1 degree of freedom.

If the estimated value of a clause is above a particular threshold, it is considered

signi�cant. A clause, therefore, cannot be possibly signi�cant if the upper bound

�2s log p+ is already less than the threshold, and will not be further re�ned.

The search starts with the most general clause. Literals are added succes-

sively to the body of a clause. A beam of promising clauses are maintained, however,

to partially overcome local minima. The search stops when no clauses in the beam

can be signi�cantly re�ned and the most signi�cant one is returned.
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Procedure Foil

Input:

R(V1; V2; :::; Vk): the target concept
�+: the � examples
��: the 	 examples
Output:
H: the set of learned clauses

H := ;
Positives-To-Cover := �+

While Positives-To-Cover is not empty Do
/* Search for a consistent clause covering a preferably large subset of Positives-To-Cover.*/
C := R(V1; V2; :::; Vk) 
T := Positives-To-Cover [ ��

While T contains negative tuples Do
Find the literal L that maximizes Gain(L) to add to the clause C
Form a new set T 0 by extending each tuple t in T that satis�es L
with its new variable bindings

Replace T by T 0

End While

Add C to H

Remove examples covered by C from Positives-To-Cover

End While

Return H

End Procedure

Figure 2.1: The Foil algorithm

2.4 Bottom Up Approaches

Bottom up approaches are all based on the generalization of positive examples

through generalization operators. We will brie
y discuss a number of earlier bottom

up ILP systems.

2.4.1 Least General Generalization

Plotkin's least general generalization (LGG) (Plotkin, 1970) was perhaps the �rst

formal analysis on the notion of generalization as a process of inductive inference.
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The LGG of two terms f1(l1; :::; ln) and f2(m1; :::;mn) is a new variable v if f1 6=

f2. Otherwise, it is f1(lgg(l1;m1); :::; lgg(ln ;mn)). The LGG of two literals L1 =

(:)p(t1; : : : ; tn) and L2 = (:)q(s1; : : : ; sn) is unde�ned if L1 and L2 do not have the

same predicative symbol and sign; otherwise, it is de�ned as:

lgg(L1; L2) = (:)p(lgg(t1; s1); : : : ; lgg(tn; sn)):

The LGG of two clauses C1 = fl1; : : : ; lkg and C2 = fm1; : : : ;mng is de�ned as:

lgg(C1; C2) = flgg(li;mi) j li 2 C1 and mi 2 C2 and lgg(li;mi) is de�nedg:
2

As a simple example, consider the clauses

C1 : win(conf1) occ(place1; x; conf1); occ(place2; o; conf1)

and

C2 : win(conf2) occ(place1; x; conf2); occ(place2; x; conf2):

C1 and C2 represent two winning con�gurations in a two-person game with two

places that can be occupied by an \x" or an \o". The lgg of the two clauses is:

lgg(C1; C2) =

win(Conf)  occ(place1; x; Conf); occ(L; x; Conf); occ(M;Y;Conf); occ(place2; Y; Conf).

The intuitive meaning of this clause is that a position is winning if it contains

an \x" in the �rst place and something in the second. The LGG of n clauses

lgg(C1; C2; : : : ; Cn) is lgg(C1; lgg(C2; : : : ; Cn)).

2.4.2 Relative Least General Generalization and Golem

Although least general generalization can provide a theoretical basis for generaliza-

tion in the ILP setting, the simple LGG of a set of clauses alone is far from suÆcient

2If lgg(lj;mj) is not de�ned for some j, then the pair of terms lj and mj are simply ignored.
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for the ILP problem. In fact, we are mostly interested to �nd the generalization

of a set of examples in relation to a background knowledge and theory. The least

general generalization of two clauses w.r.t. given background knowledge is called

relative least general generalization (RLGG) (Plotkin, 1971). Note that the only

di�erence between RLGG and LGG is that the former takes the (restricted) set of

background knowledge when computing the least general generalization of a pair of

examples but the latter does not. All the logical properties of LGG, therefore, carry

to RLGG.

The RLGG of two examples can produce a very large clause with a lot of

redundant literals in its body. To reduce the clause size, the search only considers

a restricted model of the background knowledge K, the h-easy model which is the

set of all Herbrand instantiations of h-easy atoms of K. (An atom a is h-easy with

respect to K if there is a derivation of a from K involving at most h resolutions.)

Example 1 shows the result of taking the RLGG of a given pair of positive

examples from learning the concept `qsort/2' (which sorts a given list) given back-

ground predicates like `append/2' (which appends two lists) and `partition/4' (which

splits a list into two lists). From this example, one could imagine the size of the

resulted clause of taking the RLGG of two examples.

Example 1 The following is the RLGG of C1 and C2:

C1 = qsort([1],[1])  

append([],[1],[1]),

append([0,1],[2,3,4],[0,1,2,3,4]),: : :,

partition(1,[],[],[]),
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partition(2,[4,3,1,0],[1,0],[4,3]),: : :,

qsort([],[]),

qsort([1,0],[0,1]),

qsort(4,3],[3,4]), : : :

C2 = qsort([2,4,3,1,0],[0,1,2,3,4])  

append([],[1],[1]),

append([0,1],[2,3,4],[0,1,2,3,4]),: : :,

partition(1,[],[],[]),

partition(2,[4,3,1,0],[1,0],[4,3]),: : :,

qsort([],[]),

qsort([1,0],[0,1]),

qsort(4,3],[3,4]), : : :

C3 = lgg(C1; C2)

= qsort([A j B], [C j D])  

append(E,[A j F],[C j D]),

append([],[1],[1]),

append(G,[H j I],[J j K]),

append([0,1],[2,3,4],[0,1,2,3,4]),

partition(A,B,L,M),

partition(1,[],[],[]),
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partition(H,N,O,P),

partition(2,[4,3,1,0],[1,0],[4,3]),

qsort(L,E),

qsort([],[]),

qsort(O,G),

qsort([1,0],[0,1]),

qsort(M,F),

qsort(P,I),

qsort([4,3],[3,4]), : : :

Golem (Muggleton & Feng, 1992) also contains an outer loop that �nds a

set of consistent clauses covering the positive examples like Foil. However, it builds

a clause by considering the relative least general generalization (RLGG) of random

pairs of positive examples.

Golem starts by taking a sampling of RLGGs of pairs of uncovered positive

examples and chooses the one that has the greatest coverage for further generaliza-

tion. It stops building the clause when this RLGG cannot be further generalized

(i.e when any further generalization produces inconsistent clauses.) Figure 2.2 is a

summary of the algorithm.

2.4.3 Inverse Resolution and Cigol

Resolution is a sound rule of inference in (mechanical) theorem proving (Robinson,

1983). Given two clauses C1 and C2, the resolution rule allows one to deduce a new

clause as follows. Assume the two clauses are variable disjoint (i.e. they share no
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Procedure Golem

Input:

�+: the set of positive examples
��: the set of negative examples
Output:

H: the set of learned clauses

H := ;
Pairs := random sampling of pairs from �+

RLggs := fC :he; e0i 2Pairs and C = RLGG(e; e0) and C consistent wrt �� g
S := the pair fe; e0g whose RLGG has the greatest cover in RLggs

Do

Examples := a random sampling of examples from �+

RLggs := fC: e0 2 Examples and C = RLGG(S [ fe0g)) and C consistent wrt �� g
Find e0 which produces greatest cover in RLggs

S := S [ fe0g
Add RLGG(S) to H

Examples := Examples � cover(RLGG(S))
While increasing-cover
Return H

End Procedure

Figure 2.2: The Golem algorithm

common variables), and let literals l1 and l2 belong to C1 and C2 respectively. Let

� be the most general uni�er (MGU) of l1 and l2 such that :l1� = l2�.

Since l1 and l2 are variable disjoint, this can be rewritten as :l1�1 = l2�2,

with � = �1�2. By the resolution rule, the resolvent C of parent clauses C1 and C2

is:

C = (C1 � fl1g)�1 [ (C2 � fl2g)�2:
3 (2.5)

Resolution is a basis for deductive systems as much as the inversion of resolu-

tion (or simply inverse resolution) can be a basis for developing inductive (learning)

systems. In other words, if a correct hypothesis, together with background knowl-

3This operation is also denoted simply as C = C1 � C2.
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edge, can be used in a resolution proof of some examples, then that hypothesis

can be induced from the background knowledge and the examples by inverting the

resolution process.

More precisely, inverse resolution concerns computing C2 given the resolvent

C and a parent clause C1. However, there can be multiple solutions to C2 (Muggle-

ton & Buntine, 1988). In fact, to �nd C2, one needs to decide if and how to turn

terms involved in the resolution operation into variables. The ILP system Cigol

(Muggleton & Buntine, 1988) has three (generalization) operators to build clauses

from given examples and a background theory, namely absorption (the \V" oper-

ator), intra-construction (the \W" operator), and truncation. We will only brie
y

discuss the absorption operator.

The absorption operator in Cigol constructs C2 given C1 and C. Since

:l1�1 = l2�2 (where � = �1�2), we have

l2 = :l1�1�
�1
2

By manipulating equation 2.5, we obtain a formal de�nition of the absorption op-

erator:

C2 = (C � (C1 � fl1g)�1)�
�1
2 [ f:l1g�1�

�1
2 (2.6)

There are two assumptions in Cigol: 1) the clauses (C1�fl1g)�1 and (C2�fl2g)�2

must not contain common literals (called the separability assumption) and 2) C1

must be a unit clause, i.e., C1 = fl1g, which is called the unit clause assumption.

These constraints simplify equation 2.6 to:

C2 = (C [ f:l1g�1)�
�1
2 (2.7)

To solve equation 2.7, one must compute an inverse substitution ��12 . This
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requires one to decide which terms and subterms within (C [ f:l1g�1) map to

distinct variables, which unfortunately leads to combinatorial explosion. A best-

�rst search algorithm (using compaction as the search heuristic) is implemented in

Cigol to compute C2 given C and l1 (Muggleton & Buntine, 1988), which will not

be discussed here.

Finally, Cigol is an interactive learning system which incrementally con-

structs �rst-order Horn clause theories from example clauses presented by a human

teacher. Questions are asked of the teacher to verify generalizations made by the

various generalization operators.

2.5 Inverse Entailment and Progol

2.5.1 The Theory on Inverse Entailment

Inverse implication (Muggleton, 1992) has been the core problem in Inductive Logic

Programming since induction can be treated as the inverse of deduction (Muggleton,

1999). Earlier approaches to the problem involved inverting resolution in theorem

proving (Muggleton & Buntine, 1988). However, such approaches are incomplete

since inverting �-subsumption is incomplete (Plotkin, 1970). It has been shown by

(Plotkin, 1970) that if C �-subsumes D, then C implies D (i.e. C j= D). However,

he also noted that C implies D does not necessarily mean that C �-subsumes D.

That is to say, if we perform generalization under �-subsumption of a set of clauses

S, we can fail to �nd a suitable generalization, even if there exists a clause C such

that C j= S.

Eventually, the discovery that such a distinction between �-subsumption and
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implication between a pair of clauses C andD is only relevant when C can self-resolve

(Muggleton, 1992) has led to the development of the precise conditions under which

a clause C implies another clause D. There are di�erent ways of formalizing these

conditions and the one adopted in (Muggleton, 1995) has been widely known as

inverse entailment, as it is grounded in model theory.

Here is the basic idea in inverse entailment. The general problem speci�cation

of ILP is that given background knowledge B and examples E �nd the best (or

simplest) consistent hypothesis H such that

B ^H j= E (2.8)

This can be rearranged to

B ^E j= H

Let ? be the conjunction of ground literals which are true in all models of B ^ E.

(It exists if B and E are de�nite logic programs.) Since H is true in every model of

B ^E, therefore we have

B ^E j= ? j= H

So, for all H

H j= ?: (2.9)

Usually, only the case where H and E are single clauses is considered. It is

clear that any H that satis�es equation 2.8 also satis�es equation 2.9. Thus, one

needs only to �nd solutions to equation 2.9. The following theorem characterizes

conditions under which a solution exists (Muggleton, 1995):

Theorem 1. Let C and D be de�nite clauses and S(D) be the sub-saturants of D.

C j= D i� one of the following conditions hold:
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1. D is a tautology,

2. C �-subsumes D,

3. C �-subsumes C 0 2 S(D).

Proof. The details on the proof of this theorem are contained in (Muggleton, 1995)

and will be omitted here. 2

The de�nition of sub-saturants is given in (Muggleton, 1995). Intuitively,

S(D) is the set of clauses subsumed by some C such that a Herbrand model of

C ^ D does not exist (which is the condition under which C j= D). The third

condition corresponds to the case when C can self-resolve but as it is remarked in

(Muggleton, 1992) that in most real world applications this case is not signi�cant,

to �nd solutions to equation 2.9, one usually just considers the second condition.

The ILP algorithm Progol (Muggleton, 1995) is an implementation of the

theory of inverse entailment. Progol searches only the subsumption lattice of the

bottom clause, ?, to �nd solutions to H. This means that Progol only considers

hypotheses H such that

2 � H � ?

where 2 is the so called \empty" clause which denotes the empty set.

There are two notes we need to make here. First, a lattice is a partially

ordered set in which all nonempty �nite subsets have a least upper bound and a

greatest lower bound. Since the relation that orders the set (of hypotheses) here

is �-subsumption (�). Hence, the term \subsumption lattice" is used. Second, the

empty clause and the most general clause are the same thing; the former refers to an

empty set of literals, the latter has an empty set of literals in its body. Thus, they
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will be used interchangeably unless a distinction is necessary. The empty clause

is the least upper bound of the subsumption lattice and the bottom clause is the

greatest lower bound.

As we shall discuss in Section 2.5.3 to Section 2.5.5, Progol searches for

a good clause to add to the building theory by �rst constructing the most speci�c

clause (the bottom clause), a step commonly called saturation, and then searches the

subsumption lattice (of clauses bounded between the empty clause and the bottom

clause) in a Foil-like manner (i.e., from general to speci�c). So, Progol is an

approach that combines top-down and bottom-up approaches.

2.5.2 Mode Declarations

Since the bottom clause can have an in�nite number of literals in its body, Progol

uses a technique called \mode declaration" (which contains a recall bound, and

input-output modes of the variables for a predicate) together with the variable depth

bound to constrain the size of the bottom clause. Mode declarations are divided

into two kinds: head and body where the former is the mode declaration for the

target predicate and the latter are mode declarations for all the predicates in the

given set of background knowledge provided to the system.

A mode declaration has either the formmodeh(n; atom) (the head mode dec-

laration) or modeb(n; atom) (a body mode declaration), where n, the recall bound,

is an integer greater than zero or '*' and atom is a ground atom. Terms in the

atom are either normal or a place-marker. A normal term is either a constant or

function symbol followed by a bracketed tuple of terms. A place-marker is either

+type, �type, or #type where type is a constant.
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The recall bound is the maximum number of alternative solutions for instan-

tiating the atom used by the algorithm. A recall of '*' indicates all solutions. +type,

�type, and #type correspond to input variables, output variables, and constants

respectively.

A sample set of mode declarations for a grammar learning problem is given

below:

:- modeh(1,s(+wlist,-wlist)).

:- modeb(1,prep(+wlist,-wlist)).

modeh(1,s(+wlist,-wlist)) is the (head) mode declaration because the target

concept to learn is s(X;Y ) where the list of words, X union Y , is a sentence accepted

by the grammar. In this mode declaration, the �rst argument of the target predicate

is declared to be an input variable of type wlist (\Word list") and it has a recall

bound of 1. modeb(1,prep(+wlist,-wlist)) is a (body) mode declaration for a

background predicate prep(X;Y ) which recognizes if the �rst word in the list of

words X is a preposition and Y is the rest of the list of words in X. Similarly, the

�rst argument is declared to be an input variable of type wlist.

The rest of the body mode declarations for the simple grammar learning

problem is given below:

:- modeb(1,det(+wlist,-wlist)).

:- modeb(1,noun(+wlist,-wlist)).

:- modeb(1,tverb(+wlist,-wlist)).

:- modeb(1,iverb(+wlist,_wlist)).

:- modeb(*,np(+wlist,-wlist)).

:- modeb(*,vp(+wlist,-wlist).
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where each mode declaration corresponds to a distinct syntactic category.

The pair of lists X and Y in s(X;Y ) is also more formally called a di�erence

list in the context of parsing. More precisely, a di�erence list consists of two lists: 1)

an ordinary list, and 2) a pointer to the tail of the ordinary list. The intuition is that

it represents the ordinary list minus the elements in the tail. In Prolog notation,

the following pairs are all representations of the same list, which has elements a, b,

and c:

[a,b,c] []

[a,b,c,d,e] [d,e]

2.5.3 A Trace of the Construction of the Most Speci�c Clause

We are going to give a trace of the construction of the most speci�c clause using the

simple grammar learning problem mentioned. Suppose a randomly chosen example

e to generalize is:

s([the,man,walks,the,dog],[]):

From the head mode declaration modeh(1,s(+wlist,-wlist))we have the (trivial)

deduction:

B ^ e j= s([the;man;walks; the; dog]; [])

From the body mode declaration modeb(1,det(+wlist,-wlist)) and replacing the

input variable by [the,man,walks,the,dog] we have the deduction:

B ^ e j= det([the;man;walks; the; dog]; [man;walks; the; dog])

Note that this constructs the term [man,walks,the,dog] in place of the output vari-

able. Using the body mode declaration modeb(1,noun(+wlist,-wlist)) with this
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new term and replacing the input variable by the new term we have the deduction:

B ^ e j= noun([man;walks; the; dog]; [walks; the; dog])

However, using other mode declarations in a similar way we can get the following

deductions as well:

B ^ e j= np([man;walks; the; dog]; [walks; the; dog])

B ^ e j= verb([walks; the; dog]; [the; dog])

B ^ e j= vp([walks; the; dog]; [the; dog])

B ^ e j= np([the; dog]; [])

Putting these and all other similar deductions together we get

B ^ e j= s([the;man;walks; the; dog]; []) ^

det([the;man;walks; the; dog]; [man;walks; the; dog]) ^ : : : ^

np([the; dog]; [])

? is the right hand side of the above deduction. Actually, a restricted mini-

mal Herbrand model has been constructed for B ^ E, the mode declarations being

used to guide the inclusion of predicates that might be of importance. To derive ?,

the above is �rst negated to give

s([the;man;walks; the; dog]; []) _

det([the;man;walks; the; dog]; [man;walks; the; dog]) _ : : : _

np([the; dog]; [])

and then the most speci�c clause can be constructed by replacing terms in the above
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by unique variables in a step commonly called anti-instantiation (or anti-uni�cation):

? = s(A;B) _

det(A;C) _

np(A;D) _

noun(C;D) _

tverb(D;E) _

iverb(D;E) _

vp(D;E) _

det(E;F ) _

np(E;B):

Thus, ? is

s(A;B)  det(A;C);

np(A;D);

noun(C;D);

tverb(D;E);

iverb(D;E);

vp(D;E);

det(E;F );

np(E;B):
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2.5.4 Bottom Clause Construction Algorithm

Figure 2.3 shows the algorithm for constructing the bottom clause in Progol. The

recall bound is used to determine how many times to call the Prolog interpreter

for each instantiation of the clause in step 4. It may well be that the clause will

succeed many times and produce many answer substitutions. The maximum variable

depth determines how many times step 4 is executed. The Prolog interpreter inside

Progol is also bounded in its number of resolution steps and in its depth.

Let e be the clause a b1; : : : ; bn.
Then e is a ^ b1 ^ : : : ^ bn.
hash : Terms! N is a function uniquely mapping terms to natural numbers.

1. Add e to the background knowledge
2. InTerms = ;;? = ;
3. Find the �rst head mode declarations h such that h subsumes a with substitution �

For each v=t in �,
if v corresponds to a #type, replace v in h by t
if v corresponds to a +type or -type, replace v in h by vk

where vk is the variable such that k = hash(t)
if v corresponds to a +type, add t to the set InTerms.

Add h to ?.
4. For each body mode declaration b

For every possible substitution � of variables corresponding to +type by terms
in the set InTerms

Repeat recall times
If Prolog succeeds on goal b with answer substitution �'

For each v=t in � and �'
If v corresponds to #type, replace v in b by t
otherwise replace v in b by vk where k = hash(t)
If v corresponds to a -type, add t to the set InTerms

Add b to ?
5. Increment the variable depth
6. Goto step 4 if the maximum variable depth has not been achieved
7. Return ?.

Figure 2.3: Progol's algorithm for constructing the bottom clause.
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2.5.5 The Progol Algorithm

Progol uses a simple set covering algorithm like that of Foil in which each iter-

ation performs the following steps: 1) Randomly chooses an example (a.k.a. seed

example) from the set of uncovered positive examples, 2) Finds a clause (with maxi-

mal compression de�ned below) that generalizes the seed example chosen in step 1),

3) Adds the clause found to the building theory, and 4) Positive examples covered

by the clause are removed. These steps repeat, in the order from 1) to 4), until

there remains no uncovered positive examples.

In order to �nd the clause with maximal compression 4, Progol searches the

subsumption lattice with an A*-like algorithm. A simple outline of this algorithm

is given in Figure 2.4.

Suppose E is the example being generalized.

1. Open = f2g, Closed = ;
2. s = best(Open); Open = Open� fsg; Closed = Closed [ fsg
3. if prune(s) goto 5
4. Open = (Open [ refinements(s))� Closed
5. if terminated(Closed;Open) return best(Closed)
6. if Open = ; return E (no generalization)
7. goto 2

Figure 2.4: Progol's algorithm for searching the subsumption lattice.

