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Abstract

Background: Extensive protein interaction maps are being constructed for yeast, worm, and fly
to ask how the proteins organize into pathways and systems, but no such genome-wide interaction
map yet exists for the set of human proteins. To prepare for studies in humans, we wished to
establish tests for the accuracy of future interaction assays and to consolidate the known
interactions among human proteins.

Results: We established two tests of the accuracy of human protein interaction datasets and
measured the relative accuracy of the available data. We then developed and applied natural
language processing and literature-mining algorithms to recover from Medline abstracts 6,580
interactions among 3,737 human proteins. A three-part algorithm was used: first, human protein
names were identified in Medline abstracts using a discriminator based on conditional random
fields, then interactions were identified by the co-occurrence of protein names across the set of
Medline abstracts, filtering the interactions with a Bayesian classifier to enrich for legitimate physical
interactions. These mined interactions were combined with existing interaction data to obtain a
network of 31,609 interactions among 7,748 human proteins, accurate to the same degree as the
existing datasets.
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Conclusion: These interactions and the accuracy benchmarks will aid interpretation of current
functional genomics data and provide a basis for determining the quality of future large-scale human
protein interaction assays. Projecting from the approximately 15 interactions per protein in the
best-sampled interaction set to the estimated 25,000 human genes implies more than 375,000
interactions in the complete human protein interaction network. This set therefore represents no
more than 10% of the complete network.
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Background

The past few years have seen a tremendous development of
functional genomics technologies. In particular, the yeast
proteome has been the subject of considerable effort, includ-
ing genome-wide protein interaction assays using yeast two-
hybrid technology [1,2], affinity chromatography/mass spec-
trometry [3,4], synthetic lethal assays [5,6], and genome con-
text methods [7-10]. Success in these areas, even given the
limited accuracy of these technologies [11-15], has led to the
application of the yeast two-hybrid method for the fly [16] and
the worm proteomes [17], providing initial steps toward maps
of the fly and worm interactomes.

Only minimal progress has been made with respect to the
human proteome. The existing protein interaction data are
largely composed of small-scale experiments collected in the
BIND [18] and DIP [19] databases, as well as a set of approx-
imately 12,000 interactions recovered by manual curation
from Medline articles [20] and interactions transferred from
other organisms on the basis of orthology [21]. The Reactome
database [22] has around 11,000 interactions [23] that have
been manually entered from articles focusing on core cellular
pathways. Large-scale interaction assays among human pro-
teins have yet to be performed, although a medium-scale map
was created for the purified TNFa/NFkB protein complex
[24] and the proteins involved in the human Smad signaling
pathway [25]. This situation is in stark contrast to the abun-
dant data available for yeast and calls for the application of
high-throughput interaction assays for mapping the human
protein interaction network.

One lesson from the yeast interactome research is clear: it is
critical that such upcoming interaction assays be accompa-
nied by measured error rates, without which the utility and
interpretability of the data is jeopardized. To establish a basis
for future interaction mapping we sought to consolidate exist-
ing human protein interaction data and to establish quantita-
tive tests of data accuracy. We also sought to use data-mining
approaches to extract additional known interactions from
Medline abstracts to add to the existing interactions.

Most of the current biological knowledge can be retrieved
from the Medline database, which now has records from more
than 4,800 journals accounting for around 15 million articles.
These citations contain thousands of experimentally recorded
protein interactions. However, retrieving these data manually
is made difficult by the large number of articles, all lacking
formal structure. Automated extraction of information would
be preferable, and therefore, mining data from Medline
abstracts is a growing field [26-29].

In this paper, we present two quantitative tests (benchmarks)
of the accuracy of large-scale human protein interaction
assays, test the existing sets of interaction data for their rela-
tive accuracy, then apply these benchmarks in order to
recover protein interactions from the approximately 750,000
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Medline abstracts that concern human biology, resulting in a
set of 6,580 interactions between 3,737 proteins of accuracy
comparable to manual extraction. Combination of the inter-
action data creates a consolidated set of 31,609 interactions
between 7,748 human proteins. On the basis of this initial set
of interactions, we estimate the scale of the human
interactome.