The followings are calculated for each candidate clause s: 1) ps = the number

of positive examples covered by s, 2) ns = number of negative examples covered by

s, 3) cs = length of the clause s - 1, 4) hs = minimum number of further atoms to

4The clause with the \maximal compression" is the one that minimizes the size of the clause
and yet maximizes the coverage on the set of positive examples.
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complete the clause, 5) fs = ps � (ns + cs + hs).

hs is calculated by inspecting the output variables in the clause and deter-

mining whether they have been de�ned. For example, the clause s(A;B):, would

have hs = 3 because it requires at least three literals from ? to construct a chain of

atoms connecting A to B. This is found from a static analysis of ?.

fs is a measure of how well a clause s explains all the examples with preference

given to shorter clauses. The function best(S) returns a clause s 2 S with the highest

f value in S.

prune(S) is true if ns = 0 and fs > 0. In this case, it is not worth considering

re�nements of s as they cannot possibly do better since any re�nement will add

another atom to the body of the clause and so cannot have a higher value of p than

s does. It also cannot improve upon ns as the latter is zero. terminated(S; T ) is

true if s = best(S); ns = 0; fs > 0 and for each t in T it is the case that fs � ft.

In other words none of the remaining clauses nor any potential re�nements of them

can possibly produce a better outcome than the current one.

This algorithm is guaranteed to terminate and to return the clause (if it

exists) which has maximal compression. In the worst case, it will consider all clauses

in the subsumption lattice.

2.5.6 Complexity of Progol's Bottom Clause

Theorem 2. Let jMj be the cardinality ofM (the set of mode declarations). Let

the number of +type and -type occurrences in each modeh be bounded by constants

j� and j+ respectively. Let the number of +type and -type occurrences in each

modeb inM be bounded by constants j+ and j� respectively. Let the recall of each
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mode m 2 M be bounded by the constant r. The cardinality of ?i (the bottom

clause generated given a variable depth bound i) is bounded by (rjMjj+j�)ij
+

.

Proof. The details on the proof of this theorem are contained in (Muggleton, 1995)

and will be omitted here. 2

The theorem shows that the complexity on the size of the bottom clause

constructed by Progol is exponential w.r.t. the variable depth bound i, which

leads to searching a hypothesis space doubly exponential in complexity since the

number of hypotheses in the subsumption lattice is two to the power of the size

(i.e. no. of literals in the body) of the bottom clause. One can signi�cantly reduce

the size of the bottom clause by a new ILP approach we call Beth outlined in

Chapter 5.

2.5.7 Aleph

Aleph is a publicly available ILP system implemented in a Prolog compiler called

Yap (version 4.3.22) that is a generalization of Progol. 5 Earlier incarnations

(under the name P-Progol) originated in 1993 as part of a funded project undertaken

by Ashwin Srinivasan and Rui Camacho at Oxford University. Aleph can be used

to emulate Progol. However, it is enriched with more options than Progol to

con�gure the search for a good clause. For example, one can put a limit on the

amount of CPU time given to theorem proving.

5The Aleph Manual can be accessed via
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html.
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Chapter 3

Learning Semantic Parsers:

Using the Chill Framework

3.1 Introduction

Earlier approaches to parsing relied on hand-crafted rules developed by experts (e.g.

a linguist), which bear the problems mentioned in Chapter 1. The Chill system

(Constructive Heuristics Induction for Language Learning) (Zelle, 1995) represents

an approach to learning relevant contextual information (tantamount to linguistic

knowledge for parsing that could have been extracted from an expert) for the task

of disambiguation given complete contexts (i.e. the entire parse state) instead of

relying on handcrafting features for parsing. Screenshots of a natural language

interface (NLI) we developed with the Chill system are shown in appendix A.
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3.2 Background on Semantic Parsing

The early work on semantic parsing can be dated back to the 70's (Reeker, 1976;

Siklossy, 1972) with emphasis on discovering learning mechanism for language ac-

quisition and cognitive modelling of human language learning. While some focused

on cognitive modelling of language acquisition, others focused on building realistic

NLP applications.

Traditional NLP approaches to tackling tasks like building NLIs for databases

include augmented transition networks (Woods, 1970) which operationalize context-

free grammars for producing semantic representations, semantic grammars (Hen-

drix, Sacerdoti, Sagalowicz, & Slocum, 1978; Brown & Burton, 1975) which are

context-free grammars in which non-terminals are used to represent domain speci�c

concepts (instead of syntactic categories), and logic grammars (Abramson & Dahl,

1989; Warren & Pereira, 1982) which encode linguistic dependencies and structure

building operations using logical uni�cation.

Traditional (rationalist) approaches to constructing semantic parsers very

often involve hand-crafting of expert knowledge represented as rules (maybe with

limited automation). However, hand-crafted parsers su�er from problems with ro-

bustness and incompleteness, even for domain speci�c applications. As the task

scales up in size, hand-crafting becomes more and more diÆcult which is the so-

called problem of knowledge engineering bottleneck that exists in many interesting

AI domains. This results in applications that are time-consuming to build and yet

perform poorly { incomplete, ineÆcient, and brittle.

More recent approaches, therefore, have shifted from this knowledge engineer-

ing perspective to a more empirical based paradigm where parsers are constructed
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through learning algorithms which use a large corpus of training data. For instance,

Miller (1995) presents a statistical approach to the task of mapping 
ight informa-

tion requests (in English) to SQL which could be used to access the relevant 
ight

information. The frame (or semantic) representation for a given parse tree of the

user request which can be further transformed into an SQL is choosen based on

statistics collected from training data. A method based on semantic classi�cation

trees for parser construction is described in (Kuhn & De Mori, 1995). The classi�-

cation trees which are used for semantic interpretation are learned from a corpus of

training data. Zelle (1995) employs inductive logic programming techniques to learn

control rules to \specialize" the parser acquired by the Chill system.

3.3 The Chill Approach

We are going to provide a brief discussion of the system here to explain the working

of the parser and how contextual information can be learned and utilized for the

parsing operators. The natural language interface developed for a U.S. Geography

database is used as an example application here.1 Further details on the system can

be found in (Zelle, 1995).

The (syntactic) structure of a sentence is not enough to express its meaning.

For instance, the NP the catch can have di�erent meanings depending on whether

one is talking about a baseball game or a �shing expedition. To talk about di�erent

possible readings of the phrase the catch, one therefore has to de�ne each speci�c

sense of the phrase. The representation of the context-independent meaning of a

sentence is called its logical form (Allen, 1995).

1It is available via http://www.cs.utexas.edu/users/ml/geo.html.
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Database Category Database Objects

City cityid(austin,tx)
State stateid(mississippi)
River riverid(mississippi)
Place placeid('death valley')

Table 3.1: Sample of objects and categories in the Geography database

Database items can be ambiguous when the same item is listed under more

than one attribute (i.e. a column in a relational database). For example, the

term \Mississippi" is ambiguous between being a river name or a state name, in

other words, two di�erent logical forms, in our U.S. Geography database. The

two di�erent senses have to be represented distinctly for an interpretation of a user

query. Databases are usually accessed by some well de�ned structured languages, for

instance, SQL. These languages bear certain characteristics similar to that of logic

in that they require the expression of quanti�cation of variables (the attributes in

a database) and the notion of logical operations2 on them. The di�erent pieces

of information in a database may also be related to each other and this relational

knowledge could be useful for constructing the parser. First order logic, therefore,

becomes our choice of knowledge representation framework for these logical forms of

all the database objects, relations and any other information related to representing

the meaning of a user query. However, it is not the case that the parser used inChill

can only work with a strictly logical representation. The choice of a representational

scheme is 
exible. For instance, Chill is also applied to a database containing

facts about Northern California restaurants and the semantic representation scheme

resembles SQL. Some examples of the semantic representation of database items of

2For instance, in SQL, we have AND and OR to express the logical relationships between con-
straints on the attributes over the query.
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Predicates Description

city(C) C is a city
capital(S,C) C is the capital of state S
density(S,D) D is the population density of state S
loc(X,Y) X is located in Y
len(R,L) L is the length of river R

next to(S1,S2) state S1 borders S2
traverse(R,S) river R traverses state S

Table 3.2: Sample of predicates of interest for a database access

the U.S. Geography database are shown in Table 3.1.

We will brie
y describe the language used for representing the meaning of a

natural language query, the parsing framework employed, and the approach that is

taken in Chill for parser acquisition.

3.3.1 Semantic Representation and the Query Language

The most basic constructs of the representation language are the terms used to de-

scribe objects in the database and the basic relations between them. Some examples

of objects of interest in the domain are states, cities, rivers and places. We have

given semantic categories to these objects. For instance, stateid(texas) represents

the database item texas as an object of the database category state. Of course, a

database item can be a member of multiple categories.

Database objects do bear relationships to each other or can be related to

other objects of interest to a user who is requesting information from it. In fact,

a very large part of accessing database information is to sort through tuples that

satisfy the constraints imposed by these relationships of database objects in a user

query. For instance, in a user query like \What is the capital of Texas?", the data

of interest is a city that bears a certain relationship to a state called Texas, or more
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Meta-predicates Description

answer(A,Goal) A is the answer to retrieve in Goal
largest(X, Goal) X is the largest object satisfying Goal
smallest(X, Goal) similar to largest
highest(X,Goal) X is the highest place satisfying Goal
lowest(X,Goal) similar to highest
longest(X,Goal) X is the longest river satisfying Goal
shortest(X,Goal) similar to longest
count(X,Goal,N) N is the total number of X satisfying Goal
most(X,C,Goal) X satis�es Goal and maximizes C
fewest(X,C,Goal) similar to most

Table 3.3: Sample of meta-predicates used in database queries

precisely its capital. The capital/2 relation (or predicate) is ,therefore, de�ned to

handle questions that require them. More of these relations of possible interest to

the domain are shown in Table 3.2.

We also need to handle object modi�ers in a user query such as \What is the

largest city in California?". The object of interest X which belongs to the database

category city has to be the largest one in California and it would be represented

as largest(X, (city(X), loc(X,stateid(california)))). The meaning of an object modi�er

depends on the type of its argument. In this case, it means the city X in California

that has the largest population (in the number of citizens). To allow predicates to

describe other predicates would be a natural extension to the �rst order framework

in handling these kind of cases. These \meta-predicates" have the property that

at least one of their arguments take a conjunction of predicates. Finally, an object

which is an argument of a certain predicate can appear at a later point in a sentence

and this requires the use of a predicate like const(X,Y) (which means the object

X equals the object Y) for the parser to work. The use of const/2 will be further

explained in the following section where the working of the parser is discussed. A
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list of meta-predicates is shown in Table 3.3. Some sample database queries for the

U.S. Geography domain are shown in Table 3.4.

U.S. Geography

What is the capital of the state with the largest population?
answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What state has the most rivers running through it?
answer(S, most(S, R, (state(S), river(R), traverse(R,S)))).

How many people live in Iowa?
answer(P, (population(S,P), const(S,stateid(iowa))).

Table 3.4: Sample of Geography questions in di�erent domains

3.3.2 Actions of the Parser

The parser presented here that builds a logical query given a sentence is based on

a standard shift-reduce parsing framework. (A more thorough discussion on shift-

reduce parsing can be found in (Allen, 1995; Tomita, 1986).) There is no explicit

semantic grammar but the parsing actions are derived from the examples (which

is a pair of sentence and its logical query) and they are guaranteed complete with

respect to them (i.e. there exists a sequence of parsing actions (a derivation) that

leads to the right logical query for each sentence). The parser actions are generated

from templates given a logical query; an action template will be instantiated to

form a speci�c parsing action. The templates are INTRODUCE, COREF VARS,

DROP CONJ, LIFT CONJ, and SHIFT. INTRODUCE pushes a logical form onto

the parse stack based on information in the lexicon. COREF VARS binds two

arguments of two di�erent logical forms to the same variable. DROP CONJ (or

LIFT CONJ) takes a logical form on the parse stack and puts it into one of the
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arguments of a meta-predicate. DROP CONJ assumes the logical form precedes

the meta-predicate on the parse stack while LIFT CONJ assumes it is the other

way around. SHIFT pushes a word from the input bu�er onto the parse stack.

Their actions are summarized in Table 3.5. The parsing actions are tried in exactly

that order; the set of parsing actions resemble a decision list in which the �rst

applicable choice is taken.

The parser also requires a lexicon to interpret meaning of phrases into spe-

ci�c logical forms. The lexicon can be learned from a given set of sample sentence

and query pairs (Thompson & Mooney, 1999). We will brie
y illustrate what action

each template does here by showing a trace of parsing a simple example:

Sentence: What is the capital of Texas?

Logical Query: answer(C, (capital(C,S), const(S, stateid(texas)))).

The �rst thing we need is a lexicon. A very simple lexicon that maps `capital'

to `capital( , )' and `Texas' to `const( ,stateid(texas))' would suÆce here. The parser

begins with an initial stack and a bu�er holding the input sentence which is the

initial parse state. Each predicate on the parse stack has an attached bu�er to hold

the context in which it was introduced; words from the input sentence are shifted

onto the (stack) bu�er during parsing. The contextual information may be useful

for the learning of contextual knowledge for disambiguation. The initial parse state

is shown below:

Parse Stack: [answer( , ):[]]

Input Bu�er: [what,is,the,capital,of,texas,?]
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Since the �rst three words in the input bu�er do not map to any logical

forms, the next sequence of steps are three SHIFT actions which result in the fol-

lowing parse state:

Parse Stack: [answer( , ):[the,is,what]]

Input Bu�er: [capital,of,texas,?]

Now, `capital' is at the head of the input bu�er and is mapped to `capital( , )'

in our lexicon. The next action to apply is, therefore, INTRODUCE which is actu-

ally instantiated to introduce(capital( , ), [capital], S0, S1). Notice that a particular

phrase in general can be mapped to di�erent logical forms due to lexical ambigui-

ties. The contextual knowledge required for the proper interpretation of a phrase is

learned by the induction algorithm. The resulting parse state is shown below:

Parse Stack: [capital( , ):[], answer( , ):[the,is,what]]

Input Bu�er: [capital,of,texas,?]

The next action is a COREF VARS. We have two possible choices here:

coref vars(capital, 2, 1, answer, 2, 1, S0, S1) or coref vars(capital, 2, 2, answer, 2, 1,

S0, S1). A choice like coref vars(capital, 2, 1, answer, 2, 2, S0, S1) is eliminated

by inspecting if one of the predicates is a meta-predicate and which argument po-

sitions hold variables. Since the question is asking about the capital, the �rst one

is the proper choice and we will pick it here. In general, the knowledge required for

properly selecting a COREF VARS action is learned. The resulting parse state is

shown below:
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Parser actions Parser action descriptions

INTRODUCE(TERM,PHRASE,SO,S1)
Put TERM on the parse stack of input parse
state S0 if PHRASE occurs at the beginning of
the input bu�er of S0 to produce S1

COREF VARS(T1,A1,N1,T2,A2,N2,S0,S1)

Unify the N1-th argument of the term T1 with
the N2-th argument of the term T2 if T1 and T2
are on the parse stack of S0 having arity A1 and
A2 respectively

DROP CONJ(T1,AR1,T2,AR2,N2,S0,S1)

Place the term T1 in the N2-th argument of the
term T2 to form a new conjunct if T1 comes
before T2 on the parse stack of S0 having arity
AR1 and AR2 respectively

LIFT CONJ(T1,AR1,T2,AR2,N2,S0,S1)
Similar to DROP CONJ except that the term T2
comes before the term T1 on the parse stack of
S0

SHIFT(S0,S1)

A word at the beginning of the input bu�er of S0
will be shifted into the bu�er of the top predicate
on the parse stack of S0 if the input bu�er is not
empty

Table 3.5: A summary of the parser actions

Parse Stack: [capital(C, ):[], answer(C, ):[the,is,what]]

Input Bu�er: [capital,of,texas,?]

The next sequence of steps are two SHIFT's followed by an INTRODUCE

which is instantiated to introduce(const( ,stateid(texas)), [texas], S0, S1). The re-

sulting parse state is:

Parse Stack: [const( ,stateid(texas)):[], capital(C, ):[of,capital],

answer(C, ):[the,is,what]]

Input Bu�er: [texas,?]

Notice that instead of looking ahead into the input bu�er for `Texas' and

introducing `capital( ,stateid(texas))', we introduced `capital( , )' and its second ar-
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gument is left to be instantiated by a COREF VARS when the parser comes to the

term `Texas'. This helps avoid the problem of having to combine di�erent disam-

biguation decisions at the same point. For instance, if the question was \What is

capital of the state that borders Texas?", we would have to make a decision be-

tween introducing `capital(C,stateid(texas))' or `capital(C, )' precisely at the point

where 'capital' was at the beginning of the input bu�er. It would be easier for the

parser to make such decisions when the relevant context become available on the

parse stack at a later point.

The next sequence of actions are COREF VARS which is instantiated to

coref vars(const, 2, 1, capital, 2, 2, S0, S1) and two more SHIFT operations. Again,

we have two possible COREF VARS instantiations here, the proper one was chosen.

The resulted parse state is shown below:

Parse Stack: [const(S,stateid(texas)):[?,texas], capital(C,S):[of,capital],

answer(C, ):[the,is,what]]

Input Bu�er: []

Now, the next steps would be two DROP CONJ. They are drop conj(const,

2, answer, 2, 2, S0, S1) and drop conj(capital, 2, answer, 2, 2, S0, S1). The resulted

parse state is:

Parse Stack: [answer(C, (capital(C,S),

const(S,stateid(texas)))):[?,texas,of,capital,the,is,what]]

Input Bu�er: []

We have reached the �nal parse state at this point since none of the parser
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actions can be applied. The logical query constructed is then read o� from the parse

stack.

3.3.3 Components of the Chill Architecture

The Chill (Constructive Heuristic Induction for Language Learning) framework

is based on an empirical approach to parser construction integrated in a symbolic

knowledge acquisition framework for both the learning and the representation of

semantic knowledge. Since the parser is to construct logical queries from natural

language input, it would be natural to implement the parser as a logic program

where the parsing operators are actually Horn clauses.

Given a corpus of sentence and query pairs, the task is to induce a semantic

parser. Inducing a parser directly from these pairs is not feasible since the space of

possible parsers would be too large. However, if we begin with an initial parser gen-

erated by instantiating the action templates given the examples (an overly general

initial theory), the problem could be reduced to learning control rules for it. ILP

techniques for learning search control knowledge will be used since a (�rst-order)

logical knowledge representation framework is employed. The idea of learning con-

trol rules for a parser can also be traced back to earlier work in acquiring syntactic

knowledge for parsing (Berwick, 1985). Figure 3.1 shows the architecture for Chill.

The working of Chill is divided into four phases as indicated in the �gure:

1) generating the initial parser: using the templates of parsing actions to generate

an overly general initial parser complete w.r.t. parsing the set of training examples,

2) analysing the examples: using the overly general parser to parse the training

examples and collect positive and negative examples (all spurious parse states are
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Figure 3.1: The architecture for Chill

negative examples; otherwise, positive examples of a parsing operator), 3) inducing

the control rules: using ILP algorithms to learn a theory for each parsing operator

given positive and negative examples for them, and 4) specializing the initial parser:

incorporating a learned theory from step 3) as a guard to a parsing operator. We

will brie
y describe each of them here.

3.3.4 A Minor Improvement to a Chill's Parsing Operator

We will discuss a minor improvement we made to the COREF VARS parsing op-

erator which is, perhaps, the most frequently used parsing operator in the Chill
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system. In the original Chill framework, the COREF VARS parsing operator does

not do any \type checking" when binding two arguments of two di�erent terms on

the parse stack. More precisely, COREF VARS(T1, AR1, N1, T2, AR2, N2, S0, S1)

uni�es the N1-th argument of the term T1 with the N2-th argument of the term T2

if T1 and T2 are on the parse stack of S0 having arity AR1 and AR2 respectively

regardless of the types of the arguments T1 and T2.

This is normally not a problem except if one of the terms is a constant

(i.e. a term of the form const(X,Y) where X is an unbound variable and Y is

a database object like stateid(texas)). Suppose we have the parsing operator

coref vars(const, 2, 1, river, 1, 1, S0, S1) which binds the �rst argument

of the term const/2 with the �rst and only argument of the term river/1 on the

parse stack of S0. If the parse stack of S0 has two database objects, which can happen

if the sentence contains two words referring two di�erent database objects (e.g.

\Does the Rio Grande river traverse Texas?"), this COREF VARS parsing operator

will take the �rst database object appeared on the parse stack and bind it with

the term river/1 regardless of whether it is const( ,riverid('rio grande')) or

const( ,stateid(texas)) (the two database objects that can appear on the parse

stack of S0).

To solve this problem of potentially binding the wrong object with a term on

the parse stack, one can add two additional parameters to the COREF VARS oper-

ator X1 and X2 such that X1 speci�es the type of the term T1 and likewise for X2.

Thus, our new COREF VARS operator is de�ned as follows: COREF VARS(T1,

X1, AR1, N1, T2, X2, AR2, N2, S0, S1) uni�es the N1-th argument of the term

T1 with the N2-th argument of the term T2 if T1 and T2 are on the parse stack
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of S0 having arity AR1 and AR2 respectively and, furthermore, if the type speci-

�er X1 equals X2. This slightly upgraded version of Chill is the one employed in

Chapter 4.

3.4 Chillin

Top-down or bottom-up approaches to ILP have their own strength and weaknesses.

For instance, Golem requires the use of extensional background knowledge and

could result in building clauses with a lot of redundant literals. Speci�c constraints

like using only the h-easy model of the background knowledge have to be enforced

to deal with some of these eÆciency problems. However, Foil requires the target

hypothesis to be function-free and needs speci�c constructor functions as part of the

background knowledge. For instance, to learn the concept member(X, Y) where X is

an element of the (non-empty) list Y. One needs to provide Foil with a background

predicate like head(Y, H) which is like a function that returns the �rst element H

of the list Y. The size of the background knowledge grows with the number of such

constructor functions used by the learner, which makes a larger hypothesis space

to search. A combination of the two di�erent methods which takes advantage of

the strength of each approach may therefore make new ILP approaches better than

either alone. Chillin3 was an attempt at combining both approaches and it was

used in Chill for learning control rules. Figure 3.2 shows the outline of Chillin.