Results

Assembling existing public protein interaction data
We first gathered the existing human protein interaction
datasets (summarized in Table 1), representing the current
status of the human interactome. This required unification of
the interactions under a shared naming and annotation con-
vention. For this purpose, we mapped each interacting pro-
tein to LocusLink (now EntrezGene) identification numbers
and retained only unique interactions (that is, for two pro-
teins A and B, we retain only A-B or B-A, not both. We have
chosen to omit self-interactions, A-A or B-B, for technical rea-
sons, as their quality cannot be assessed on the functional
benchmark we develop). In most cases, a small loss of pro-
teins occurs in the conversion between the different gene
identifiers (for example, converting from the NCBI 'gi' codes
in BIND to LocusLink identifiers). In the case of the Human
Protein Reference Database (HPRD), this processing resulted
in a significant reduction in the number of interactions from
12,013 total interactions to 6,054 unique, non-self interac-
tions, largely due to the fact that HPRD often records both A-
B and B-A interactions, as well as a large number of self inter-
actions, and indexes genes by their common names rather
than conventional database entries, often resulting in multi-
ple entries for different synonyms.

Although the interactions from these datasets are in principle
derived from the same source (Medline), the sets are quite
disjoint (Figure 1), implying either that the sets are biased for
different classes of interactions, or that the actual number of
interactions in Medline is quite large. We suspect both rea-
sons. It is clear that each dataset has a different explicit focus
(Reactome towards core cellular machinery, HPRD towards
disease-linked genes, and BIND more randomly distributed).
Due to these biases, it is likely that many interactions from
Medline are still excluded from these datasets. The maximal
overlap between interaction datasets is seen for BIND: 25% of
these interactions are also in HPRD or Reactome; only 1% of
Reactome interactions are in HPRD or BIND. An additional
9,283 (or around 60,000 at lower confidence) interactions
are available from orthologous transfer of interactions from
large-scale screens in other organisms (orthology-core and
orthology-all) [21].

Benchmarking of protein interaction data

To measure the relative accuracy of each protein interaction
dataset, we established two benchmarks of interaction accu-
racy, one based on shared protein function and the other
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The initial list of the interactions and proteins represented in each of the existing human protein interaction datasets with total inter-

actions, unique self-interactions and unique non-self interactions

Dataset Version Total interactions (number Unique self (A-A) Unique (A-B) interactions
of proteins) interactions (number of (number of proteins)
proteins)
Reactome 08/03/04 12,497 (6,257) 160 (160) 12,336 (807)
BIND 08/03/04 6,212 (5,412) 549 (549) 5,663 (4,762)
HPRD* 04/12/04 12,013 (4,122) 3,028 (3,028) 6,054 (2,747)
Orthology transfer (all) 03/31/04 71,497 (6,257) 373 (373) 71,124 (6,228)
Orthology transfer (core) 03/31/04 11,488 (3,918) 206 (206) 11,282 (3,863)

*Difficult to measure: HPRD records genes by their names, leading occasionally to entries for the same gene under different synonyms. The numbers

reported are after mapping to LocusLink.

Reactome
9,868

ﬂ?’

Figure |

Overlap between existing human protein interaction sets. A Venn diagram
shows the overlap is small among the existing, publicly available human
protein interaction datasets (specifically, Reactome, BIND, and HPRD
protein interaction data). The small overlap (< 0.1% in common in all three
datasets) implies that the number of protein interactions described in the
literature is actually quite large and that the individual datasets carry
specific biases.

based on previously known interactions. First, we con-
structed a benchmark in which we tested the extent to which
interaction partners in a dataset shared annotation, a meas-
ure previously shown to correlate with the accuracy of func-
tional genomics datasets [13,14,21]. We used the functional
annotations listed in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [30] and Gene Ontology (GO) [31] annota-
tion databases. These databases provide specific pathway and
biological process annotations for approximately 7,500
human genes, assigning human genes into 155 KEGG path-
ways (at the lowest level of KEGG) and 1,356 GO pathways (at

level 8 of the GO biological process annotation). KEGG and
GO annotations were combined into a single composite func-
tional annotation set, which was then split into independent
testing and training sets by randomly assigning annotated
genes into the two categories (3,792 and 3,809 annotated
genes respectively). For the second benchmark based on
known physical interactions, we assembled the human pro-
tein interactions from Reactome and BIND, a set of 11,425
interactions between 1,710 proteins. Each benchmark there-
fore consists of a set of binary relations between proteins,
either based on proteins sharing annotation or physically
interacting. Generally speaking, we expect more accurate pro-
tein interaction datasets to be more enriched in these protein
pairs. More specifically, we expect true physical interactions
to score highly on both tests, while non-physical or indirect
associations, such as genetic associations, should score highly
on the functional, but not the physical interaction, test.