Unlike set-covering alogrithms like Foil, Chillin consists of a compaction

outer loop that builds a more general hypothesis with each iteration. Each iteration

�nds a clause maximizing the coverage of the set of positive examples (i.e. most

3
Chillin stands for the CHILL INduction algorithm.

52



Procedure Chillin
Input:
�+: the � examples
��: the 	 example
Output:
DEF : the set of learned clauses

DEF := fE  j E 2 �+g
Repeat

PAIRS := a sampling of pairs of clauses from DEF

GENS := fG j G = Find A Clause(Ci; Cj ;DEF; �
+; ��) for

hCi; Cji 2 PAIRS g
G := Clauses in GENS yielding most compaction
DEF := (DEF � (Clauses subsumed by G)) [ G

Until no-further-compaction
Return DEF

End Procedure

Figure 3.2: Outline of the Chillin algorithm

compaction). A clause is built by �nding the LGG of a random pairs of clauses in

the building de�nition DEF and if the LGG is overly general, it will be specialized

by adding literals to its body like Foil. The search for a hypothesis is done in a

bottom-up manner since it begins with the most speci�c hypothesis (i.e. the set

of positive examples) and continues to generalize it through the compaction loop.

The specialization of a clause resembles that of a top-down algorithm as literals are

added to its body for specialization and therefore heuristics like information gain

can be used to discriminate between literals. Once a clause is found, it will be

incorporated into the current theory. Any clause covered (subsumed) by it will be

removed from the theory. A novel kind of subsumption is adopted here which is
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called empirical subsumption. A clause C �e (empirically subsumes) D if the set of

ground unit instances covered by the clause C is a subset of that of the clause D.

3.5 Experimental Evaluation

Chill was applied on a U.S. Geography database and its performance was compared

to a hand-crafted semantic parser that came with the database called Geobase. A

corpus consisting of 250 sentences was built by collecting questions from under-

graduate students in the department. The corpus was split into training sets of

225 examples with the remaining 25 held-out for testing. A query is considered

correct only if it produces the exact same answer as that of the correct query as-

sociated with the test sentence. The recall of the parser is de�ned as the no. of

correct queries produced divided by the no. of test sentences. The number of correct

queries produced are the total number of such queries produced in parsing all the

test sentences. Appendix E shows the recall (i.e. accuracy) of Chill's parsers over

a 10 trial average. The line labeled \Geobase" shows the average accuracy of the

Geobase system.
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Chapter 4

Learning Semantic Parsers:

Using Cocktail

4.1 Introduction

One problem with the Chillin induction algorithm is that some contextual infor-

mation can be lost in the process of performing LGG on a random pair of positive

examples, which is the �rst step in learning a clause. Let's go through a concrete

example to illustrate this point. For example, the parser is learning to parse these

two sentences: 1) \What is the biggest Texas city?" 1, and 2) \What is the biggest

city in Texas?". Suppose we have two intermediate parse states Sa and Sb at which

point the parser is about to introduce the predicate largest( , ) on the parse stack

given that their input bu�ers (which contains the sentence or the rest of the sentence

to be parsed) are [biggest,texas,city,?] and [biggest,city,in,texas,?] re-

1While this question might sound odd, some user input might not even be completely gramatical.
Being able to handle such sentences is, perhaps, the essence of robust parsing.
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spectively. The word 'biggest' can be mapped to the predicate longest( , ) in a

di�erent context. For example, if the sentence was \What is the biggest river in

Texas?" The word 'biggest' would have been mapped to the predicate longest( , )

instead. Suppose Sa and Sb are two positive examples of the parsing operator that

introduces the predicate largest( , ) on the parse stack given that the �rst word

in the input bu�er is 'biggest' and we have a number of negative examples in which

'biggest' was mapped to longest( , ) for the reason mentioned. Now, the LGG of

the two input bu�ers [biggest,texas,city,?] and [biggest,city,in,texas,?]

is the term [biggest, , , | ]. The word 'city', which provides important contex-

tual clue for disambiguation (between introducing largest( , ) and longest( , )),

is lost in computing the LGG of the two parse states Sa and Sb.

Obviously, the LGG of two random examples can still make a clause that

covers negative examples. However, losing such essential contextual information

results in Chillin having to rely on inventing predicates to capture these constants

in a parse state to specialize the current clause, which very often led to memorizing

speci�c constants and, thus, learning theories that tend to over�t the data. Even

worse, sometimes, there is only one positive example (state) available in learning.

If such a scenario arises, the parser will just memorize the speci�c positive example

since performing LGG requires having at least a pair of examples.

Paradoxically, sometimes \losing" these constants lead to better generaliza-

tion. This can happen when only the structure of a parse state matters. The struc-

ture of a parse state is actually itself information useful for resolving ambiguities. For

example, the parser is learning to parse these two sentences: 1) \What state has the

highest population density?", and 2) \Which city has the highest population?". Sup-
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pose we have two intermediate parse states S1 and S2 for sentences one and two re-

spectively such that S1 = ps([state( ):[the,has,state],answer( , ):[what]],

[highest,population,density,?]), and S2 = ps([city( ):[the,has,city],

answer( , ):[which]],[highest,population,?]). These two parse states repre-

sent the point at which the parser is about to introduce the predicate largest( , )

on the parse stack given that the �rst word 'highest' in the input bu�ers can be

mapped to this predicate (in the lexicon). However, the word 'highest' can also

be mapped to the predicate highest( , ) in a di�erent context. For example, if

the parser was learning the sentence \What state has the highest mountain in the

U.S.?" The word 'highest' would have been mapped to the predicate highest( , ).

Suppose S1 and S2 are two positive examples of the parsing operator that introduces

the predicate largest( , ) on the parse stack (given that 'highest' is the �rst word

in the input bu�er). The LGG of S1 and S2 is:

ps([ :[the,has, ],answer( , ):[ ]],[highest,population, | ]);

which captures the relevant structure of the parse state by specifying that 1) the

�rst predicate on the parse stack can be anything, , and its associated context has

to be of the form [the,has, ] (i.e. consisting of exactly three words in which the

�rst two are 'the' and 'has'), 2) the input bu�er has at least three words which starts

with the phrase 'highest population' and so on.

Alternatively, one could explicitly mention that the predicate largest( , )

can be introduced on the parse stack given that the �rst word in the input bu�er is

'highest' if 1) the �rst predicate on the parse stack is state( ), the word 'state' is

part of its associated context, and the word 'population' is in the input bu�er, or

2) city( ) is the �rst predicate on the parse stack, 'city' is part of its assoicated
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context, and 'population' is in the input bu�er by using two clauses (each describing

a point). The problem with using background knowledge to explicitly mention the

same conditions, in this case, is that the size of the hypothesis (two clauses) is bigger

than a simple LGG. In general, the LGG of the positive examples, which captures

all the necessary contextual information for disambiguation (like in the above exam-

ple), gives a smaller (thus more compressive) hypothesis than one using background

knowledge that explicitly describes the necessary contextual information. Therefore,

the clause constructed from the LGG is more likely going to give a better generaliza-

tion. For example, hypothetically say if 'town' was another database object which

is another geographic unit smaller than a city, then the above LGG would allow the

introduce operator to correctly generalize to a new sentence like \What town has

the highest population?" while the hypothesis (consisting of the two speci�c clauses

mentioned) would not. Both types of clauses are, hence, necessary for learning.

One can take care of both needs - the need for learning relevant contextual

information before they are destroyed in the process of computing LGG and the need

for learning speci�c structures of parse states - by separating the learning of each

explicitly. Traditional top-down approaches given relevant background knowledge

(e.g, the presence or absence of a certain word or phrase in the input bu�er of a parse

state) are more suitable for learning contextual information for disambiguation.

Bottom-up approaches using LGG for generalization likeGolem is stronger in terms

of learning structures of parse states. By combining both ILP approaches, one can

learn both types of parsing features in one coherent mechanism. We will discuss

an implementation of this approach we call Cocktail (Tang & Mooney, 2001) in

Section 4.2.
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4.2 Combining Top-down and Bottom-up Approaches

in Cocktail

A typical ILP algorithm can be viewed as a loop in which a certain clause constructor

is embedded. A clause constructor is formally de�ned here as a function f : T �B�

E ! S such that given the current theory T , a set of training examplesE, and the set

of background knowledge B, it produces a set of clauses S. For example, to construct

a clause using Foil (Quinlan, 1990) given an existing partial theory Tp (which is

initially empty) and a set of training examples �+ [ �� (positive and negative), one

uses all the positive examples not covered by Tp to learn a single clause C. So, we

have fFoil(Tp; B; �
+[ ��) = fFoil(Tp; B; fe 2 �

+ j Tp 6j= eg[ ��) = fCg. Notice that

fFoil always produces a singleton set. Since di�erent constructors create clauses of

di�erent characteristics (like syntax and accuracy), a learner using multiple clause

constructors could exploit the various language biases available to produce more

expressive hypotheses.

4.2.1 The Clause Constructor of Chillin

The details on the ILP algorithm Chillin is already given in Section 3.4 and will

be omitted here. Let's de�ne the clause constructor for Chillin fChillin. Given a

current partial theory Tp (initially empty), background knowledge B, and �+[�� as

inputs, fChillin(Tp; B; �
+ [ ��) = fGg where G is the clause with the best coverage

learned by going through the compaction loop for one step. Although Chillin only

learns the clause with the best coverage and adds it to the theory, we will allow

fChillin to return the best n clauses (constructed from the LGG of di�erent random
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pairs of positive examples) ordered by their coverages on the set of positive examples

instead.

4.2.2 The Clause Constructor of mFoil

The details of the ILP algorithm mFoil is already given in Section 2.3.1 and will

be omitted here. Let's de�ne the clause constructor function fmFoil for mFoil.

Given the current building theory Tp, background knowledge B, training examples

�+ [ ��, fmFoil(Tp; B; �
+ [ ��) = fCg where C is the most signi�cant clause found

in the search beam. Again, we will use a modi�ed version of fmFoil which returns

the entire beam of promising clauses when none of them can be signi�cantly re�ned.

4.2.3 Background Knowledge Used in fmFoil

Contextual information for disambiguating di�erent possible parses of a sentence

can be represented as \theory constants" to the inductive learner. For example, in

our previous sample trace of parsing the sentence \What is the capital of Texas?"

in Section 3.3.2, if the phrase \capital" was mapped to money(M,G) (the amount of

moneyM the state government G has) in the lexicon as well, we would need to disam-

biguate between introducing capital/2 or money/2 on the parse stack. In this case,

the context that is helpful for disambiguating between the two cases is the absence

of the word government in the input bu�er. For example, if the sentence was \What

fraction of the Texas government state capital is spent on highway construction?",

the word 'capital' would have been mapped to money(M,G) instead. If we have the

predicate phrase in bu�er(P,S) (the phrase P, a theory constant, appears in the input

bu�er of the parse state S) in the background knowledge of the learner, the literal
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not phrase in bu�er([government],S) is useful for constructing a control rule for the

parsing action introduce(capital( , ), [capital], S0, S1). Besides phrase in bu�er(P,S),

we also have other background predicates like predicate on stack(F/A,S) which is

true if there is a predicate with the predicate name F and arity A, F and A are

theory constants, that appears on the parse stack of the parse state S. An example

of such a predicate is predicate on stack(capital/2,S) which checks if the predicate

capital( , ) appears on the parse stack of S. We also have another background pred-

icate phrase on stack(P,S) which is true if the phrase P, a theory constant, appears

in the context of a predicate on the parse stack of the parse state S. An example

is phrase on stack([capital],S) which checks if the phrase \capital" appears in the

context of a predicate on the parse stack of the parse state S. These are all the

background predicates we used in learning.

ILP systems like Ffoil (Quinlan, 1996) do make use of background knowl-

edge that can handle theory constants (e.g. checking if the value of a variable equals

zero). However, it requires a prior knowledge of the set of constants that will be

relevant or necessary for the learning task. This may be possible for domains like

learning functional de�nitions where it would be relatively easier to identify a set

of \important" constants that may be relevant to a number of learning tasks (like 0

or 1). In other domains like language learning, however, identifying a set of useful

constants that is reasonably comprehensive would be rather diÆcult as one would

be required to have enough prior knowledge of the relevant contextual information

but this is what the learning system is suppose to �nd out. Handcrafting some

possibilities or throwing in an entire dictionary would be either too ine�ective or

ineÆcient. Therefore, instead of engineering them as prior knowledge to the system,
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we obtain possible theory constants from the training data. This, however, requires

the system to generate or extract theory constants from examples given a set of

background predicates.

More precisely, the idea is that given a set of positive and negative examples

of the target concept and a set of background knowledge, we generate a new set of

literals using these background predicates which use constants that appear in the

set of examples for the learner. Using phrase in bu�er(P,S) as an example where the

sentence \What is the capital of Texas?" is a positive example and \What fraction of

the Texas government state capital is spent on highway construction?" is a negative

example for the parsing operator introduce(capital( , ), [capital], S0, S1), one will

generate the following set of literals with theory constants if only one-word phrases

are considered:

phrase in bu�er([what],S)

: : :

phrase in bu�er([texas],S)

phrase in bu�er([?],S)

not phrase in bu�er([what],S)

: : :

not phrase in bu�er([texas],S)

not phrase in bu�er([government],S)

: : :

not phrase in bu�er([spent],S)
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not phrase in bu�er([on],S)

not phrase in bu�er([highway],S)

not phrase in bu�er([construction],S)

not phrase in bu�er([?],S)

4.2.4 The Cocktail Algorithm

A set of clause constructors (like Foil's or Golem's) have to be chosen in advance.

The decision of what constitutes a suÆciently rich set of constructors depends on

the application one needs to build. Although an arbitrary number of clause con-

structors is permitted (in principle), in practice one should use only a handful of

useful constructors to reduce the complexity of the search as much as possible. We

have chosen mFoil's and Chillin's clause constructors primarily because the for-

mer is the state-of-the-art top-down ILP algorithm while the latter was the best

ILP algorithm applied to the problem of learning semantic parsers.

The search of the hypothesis space starts with the empty theory. At each

step, a set of potential clauses is produced by collecting all the clauses constructed

using the di�erent clause constructors available. Each clause found is then used

to compact the current building theory to produce a set of new theories; existing

clauses in the theory that are empirically subsumed by the new clause are removed.

The best one is then chosen according to a given theory evaluation metric and the

search stops when the metric score does not improve. The algorithm is outlined in

Figure 4.1.

As the \ideal" solution to an induction problem is the hypothesis that has

the minimum size and the most predictive power, some form of bias leading the
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PROCEDURE Cocktail

INPUT:
�+, ��: the � and 	 examples respectively
fmFoil: the clause constructor function for mFoil
fChillin: the clause constructor function for Chillin
BmFoil: a set of background knowledge for fmFoil

BChillin: a set of background knowledge for fChillin
M : the metric for evaluating a theory
OUTPUT:
T : the learned theory

T := fg
REPEAT

Clauses := fmFoil(T;BmFoil; �
+ [ ��) [ fChillin(T;BChillin; �

+ [ ��)
Choose C 2 Clauses such that M((T � fD : C �e Dg) [ fCg; �

+ [ ��)
is the best
T := (T � fD : C �e Dg) [ fCg

UNTIL M(T; �+ [ ��) does not improve
RETURN T
END PROCEDURE

Figure 4.1: Outline of the Cocktail Algorithm

search to discover such hypotheses is desirable. It has been formulated in the Mini-

mum Description Length (MDL) principle (Rissanen, 1978) that the most probable

hypothesis H given the evidence (training data) D is the one that minimizes the

complexity of H given D which is de�ned as

K(H j D) = K(H) +K(D j H)�K(D) + c (4.1)

where K(�) is the Kolmogorov complexity function (Kolmogorov, 1965) 2 and c is a

2This function returns the length of the smallest program that computes a given string. It is
not Turing-computable because of the halting problem. In practice, one gives an approximation to
this function by using a possibly ad hoc scheme of measuring the complexity of an object.
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constant. This is also called the ideal form of the MDL principle. In practice, one

would instead �nd an H of some set of hypotheses that minimizes L(H)+L(D j H)

where L(x) = � log2 Pr(x) and interpret L(x) as the corresponding Shannon-Fano

(or Hu�man) codeword length of x. However, if one is concerned with just the

ordering of hypotheses but not coding or decoding them, it seems reasonable to use

a metric that gives a rough estimate instead of computing the complexity directly

using the encoding itself as it would be computationally more eÆcient.

Now, let S(H j D) be our estimation of the complexity of H given D which

is de�ned as

S(H j D) = S(H) + S(D j H)� S(D) (4.2)

where S(H) is the estimated prior complexity of H and

S(D j H) = S(H1 [ fT  T 0;not T 00g [H 0 [H2) (4.3)

is roughly a worst case complexity of a program (complete and consistent w.r.t

D) that results from turning H into a program that knocks out all the negative

examples covered by it, and memorizes each individual positive example not covered

by it, and includes all the renamed clauses in H (which will be further explained

below). Suppose T is the target concept t(R1; � � � ; Rk) that we need to learn, T 0 =

t0(R1; � � � ; Rk), and T 00 = t00(R1; � � � ; Rk) are the renaming of the target concept.

The right side of Equation 4.3 represents such a complete and consistent program

\made from H". It has four components: 1) H1, a theory that memorizes the set of

uncovered positive examples of H, is a set of unit clauses of the form t(a1; � � � ; ak)

and we have one such unit clause for each positive example not covered by H, and 2)

the clause T  T 0;not T 00 (i.e. t(R1; � � � ; Rk) t0(R1; � � � ; Rk);not t
00(R1; � � � ; Rk)),

and 3) H 0 which is exactly the same as H except that any predicate t=k appearing
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in any clause in H is renamed to t0=k, and 4) H2, a theory that memorizes each

negative example covered by H, is a set of unit clauses of the form t00(a1; � � � ; ak)

and we have one such unit clause for each tuple t(a1; � � � ; ak) in the set of negative

examples covered by H. Finding compressive hypotheses that generalize clauses in

H1 and H2 could be problematic. Thus, we simply take the worst case assuming

the discrepancy between H and D is not compressible. A very simple measure is

employed here as our complexity estimate (Muggleton & Buntine, 1988). The size

S of a set of Clauses (or a hypothesis) where each clause C with a Head and a

Body is de�ned as follows:

S(Clauses) =
X

C2Clauses

1 + termsize(Head) + termsize(Body) (4.4)

where

termsize(T ) =

8>>>>><
>>>>>:

1 if T is a variable

2 if T is a constant

2 +
Parity(T )

i=1 termsize(argi(T )) otherwise:

(4.5)

The size of a hypothesis can be viewed as a sum of the average number of bits

required to encode a symbol appearing in it which can be a variable, a constant,

a function symbol, or a predicate symbol, plus one bit of encoding each clause

terminator. (Note that this particular scheme gives less weight to variable encoding.)

Finally, our theory evaluation metric is de�ned as

M(H;D) = S(H) + S(D j H): (4.6)

The goal of the search is to �nd the H that minimizes the metric M . The metric is

purely syntactic; it does not take into account the complexity of proving an instance

(Muggleton, Srinivasan, & Bain, 1992). However, we are relying on the assumption
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that syntactic complexity implies computational complexity although this and the

reverse are not true in general. So, the current metric does not gaurantee �nding

the hypothesis with the shortest proof of the instances.

4.3 Experiments

4.3.1 Domains

Two di�erent domains are used for experimentation here. The �rst one is the United

States Geography domain. The database contains about 800 facts implemented in

Prolog as relational tables containing basic information about the U.S. states like

population, area, capital city, neighboring states, and so on. The second domain

consists of a set of 1000 computer-related job postings, such as job announcements,

from the USENET newsgroup austin.jobs. Information from these job postings

are extracted to create a database which contains the following types of information:

1) the job title, 2) the company, 3) the recruiter, 4) the location, 5) the salary, 6)

the languages and platforms used, and 7) required or desired years of experience

and degrees (Cali� & Mooney, 1999).

The U.S. Geography domain has a corpus of 880 sentences, in which 250 were

collected from undergraduate students in our department and the rest from real users

of our Web interface Geoquery at www.cs.utexas.edu/users/ml/geo.html over

a period of approximately one to two years. The job database information system

has a corpus of 640 sentences; 400 of which are arti�cially made from a simple

grammar that generates certain obvious types of questions people will ask and the

other 240 are questions obtained from real users of our interface JobFinder. Both
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corpora are available at the ftp site: ftp.cs.utexas.edu/pub/mooney/nl-ilp-data/.

4.3.2 Experimental Design

The experiments were conducted using 10-fold cross validation. In each test, the

recall (a.k.a. accuracy) and the precision of the parser are reported. Recall and

precision are de�ned as

Recall =
# of correct queries produced

# of sentences
(4.7)

Precision =
# of correct queries produced

# of successful parses
: (4.8)

The recall is the number of correct queries produced divided by the total number of

sentences in the test set. The precision is the number of correct queries produced

divided by the number of sentences in the test set from which the parser produced

a query (i.e. a successful parse). Please note that a query is considered correct if it

produces the same answer set as that of the correct logical query.

In information extraction, recall is usually de�ned as jIj=jCj where I is the

intersection of the set of retrieved documents R (from executing the user query)

and the set of correct documents C. Precision is usually de�ned as jIj=jRj. Here,

in semantic parsing, recall is de�ned as jIj=jCj where I is the intersection of the

set S of logical queries produced by the parser in parsing the set of test sentences

and C which is the set of logical queries, one for each sentence, in the given set of

test sentences. Precision is de�ned as jIj=jSj. In other words, recall is simply the

fraction of test sentences that were correctly parsed by the learned parser (i.e. by

producing a correct logical query for the sentence) and precision is the probability

that the logical query produced by the learned parser from parsing a test sentence

is correct.
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Parser n Corpora Geo880 Jobs640

R P S T R P S T
Cocktail 79.40 89.92 64.79 62.88 79.84 93.25 105.77 68.10

fmFOIL only 75.10 88.98 127.61 76.67 63.75 82.26 427.02 66.64
fCHILLIN only 70.80 91.38 150.69 41.24 72.50 86.24 177.99 43.81

Chillin 71.00 90.79 142.41 38.24 74.22 87.48 175.94 45.31
mFoil 67.50 87.10 204.62 65.17 58.91 82.68 561.34 69.08

Table 4.1: Results on all the experiments performed. Geo880 consists of 880 sen-
tences from the U.S. Geography domain. Jobs640 consists of 640 sentences from the
job postings domain. Cocktail is using both the fmFOIL and the fCHILLIN clause
constructors. fmFOIL only and fCHILLIN only are Cocktail using just the single
clause constructor only. R = recall, P = precision, S = average size of a hypothesis
found for each induction problem when learning a parser using the entire corpus,
and T = average training time in minutes.