For both benchmarks, the scoring scheme for measuring
interaction set accuracy is in the form of a log odds ratio of
gene pairs either sharing annotations or physically interact-
ing. To evaluate a dataset, we calculate a log likelihood ratio
(LLR) as:

Op(p|I) O

LLR="n P(D|~I)

where P(D|I) and P(D|~I) are the probability of observing the
data (D) conditioned on the genes sharing benchmark associ-
ations (I) and not sharing benchmark associations (~I). By
Bayes theorem, this equation can be rewritten as:

e

where P(I|D) and P(~I|D) are the frequencies of interactions
observed in the given dataset (D) between annotated genes
sharing benchmark associations (I) and not sharing
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associations (~I), respectively, while P(I) and P(~I) represent
the prior expectations (the total frequencies of all benchmark
genes sharing the same associations and not sharing associa-
tions, respectively). This latter version of the equation is sim-
pler to compute. A score of zero indicates interaction partners
in the dataset being tested are no more likely than random to
belong to the same pathway or to interact; higher scores indi-
cate a more accurate dataset.

Among the literature-derived interactions (Reactome, BIND,
HPRD), a total of 17,098 unique interactions occur in the
public datasets. Testing the existing protein interaction data
on the function benchmark reveals that Reactome has the
highest accuracy (LLR = 3.8), followed by BIND (LLR = 2.9),
HPRD (LLR = 2.1), core orthology-inferred interactions (LLR
= 2.1) and the non-core orthology-inferred interaction (LLR =
1.1). The two most accurate datasets, Reactome and BIND,
form the basis of the protein interaction-based benchmark.
Testing the remaining datasets on this benchmark (that is, for
their consistency with these accurate protein interaction
datasets) reveals a similar ranking in the remaining data.
Core orthology-inferred interactions are the most accurate
(LLR = 5.0), followed by HPRD (LLR = 3.7) and non-core
orthology inferred interactions (LLR = 3.7).

Recognizing protein names with a conditional random

field (CRF) algorithm

To expand the list of human interactions, we turned to litera-
ture mining. We adopted the strategy of separately identify-
ing the protein names in the abstracts and then matching up
the interacting protein partners. This process was made diffi-
cult by the fact that unlike other organisms, such as yeast or
Escherichia coli, the human genes have no standardized
naming convention, and thus present one of the hardest sets
of gene/protein names to extract. For example, human pro-
teins may be named with typical English words, such as 'light’,
'map’, 'complement’, and 'Sonic Hedgehog'. Names may be
alphanumeric, may include Greek or Roman letters, may be
case sensitive, and may be composed of multiple words.
Names are frequently sub-strings of each other, such as 'epi-
dermal growth factor' and 'epidermal growth factor receptor’,
which refer to two distinct proteins. It is therefore necessary
that an information-extraction algorithm be specifically
trained to extract gene and protein names accurately.

We developed an algorithm capable of distinguishing human
protein names from similar words on the basis of their con-
text in the sentence. Building on our previous work in this
area [32], we developed a classification algorithm that accu-
rately recognized human protein names in Medline abstracts.
The performance of the protein name 'tagger' on a set of
human-labeled test abstracts is plotted in Figure 2. The accu-
racy of the algorithm was measured as its precision (the frac-
tion of correct protein names identified among all identified
names) and its recall (the fraction of correctly identified pro-
tein names among all possible correct protein names) on a set
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Comparison of precision and accuracy of the algorithms. The conditional
random fields (CRF) algorithm considerably outperforms other
approaches for identifying human protein names in Medline abstracts, such
as the simple matching of words to a dictionary of protein names, as well
as the other available protein name-tagging algorithms in [32], Kex [34]
and Abgene [35]. The tests are performed on 200 manually annotated
Medline abstracts [33]. The precision (the number of correct protein
names among all identified names) in identifying proteins is plotted against
the recall (the number of correct protein names among all possible
correct protein names). Higher scores on both precision and recall are
preferable; however, for this purpose, we seek to maximize precision and
can tolerate lower recall.

of 200 publicly available hand-tagged abstracts [33] as well as
on 750 Medline abstracts with hand-labeled human protein
names (comparable results; data not shown). The algorithm,
termed the CRF algorithm due to its use of conditional ran-
dom fields, significantly out-performs the picking of exact
protein names from a dictionary ('dictionary only') by taking
into account the words' parts of speech and the context in
which they appear. The CRF algorithm also outperforms the
other name recognition algorithms available in the public
domain [32,34,35]. To prepare for extracting protein interac-
tions, the names of human proteins were identified using the
CRF algorithm in the complete set of 753,459 Medline
abstracts citing the word "human'.

Extracting functional interactions via co-citation
analysis

In order to establish which interactions occurred between the
proteins identified in the Medline abstracts, we used a two-
step strategy: measure co-citation of protein names, then
enrich these pairs for physical interactions using a Bayesian
filter. First, we counted the number of abstracts citing a pair
of proteins, and then calculated the probability of co-citation
under a random model. Figure 3a shows the performance of
the co-citation algorithm, plotting the probability of being co-
cited by random chance against the accuracy, calculated as a
log likelihood score based on the functional annotation train-
ing benchmark. Empirically, we find the co-citation probabil-
ity has a hyperbolic relationship with the accuracy on this

Genome Biology 2005, 6:R40
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A comparison of the contributions of each dataset to the composite human protein interaction map, with network properties of each

of the datasets

Dataset Version Number of Number of proteins Clustering <C> Connectivity

interactions <#interactions/
protein>

Reactome 08/03/04 9,987 619 0.74 15.4

BIND 08/03/04 1,536 1,212 0.1 1.3

HPRD 04/12/04 6,054 2,747 0.09 22

Orthology inferred 03/31/04 9,283 3,469 0.13 2.7

(core)

Co-citation This paper 6,580 3,737 0.3 1.8

Total This paper 31,609 7,748 0.24 4.1

An analysis of network features (clustering coefficient [38] and degree of connectivity) of each of the datasets indicates low degree (<k>) for all
except Reactome, which is by far the most densely sampled protein interaction dataset. The final combined network is modular in structure and
shows extensive, non-random clustering of proteins as compared to randomly generated networks with equal numbers of proteins and interactions

(<C>=9 x 103+ -3 x |0-5; average of 10 trials).

benchmark, with protein pairs co-cited with low random
probability scoring high on the benchmark.

The co-citation algorithm is remarkably robust to variations
in the minimal accuracy with which the protein names are
identified by the CRF algorithm (Figure 3b). This robustness
is presumably due to the fact that co-citation requires pro-
teins to be named repeatedly across many abstracts, thereby
tolerating occasional errors in the name extraction process.
With a threshold on the estimated extraction probability of
80% (as computed by the CRF model) in the protein name
identification, around 15,000 interactions are extracted with
the co-citation approach that score comparably or better on
the independent functional annotation test benchmark than
the manually extracted interactions from HPRD, which
serves to establish a minimal threshold for our mined
interactions.

However, it is clear that proteins are co-cited for many rea-
sons other than physical interactions. We therefore tried to
enrich specifically for physical interactions by applying a sec-
ondary filter: We applied a Bayesian classifier to measure the
likelihood of the abstracts citing the protein pairs to discuss
physical protein-protein interactions. The classifier [36]
scores each of the co-citing abstracts according to the usage
frequency of words relevant to physical protein interactions.
Interactions extracted by co-citation and filtered using the
Bayesian estimator compare favorably with the other interac-
tion datasets on the functional annotation test benchmark
(Figure 4a). Testing the accuracy of these extracted protein
pairs on the physical interaction benchmark (Figure 4b)
reveals that the co-cited proteins scored high by this classifier
are indeed strongly enriched for physical interactions.

Taking as a minimally acceptable level of accuracy the inter-
actions hand-entered from Medline (HPRD), our co-citation/
Bayesian classifier analysis yields 6,580 interactions between
3,737 proteins. By combining these interactions with the
26,280 interactions from other sources, we obtained a final
set of 31,609 interactions between 7,748 human proteins. In
this, we have chosen not to include the complete set of orthol-
ogy-derived interactions due to their lower performance on
the annotation benchmark, although these will ultimately be
quite useful when supported by future data. Table 2 shows the
contributions from each of the datasets at this threshold and
a comparison of the overlap of interactions in each of the
datasets is depicted as a Venn diagram in Figure 5. The Venn
diagram indicates small overlap among the various datasets,
with less than 0.2% of the interactions represented in all data-
sets. Nonetheless, this network of interactions represents the
current state of the human interactome at a reasonable level
of accuracy.