4.3.3 Results and Discussion

Cocktail (fmFoil+fChillin) is Cocktail using both the clause constructors from

Chillin and mFoil. Cocktail (fmFoil only) is Cocktail using only the clause

constructor from mFoil. Cocktail (fChillin only) is Cocktail using only the

Chillin's clause constructor.

For all the experiments performed, we used a beam size of four for mFoil

(and therefore for fmFoil), a signi�cant threshold of 6.64 (i.e. 99% level of signif-

icance), and a parameter m = 10. We took the best four clauses (by coverage)

found by Chillin. Cocktail using both mFoil's and Chillin's clause construc-

tors performed the best; it outperformed all other learners by at least 4% in recall

in both domains. We performed the following one tail paired t-tests for the recall to

see if the di�erences are signi�cant: 1) In Geo880, Cocktail (fmFoil+fChillin) vs.

Cocktail (fChillin only), 2) In Geo880, Cocktail (fmFoil+fChillin) vs. Cock-

tail (fmFoil only), 3) In Jobs640, Cocktail (fmFoil+fChillin) vs. Cocktail
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(fChillin only), and 4) In Jobs640, Cocktail (fmFoil+fChillin) vs. Cocktail

(fmFoil only). The t-test results are as follows: 1) t(10) = 8:714193; p = 5:55�10�6 ,

2) t(10) = 11:19033; p = 6:96 � 10�7, 3) t(10) = 5:560667; p = 0:000176, and 4)

t(10) = 12:03153; p = 3:76 � 10�7. In all these results, p < 0:05. We can say that

they were signi�cant results.

In addition, Cocktail using only fmFoil performed better than using only

fChillin in the Geography domain while the latter performed better in the job post-

ings domain. This indicates that there is a heavier bias on learning speci�c contex-

tual information (like a speci�c word or phrase in the input bu�er) (by fmFoil) in the

Geography domain while in the job postings domain there is a heavier bias on learn-

ing structural features (by fChillin) for disambiguation. Notice that Chillin alone

performed slightly better than Cocktail using only fChillin. There must be other

factors in the picture we were not aware of as using a hill-climbing search actually

performed better in this case. One possibility might be that the current MDL metric

has problems handling complicated terms with lots of constants which could result

in choosing overly speci�c clauses (if they are in the beam) and therefore learning a

larger number of clauses for the building theory. Perhaps somewhat surprising is the

result obtained from using the original mFoil algorithm; the poor results seem to

suggest that choosing the most statistically signi�cant clause (in the search beam)

does not necessarily produce the most compressive hypothesis. Apparently, this is

due to the fact that some compressive clauses were wrongly rejected by a statisti-

cal based measure, which is a problem of using a statistical based search heuristic

(e.g. computing the statistical signi�cance of a clause) versus a compression based

heuristic (e.g. computing the complexity of a clause) as reported in (Muggleton
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et al., 1992).

Cocktail (fmFoil+fChillin) also found the most compressive hypothesis on

average in both domains; Cocktail (fmFoil+fChillin)'s hypothesis was at most half

of the size of that of all other hypotheses found by other learners in Geo880, and

it was at most 60% of the size of hypotheses found by other learners in Jobs640.

Cocktail (fmFoil+fChillin)'s training time was more than that of Chillin in both

domains by roughly 20 minutes of CPU time. Chillin was the fastest in training

since it uses a hill-climbing search to �nd a good clause while all other learners use

beam search.

mFoil and Chillin learn very di�erent features for classi�cation; mFoil is

given background predicates which check the presence (or absence) of a particular el-

ement in a given parse state (e.g. a certain predicate or a certain word phrase) while

Chillin is not given any such background predicates but it learns the structural

features of a parse state through �nding LGGs with good coverage (and inventing

predicates if necessary). Each learner is e�ective in expressing each type of feature

using its own language bias; if one were to learn structural features of a parse state

using mFoil's language bias (e.g. not allowing function terms), the hypothesis thus

expressed would have a very high complexity and vice versa.

In a nutshell, the problem of semantic parser acquisition requires learning

two types of parsing features for disambiguation: 1) the context of a parse state,

and 2) its functional structure A top-down ILP approach is better for learning the

former while a bottom-up approach is better for the latter. Combining both ILP

approaches can outperform Chillin (the previous leading ILP system), which was

shown in our experimental results.
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Chapter 5

Relational Data Mining:

Pattern Learning in Link

Discovery

5.1 Introduction

The terrible events of September 11, 2001 have sparked increased development of

information technology that can aid intelligence agencies in detecting and prevent-

ing terrorism. The Evidence Extraction and Link Discovery (EELD) program of the

Defense Advanced Research Projects Agency (DARPA) is one attempt to develop

new computational methods for addressing this problem. More precisely, Link Dis-

covery (LD) is the task of identifying known, complex, multi-relational patterns that

indicate potentially threatening activities in large amounts of relational data. Some

of the input data for LD comes from Evidence Extraction (EE), which is the task of
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obtaining structured evidence data from unstructured, natural-language documents

(e.g. news reports), other input data comes from existing relational databases (e.g.

�nancial and other transaction data). Finally, Pattern Learning (PL) concerns the

automated discovery of new relational patterns for detecting potentially threatening

activities in large amounts of multi-relational data.

Domain # Bg. preds. Avg. Arity # Bg. facts

Link Discovery 52 2 � 568k
Bioinformatics 36 4.9 � 24k

Table 5.1: Link Discovery versus Bioinformatics (e.g. carcinogenesis). # Bg. preds.

is the number of di�erent predicate names in the background knowledge, Avg. Arity
is the average arity of the background predicates, and # Bg facts is the total number
of ground background facts.

Scaling to large datasets in data mining typically refers to increasing the

number of training examples that can be processed. Another measure of complexity

that is particularly relevant in multi-relational data mining is the size of examples,

by which we mean the number of ground facts used to describe the examples. To

our knowledge, the challenge problems developed for the EELD program are the

largest ILP problems attempted to date in terms of the number of ground facts

in the background knowledge. Relational data mining in bioinformatics (Zelezny,

Srinivasan, & Page, 2002), e.g. carcinogenesis, was probably the previously largest

ILP problem in this sense. Table 5.1 shows a comparison between link discovery

and, to our knowledge, the largest problem in bioinformatics.

Scaling up ILP to eÆciently process large examples like those encountered

in EELD is a signi�cant problem. Section 5.2 discusses the problems existing ILP

algorithms have scaling to large examples and presents our general approach to

73



controlling the search for multi-relational patterns by integrating top-down and

bottom-up search. Section 5.3 presents the details of our new algorithm, Beth.

Section 5.4 presents some theoretical results on our approach. Experimental results

are presented and discussed in Section 5.5.

5.2 Combining Top-down and Bottom-up Approaches

in Beth

One problem with an approach like Progol is that given a positive example and

background knowledge, the bottom clause can be in�nite, and practically one has

to bound it. In Progol, it is bounded by �ve parameters: i, r, M, j�, and j+

(please refer to (Muggleton, 1995) or Chapter 2 for more details). Unfortunately,

the complexity of Progol's bottom clause is exponential w.r.t. the variable depth

i, which results in a hypothesis space that is doubly exponential! (The size of the

subsumption lattice is two to the power of the size of the bottom clause.)

In problems with large examples like EELD, the background knowledge con-

tains many facts using numerous predicates that describe each complex object or

event. Typically, many of these facts are irrelevant to the task. However, Progol's

bottom clause includes every piece of background knowledge (within the recall bound

r) in its body. This leads to intractably large bottom-clauses which generates an

exponentially larger hypothesis space when learning a clause. This leads one to

wonder if it is possible to bound the bottom-clause di�erently so that it contains

only a relevant subset of background facts.

A strength of the top-down approach is that the generation of literals is
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inherently directed by the heuristic search process itself: only the set of literals

that make re�nements to clauses in the search beam are generated. Clauses with

insuÆcient heuristic value are discarded, saving the need to generate literals for

them. So, there is a tangible link between the entire set of literals that could be

included in a bottom-clause and the heuristic search for a good clause. Therefore,

perhaps it is possible to employ the heuristic search as a guide to selecting a relevant

subset of background facts for inclusion in an alternative bottom-clause.

A major weakness of the top-down approach (as far as literal generation is

concerned) is that the enumeration of all possible combination of variables generates

many more literals than necessary; some literals generated by the algorithm are not

even guaranteed to cover one positive example. The complexity of enumerating

all such combinations in Foil (Quinlan, 1990) (and mFoil (Lavrac & Dzeroski,

1994a)) is exponential w.r.t. the arity of the predicates (Pazzani & Kibler, 1992).

1 A corresponding strength of the bottom-up approach is that a literal is created

using a ground atom describing a known positive example. The advantages are: 1)

specializing using this literal results in a clause that is guaranteed to cover at least

the seed example, and 2) the set of literals generated are constrained to those that

satisfy 1).

Given the strengths and weaknesses of typical top-down and bottom-up ap-

proaches, it seems that one can take advantage of the strength of each approach by

combining them into one coherent approach. More precisely, we no longer build the

bottom clause using a random seed example before we start searching for a good

clause. Instead, after a seed example is chosen, one generates literals in a top-down

1Enforcing argument type restrictions can help lower the complexity but cannot completely solve
the problem.
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fashion (i.e. guided by heuristic search) except that the literals generated are con-

strained to those that cover the seed example. Based on this idea, we have developed

a new system called Bottom-clause Exploration Through Heuristic-search (Beth)

in which the bottom clause is not constructed in advance but \discovered" during

the search for a good clause.2

5.3 The Algorithm

Beth's bottom clause is virtual in the sense that the algorithm does not have

to construct it to work, unlike Progol/Aleph; it is, nonetheless, constructed to

facilitate collection of statistics. However, the virtual bottom clause is a real bound

on the subsumption lattice (see Section 5.4).

5.3.1 Constructing a Clause

The outermost loop of Beth is a simple set covering algorithm like that of any

typical ILP algorithm: 1) �nd a good clause which covers a non-empty subset of

positive examples, 2) remove the positive examples covered by the clause from the

entire set of positive examples, 3) add the clause found to the set of clauses being

built (a.k.a. theory) which was initially empty, 4) repeat step 1) to step 3) until the

entire set of positive examples are covered by the theory, 5) return the entire set of

clauses found.

The way a clause is constructed in Beth is very similar to a traditional top

down ILP algorithm like Foil; the search for a good clause goes from general to

speci�c. It starts with the most general clause 2 which is specialized by adding a

2
Progol and Aleph are really, more precisely, \Subsumption lattice exploration through

heuristic-search". Here, we explore the bottom clause and the subsumption lattice simultaneously.
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literal to its body. The most general clause 2 = T  true where T is a literal such

that predname(T ) = predname(e) and arity(T ) = arity(e), where e is a randomly

chosen seed example from the set of positive examples. We used beam search to

�nd a suÆciently good clause.

In addition, we also compute the bottom clause which bounds the search

space. The initial bottom clause is set to e  true where e, the seed example,

is randomly chosen from the set of positive examples. The bound is expanded

incrementally during the search for a good clause. The bound is �xed when a

suÆciently good clause is found, at which point both the clause and the bound are

returned as solutions to the search. The algorithm which constructs a clause is

outlined in Figure 5.1.

1. Given a set of predicate speci�cations P of the background predicates, beam width
b, clause length bound n, variable depth bound i, recall bound r, a non-empty set of
positive examples Pxs, and a set (possibly empty) of negative examples Nxs.

2. Randomly choose a seed example e 2 Pxs.

3. ?0:=e true:

4. Q0:=f2g.

5. Q:=Q0.

6. ?:=?0.

7. REPEAT
generate re�nements(Q;P ; b; n; i; r;Pxs;Nxs; Q0;?;?0),
Q:=Q0,
?:=?0

UNTIL there is a clause C 2 Q which is suÆciently accurate.
(Q0 and ?0 are output variables and the rest in generate re�nements are input vari-
ables.)

8. Return C and ?.

Figure 5.1: The construction of a clause in Beth

77



5.3.2 Generating Re�nements for a Clause

To �nd all the re�nements of a given clause Ci, �rst �nd a substitution � that

satis�es the body of the clause (a.k.a. \a successful proof" of the clause); then

construct a literal (with dummy variables) Rj for a predicate speci�cation in P,

and �nd a substitution � that makes Rj� a ground atom such that Ci� and Rj�

satisfy the following conditions we call re�nement constraints: 1) the link constraint:

one of the arguments of Rj� has to appear in Ci� (this is to make sure that the

resulting clause is still a linked clause), 2) the unique-literal constraint: Rj� 62 Ci�

(to avoid making two identical literals). We try to �nd pairs of � and � satisfying

the re�nement constraints, but at most r distinct ground atoms Rj� will be used.

To avoid repeatedly �nding a successful proof of a given clause by theorem

proving, we make a set of \cached proofs" for each clause in the beam (similar to

the way variable bindings are stored in extensional Foil) by starting with the initial

proof e  true, where e is a randomly chosen seed example, and we incrementally

update the cache of proofs of each clause by adding to the end of each proof a ground

atom satisfying all the re�nement constraints. A bound is also given to the cache

size. When �nding a satisfying substitution � for a clause Ci in the beam, we will

simply unify Ci with a proof in its cache. If there is no Rj� satisfying the re�nement

constraints, which can happen if the �rst chosen example e was a \bad" one, a new

example e0 6= e will be randomly chosen from the remaining set of positive examples

to be covered. The clause Ci will be replaced (in the beam) by the most general

clause such that its cache of proofs will contain only e0  true. The idea is that if

a clause cannot be re�ned, then we will just restart with a di�erent seed example.

One can take advantage of type declarations (if available or otherwise can
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be omitted) to further restrict the number of predicate speci�cations needed to be

considered for a given clause (which is similar to Aleph's mode declaration).

One can also make use of input-output mode declarations (if available) by

substituting arguments with \input" mode for constants which appear in the clause

provided that the argument type and the constant type are compatible (similar to

the algorithm that builds the bottom clause for Progol). In this case, one needs

to �nd satisfying substitutions for Rj for each unique way of substituting arguments

with input mode for constants in the clause. The algorithm of generating re�nements

to a clause is outlined in Figure 5.2.

1. Given a set of predicate speci�cations P of the background predicates, a beam width
b, a bound on the clause length n, variable depth bound i, recall bound r, a non-empty
set of positive examples Pxs and a set (possibly empty) of negative examples Nxs, the
current bottom clause ? (i.e. the current bound on the search space).

2. For each clause Ci 2 Q and for each Pj 2 P , make a literal Rj with dummy variables
such that predname(Rj) = predname(Pj) and arity(Rj) = arity(Pj).

3. Find substitutions �; � such that 1) � satis�es Ci, 2) � satis�es Rj , and 3) Ci� and
Rj� satisfy all the re�nement constraints.

4. Collect at most r such ground atoms Rj� for di�erent � and �.

5. For each pair of Ci� and Rj� satisfying all the re�nement constraints,
make literals(Ci�;Rj�;Lits) and add Rj� to the body of ?.

6. For each L 2 Lits, add L to the body of Ci to make C 0

i and let the set of all C 0

i's be
Qi.

7. Evaluate each clause in
S
Ci2Q

Ci by a heuristic (e.g. m-estimate) given Pxs and Nxs.

8. Put only the best b clauses into Q0.

9. Let ?0 be the resulting bottom clause after adding all the ground atoms Rj�'s to
the body of ? for each Ci and Rj (such that there exists � and � satisfying all the
re�nement constraints).

10. Return Q0 and ?0.

Figure 5.2: Generate Re�nements
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5.3.3 Making Literals

The idea behind making literals given a clause C, a satisfying substitution � of the

clause, and a particular ground atom Rj� is that we want to replace arguments in

the ground atom by variables in the clause which are instantiated (in �) to these

arguments in the ground atom, provided that the ground atom is not already part

of C� and the resulting literal observes the restriction on the variable depth bound.

The algorithm for making literals is outlined in Figure 5.3.

1. Given a clause C� of the form e  a1; : : : ; an (where C is the current clause
being re�ned, i.e. specialized, and � is a substitution that satis�es C and
e 2 Pxs and background knowledge BK j= ai for each ground atom ai in the
body of C�) and a ground atom an+1 such that BK j= an+1.

2. Make a set of literals Lits such that each literal L 2 Lits satis�es: 1)
predname(L) = predname(an+1), 2) arity(L) = arity(an+1), 3) suppose the
constant ci is the ith argument of an+1 and the variable Vi is the ith argument
of L. If ci appears in C�, then ci=Vi 2 �

�1; otherwise, Vi is a new variable not
appearing in C, 4) there is no variable V in L such that d(V ) > i where i is
the variable depth bound.

3. Return Lits.

Figure 5.3: Make Literals

5.3.4 A Concrete Example

We can see how the algorithm works through a simple example from the family-

relation domain. Suppose we want to learn the concept uncle(X;Y ), which is true

i� X is an uncle of Y (blood uncle).

Suppose we have the following set of background facts (Figure 5.4):
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Tom

Tim Bob Mary

Ann

Betty

Joyce

Susan parent

uncle

friend
                 

                    

          

      

Figure 5.4: A simple family relation domain

1. male(Bob), male(Tom), male(T im)

2. female(Ann), female(Mary), female(Susan), female(Betty), female(Joyce)

3. parent(Tom;Mary), parent(Tom;Betty), parent(Tom;Bob),

parent(Mary;Ann),parent(Joyce; Susan),parent(Tom; T im)

4. friend(Mary; Susan), friend(Susan;Mary), friend(Joyce;Betty),

friend(Betty; Joyce)

and P = fmale=1; female=1; friend=2; parent=2g (exactly in this order from left

to right) is our set of predicate speci�cations. We will use 0+0 to denote the output

mode and 0�0 the input mode here. The following is the set of mode speci�cations
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for each predicate speci�cation:

male(�); female(�); parent(+;�); parent(�;+); friend(+;�); friend(�;+)

and the following is the set of type speci�cations for each predicate speci�cation:

1. male(person)

2. female(person)

3. parent(person; person)

4. friend(person; person)

Suppose we have this set of training examples:

1. Positive: uncle(Bob;Ann)

2. Negative:

uncle(Bob; Susan), uncle(Betty; Ann), uncle(T im; Susan), uncle(Tom;Betty)

uncle(Susan;Betty), uncle(Joyce; Ann), uncle(T im; Joyce), uncle(Tom;Mary)

We present a trace of how our algorithm discovers a good clause, given a

beam size and a recall bound of one, and a clause length of four. It starts by

choosing a random seed example from the set of positive examples. This has to

be uncle(Bob;Ann) since there is only one positive example. When generating

re�nements to a clause, it considers each predicate speci�cation in P (from left to

right). We will show the specialized clause before its set of cached proofs. The

literal added to the clause currently being built is generated from the new ground

atom added to the body of the cached proof of the current clause.

The algorithm starts with:

1. The most general clause which covers every pair of people: uncle(X,Y) :- true
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2. The set of cached proofs for this clause: funcle(bob,ann) :- trueg

3. The empty bottom clause: uncle(bob,ann) :- true

It considers male=1 and generates the following:

1. The specialized clause: uncle(X,Y) :- male(X)

(m-est = 0.153)

2. The set of cached proofs for this clause: funcle(bob,ann) :- male(bob)g

3. The updated bottom clause: uncle(bob,ann) :- male(bob)

Next, the algorithm considers female=1, and the literal female(Y) is gen-

erated (in the same way as male=1), the new ground atom female(ann) is added

to the current bottom clause. The specialized clause uncle(X,Y) :- female(Y)

has an m-estimate of 0.111. Next, it considers parent=2 (using parent(+;�)) and

generates the following:

1. The specialized clause: uncle(X,Y) :- parent(Z,X)

(m-est = 0.136)

2. The set of cached proof of this clause: funcle(bob,ann) :- parent(tom,bob)g

3. The updated bottom clause:

uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob)

Similarily parent=2 (using parent(+;�)) is used to generate another specialized

clause uncle(X,Y) :- parent(W,Y) (m-estimate = 0.122) using the ground atom

parent(mary,ann).

The predicate speci�cation friend=2 was considered but no ground atom

was found to satisfy all the re�nement constraints; the link constraint could not be

satis�ed, because neither Bob nor Ann has a friend. There are totally four di�erent
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re�nements to the most general clause. The clause with the best m-estimate is:

uncle(X;Y ) male(X)

Since the beam size is just one, only this clause is retained in the beam. This

clause is still covering negative examples: uncle(Bob; Susan), uncle(Tom;Betty),

uncle(T im; Susan), uncle(T im; Joyce), and uncle(Tom;Mary). So, it still needs to

be re�ned. Next, male=1 is considered but no ground atom is found to satisfy

all the re�nement constraints; the unique-literal constraint could not be satis�ed

(male(Bob) is already in the cached proof of the clause). The current bottom clause

is uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob).

Next, it considers female=1 and generates the following:

1. The specialized clause: uncle(X,Y) :- male(X),female(Y)

(m-est = 0.153)

2. The set of cached proof of this clause:

funcle(bob,ann) :- male(bob),female(ann)g

3. The updated bottom clause:

uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),

parent(mary,ann)

Next, it considers parent=2 (using parent(+;�)) and generates the following:

1. The specialized clause: uncle(X,Y) :- male(X),parent(Z,X)

(m-est = 0.204)

2. The set of cached proof of this clause:

funcle(bob,ann) :- male(bob),parent(tom,bob)g

3. The updated bottom clause:

uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),
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parent(mary,ann)

parent=2 (using parent(+;�)) can be used to generate another specialized clause

uncle(X,Y) :- male(X),parent(W,Y) (m-estimate = 0.175) using the ground atom

parent(mary,ann).

The predicate speci�cation friend=2 was considered but no ground atom

was found to satisfy all the re�nement constraints (the link constraint cannot be

satis�ed). There are totally three di�erent re�nements to uncle(X;Y ) male(X).

The clause with the best m-estimate is:

uncle(X;Y ) male(X); parent(Z;X)

This clause still covers a non-empty set of negative examples:

uncle(Bob; Susan); uncle(T im; Susan); uncle(Tim; Joyce):

The algorithm continues in exactly the same manner for the last two steps.

The clause uncle(X;Y )  male(X); parent(Z;X) has four di�erent re�nements.

The clause with the best m-estimate is:

uncle(X;Y ) male(X); parent(Z;X); parent(W;Y )

which is still covering negative examples uncle(Bob; Susan) and uncle(T im; Susan).

There are totally eight di�erent re�nements to

uncle(X;Y ) male(X); parent(Z;X); parent(W;Y ):

The clause with the best m-estimate is:

uncle(X;Y ) male(X); parent(Z;X); parent(W;Y ); parent(Z;W )
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which covers all the positive examples and no negative examples. At this point, the

algorithm has found the target concept. Both the bottom clause discovered and the

consistent clause found are returned. The bottom clause found by Beth is:

uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),male(tom),

parent(mary,ann),female(mary),parent(tom,mary),friend(mary,susan),

friend(susan,mary)

whereas, Progol's bottom clause is:

uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),male(tom),

parent(mary,ann),female(mary),parent(tom,mary),friend(mary,susan),

friend(susan,mary),female(susan)

which is bigger than Beth's bottom clause by just one ground literal in this simple

domain. Note that the ground literal female(susan) is part of Progol's bottom

clause because the constant susan is in the set InTerms (see Section 2.5.4).

5.4 Analysis of Algorithm

We will present result on the complexity of the bottom clause constructed by Beth

which is only linear compared to that of Progol which is exponential. Since the

size of the hypothesis space is two to the power of the size of the bottom clause, the

hypothesis space is doubly exponential in complexity if one searches the subsumption

lattice (i.e. the hypothesis space) bounded by Progol's bottom clause.

Let ?(b; n;P; r; i) be the bottom clause constructed by the algorithm outlined

in Section 5.3 given the parameters b, n, P, r, and i which are the beam width, the

maximum clause length, the set of predicate speci�cations, the recall bound, and

the variable depth bound respectively.
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Lemma 3. i � n where i is the maximum variable depth of any variable in

a linked clause C and n is the length of C.

Proof. We can prove by induction on n. Base Case: n = 0. In this case, the body

of the clause is empty. d(V ) = 0 for any variable V which appears in the head

of the clause. So, we have i � n. Inductive Case: assume that for a given linked

clause of length k, i � k. Now, suppose C : H  L1; : : : ; Lk+1 is a linked clause

of length k + 1 and i is the maximum variable depth of C. Therefore, the clause

C 0 : H  L1; : : : ; Lk is a linked clause of length k and so we have i0 � k where i0 is

the maximum variable depth of any variable in C 0. Case 1: There is no variable V

in the literal Lk+1 s.t. V does not appear in C 0. So, i = i0 and we have i � k + 1.

Case 2: There is a variable V in Lk+1 s.t. V does not appear in C 0. From the

de�nition of variable depth (Lavrac & Dzeroski, 1994a), we have d(V ) � i0 + 1. So,

we have i � k + 1. By M.I., we have proved the lemma. 2

Theorem 4. Suppose B is a beam of clauses produced by Beth, for any

clause C 2 B, C � ?(b; n;P; r; i).

Proof. Suppose Cj is a clause in B such that Cj = H  L1; : : : ; Lm where m � n.

Each Lk is produced from some ground atom ak and H is produced from a particular

seed example e. Obviously, e 2 ?(b; n;P; r; i). For any k : 1 � k � m, ak 2

?(b; n;P; r; i), since each ground atom which satis�es all the re�nement constraints

is added to the current bottom clause and only ground atoms satisfying all the

re�nement constraints are used to make literals for any given clause. Therefore,

there exists a substitution � which satis�es Cj such that Cj� = e  a1; : : : ; am.

Therefore, Cj� � ?(b; n;P; r; i). In other words, we have Cj � ?(b; n;P; r; i).

Hence we have C � ?(b; n;P; r; i) for any clause C 2 B. 2
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Theorem 5. The worst case length of ?(b; n;P; r; i) is O(bnjPjr).

Proof. The maximum number of ground atoms that 1) satisfy the re�nement

constraints and 2) make literals observing the variable depth bound i for any clause

in the search beam at the point the clause is being re�ned are jPjr. Therefore,

the maximum number of ground atoms satisfying the re�nement constraints after

adding n literals to the body of the most general clause are njPjr. Since there

are at most b clauses in the search beam at any time, the maximum number of

ground atoms satisfying the re�nement constraints are bnjPjr. Thus, the worst case

complexity of the bottom clause ?(b; n;P; r; i) is O(bnjPjr). 2

The length of Progol's bottom clause is O((rjMjj+j�)ij
+

) (Muggleton,

1995) (which makes a hypothesis space doubly exponential w.r.t. i) while the length

of Beth's bottom clause is only linear w.r.t. n � i (which gives rise to a much

smaller hypothesis space).

5.5 Experimental Evaluation

5.5.1 Experimental Setup

Aleph represents the state-of-the-art ILP system based on the concept of inverse

entailment which, to a certain extent, has its origin in bottom-up ILP approaches.

Aleph is also a hybrid ILP approach in the sense that it employs a Foil-like re�ne-

ment operator (i.e. it searches for a good clause in a general to speci�c manner).

mFoil (or Foil for that matter) is the best (purely) top-down ILP approach. It

is included in our experiments as a \control" factor to show the real \margin" of

advantage gained by a hybrid ILP system. Beth combines the best of Progol
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and the best of mFoil like we mentioned in Section 5.2. We are going to have a

\head-to-head" comparison among the three ILP systems.

5.5.2 Domain

After the events of 9/11, the EELD project has been working on several Challenge

Problems that are related to counter-terrorism. The problem that we choose to

tackle is the detection of Murder-For-Hires (contract killings) in the domain of Rus-

sian Organized Crime. The data used in all EELD Challenge Problems include

representations of people, organizations, objects, and actions and many types of

relations between them. One can picture this data as a large graph of entities con-

nected by a variety of relations. For our purposes, we represent these relational

databases as facts in Prolog.

For the ease of generating large quantities of data, and to avoid violating

privacy, the program currently only uses synthetic data generated by a simulator.

The data for the Murder-For-Hire problem was generated using a Task-Based (TB)

simulator developed by Information Extraction and Transport Incorporated (IET).

The TB simulator outputs case �les, which contain complete and unadulterated

descriptions of murder cases. These case �les are then �ltered for observability, so

that facts that would not be accessible to an investigator are eliminated. To make

the task more realistic, this data is also corrupted, e.g., by misidentifying role players

or incorrectly reporting group memberships. This �ltered and corrupted data form

the evidence �les. In the evidence �les, facts about each event are represented as

ground facts, such as:

murder(Murder714)

89



perpetrator(Murder714, Killer186)

crimeVictim(Murder714, MurderVictim996)

deviceTypeUsed(Murder714, PistolCzech)

The synthetic dataset that we used consists of 632 murder events. Each

murder event has been labeled as either a positive or negative example of a murder-

for-hire. There are 133 positive and 499 negative examples in the dataset. Our task

was to learn a theory to correctly classify an unlabeled event as either a positive or

negative instance of murder-for-hire. The amount of background knowledge for this

dataset is extremely large; consisting of 52 distinct predicate names, and 681,039

background facts in all.

5.5.3 Results

The performance of each of the ILP systems was evaluated using 6-fold cross-

validation. The total number of Prolog atoms in the data is so large that running

more than six folds is not feasible.3 The data for each fold was generated by sep-

arate runs of the TB simulator. The facts produced by one run of the simulator,

only pertain to the entities and relations generated in that run; hence the facts of

each fold are unrelated to the others. For each trial, one fold is set aside for testing,

while the remaining data is combined for training. To test performance on varying

amounts of training data, learning curves were generated by testing the system after

training on increasing subsets of the overall training data. Note that, for di�erent

points on the learning curve, the background knowledge remains the same; only the

number of positive and negative training examples given to the system varies.

3The maximum number of atoms that the Sicstus Prolog compiler can handle is approximately
a quarter million.
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We compared the three systems with respect to accuracy and training time.

Accuracy is de�ned as the number of correctly classi�ed test cases divided by the

total number of test cases. The training time is measured as the CPU time con-

sumed during the training phase. All the experiments were performed on a 1.1 GHz

Pentinum with dual processors and 2 GB of RAM. Beth and mFoil were imple-

mented in Sicstus Prolog version 3.8.5 and Aleph was implemented in Yap version

4.3.22. Although di�erent Prolog compilers were used, the Yap Prolog compiler has

been demonstrated to outperform the Sicstus Prolog compiler, particularly in ILP

applications (Santos Costa, 1999).

In our experiments, we used a beam width of 4 for Beth and mFoil; and

limited the number of search nodes in Aleph to 5000. We used m-estimate (m = 2)

as a search heuristic for all ILP algorithms. The clause length was limited to 10

and the variable depth bound to 5 for all systems. The recall bound was limited to

1 for Beth and Aleph (except for some mode declarations it was set to '*'). We

modi�ed mFoil to be constrained by the maximum clause length and the variable

depth bound, to ensure that it terminates. We refer to this version of mFoil as

Bounded mFoil. All the systems were given 1 second of CPU time to compute the

set of examples covered by a clause. If a specialized clause took more time than

allotted, the clause was ignored; although the time it took to create the clause is

still recorded.

The results of our experiments are summarized in Appendix F for test ac-

curacy and training time. A snapshot of the performance of the three ILP systems

given 100% of the training examples is shown in Table 5.2. The following is a sample

rule learned by Beth:
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System Accuracy CPU Time # of Clauses ? Size Avg Theory Size

Beth 94.80% 23.39 4483 34 125
Aleph 96.91% 598.92 63334 4061 41
mFoil 91.23% 45.28 112904 n/a 214

Table 5.2: Results on classifying murder-for-hire events given all the training data.
CPU time is in minutes; and # of Clauses is the total number of clauses tested; and
? Size is the average number of literals in the bottom clause constructed for each
clause in the learned theory; and Avg Theory Size is the average # of literals in the
learned theory.

murder_for_hire(A):- murder(A), eventOccursAt(A,H),

geographicalSubRegions(I,H), perpetrator(A,B),

recipientOfinfo(C,B), senderOfinfo(C,D), socialParticipants(F,D),

socialParticipants(F,G), payer(E,G), toPossessor(E,D).

This rule covered 9 positive examples and 3 negative examples. The rule can be

interpreted as: A is a murder-for-hire, if A is a murder event, which occurs in a city

in a subregion of Russia, and in which B is the perpetrator, who received information

from D, who had a meeting with and received some money from G. Some sample

theories learned by the three ILP systems can be found in appendix D.

5.5.4 Discussion of Results

On the full training set, Beth trains 25 times faster than Aleph while losing only

2 percentage points in accuracy and it trains twice as fast as mFoil while gaining 3

percentage points in accuracy. Therefore, we believe that its integration of top-down

and bottom-up search is an e�ective approach to dealing with the problem of scaling

ILP to large examples. The learning curves further illustrate that the training time

of Beth grows slightly slower than that of mFoil, and considerably slower than
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that of Aleph.

The large speedup over Aleph is explained by the theoretical analysis on the

complexity of the bounds on the search space, i.e. the di�erent sizes of the bottom

clauses they construct. The size of the bottom clause for Beth is only linear w.r.t.

n compared to that of Aleph which is exponential w.r.t. to i (i � n) even for small

i. As a result, Aleph's search space is much larger than Beth's. Aleph's bottom

clause was on average 119x larger than Beth's and the total number of clauses it

constructed was 14x larger, although a theory of similar accuracy was learned.

Systems like Beth and Aleph construct literals based on actual ground

atoms in the background knowledge, guaranteeing that the specialized clause covers

at least the seed example. On the other hand, mFoil generates more literals than

necessary by enumerating all possible combination of variables. Some such combi-

nations make useless literals; adding any of them to the body of the current clause

makes specialized clauses that do not cover any positive examples, which happens

even when the combination of variables is consistent with the type of each argument

in the literal. Thus, mFoil wastes CPU time constructing and testing these literals.

Since the average predicate arity in the EELD data was small (2), the speedup over

mFoil was not as great, although much larger gains would be expected for data

that contains predicates with higher arity.

The average size of a theory learned by Aleph is the smallest; only one third

of that of Beth and one �fth of that of mFoil. Searching a much larger hypothesis

space allows one to �nd a more compressive hypothesis, which explains why Aleph

performed slightly better than Beth and mFoil, at the expense of spending signif-

icantly more CPU time in learning. From the experimental results, we can conclude
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that 1) an approach like Beth, which intelligently searches a hypothesis space,

can outperform (in eÆciency) an approach like Progol/Aleph, which searches a

much larger hypothesis space only to learn a theory of similar performance, and 2)

constructing clauses based on a seed example avoids testing useless literals, which

improves training time signi�cantly over a purely top-down approach like mFoil.
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Chapter 6

Query Transformations

6.1 Transformation Algorithms

Like many other algorithms in the �eld of machine learning, ILP algorithms con-

struct \hypotheses" for data by performing a search through a large space. Such

a search typically involves generating and then testing the quality of candidates.

To test the quality of a candidate hypothesis, one needs to �rst compute the set

of positive and negative examples covered by it and then compute the heuristic

value for it given the set of examples covered and a particular search heuristic (e.g.

m-estimate).

In order to compute the set of positive (or negative) examples covered by a

candidate hypothesis, one needs to be able to tell if a particular (training) example

is covered. However, to �nd out if a training example is covered by the candidate

hypothesis, one needs to �rst bind the head of the candidate clause 1 with the

example, which produces a ground (or non-ground) literal called a query in logic

1The hypothesis space of ILP is a set of Horn clauses.
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programming terminology. After that, one needs to execute (or prove) the query

in Prolog (i.e. �rst-order Horn clause logic) using the background knowledge,

which leads to the issue of improving the eÆciency of hypothesis evaluation in an

ILP system since theorem proving is an NP hard problem in general (Cook, 1971).

2 However, there are circumstances under which the eÆciency of theorem proving

can be dramatically improved if the structure (e.g. the ordering of literals in the

body of the clause since theorem proving in Prolog is \from left to right") of the

clause is appropriately transformed. Since one concerns developing transformation

algorithms that can transform an original clause into a functionally equivalent clause

that \faciliates" theorem proving so as to signi�cantly boost the eÆciency of query

execution (in Prolog), this area of research has, therefore, come to be called query

transformation. 3

We will �rst introduce two existing transformation algorithms: 1) the cut

transformation and 2) the once transformation (Costa et al., 2002). The former

was developed as a simple transformation while the latter was developed as a more

full-
edged technique, which will be explained later in the chapter. Therefore, one

usually employs the once transformation in an ILP system for better query execution

eÆciency. These two transformation algorithms have one thing in common: they

take as input an entire clause and produce the transformed clause by processing

every literal in the body of the clause. One shortcoming of this earlier approach

is that every time a new candidate hyothesis is to be tested, the transformation

algorithm has to start all over from the beginning of the clause only to repeat work

2It is, more precisely, semi-decidable but since we are only interested in tackling ILP problems
that are decidable/solvable, the un-decidability issue is not of our concern here.

3Although it might be more appropriately called \clause transformation", we, nevertheless,
decided to go with the established terminology.
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that has been done before. For example, to evaluate the clause C, it has to be �rst

transformed to, say, C 0. After C 0 is evaluated, it will be discarded. Suppose the

next thing the ILP system did was adding a literal L to the body of C to make C1.

Similarly, C1 needs to be transformed �rst before its coverage on the set of training

examples is computed. Now, to transform C1, which di�ers from C by one literal

L, the transformation algorithm has to start from the very beginning of C1 only to

repeat work that would have been done when transforming C.

This leads one to wonder if it might be possible to save some work done before

by saving C 0 and re-using it in the process of transforming C1. This forms the basis

of the idea behind my new approach I call incremental cut-and-once transformation,

which takes as input a transformed clause C 0 (where C is the original clause), and a

literal L to be added to the body of C, and produces a new transformed clause C10

that is functionally equivalent to C1 (the result of adding L to the body of C). It

is called incremental because the transformation starts with an already transformed

clause (the current clause) and the result of transforming the specialized clause is,

in a sense, like the already transformed clause \incremented" with the newly added

literal. We will discuss the transformation algorithms in details here.

6.1.1 The Cut-transformation t!

We observe that when executing a conjunction of goals G1; :::; Gn, failure of a goal Gi

will result in attempting to generate more solutions for goals earlier in the sequence.

This e�ort is useless if these solutions do not alter the computation of Gi. The cut-

transformation, t!, exploits the notion of goal independence by partitioning the set

of goals in a clause into classes such that goals in di�erent classes are independent.
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We will execute each class in sequence, and use the pruning operator, !, to avoid

any backtracking between classes.

In pure logic programs, goals depend on each other because they share vari-

ables. Given a function vars(T ) that returns all variables in the term T , two goals

Gi and Gj are said to share, that is the relation Shares(Gi; Gj) holds, when:

i = j _ vars(Gi) \ vars(Gj) 6= ;

The de�nition ensures that the relation Shares is re
exive and symmetric. Its tran-

sitive closure Linked, de�ned as the smallest transitive relation that is a superset of

Shares, is re
exive, symmetric and transitive, and therefore an equivalence relation.

Given a set of goals G = fG1; : : : ; Gng, we shall name the equivalence classes

established by Linked as I1; : : : ; Im. If two goals are in the same equivalence class,

we will say they are dependent, otherwise we will say they are independent. We

would like to divide the original clause into several conjunctions of independent

goals and execute them separately. To do so, we place the goals in each class

Ii in a conjunction Gi. Our notion of dependence is a safe approximation of the

dependencies that can possibly occur at run-time, because as soon as two goals

have a variable in common they belong to the same equivalence class. Moreover,

the computation of the equivalence classes is eÆcient.

In this approximation, all goals that include a head variable or that share

variables with one such goal will belong to the same equivalence class. Often, we

know beforehand that head variables will be grounded before calling the body.

Clearly, such variables cannot introduce sharing. To take advantage of this ex-

tra information, we classify variables as either Grounded or PossiblySharing, and

de�ne vars(T ) to return only all PossiblySharing variables in T .
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To e�ect t! it is suÆcient to implement the following procedure:

1. Given the original clause:

H:- G1; : : : ; Gi; : : : ; Gn:

Classify all variables inH;G1; : : : ; Gn as PossiblySharing orGrounded. Com-

pute the equivalence classes for the (approximated) sharing relation.

2. Number the goal literals according to the equivalence class they belong to:

H:- G1j ; : : : ; Gik; : : : ; Gnl:

where Gij is the ith goal literal in equivalence class j.

3. Reorder the literals in the clause according to the class they belong to:

H:- Ga1; : : : ; Gb1; : : : ; Gcm; : : : ; Gdm:

where Gij is the ith goal literal in equivalence class j.

4. We are interested in any solution, if one exists. Thus we need to compute

every class once and if a class has no solution, the computation should wholly

fail. The following program transformation puts a cut between each class to

guarantee such a computation:

H:- Ga1; : : : ; Gb1; ! ; : : : ; ! ; Gcm; : : : ; Gdm:

The transformation is correct in the sense that the examples derivable before

and after the transformation are the same. Step (3) is correct because the switching
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lemma allows us to reorder goals. Step (4) is correct because whenever we intro-

duce a new cut, all goals before the cut are independent of all goals after the cut.

Backtracking to before the cut therefore could never result in new solutions for the

goals after the cut.

Example 2 Suppose we are given a clause C : f(A)  g(A;X); h(X;Y ); p(A;Z).

Since only the literals g(A;X) and h(X;Y ) share a non-grounded (i.e. \possibly

sharing") variable X. The literal p(A;Z) shares no non-grounded variables with

other literals in the body of C. Therefore, we only have two equivalence classes here:

1) g(A;X); h(X;Y ) and 2) p(A;Z). The result of applying t! to C is the clause

C 0 : f(A) g(A;X); h(X;Y ); !; p(A;Z).

6.1.2 The Once-transformation to

The cut transformation just described ensures that the search for each independent

set of subgoals always stops after �nding the �rst solution. Notice that the trans-

formed body goal q1; !; q2; !; : : : ; qn can be written as once(q1); once(q2); : : : ; once(qn)

where the meta-predicate once is de�ned as

once(X):- X; !:

which �nds only one value of X that satis�es the goal. While at the clause level the

once constructs have the same e�ect as the cuts, they have the advantage that they

can 
exibly \encapsulate" a particular group of literals within an equivalence class

of literals, whereas cuts cannot. Example 3 below demonstrates the fundamental

di�erence between the cut transformation and the once transformation.

The objective is to �ne-tune t! by processing each set of independent goals

in more detail. We can improve the partitioning process further by using extra data
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for each non-head variable. More precisely, we shall transform each independent

set of goals by considering the variables grounded by the �rst literal just like the

ground head variables in the cut transformation. We then apply the transformation

recursively and re�ne each independent set of subgoals into subsubsets. We therefore

`look inside' each equivalence class returned by the t!. First, we �nd a pre�x of one

or more literals such that each literal will ground some of its arguments, then apply

the cut transformation on the rest of this subgoal, treating the grounded variables

just like ground head variables.