The ID-Serve database of annotation and interactions
We have incorporated the results of this analysis into a web-
based server [37], which can be queried for interactions of
specific proteins. Genes are cross-listed under a variety of
naming conventions, including LocusLink/EntrezGene, Ref-
Seq, and Swiss-Prot, and are accompanied by links to other
databases and GO and KEGG functional annotations. Protein
interactions derived from the co-citation/Bayesian analysis
are hyperlinked to the co-citing Medline abstracts, where they
can be directly manually verified.

Genome Biology 2005, 6:R40
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Discussion

Features of the network

In order to study the features of the network, we visualized
the complete network of protein interactions in Figure 6. On
superimposing a histogram of the density of interactions on
the plot, we see that there is considerable clustering of
proteins in the network, represented as peaks in the histo-
gram. A closer look reveals that these regions correspond to
proteins involved with the ribosome, spliceosome, proteas-
ome, replication, transcription and the immune components.

A quantitative analysis of the network clustering and connec-
tivity distribution (reviewed in Barabasi and Oltvai [38]) is
presented in Table 2. The clustering coefficient (<C>) cap-
tures the modularity of the network. A comparison of our
final network (<C> = 0.24) with 10 randomly generated net-
works with the same number of interactions and proteins
(<C> =9 x 1073 + 3 x 10°5) shows the clustering in the human
protein interaction network is considerably above that
expected at random, in spite of the incompleteness of the net-
work. The 'degree’ of the network is defined as the average
number of links per protein and captures the connectivity of
the network. Except for Reactome, each of the datasets indi-
cated in Table 2 show low connectivity. The combined net-
work is intermediate in both connectivity and modularity.
Projecting from the approximately 15 interactions per protein
in the best sampled interaction dataset (Reactome) to the
25,000 or so estimated in the human genome [39] implies
more than 375,000 interactions in the complete human pro-
tein interaction network. Note that any overestimates in the
average number of interactions per protein will be
counterbalanced by the effect of alternative splicing in
increasing the number of actual proteins, making this esti-
mate at least a reasonable ballpark estimate. The current set
of interactions therefore represents no more than 10% of the
complete network.

Advantages of the log likelihood benchmarks

A good accuracy measure is of tremendous importance,
impacting on the reliability of all downstream analysis. The
log likelihood analysis eases comparison and assessment of
diverse datasets. The score indicates the probability that the
identified interactions are correct based on enrichment of
positive interactions over background expectations. Note that
this approach is distinct from simply measuring the intersec-

http://genomebiology.com/2005/6/5/R40

tion with the benchmark associations - because enrichment of
positive to negative associations is measured, rather than just
recovery of positive associations, even datasets with small
intersections to the benchmark set can be evaluated for accu-
racy. Note also that the benchmarks themselves are not likely
to be 100% correct - protein annotations are subjectively
assigned, many proteins belong to multiple pathways, and
even hand-curated protein interaction data can be mis-
entered. Nonetheless, the log likelihood framework is tolerant
of errors and merely requires that the benchmark data are
generally correct among true interaction partners. Figure 4a
shows the accuracy of each of the datasets. While the existing
datasets have a single accuracy value, the mined interactions
can be adjusted for accuracy based on the CRF threshold and
the co-citation probabilities. New datasets can be incorpo-
rated using the log likelihood scoring scheme, and the ulti-
mate strength of these benchmarks will be their utility in
integrating data from diverse experiments [14].

Shortcomings and strengths of literature mining via
the co-citation/Bayesian classifier approach

From our previous work [32], we realized that directly identi-
fying protein interactions would be a difficult task if we were
unable to differentiate proteins and genes from the rest of the
text. We therefore concentrated on building protein name
extractors and interaction extractors in parallel so that the
results of the former analysis could be fed into the latter.

Crucial to this process was the creation of a high-quality dic-
tionary of human protein names and synonyms with map-
pings back to database entries. We therefore decided to start
by creating a set of unambiguous gene names along with their
synonyms that could all be mapped to a single unified gene
identifier (LocusLink identifiers, now maintained through
EntrezGene). The dictionary had to have very few spurious
entries to ensure minimal false positives. The resulting ID-
Serve database captures the various identifiers for a given
gene and creates a repository for the retrieval of these genes
along with their mined interactions. Building on this diction-
ary, the CRF algorithm then analyzed the context in which
likely protein names appeared in order to identify the protein
names more accurately. In the approach we describe, protein
interaction partners are identified from among these protein
names by a filtered version of co-citation.