This is the so called once-transformation or to. Blockeel et al. (Blockeel,

Demoen, Janssens, Vandecasteele, & Laer, 2000) describe two di�erent versions of

to. The dynamic version transforms queries during their execution, which results

in an overhead but which also makes it possible to check groundness and sharing

during execution instead of having to pre-compute a safe approximation. However,

we only present the static version, here.

For the static version, there is the open issue of how to estimate which literals

ground or cause sharing between which arguments. It is reasonable to assume that

such information is provided either by the user or through analysis. For instance, in

many ILP data sets, most predicates are de�ned by ground facts or range-restricted

clauses only; such predicates always ground all their arguments (and hence do not

cause sharing).

A high level description of the once-transformation algorithm is shown in

Figure 6.1. Essentially, the algorithm �nds a pre�x of a conjunction such that this

pre�x grounds enough variables for the rest of the conjunction to contain indepen-

dent subgoals; then it is called recursively on these subgoals. Note that, similar to
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once-transform(q):
let q = l1; l2; : : : ; ln
�nd the smallest k s.t. there exists a partition P of flk+1; : : : ; lng s. t.
8qi; qj 2 P:

V (qi) \ V (qj) � GroundedV ars(fl1; : : : ; lkg) and
8v 2 V (qi); w 2 V (qj) : fv; wg 62 PossiblySharing(fl1; : : : ; lkg)

for all qi 2 P: once-transform(qi)

Figure 6.1: The once-transformation algorithm. GroundedV ars(G) contains all
variables grounded by a call to G. PossiblySharing(G) is the set of all pairs of
variables that may share after a call to G.

the cut transformation, we assume that the order of independent groups of literals

may be switched but the relative order of literals that are dependent of each other

does not change.

Example 3 Given C : t(A)  s(A;X; Y ); b(Y;Z); c(Z); d(X;U); e(U); p(A;W ).

t(A)  p(A;W ); !; s(A;X; Y ); once(b(Y;Z); c(Z)); once(d(X;U); e(U)) is the result

of applying to to C. There are two independent subgoals in the body of the trans-

formed clause: p(A;W ), and s(A;X; Y ); once(b(Y;Z); c(Z)); once(d(X;U); e(U)).

The clause t(X)  p(A;W ); !; s(A;X; Y ); b(Y;Z); c(Z); d(X;U); e(U) is the result

of applying the cut transformation t! to C.

6.1.3 The incremental Cut-and-Once transformation t!+o

A typical top-down ILP algorithm specializes a clause by adding a literal to the

body of the clause being re�ned. The once-transformation to works by transform-

ing the entire specialized clause. Like we mentioned before, one problem with the

once-transformation is that the transformed clause, which may require further spe-
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cialization, is \discarded" after its coverage on the training examples is computed; if

a literal is added to the body of this (transformed) clause, the once-transformation

will then be applied to the newly specialized clause only to repeat any work done

earlier. One can, therefore, save some work by adding a literal \directly" to the

body of a (transformed) clause to make a new transformed specialized clause that is

equivalent to the transformed clause produced by applying the once-transformation

on the entire specialized clause. Again, the body of a transformed clause is a set

of independent goals separated by the cut operator and a sequence of literals inside

a once=1 forms an independent goal on their own. More precisely, a transformed

clause can be represented as Head  S1; !; : : : ; !; Sn (where n � 0). When n = 0,

the body of the clause is empty. Each Si is a conjunction of dependent literals and

Si is independent of Sj if i 6= j. Furthermore, each Si contains a �nite number of

sequences of literals encapsulated inside a once=1 denoted as Gij which is the jth

such sequence of literals in Si. There are totally six cases that t!+o needs to consider

when adding a literal to a transformed clause. They are as follows:

Case 1: Merging two or more independent goals.

When a literal is to be added to the body of a transformed clause (to make new

transformed specialized clause), one needs to discover new dependencies that now

exist among some of the independent goals because of the addition of the literal. For

example, suppose we have a transformed clause C : h(A) f(A;Z); !; p(A;X) and a

literal L = q(X;Z) to be added to C (in order to further specialize it). There are two

independent goals in the body of C: f(A;Z), and p(A;X). They are independent

of each other because they don't share any non-ground variable. Adding L to the
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body of C will create new dependency among them because f(A;Z) share a non-

ground variable with L (the variable Z) and similarly p(A;X) share a non-ground

variable with L (X), making all three of them dependent on each other. Thus the

result of adding L to C is the clause C 0  f(A;Z); p(A;X); q(X;Z) where the two

independent goals have \merged" with L to form a new goal with three literals.

Case 2: Extending a set of literals encapsulated inside a once/1 in an

independent goal.

One also needs to extend some existing dependencies among a set of literals within an

independent goal to include the new literal. For example, we've a transformed clause

C : t(A) p(A;S); !; s(A;X; Y ); once(p(Y; U); q(U;W ); k(W;T1)); once(d(X;V ); e(V )) and

a literal L = l(W;T2) to be added to the body of C for a specialization of C.

There are two independent goals, S1 and S2, in the body of C: S1 = p(A;S), and

S2 = s(A;X; Y ); once(p(Y;U); q(U;W ); k(W;T1)); once(d(X;V ); e(V )). Adding L

to the body of C means adding L to either S1 or S2. Since L shares a non-

ground variable with S2 (W ), there exists dependency between S2 and L. There-

fore, L should be added to S2. There are two separate groups of literals, G21

and G22, inside a once=1: G21 = once(p(Y;U); q(U;W ); k(W;T1)), and G22 =

once(d(X;V ); e(V )). G21 shares a non-ground variable with with L (W ) and, hence,

L should be added to G21, which results in an \extended" set of literals encapsulated

inside a once=1: once(p(Y;U); q(U;W ); k(W;T1); l(W;T2)). The result of adding

L to C is C 0 : t(A)  p(A;S); !; s(A;X; Y ); once(p(Y; U); q(U;W ); k(W;T1); l(W;T2));

once(d(X;V ); e(V )).
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Case 3: Merging independent goals and extending a set of literals encap-

sulated inside a once/1 in an independent goal.

Sometimes, one has to handle case 1) and 2) at the same time; if the literal

to be added to the transformed clause shares a non-ground variable with a lit-

eral in an independent goal and one of the literals inside a once=1 in a di�erent

independent goal. For example, we have the transformed clause C = t(A)  

p(A;S); !; s(A;X; Y ); once((p(Y;U); q(U;W ); k(W;T1))); once((d(X;V ); e(V )) and

L = l(T1; S). There are two independent goals, S1 and S2, in C: S1 = p(A;S) and

S2 = s(A;X; Y ); once((p(Y;U); q(U;W ); k(W;T1))); once((d(X; V ); e(V )).

There are two separate groups of literals inside S2, G21 and G22, encapsulated

by once=1: G22 = once(d(X;V ); e(V )), andG21 = once(p(Y;U); q(U;W ); k(W;T1)).

L shares a non-ground variable with S1 and G21, which are S and T1 respectively.

Now, there exists a new dependency between S1 and S2 through the literal L (which

shares a non-ground variable with each of them). Since there are now new depen-

dencies among the literals p(A;S), l(T1; S), and all the literals in G21, G21 needs to

be extended to include p(A;S), and l(T1; S). Therefore, the result of adding L to C

is C 0 = t(A) s(A;X; Y ); once((d(X;V ); e(V ))); once((p(A;S); p(Y;U); q(U;W );

k(W;T1); l(T1; S))).

Case 4: Merging independent goals and forming a new once/1 to encap-

sulate a set of dependent literals.

One also needs to merge independent goals and create a new once=1 to encapsulate

a set of literals for which new dependencies exist among them through sharing non-

ground variables with the new literal to be added to the transformed clause. Suppose
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we have C = t(A) p(A;S); !; s(A;X; Y ); once((p(Y;U); q(U;W ); k(W;T1)));

once((d(X;V ); e(V )), and L = l(X;S). Again, there are two independent goals

S1 and S2 as we mentioned. This time, L shares a non-ground variable, S, with

p(A;S) in S1 and the non-ground variable, X, with G22 = once((d(X;V ); e(V )))

and s(A;X; Y ) in S2. Since new dependencies exist among p(A;S), s(A;X; Y ), and

once((d(X;V ); e(V ))) through their sharing non-ground variables with l(X;S), they

have to be \merged" together somehow in a way that is free of unnecessary back-

tracking on any one of these goals. There are two possible (equivalent) solutions and

one of them requires creating a new once=1 to encapsulate a set of dependent literals:

C 0 = t(A) s(A;X; Y ); once((p(Y;U); q(U;W ); k(W;T1))); once((d(X;V ); e(V )));

p(A;S); l(X;S), and C 0 = t(A) s(A;X; Y ); once((p(Y;U); q(U;W ); k(W;T1)));

once((p(A;S); l(X;S))); once((d(X;V ); e(V ))).

This clause allows unnecessary backtracking on the goals p(A;S) and l(X;S):

C 0 = t(A) s(A;X; Y ); once((p(Y; U); q(U;W ); k(W;T1))); p(A;S); l(X;S); once((d(X;V );

e(V ))). If one always encapsulates literals that should be inside a once=1, then one

doesn't have to deal with computing the correct ordering of these independent goals.

Case 5: Merging independent goals but splitting a set of literals encapsu-

lated by a once/1 and forming a new once/1 to group a set of dependent

literals.

Sometimes, one needs to take out a subsequence of literals inside a once=1 to allow

backtracking on these subsequence of literals for generating alternative solutions.

Suppose we have C : t(A)  p(A;S); !; s(A;X; Y ); once((p(Y; U); q(U;W ); k(W;T1)));

once((d(X;V ); e(V )) and L = l(U; S). Again, there are two independent goals S1 and
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S2 as we mentioned. This time, L shares a non-ground variable, S, with p(A;S) in

S1 and the non-ground variable, U , with G21 = once((p(Y;U); q(U;W ); k(W;T1))).

Therefore, p(A;S), l(U; S), and G21 = once((p(Y;U); q(U;W ); k(W;T1))) have to

be somehow merged together because of new dependencies that exist among them.

Next, for each Gij which shares a non-ground variable with L, �nd the �rst literal

J in Gij such that 1) J shares a non-ground variable with L, and 2) there is a

non-ground variable in J which appears in the sequence of literals containing the

literal next to J (counting from left to right) up to the last literal in Gij. Let

G0

ij be the sequence of literals containing the literal J up to the last literal in Gij

(counting from left to right starting at J). Let G00

ij be the sequence of literals

such that Gij = G00

ij [ G
0

ij (i.e. G00

ij is the sequence of literals in Gij that comes

before G0

ij). Then, encapsulate the sequence of literals G0

ij inside a once=1. Let's

call it a sequence of \frozen literals". The sequence of literals G00

ij will not be

encapsulated by a once=1. Let's call it a sequence of \free literals". Then, form a

new sequence of literals S by \concatenating" G0

ij for all i and all j. Next, make

a new independent goal once(S1 [ fLg). Finally, put all free literals (in any order)

before all frozen literals to make the new body of the transformed clause. In out

example, G21 shares a non-ground variable U with l(U; S), and the �rst literal

in G21 that satis�es conditions 1) and 2) mentioned is q(U;W ) since 1) q(U;W )

shares the non-ground variable U with l(U; S), and 2) the non-ground variable W

in q(U;W ) appears in the sequence of literals k(W;T1) (which has only one literal

in this particular case). So, we have G0

21 = q(U;W ); k(W;T1) and G00

21 = p(Y;U).

We also need to form a new independent goal once((p(A;S); l(U; S))). C 0 = t(A) 
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s(A;X; Y ); p(Y;U); once((d(X;V ); e(V ))); once((q(U;W ); k(W;T1)));

once((p(A;S); l(U; S))) is the clause resulted from adding L to C.

Case 6: Creating a new independent goal.

If the literal to be added to the body of the transformed clause shares no non-ground

variables with the body of the transformed clause, then one just simply needs to cre-

ate a new independent goal containing the literal. For example, we have C = t(A) 

p(A;S); !; s(A;X; Y ); once((p(Y;U); q(U;W ); k(W;T1))); once((d(X;V ); e(V )), and

L = g(A;Q). Obviously, L shares no non-ground variables with any of the indepen-

dent goals in the body of C and we create a new independent goal g(A;C) in the

body of C. C 0 = t(A) p(A;S); !; s(A;X; Y ); once((p(Y;U); q(U;W ); k(W;T1)));

once((d(X;V ); e(V )); !; g(A;Q) is the resulted clause.

6.2 Query Transformation Complexity

We will use the following symbols in analysing the complexity of transforming a

clause: v, the maximum number of variables in a literal; and N , the number of

literals in the clause being transformed.

6.2.1 Complexity of t!

Theorem 3 (Costa et al., 2002). The complexity of t! is O(vN
2).

Proof. The dominant component of t! stems from calculating groups of dependent

literals. The algorithm starts with an empty set of groups. In the i-th iteration it

creates a new group containing the i-th literal in the clause, flig, and merges this

group with all existing groups that share variables with li. Testing if a group j shares
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variables with li isO(vnj) where nj is the number of literals in the group. This linear

intersection test is possible because the algorithm keeps a sorted list of variables for

each group. Performing the intersection test on all groups is O(vi) because
P

j nj =

i � 1. Now assume gi groups have been identi�ed that share with flig; these have

to be merged. Merging one group is O(vi), so merging gi groups is O(gi � vi). The

total complexity of t! is T (N) = O
�PN

i=1 vi+ gi � vi
�
= O

�
vN2 + vN �

PN
i=1 gi

�
.

Since
PN

i=1 gi < N , this is just O(vN2). 2

6.2.2 Complexity of to

Theorem 4 (Costa et al., 2002). The complexity of to is O(vN
3).

Proof. The implementation of to �rst �nds independent groups of literals using the

same algorithm as the cut-transformation. If all literals are in the same group then

the algorithm grounds the variables of the �rst literal and calls itself recursively

for the other literals. If the literals are partitioned into several groups then the

algorithm does a recursive call for each group. In the �rst case, the time complexity is

T (N) = O(vN2)+T (N�1) where v is the maximum number of variables in a literal

and N the number of literals in the clause. If each recursive call is of this type, then

the total complexity is O(vN3). In the second case T (N) = O(vN2) +
PgN

i=1 T (ni)

with gN > 1 the number of subgroups and ni the number of literals in subgroup i.

It can be shown that the worst case is gN = 2, n1 = 1 and n2 = N � 1.4 The overall

complexity is O(vN3) for both cases. 2

4To see this, note that T (N � i) + T (i) < T (N � 1) + T (1) < T (N) when T is a superlinear
function and 1 < i < N . In our case T has to be superlinear because it contains an N2 term. The
demonstrandum follows by recursively applying these inequalities on the terms in

P
i
T (ni).
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6.2.3 Complexity of t!+o

Theorem 5. Given a transformed clause with N literals in the body, v the maxi-

mum number of variables in a literal, and n the number of independent groups of

literals Si in the body of the transformed clause, Gij is the jth sequence of literals

encapsulated inside a once=1 in Si, L is the literal to be added to the body of the

transformed clause, the worst case complexity of t!+o is O(nvN
2).

Proof. The complexity of checking if a literal or an Si in the body of the trans-

formed clause shares a non-ground variable with L is O(v). There are di�erent

cases that t!+o needs to consider. Some has a lower complexity than others. For

example, in case 1 (merging two or more independent goals) and case 6 (creating

a new independent goal), the complexity of t!+o is only O(vn). However, we are

going to present the worst case complexity of t!+o here which is case 5 (merging in-

dependent goals but splitting a set of literals encapsulated by a once/1 and forming

a new once/1 to group a set of dependent literals). The time it takes to �nd the

�rst literal J in Gij that satis�es the two conditions 1) and 2) mentioned is O(vN2)

since, in the worst case, we might have N literals in Gij and one needs to check for

each literal in Gij (from left to right and starting with the �rst literal in Gij) if there

is a non-ground variable in it which appears in the rest of Gij. The complexity of

checking, for a literal in Gij, if there is a non-ground variable in it which appears

in the rest of Gij is O(vN). Therefore, the total complexity of doing this for all

the literals in Gij is O(vN2). Since we have at most n such Gij's (that shares a

non-ground variable with L), the worst case complexity of t!+o is O(nvN
2). 2

We will discuss the signi�cance of these theoretical results in Section 6.4.
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6.3 Query Execution Complexity

We now examine the complexity arising from executing a transformed query with a

view to estimating the gain in eÆciency obtained from performing a transformation.

We further consider estimates of average gains only, as some of the transformations

cannot always guarantee eÆciency gain. We will use the following notation:

� q represents a query with literals l1; l2; � � � ; lN

� N is the number of literals in the query (as before)

� e is the number of examples

� b is the average branching factor of the SLD tree of the query and can be seen

as a measure of non-determinacy of the data

� d is the depth of the SLD tree

� qi and m are de�ned by t!(q) = q1; !; q2; !; : : : ; qm; !; we call the qi independent

subgoals

� di is the depth of the SLD tree generated by qi

� Ni is the number of literals in qi

6.3.1 Complexity of t!

We approach the eÆciency gain yielded by t! from two points of view: �rst, looking

at SLD-trees and non-determinacy; second, at a higher abstraction level, looking at

the execution times the subgoals consume.
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Let us assume for now that a literal li succeeds ki > 0 times. Then with-

out the transformation the number of nodes in the SLD tree is
Q

i ki. After the

transformation it becomes
P

i

Q
lj2qi

kj . If we simplify this by assuming a constant

branching factor b, execution of the original query takes time O(bN ) while execution

of the transformed query takes time O(bmaxNi). Thus, the execution time of the

query is reduced from \exponential in its length" to \exponential in the length of

the longest conjunction between two cuts".

We can obtain some more insights from a second stance, describing eÆciency

in terms of times rather than SLD tree sizes. We introduce

� ti : the time needed for exhausting the search space of qi

� si : the number of times qi succeeds

� �ti = ti=(si + 1) : the average time until success or failure for subgoal qi

� k = minfijsi = 0g (i.e. qk is the �rst subgoal that has no solutions)

Without cuts the time needed to con�rm failure of the clause on a single example is

t1 + (s1(t2 + s2(::::))) = t1 + s1t2 + :::+ s1:::sk�1tk

and after applying the cut-transformation this becomes

�t1 + �t2 + :::+ �tk�1 + tk

If the last term in both formulae is dominant (which happens if tk is large), a speedup

of at most s1s2 � � � sk�1 can be obtained. If an earlier tj dominates, this results in a

speedup of roughly s1s2 � � � sj�1.
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6.3.2 Complexity of to

The once-transformation, to, is the recursive application of t!, and thus has a similar

e�ect on eÆciency; only now the original equivalence classes may be subdivided

further.

The execution time of the transformed query is then exponential in the length

of the longest conjunction between two cuts minus the length of the longest con-

junction within a once construct within that longest conjunction between two cuts.

More precisely, if b is the branching factor, the execution time it takes to execute a

query after applying to is

O(bmaxiNi�maxjMij):

Ni is the length of the ith conjunction between two cuts, and Mij is the length of

the jth conjunction inside a once construct inside the ith conjunction within two

cuts.

6.3.3 Complexity of t!+o

The transformed clause produced by to is equivalent to the transformed clause pro-

duced by t!+o given the transformed clause (without the newly added literal) and the

new literal to be added. More precisely, suppose C : H  B and C1 : H  B[fLg

where L is a literal. We have to(C1) = t!+o(to(C); L). Therefore, the query produced

by the incremental cut-and-once transformation has the same execution complex-

ity as that of the once transformation, although they have di�erent transformation

complexities.
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6.4 Conclusion

The results on computational complexity can be summarized as follows:

� As the transformation time itself does not depend on the size of the data set,

for large data sets it will become negligible compared to the execution time

gained by performing the transformation.

� Concerning the evaluation of clauses, the eÆciency gain the transformations

yield depends on the size of the SLD tree of the original and transformed

clause. This size is a�ected by:

{ the non-determinacy of the literals in the clause, which measures the

branching factor in the SLD tree

{ the number of examples, which determines the number of head variable

substitutions for the clauses

{ the depth of the SLD tree, which can be considered proportional to the

length of the clause for the untransformed query; for the transformed

query it is proportional to the length of the longest conjunction inside a

once construct in the body of the transformed clause.

This yields four parameters that in
uence eÆciency gain: non-determinacy,

number of examples, length of clauses, and the complexity of the most complex

subgoal (i.e. the longest conjunction inside a once construct in the body of the

transformed clause). A maximal gain can be expected when the �rst three param-

eters have large values and the last one is small.

Although the execution time of a transformed query is still (theoretically)

exponential in complexity. Practically, the gain in performance is signi�cant because
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we are reducing the execution complexity from large exponential to small exponen-

tial. Readers can refer to (Costa et al., 2002) for details on experimental results on

the gain in execution time of a transformed query.

The complexity of applying to is O(vN3) while that of t!+o is O(nvN2).

Since the number of independent groups of literals (i.e. Si) cannot be more than

the number of literals in the body of a clause, n � N . In practice, n = N is

a very (rare) extreme case, which happens only when each literal in the body of a

clause is independent of all other literals. Theoretically speaking, the transformation

complexity of t!+o is a slight improvement over that of to. The practical improvement

in CPU time is not going to be obvious since the respective complexities of to and

t!+o are still too close. It is even less of a concern given the performance of the

machines available nowadays, except, perhaps, if one has to learn a theory with a

lot of clauses in which each clause has a lot of literals in the body.

In conclusion, we have presented three transformation algorithms: t!, to, and

t!+o. t! does not take into account more re�ned details of dependency amoung literals

inside a conjunction between two cuts while the other two transformation do. The

transformation complexity of t!+o is only theoretically better than that of to while

they have the same query execution complexities.
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Chapter 7

Related Work

There are two major approaches in ILP. First, in a top-down ILP approach, one

searches the hypothesis space from general to speci�c. Second, in a bottom-up

ILP approach, one searches the hypothesis space from speci�c to general. Combin-

ing both approaches has been proven to produce ILP systems that are better than

traditional ILP systems from each approach alone in many di�erent domains. In-

tegrated ILP systems have been developed for two tasks: learning semantic parsers

given a set of natural language sentences using Chillin (Zelle & Mooney, 1994), and

mining relational data represented as Prolog facts using Aleph (Zelezny et al.,

2002). Each of these earlier integrated ILP systems has its own shortcomings.

7.1 The Strength and Weakness of Chillin

The task of inducing semantic parsers requires learning two type of features of a

parse state for disambiguation: its functional structure and contextual informa-

tion. Chillin, an ILP algorithm applied on this task, combines the two traditional
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ILP approaches \sequentially" by �rst constructing the least general generalization

(LGG) of a random pair of examples and then specializing this generalization in a

Foil-like manner. A weakness of traditional top-down ILP algorithm, e.g. Foil,

is that it cannot learn clauses with function terms. Therefore, it is not suitable for

capturing functional structures of parse states. A strength of Chillin is that it

can learn clauses with function terms (by constructing an initial generalization of

a random pair of positive examples which is their LGG in the �rst step of learning

a clause), which makes it possible to capture functional structures in parse states.

However, a weakness of Chillin is that important contextual information, e.g. the

presence of a certain word in the input bu�er of a parse state, can be lost in the

process of computing the LGG of a random pair of positive examples, making it

diÆcult to learn the context of a parse state for disambiguation.

7.2 Overcoming Limitations of Chillin in Cocktail

The functional structure of a parse state can be more e�ectively learned by a bottom-

up ILP approach while the context of a parse state can be more e�ectively learned

by a top-down ILP approach. The functional structure of a parse state can be

more e�ectively learned by a bottom-up ILP approach because the LGG of a pair

of positive examples with function terms produces a generalization of these positive

examples as well as a generalization of the function terms embedded in them. The

context of a parse state can be more e�ectively learned by a top-down ILP approach

through the learning of literals with constants that appear in a parse state (a.k.a.

\theory constants" (Quinlan, 1996)). One can learn both parsing features \individ-

ually" by applying the most suitable ILP approach for learning each type of parsing
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features. Cocktail (Tang & Mooney, 2001) is a new ILP algorithm which combines

1) the LGG operator in Golem (Muggleton & Feng, 1990), and 2) m-Foil (Lavrac

& Dzeroski, 1994b) in a coherent mechanism for learning both types of features in

a parse state. Di�erent combinations of parsing features learned produce theories

of varying sizes. Cocktail chooses the best combination of parsing features by se-

lecting the theory with the smallest size, which is a heuristic based on the principle

of minimum description length (Rissanen, 1978). Experimental results on learning

semantic parsers for two databases demonstrated that Cocktail performed better

than the previous best method for this task which is Chillin.

7.3 The Strength and Weakness of m-Foil

A strength of a top-down approach like m-Foil is that the generation of literals

is directed by the heuristic search process itself: only the set of literals that make

re�nements to clauses in the search beam are generated. Clauses with insuÆcient

heuristic value are discarded, saving the need to generate literals for them.

However, a major weakness of the top-down approach is that the enumeration

of all possible combination of variables generates many more literals than necessary;

some literals generated by the algorithm are not even guaranteed to cover one posi-

tive example, which wastes CPU time in testing them. Even worse, the complexity

of enumerating all such combinations is exponential w.r.t. the arity of the predicates

(Pazzani & Kibler, 1992). The complexity issue did not show up in our experimental

results outlined in Section 5.5.3 because the average arity of the background pred-

icates in our domain was only two. In domains with a signi�cantly higher average

arity of the background predicates, a traditional top-down approach will become
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very ineÆcient in learning.

7.4 The Strength and Weakness of Aleph

The Aleph ILP system is based on a theory in ILP called inverse entailment (Mug-

gleton, 1995) which learns a hypothesis by �rst constructing the most speci�c hy-

pothesis covering a seed example (a.k.a bottom clause) and then looking for a gener-

alization of the bottom clause that produces a good value from the search heuristic.

A strength of such an approach is that a literal is created using a ground atom

describing a known positive example. The advantages are: 1) specializing a clause

using this literal results in a clause that is guaranteed to cover at least the seed

example, and 2) the set of literals generated are constrained to those that satisfy

1), which substantially reduces the complexity of generating literals.

The size of the subsumption lattice, i.e. the hypothesis space, bounded by

the bottom clause is two raised to the power of the size of the bottom clause. A

problem with Aleph is that the size of the bottom clause constructed by it is

exponential in complexity (Muggleton, 1995). When mining relational data with a

large number of background facts as in link discovery, the bottom clause constructed

by Aleph becomes very large, making the size of the hypothesis space intractably

large. Learning becomes very ineÆcient as one has to search such a huge space of

hypotheses.
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7.5 Overcoming Limitations of Aleph and m-Foil in

Beth

Beth is a new integrated ILP algorithm for relational data mining. By using a

top-down approach to heuristically guide the construction of generalizations of a

bottom clause, Beth combines the strength of both approaches. More precisely,

we no longer build the bottom clause using a random seed example before we start

searching for a good clause. Instead, after a seed example is chosen, one generates

literals in a top-down fashion, i.e. guided by heuristic search, except that the literals

generated are constrained to those that cover the seed example. Learning patterns

for detecting potential terrorist activity is a current challenge problem for relational

data mining. Experimental results on arti�cial data for this task with over half

a million facts show that Beth is signi�cantly more eÆcient at discovering such

patterns than two leading ILP systems: Aleph and m-Foil.
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Chapter 8

Future Work

8.1 Caching Ground Atoms in Beth

One shortcoming of an approach like Beth is that searching a smaller hypothesis

space comes with a cost of spending more time on constructing each hypothesis.

This is primarily because of the need to �nd ground atoms satisfying all re�nement

constraints during the construction of a hypothesis.

In the entire course of learning a theory, the same ground atom satisfying

all the re�nement constraints can be used in making di�erent literals to di�erent

clauses in the search beam. For example, suppose we have two clauses in the current

search beam

C1 = t(A) f(A;B)

C2 = t(A) h(A;B)

where t(a)  f(a; b) and t(a)  h(a; c) are the cached proofs of C1 and C2 re-

spectively. Obviously, at this point, the current building bottom clause is t(a)  
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f(a; b); h(a; c). Further suppose that both C1 and C2 are still covering negative ex-

amples. We don't care how C1 is going to be specialized. However, we do know that

one obvious way to specialize C2 is by using the ground atom f(a; b) to make the

literal f(A;C). Thus, the ground atom f(a; b) is used in making the literal f(A;B)

for C1 and the literal f(A;C) for C2, although at di�erent times. Therefore, it

might be possible that caching ground atoms that satisfy all re�nement constraints

in the course of making literals can substantially improve the rate of constructing

and testing hypotheses as the same ground atom needs only to be fetched in the

cache instead of from the entire set of background facts. The body of the building

bottom clause can serve exactly this purpose because it contains exactly the set of

ground atoms satisfying all re�nement constraints when making literals.

The actual gain in performance, if any, is going to depend on the actual

di�erence between the \table look-up" time given the entire set of background facts

and that of given only those ground atoms in the body of the building bottom clause.

It remains an open question whether it is possible to �nd an approach such that:

1. it dynamically and selectively searches a smaller but relevant portion of the

hypothesis space

2. it maintains a high rate of constructing and testing hypotheses

8.2 Boosting Beth Using Decorate

Ensemble methods like bagging and boosting that combine the decisions of multi-

ple hypotheses are some of the strongest existing machine learning methods. The

diversity of the members of an ensemble is known to be an important factor in
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determining its generalization error. Decorate is a new method for generating

ensembles that directly constructs diverse hypotheses using additional arti�cially-

constructed training examples (Melville & Mooney, 2003). The technique is a sim-

ple, general meta-learner that can use any strong learner as a base classi�er to build

diverse committees. Experimental results using decision-tree induction as a base

learner demonstrate that this approach consistently achieves higher predictive ac-

curacy than both the base classi�er and bagging (whereas boosting can occasionally

decrease accuracy), and also obtains higher accuracy than boosting early in the

learning curve when training data is limited. A future work is to use Beth as a

base learner in Decorate to learn a diversi�ed set of hypotheses for achieving even

better predictive accuracies in existing or new problems in the EELD program or

other ILP problems in a di�erent domain.

8.3 Applying Beth to Other ILP Problems

The problem we attempted was classifying if a murder event is \murder-for-hire".

This problem has an average arity of two; the average arity of a background pred-

icate in the set of background knowledge is two. Another characteristic of this

problem is that it has a lot of background facts. In fact, it had around 568k facts

in the background knowledge, which is an unprecedented amount of facts in an ILP

problem. Beth was demonstrated to outperform leading ILP methods signi�cantly

in terms of computational eÆciency in such a problem.

Categorizing murder events is only one particular challenge problem in the

EELD program. Another problem that has been previously attempted was clas-

sifying if two di�erent events in a nuclear smuggling incident are linked (Mooney,
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Melville, Tang, Shavlik, de Castro Dutra, Page, & Costa, 2002). This problem has

a much higher average arity than two since there were lots of predicates in the back-

ground knowledge with an arity as high as eleven such as the following predicate:

lk_person_person(person_person_id_3,

person_id_18,

person_id_20,

event_id_22,

relation_id_12,

``Politov recruited Yevseev to steal the uranium'',

motive_number_3,

'?','?','?','?').

This predicate describes links between two people associated, 'person id 18' and

'person id 20', where each distinct person is identi�ed by a unique ID number;

the type of association between them is denoted by the \relation number" (e.g.

relation id 12 denotes the relation type \Recruiter"). There are other arguments

in the predicates like a memo describing the event in which the people listed were

involved, but we'll not dive into all the details here. It would be interesting to see how

well Beth performs in problems with lots of these high-arity ground literals in the

background knowledge. Problems like carcinogenesis in bioinformatics have a much

smaller amount of background facts (around 24k) than a problem like categorizing

murder events in link discovery. Beth is designed with handling lots of background

facts in mind, it is, however, still interesting to see if and/or how much it produces

gain in computational eÆciency in problems with less background facts than that

of link discovery.
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Chapter 9

Conclusion

Two major approahces have been developed in the past decade of research in Induc-

tive Logic Programming (ILP): 1) Top-down which searches the hypothesis space

from general to speci�c, and 2) Bottom-up which searches the hypothesis space

from speci�c to general. Integrating both approaches have been demonstrated to

produce ILP systems that are more e�ective in many di�erent domains. Integrated

ILP systems have been developed for two tasks: learning semantic parsers given a

set of natural language sentences using Chillin (Zelle & Mooney, 1994), and mining

relational data represented as Prolog facts using Progol (Muggleton, 1995).

The task of inducing semantic parsers requires learning two type of features

of a parse state for disambiguation: its functional structure and contextual infor-

mation. A bottom-up ILP approach is more e�ective for learning the former while

a top-down approach for the latter. Chillin combined both ILP approaches \se-

quentially" in the sense that it applies a bottom-up approach to construct an initial

generalization of examples as the �rst step in learning a hypothesis followed by a top-
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down approach which specializes this generalization in a Foil-like manner. While

Chillin was able to learn functional structures of a parse state, largely in its �rst

step of applying bottom-up generalization, it was lacking with respect to learning

contextual information like the presence or absence of a certain word or phrase in

the input bu�er of a parse state. Cocktail, a new ILP algorithm, overcomes the

shortcomings of Chillin by using both ILP approaches in learning \individually"

(in the sense that each approach is applied independent of the other) and choosing

the best combination of parsing features learned from each ILP approach. Exper-

imental results on learning semantic parsers for two databases demonstrated that

Cocktail performed better than the previous best method for this task Chillin.

Relational data mining involves learning relational knowledge embedded in a

huge amount of data in a relational database. The Progol andAleph ILP systems

are based on a theory in ILP called inverse entailment which learns a hypothesis

by �rst constructing the most speci�c hypothesis covering a seed example (a.k.a

bottom clause) and then looking for a generalization of the bottom clause that

produces a good value from the search heuristic. When mining relational data

with a large number of background facts, the hypothesis space bounded by the

bottom clause becomes intractably large, making learning very ineÆcient. Beth is

a new integrated ILP algorithm for relational data mining. A top-down approach

heuristically guides the construction of clauses without building a bottom clause;

however, it wastes time exploring clauses that cover no positive examples. By using

a top-down approach to heuristically guide the construction of generalizations of a

bottom clause, Beth combines the strength of both approaches. Learning patterns

for detecting potential terrorist activity is a current challenge problem for relational
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data mining. Experimental results on arti�cial data for this task with over half

a million facts show that Beth is signi�cantly more eÆcient at discovering such

patterns than two leading ILP systems: Aleph and m-Foil.

In conclusion, we have presented two more advanced integrated ILP systems

than earlier ILP hybrids like Chillin and Aleph: Cocktail and Beth. The

former was applied to the task of learning semantic parsers, which produced better

accuracy in parsing than the previous best approachChillin. The latter was applied

to mining relational data for detecting potential terrorist activity, which was shown

to give better eÆciency in mining such patterns than the previous best approach

Aleph as well as another leading top-down approach m-Foil. Both ILP systems

were demonstrated to perform better than previous leading ILP systems in each

domain.
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Appendix A

Screenshots of A Natural

Language Interface
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Figure A.1: A screenshot of a user posting a question to our learned Web-based NL
Database Interface
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Figure A.2: A screenshot of answers generated for a user's question by our learned
Web-based NL Database Interface
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Appendix B

The U.S. Geography Corpus

A sample of 880 sentences and associated queries expressed in Prolog of the U.S.

Geography corpus are shown here. The sentences are printed out as unquoted Prolog

literals. So, there is no capitalization and the �nal punctuation is separated from

the last word of the sentence. The full set of data can be downloaded on the Web

via ftp://ftp.cs.utexas.edu/pub/mooney/nl-ilp-data/geosystem/geoqueries880.

Here is a sample set of sentences from the U.S. Geography corpus:

Sentence:

give me the cities in virginia .

Logical Query:

answer(A, (city(A),loc(A,B),const(B,stateid(virginia)))).

Sentence:

what are the high points of states surrounding mississippi ?

Logical Query:
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answer(A, (high_point(B,A),loc(A,B),state(B),next_to(B,C),

const(C,stateid(mississippi)))).

Sentence:

name the rivers in arkansas .

Logical Query:

answer(A, (river(A),loc(A,B),const(B,stateid(arkansas)))).

Sentence:

name all the rivers in colorado .

Logical Query:

answer(A, (river(A),loc(A,B),const(B,stateid(colorado)))).

Sentence:

can you tell me the capital of texas ?

Logical Query:

answer(A, (capital(A),loc(A,B),const(B,stateid(texas)))).

Sentence:

could you tell me what is the highest point in the state

of oregon ?

Logical Query:

answer(A, highest(A,(place(A),loc(A,B),state(B),

const(B,stateid(oregon))))).
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Sentence:

give me all the states of usa ?

Logical Query:

answer(A, (state(A),loc(A,B),const(B,countryid(usa)))).

Sentence:

give me the cities in texas ?

Logical Query:

answer(A, (city(A),loc(A,B),const(B,stateid(texas)))).

Sentence:

give me the cities in usa ?

Logical Query:

answer(A, (city(A),loc(A,B),const(B,countryid(usa)))).

Sentence:

give me the cities in virginia ?

Logical Query:

answer(A, (city(A),loc(A,B),const(B,stateid(virginia)))).

Sentence:

give me the cities which are in texas ?

Logical Query:
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answer(A, (city(A),loc(A,B),const(B,stateid(texas)))).

Sentence:

give me the lakes in california ?

Logical Query:

answer(A, (lake(A),loc(A,B),const(B,stateid(california)))).

Sentence:

give me the largest state ?

Logical Query:

answer(A, largest(A,state(A))).

Sentence:

give me the longest river that passes through the us ?

Logical Query:

answer(A, longest(A,(river(A),traverse(A,B),

const(B,countryid(usa))))).

Sentence:

give me the states that border utah ?

Logical Query:

answer(A, (state(A),next_to(A,B),const(B,stateid(utah)))).

Sentence:
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how big is alaska ?

Logical Query:

answer(A, (size(B,A),const(B,stateid(alaska)))).

Sentence:

how big is massachusetts ?

Logical Query:

answer(A, (size(B,A),const(B,stateid(massachusetts)))).

Sentence:

how big is new mexico ?

Logical Query:

answer(A, (size(B,A),const(B,stateid(new mexico)))).

Sentence:

how big is north dakota ?

Logical Query:

answer(A, (size(B,A),const(B,stateid(north dakota)))).

Sentence:

how big is texas ?

Logical Query:

answer(A, (size(B,A),const(B,stateid(texas)))).
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Sentence:

how big is the city of new york ?

Logical Query:

answer(A, (size(B,A),const(B,cityid(new york',C)))).

Sentence:

how high are the highest points of all the states ?

Logical Query:

answer(A, (elevation(B,A),highest(B,(place(B),loc(B,C),

state(C))))).

Sentence:

how high is guadalupe peak ?

Logical Query:

answer(A, (elevation(B,A),const(B,placeid(guadalupe peak)))).

Sentence:

how high is mount mckinley ?

Logical Query:

answer(A, (elevation(B,A),const(B,placeid(mount mckinley)))).
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Appendix C

The Job Posting Corpus

A sample of 640 sentences and associated queries expressed in Prolog of the job-

posting corpus are shown here. The sentences are printed out as unquoted Prolog

literals. So, there is no capitalization and the �nal punctuation is separated from

the last word of the sentence. The full set of data can be downloaded on the Web

via ftp://ftp.cs.utexas.edu/pub/mooney/nl-ilp-data/jobsystem/jobqueries640.

Here is a sample of sentences from the corpus:

Sentence:

what jobs are there for web developer who know vb ?

Logical Query:

answer(A, (job(A),title(A,B),const(B,Web Developer),language(A,C),

const(C,vb))).

Sentence:

what systems analyst jobs are there in austin ?
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Logical Query:

answer(A, (title(A,W),const(W,Systems Analyst),job(A),

loc(A,P),const(P,austin)))).

Sentence:

what jobs pay 60000 are located in austin and require a bscs ?

Logical Query:

answer(A, (job(A),salary_greater_than(A,60000,year),loc(A,C),

const(C,austin),req_deg(A,B),const(B,BSCS)))).

Sentence:

what jobs pay 60000 are located in austin and require a degree ?

Logical Query:

answer(A, (job(A),salary_greater_than(A,60000,year),loc(A,C),

const(C,austin),req_deg(A)))).

Sentence:

what jobs are there for pascal programers who dont know vb ?

Logical Query:

answer(A, (job(A),language(A,P),const(P,pascal),

\+ ((language(A,C),const(C,vb)))))).

Sentence:

which jobs in austin offer for students fresh out of college
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in networking ?

Logical Query:

answer(A, (job(A),loc(A,D),const(D,austin),\+req_exp(A),

area(A,C),const(C,networking)))).

Sentence:

which jobs in houston offer over 50000 in graphics ?

Logical Query:

answer(A, (job(A),loc(A,C),const(C,houston),

salary_greater_than(A,50000,year),

area(A,B),const(B,graphics)))).

Sentence:

which jobs at trilogy deal with vb ?

Logical Query:

answer(A, (job(A),company(A,C),const(C,Trilogy),language(A,B),

const(B,vb)))).

Sentence:

which jobs are for bsee majors with at least 5 years

experience in windows nt ?

Logical Query:

answer(A, (job(A),req_deg(A,B),const(B,BSEE),req_exp(A,C),

const(C,5),platform(A,D),const(D,windows nt)))).
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Sentence:

what are the positions within hp that pay 40000 per year ?

Logical Query:

answer(A, (job(A),company(A,C),const(C,HP),

salary_greater_than(A,40000,year)))).

Sentence:

what are the positions within dell that requires bscs ?

Logical Query:

answer(A, (job(A),company(A,C),const(C,Dell),

req_deg(A,S),const(S,BSCS)))).

Sentence:

what jobs in boston have openings for a vb programmer ?

Logical Query:

answer(A, (job(A),loc(A,C),const(C,boston),language(A,L),

const(L,vb)))).
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Appendix D

Sample Theories Learned on

Classifying Murder-for-hire

Events

A couple of sample theories learned by each of the ILP systems: Beth, m-Foil,

and Aleph are shown here. In each theory shown, each rule is preceeded by two

numbers: 1) the number of positive examples covered by the rule, and 2) the number

of negative examples covered by it. For example, the following rule:

[Rule 1] 32-1:

murder_for_hire(A) :-

perpetrator(A,B),

deliberateActors(C,B),

murder(A),

toPossessor(D,B),
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payer(D,E),

recipientOfinfo(F,E),

perpetrator(G,B),

eventOccursAt(G,H),

geographicalSubRegions(I,H),

operatesinRegion(J,I).

covers thirty two positive examples and one negative example.

D.1 Sample Theories Learned By Beth

This is a theory learned by Beth:

[Rule 1] 32-1:

murder_for_hire(A) :-

perpetrator(A,B),

deliberateActors(C,B),

murder(A),

toPossessor(D,B),

payer(D,E),

recipientOfinfo(F,E),

perpetrator(G,B),

eventOccursAt(G,H),

geographicalSubRegions(I,H),

operatesinRegion(J,I).
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[Rule 2] 19-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

ceo(C,B).

[Rule 3] 11-0:

murder_for_hire(A) :-

murder(A),

subEvents(B,A),

perpetrator(B,C),

recipientOfinfo(D,C),

hasMembers(E,C),

orgHitman(E,F).

[Rule 4] 31-2:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

toPossessor(C,B),

senderOfinfo(D,B),

payer(C,E),

deliberateActors(F,E),

perpetrator(G,B),
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eventOccursAt(A,H),

geographicalSubRegions(I,H),

operatesinRegion(J,I).

[Rule 5] 11-0:

murder_for_hire(A) :-

subEvents(B,A),

subEvents(C,B).

[Rule 6] 30-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

objectsObserved(C,B),

employees(D,B).

[Rule 7] 44-2:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

socialParticipants(C,B),

toPossessor(D,B),

payer(D,E),

socialParticipants(F,E),

144



payer(G,E),

toPossessor(G,H),

eventOccursAt(A,I),

geographicalSubRegions(J,I).

[Rule 8] 24-0:

murder_for_hire(A) :-

perpetrator(A,B),

hitman(C,B),

murder(A).

[Rule 9] 25-0:

murder_for_hire(A) :-

murder(A),

subEvents(B,A),

perpetrator(B,C),

crimeVictim(B,D),

employees(E,D).

[Rule 10] 4-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

senderOfinfo(C,B),
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hasMembers(D,B).

[Rule 11] 1-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

orgHitman(C,B).

[Rule 12] 16-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

senderOfinfo(C,B),

recipientOfinfo(D,B),

socialParticipants(E,B),

iteillocutionaryForce(D,F),

recipientOfinfo(C,G),

hasMembers(H,G),

mafiyaGroup_Russian(H).

[Rule 13] 9-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),
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orgHitman(C,B),

deliberateActors(D,B).

[Rule 14] 10-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

toPossessor(C,B),

senderOfinfo(D,B),

hasMembers(E,B),

orgHitman(E,F).

[Rule 15] 3-0:

murder_for_hire(A) :-

perpetrator(A,B),

orgHitman(C,B),

murder(A),

orgMiddleman(C,D),

deliberateActors(E,D).

[Rule 16] 12-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),
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senderOfinfo(C,B),

eMailSending(C),

iteillocutionaryForce(C,D),

recipientOfinfo(C,E),

crimeVictim(A,F),

hasMembers(G,F).

[Rule 17] 6-0:

murder_for_hire(A) :-

subEvents(B,A),

perpetrator(B,C),

hasMembers(D,C),

hasMembers(D,E),

hitman(F,E).

[Rule 18] 14-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

senderOfinfo(C,D),

toPossessor(E,D),

hasMembers(F,D).
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[Rule 19] 10-0:

murder_for_hire(A) :-

subEvents(B,A),

perpetrator(B,C),

hasMembers(D,C),

mafiyaGroup_Russian(D),

hasMembers(D,E),

senderOfinfo(F,E),

orgMiddleman(D,G).

[Rule 20] 9-3:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

senderOfinfo(C,D),

toPossessor(E,D),

socialParticipants(F,D),

socialParticipants(F,G),

payer(E,G),

eventOccursAt(A,H),

geographicalSubRegions(I,H).

This is another theory learned by Beth:

[Rule 1] 12-0:
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murder_for_hire(A) :-

murder(A),

subEvents(B,A),

perpetrator(B,C),

deliberateActors(D,C),

perpetrator(E,C),

observing(E),

recipientOfinfo(F,C).

[Rule 2] 32-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

objectsObserved(C,B),

employees(D,B).

[Rule 3] 25-0:

murder_for_hire(A) :-

perpetrator(A,B),

hitman(C,B),

murder(A).

[Rule 4] 8-0:

murder_for_hire(A) :-
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perpetrator(A,B),

deliberateActors(C,B),

murder(A),

orgHitman(D,B).

[Rule 5] 11-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

iteillocutionaryForce(C,D),

hasMembers(E,B),

mafiyaGroup_Russian(E),

orgHitman(E,F).

[Rule 6] 21-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

deliberateActors(C,B),

senderOfinfo(D,B),

recipientOfinfo(D,E),

crimeVictim(A,F),

hasMembers(G,F).
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[Rule 7] 4-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

senderOfinfo(C,B),

eMailSending(C),

recipientOfinfo(C,D),

crimeVictim(E,D).

[Rule 8] 4-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

senderOfinfo(C,B),

hasMembers(D,B).

[Rule 9] 18-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

ceo(C,B).

[Rule 10] 44-2:
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murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

toPossessor(C,B),

payer(C,D),

recipientOfinfo(E,D),

eMailSending(E),

recipientOfinfo(F,D),

senderOfinfo(F,G),

perpetrator(H,B),

eventOccursAt(A,I).

[Rule 11] 4-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

senderOfinfo(C,D),

orgMiddleman(E,D).

[Rule 12] 5-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),
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recipientOfinfo(C,B),

subEvents(D,A),

perpetrator(D,E),

hasMembers(F,E).

[Rule 13] 4-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

deliberateActors(C,B),

payer(D,B).

[Rule 14] 2-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

deliberateActors(C,B),

subEvents(D,C).

[Rule 15] 22-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

deliberateActors(C,B),
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perpetrator(D,B),

objectsObserved(D,E),

hasMembers(F,E),

crimeVictim(A,E).

[Rule 16] 5-0:

murder_for_hire(A) :-

perpetrator(A,B),

orgHitman(C,B),

murder(A),

orgMiddleman(C,D),

orgHitman(C,E),

agentPhoneNumber(B,F),

receiverNumber(G,F).

[Rule 17] 26-1:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

socialParticipants(C,B),

toPossessor(D,B),

perpetrator(E,B),

objectsObserved(E,F),

crimeVictim(A,F),
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socialParticipants(C,G),

recipientOfinfo(H,G),

senderOfinfo(H,I).

[Rule 18] 1-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

orgHitman(C,B).

[Rule 19] 6-1:

murder_for_hire(A) :-

perpetrator(A,B),

orgHitman(C,B),

murder(A),

senderOfinfo(D,B),

recipientOfinfo(E,B),

senderOfinfo(E,F),

recipientOfinfo(G,F),

iteillocutionaryForce(E,H),

iteillocutionaryForce(I,H),

dateOfEvent(G,J).

[Rule 20] 15-0:

156



murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

senderOfinfo(C,D),

toPossessor(E,D),

hasMembers(F,D).

[Rule 21] 20-5:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

senderOfinfo(C,D),

socialParticipants(E,D),

eMailSending(C),

socialParticipants(E,F),

recipientOfinfo(G,D),

iteillocutionaryForce(G,H),

eventOccursAt(A,I).

[Rule 22] 1-0:

murder_for_hire(A) :-

murder(A),
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crimeVictim(A,B),

orgMiddleman(C,B).

[Rule 23] 7-0:

murder_for_hire(A) :-

subEvents(B,A),

premeditatedMurder(B),

perpetrator(B,C),

agentPhoneNumber(C,D),

receiverNumber(E,D),

hasMembers(F,C),

mafiyaGroup_Russian(F),

orgMiddleman(F,G).

D.2 Sample Theories Learned By m-Foil

This is a theory learned by m-Foil:

[Rule 1] 11-0:

murder_for_hire(A) :-

subEvents(B,A),

subEvents(C,B),

perpetrator(B,D),

eventOccursAt(A,E),

geographicalSubRegions(F,E),

geographicalSubRegions(F,G),
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eventOccursAt(A,G),

deviceTypeused(A,H),

deviceTypeused(A,I),

murder(A).

[Rule 2] 24-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

hitman(C,B).

[Rule 3] 13-0:

murder_for_hire(A) :-

murder(A),

subEvents(B,A),

perpetrator(B,C),

deliberateActors(D,C),

perpetrator(B,E),

deliberateActors(D,F),

hasMembers(G,F),

hasMembers(G,H),

mafiyaGroup_Russian(G),

eventOccursAt(A,I).
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[Rule 4] 19-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

ceo(C,B),

hasMembers(D,B),

employees(C,E),

crimeVictim(A,F),

ceo(C,F),

eventOccursAt(A,G),

eventOccursAt(A,H),

geographicalSubRegions(I,H).

[Rule 5] 9-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

deliberateActors(C,B),

orgHitman(D,B),

mafiyaGroup_Russian(D),

orgHitman(D,E),

hasMembers(D,F),

eventOccursAt(A,G),

eventOccursAt(A,H),
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geographicalSubRegions(I,G).

[Rule 6] 43-7:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

deliberateActors(C,B),

perpetrator(A,D),

eventOccursAt(A,E),

geographicalSubRegions(F,E),

geographicalSubRegions(G,E),

eventOccursAt(A,H),

deviceTypeused(A,I),

deviceTypeused(A,J).

[Rule 7] 3-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

orgHitman(C,B),

orgMiddleman(C,D),

deliberateActors(E,D),

hasMembers(C,B),

hasMembers(C,F),
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mafiyaGroup_Russian(C),

orgHitman(C,G),

eventOccursAt(A,H).

[Rule 8] 4-2:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

deliberateActors(C,B),

eventOccursAt(A,D),

geographicalSubRegions(E,D),

geographicalSubRegions(F,D),

eventOccursAt(A,G),

operatesinRegion(H,E),

hasMembers(H,I),

crimeVictim(J,B).

[Rule 9] 1-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

orgHitman(C,B),

person(B),

toPossessor(D,B),
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paying(D),

perpetrator(A,E),

orgHitman(C,F),

deviceTypeused(A,G),

deviceTypeused(H,G).

[Rule 10] 30-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

objectsObserved(C,B),

employees(D,B),

hasMembers(E,B),

employees(E,B),

hasMembers(F,D),

objectsObserved(G,B),

observing(G),

observing(C).

[Rule 11] 1-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

perpetrator(C,B),
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murder(C),

perpetrator(C,D),

crimeVictim(A,D),

toPossessor(E,B),

senderOfinfo(F,D),

person(D),

person(B).

[Rule 12] 6-1:

murder_for_hire(A) :-

murder(A),

subEvents(B,A),

perpetrator(B,C),

orgHitman(D,C),

orgHitman(D,E),

hasMembers(D,E),

hasMembers(D,F),

eventOccursAt(A,G),

eventOccursAt(A,H),

geographicalSubRegions(I,G).

[Rule 13] 4-0:

murder_for_hire(A) :-

murder(A),
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perpetrator(A,B),

recipientOfinfo(C,B),

hasMembers(D,B),

hasMembers(D,E),

deliberateActors(F,E),

orgMiddleman(D,E),

orgMiddleman(G,E),

orgHitman(G,H),

mafiyaGroup_Russian(G).

[Rule 14] 1-2:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

crimeVictim(C,B),

eventOccursAt(A,D),

eventOccursAt(A,E),

geographicalSubRegions(F,D),

geographicalSubRegions(G,D),

operatesinRegion(H,F),

hasMembers(I,H),

hasMembers(J,H).

[Rule 15] 10-2:
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murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

socialParticipants(C,B),

recipientOfinfo(D,B),

eMailSending(D),

iteillocutionaryForce(D,E),

person(B),

recipientOfinfo(F,B),

perpetrator(G,B),

iteillocutionaryForce(H,E).

[Rule 16] 23-2:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

hasMembers(D,B),

hasMembers(D,E),

mafiyaGroup_Russian(D),

iteillocutionaryForce(C,F),

iteillocutionaryForce(C,G),

eventOccursAt(A,H),

eventOccursAt(A,I).
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[Rule 17] 4-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

senderOfinfo(C,B),

eMailSending(C),

hasMembers(D,B),

orgHitman(D,E),

hasMembers(D,E),

perpetrator(A,F),

person(F),

person(E).

[Rule 18] 1-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

senderOfinfo(C,B),

iteillocutionaryForce(C,D),

eMailSending(C),

recipientOfinfo(C,E),

employees(F,E),

hasMembers(G,E),
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employees(G,E),

hasMembers(H,F).

[Rule 19] 24-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

senderOfinfo(C,B),

recipientOfinfo(C,D),

deliberateActors(E,D),

hasMembers(F,D),

hasMembers(F,G),

deliberateActors(E,G),

deviceTypeused(A,H),

deviceTypeused(A,I).

[Rule 20] 8-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

toPossessor(C,B),

recipientOfinfo(D,B),

eMailSending(D),

perpetrator(E,B),
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objectsObserved(E,F),

crimeVictim(A,F),

objectsObserved(G,F),

observing(G).

[Rule 21] 14-6:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

senderOfinfo(C,B),

eMailSending(C),

iteillocutionaryForce(C,D),

recipientOfinfo(C,E),

perpetrator(A,F),

person(E),

person(B),

recipientOfinfo(C,G).

[Rule 22] 2-0:

murder_for_hire(A) :-

subEvents(B,A),

perpetrator(B,C),

hasMembers(D,C),

hasMembers(D,E),
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mafiyaGroup_Russian(D),

orgMiddleman(D,F),

operatesinRegion(D,G),

geographicalSubRegions(G,H),

eventOccursAt(A,H),

geographicalSubRegions(I,H).

[Rule 23] 21-6:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

eMailSending(C),

senderOfinfo(C,D),

person(B),

recipientOfinfo(E,D),

iteillocutionaryForce(E,F),

perpetrator(A,G),

person(G).

This is another theory learned by m-Foil:

[Rule 1] 13-0:

murder_for_hire(A) :-

subEvents(B,A),

subEvents(C,B),
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perpetrator(B,D),

eventOccursAt(A,E),

geographicalSubRegions(F,E),

geographicalSubRegions(F,G),

eventOccursAt(A,G),

deviceTypeused(A,H),

deviceTypeused(A,I),

murder(A).

[Rule 2] 25-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

hitman(C,B).

[Rule 3] 18-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

ceo(C,B).

[Rule 4] 46-6:

murder_for_hire(A) :-

murder(A),
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perpetrator(A,B),

deliberateActors(C,B),

perpetrator(A,D),

eventOccursAt(A,E),

geographicalSubRegions(F,E),

geographicalSubRegions(G,E),

eventOccursAt(A,H),

deviceTypeused(A,I),

deviceTypeused(A,J).

[Rule 5] 2-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

deliberateActors(C,B),

person(B),

planningTodoSomething(C),

recipientOfinfo(D,B),

eMailSending(D),

iteillocutionaryForce(D,E),

iteillocutionaryForce(D,F),

perpetrator(A,G).

[Rule 6] 3-1:
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murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

orgHitman(C,B),

orgMiddleman(C,D),

orgHitman(C,E),

hasMembers(C,F),

hasMembers(G,E),

mafiyaGroup_Russian(C),

orgMiddleman(G,H),

eventOccursAt(A,I).

[Rule 7] 1-2:

murder_for_hire(A) :-

perpetrator(A,B),

crimeVictim(C,B),

eventOccursAt(A,D),

eventOccursAt(A,E),

geographicalSubRegions(F,D),

geographicalSubRegions(G,D),

operatesinRegion(H,F),

hasMembers(I,H),

hasMembers(J,H),

industry_Localized(J).
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[Rule 8] 1-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

orgMiddleman(C,B),

perpetrator(A,D),

orgMiddleman(E,B),

mafiyaGroup_Russian(C),

objectsObserved(F,B),

objectsObserved(G,B),

observing(G),

observing(F).

[Rule 9] 1-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

orgHitman(C,B),

person(B),

toPossessor(D,B),

paying(D),

perpetrator(A,E),

orgHitman(C,F),
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deviceTypeused(A,G),

deviceTypeused(H,G).

[Rule 10] 5-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

hasMembers(D,B),

iteillocutionaryForce(C,E),

hasMembers(D,F),

crimeVictim(G,F),

deviceTypeused(A,H),

deviceTypeused(A,I),

eventOccursAt(A,J).

[Rule 11] 32-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

objectsObserved(C,B),

employees(D,B),

hasMembers(E,B),

employees(E,B),

175



hasMembers(F,D),

objectsObserved(G,B),

observing(G),

observing(C).

[Rule 12] 1-0:

murder_for_hire(A) :-

murder(A),

crimeVictim(A,B),

perpetrator(C,B),

murder(C),

perpetrator(C,D),

crimeVictim(A,D),

toPossessor(E,B),

senderOfinfo(F,D),

person(D),

person(B).

[Rule 13] 1-0:

murder_for_hire(A) :-

murder(A),

subEvents(B,A),

perpetrator(B,C),

hasMembers(D,C),
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hasMembers(D,E),

objectsObserved(F,E),

mafiyaGroup_Russian(D),

objectsObserved(F,G),

deliberateActors(H,G),

deliberateActors(I,G).

[Rule 14] 7-1:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

senderOfinfo(C,B),

orgHitman(D,B),

perpetrator(A,E),

orgHitman(F,E),

mafiyaGroup_Russian(D),

person(E),

person(B),

mafiyaGroup_Russian(F).

[Rule 15] 12-7:

murder_for_hire(A) :-

murder(A),

subEvents(B,A),
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subEvents(B,C),

murder(C),

premeditatedMurder(B),

perpetrator(B,D),

perpetrator(A,D),

recipientOfinfo(E,D),

eMailSending(E),

eventOccursAt(A,F).

[Rule 16] 2-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

senderOfinfo(C,B),

hasMembers(D,B),

eMailSending(C),

orgHitman(D,E),

hasMembers(D,E),

perpetrator(A,F),

person(F),

person(E).

[Rule 17] 41-14:

murder_for_hire(A) :-
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murder(A),

perpetrator(A,B),

socialParticipants(C,B),

person(B),

senderOfinfo(D,B),

perpetrator(A,E),

iteillocutionaryForce(D,F),

iteillocutionaryForce(D,G),

meetingTakingPlace(C),

person(E).

[Rule 18] 16-0:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

toPossessor(C,B),

recipientOfinfo(D,B),

perpetrator(E,B),

objectsObserved(E,F),

hasMembers(G,F),

crimeVictim(A,F),

hasMembers(G,H),

dateOfEvent(D,I).
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[Rule 19] 2-0:

murder_for_hire(A) :-

subEvents(B,A),

perpetrator(B,C),

hasMembers(D,C),

hasMembers(D,E),

mafiyaGroup_Russian(D),

orgMiddleman(D,F),

operatesinRegion(D,G),

geographicalSubRegions(G,H),

eventOccursAt(A,H),

geographicalSubRegions(I,H).

[Rule 20] 20-7:

murder_for_hire(A) :-

murder(A),

perpetrator(A,B),

recipientOfinfo(C,B),

eMailSending(C),

senderOfinfo(C,D),

person(B),

recipientOfinfo(E,D),

iteillocutionaryForce(E,F),

perpetrator(A,G),
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person(G).

D.3 Sample Theories Learned By Aleph

This is a theory learned by Aleph:

[Rule 1] 37-1:

ckmurder(A) :-

eventOccursAt(A,B),

perpetrator(A,C),

deliberateActors(D,C),

toPossessor(E,C),

payer(E,F),

agentPhoneNumber(F,G),

receiverNumber(H,G).

[Rule 2] 87-0:

ckmurder(A) :-

eventOccursAt(A,B),

crimeVictim(A,C),

hasMembers(D,C).

[Rule 3] 14-0:

ckmurder(A) :-

eventOccursAt(A,B),

perpetrator(A,C),
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orgHitman(D,C),

agentPhoneNumber(C,E),

receiverNumber(F,E).

[Rule 4] 9-0:

ckmurder(A) :-

eventOccursAt(A,B),

crimeVictim(A,C),

objectsObserved(D,C),

perpetrator(A,E),

socialParticipants(F,E),

socialParticipants(F,G),

hasMembers(H,G),

orgMiddleman(H,I).

[Rule 5] 30-0:

ckmurder(A) :-

eventOccursAt(A,B),

perpetrator(A,C),

toPossessor(D,C),

senderOfinfo(E,C),

recipientOfinfo(E,F),

deliberateActors(G,F),

dateOfEvent(E,H),
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dateOfEvent(I,H),

eMailSending(I).

[Rule 6] 4-0-

ckmurder(A) :-

eventOccursAt(A,B),

crimeVictim(A,C),

toPossessor(D,C),

payer(D,E),

hasMembers(F,E),

perpetrator(A,G),

toPossessor(H,G).

This is another theory learned by Aleph:

[Rule 1] 71-0:

ckmurder(A) :-

eventOccursAt(A,B),

eventOccursAt(C,B),

subEvents(D,C),

perpetrator(D,E),

socialParticipants(F,E),

crimeVictim(A,G),

hasMembers(H,G).

[Rule 2] 2-0:
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ckmurder(A) :-

eventOccursAt(A,B),

eventOccursAt(C,B),

subEvents(D,C),

subEvents(E,D),

crimeVictim(D,F),

senderOfinfo(G,F),

perpetrator(A,H),

toPossessor(I,H).

[Rule 3] 3-0:

ckmurder(A) :-

eventOccursAt(A,B),

eventOccursAt(C,B),

subEvents(D,C),

subEvents(E,D),

crimeVictim(D,F),

hasMembers(G,F),

orgMiddleman(G,H),

perpetrator(A,I),

toPossessor(J,I).

[Rule 4] 12-0:

ckmurder(A) :-
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eventOccursAt(A,B),

eventOccursAt(C,B),

subEvents(D,C),

perpetrator(D,E),

employees(F,E),

perpetrator(A,G),

hasMembers(H,G),

orgHitman(H,I),

socialParticipants(J,I).

[Rule 5] 8-0:

ckmurder(A) :-

eventOccursAt(A,B),

eventOccursAt(C,B),

subEvents(D,C),

crimeVictim(A,E),

senderOfinfo(F,E),

eMailSending(F),

perpetrator(A,G),

agentPhoneNumber(G,H),

receiverNumber(I,H).

[Rule 6] 14-0:

ckmurder(A) :-
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eventOccursAt(A,B),

eventOccursAt(C,B),

subEvents(D,C),

subEvents(D,E),

observing(E),

crimeVictim(D,F),

socialParticipants(G,F),

perpetrator(A,H),

toPossessor(I,H).

[Rule 7] 5-0:

ckmurder(A) :-

eventOccursAt(A,B),

eventOccursAt(C,B),

subEvents(D,C),

subEvents(D,E),

observing(E),

crimeVictim(A,F),

recipientOfinfo(G,F),

senderOfinfo(G,H),

crimeVictim(I,H).

[Rule 8] 78-0:

ckmurder(A) :-
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eventOccursAt(A,B),

eventOccursAt(C,B),

subEvents(D,C),

subEvents(D,E),

observing(E),

crimeVictim(A,F),

hasMembers(G,F).
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Appendix E

The Learning Curve for CHILL
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Appendix F

Learning curves and Training

Time on Link Discovery
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