Figure 3 (see following page)

The performance of the co-citation algorithm at identifying protein interactions. (a) The probabilistic score effectively ranks co-cited proteins by their
tendency to participate in the same pathway, as measured on the functional annotation training benchmark. As the probability of random co-citation
decreases, the functional relatedness of the co-cited proteins increases. This tendency is robust to changes in the CRF confidence threshold chosen (data
not shown). Each point represents 3,000 protein pairs. (b) An examination of the number of protein pairs identified at different CRF thresholds (0.8, 0.6,
and 0.4) shows that the recall of the method is increased with lowered thresholds. Re-ranking the 15,000 top-scoring protein pairs (CRF threshold = 0.8)
by the tendency of the abstracts to discuss physical protein interactions shows their consistent performance in the annotation benchmark.

Genome Biology 2005, 6:R40
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Figure 4 (see previous page)

A comparison of the available human protein interaction data on the two benchmarks. (a) An examination of the initial performance of the datasets on the
functional annotation test benchmark reveals the relative quality of each dataset. The interactions extracted using co-citation analysis filtered by the
Bayesian estimator show a robust behavior in terms of their scores. (b) Comparison of the performance of the interactions retrieved from the co-citation
analysis after incorporating the Bayesian filter and the interactions from HPRD and orthology transfer, as assessed on the physical interaction benchmark.
The Bayesian filter effectively ranks the co-citation-derived interactions in terms of their correspondence to physical protein interactions.

The co-citation approach [14,26,40] calculates the random
probability of co-occurrence of two protein names. The
assumption is that if the co-citation is statistically unlikely
under the random model, then there is a true underlying rea-
son for the proteins to be co-cited - that is, they are interacting
at either the functional, pathway level, or are co-localized or
physically interact. The method has both advantages and dis-
advantages. It does not extract all interactions, but only those
with statistically significant co-citations. By using the Baye-
sian estimator [36] we enrich further for physical
interactions, but at the expense of coverage. Among the dis-
advantages are that the algorithm enriches for certain types of
errors (for example, 'A does not interact with B', dictionary
errors leading to synonyms being wrongly enriched, and so
on). However, we feel the advantages outweigh the
disadvantages: In particular, the probabilistic ranking, com-
bined with the Bayesian filter, minimizes systematic errors,
and at the left side of Figure 4b, it can be seen that errors in
the co-citation data are no more extensive than errors
introduced in transferring annotation from other organisms,
or those errors introduced by human curators reading
Medline abstracts. The method is easily applied, and cur-
rently outperforms other publicly available protein interac-
tion extraction algorithms [34,35]. Finally, the precise nature
of the interaction can be directly checked from the linked
Medline abstracts. Thus, the mined interactions will be ideal
for manual validation by curators of protein interaction data-
bases (for example, DIP and BIND).

Conclusion

In conclusion, to prepare for attempts to map the set of
human protein interactions we sought to consolidate known
interactions and to establish measures of accuracy that are
useful for the evaluation and integration of upcoming data-
sets. We established two benchmarks for assessing the quality
of large-scale human protein interaction datasets, providing
quantitative measures useful for the testing and integration of
interaction data. Using these benchmarks, along with availa-
ble and mined interactions, we assembled an integrated data-
set of 31,609 interactions between 7,748 human proteins,
forming a framework for the interpretation of human
functional genomics data. These data are collected in the ID-
Serve database [37], which can be queried for protein interac-
tions and their corresponding Medline citations. We estimate
these interactions form less than 10% of the human interac-
tome, setting the stage for future efforts to map the complete
human network of protein interactions.

Materials and methods

Identification of human protein names and interactions
in Medline abstracts

The training datasets used for the literature mining are as in
[32]. The dictionary of human protein names was assembled
from the LocusLink and Swiss-Prot databases by manually
curating the gene names and synonyms (87,723 synonyms
between 18,879 unique gene names) to remove genes that
were referred to as 'hypothetical' or 'probable' and to omit
entries that referred to more than one protein identifier.
From the Medline database of approximately 11 million
abstracts (1951-2002) we retrieved 753,459 abstracts con-
taining the word "human' either in the title or the text to use
as our corpus for extracting protein interactions.

We have previously described [32] effective protein and gene
name tagging using an algorithm based on maximum
entropy. Conditional random fields (CRF) [41] are new types
of probabilistic models that preserve all the advantages of
maximum entropy models and at the same time avoid the
label bias problem by allowing a sequence of tagging deci-
sions to compete against each other in a global probabilistic
model. In this paper, we show that CRF outperforms our best
previous maximum entropy tagger.

In both training and testing the CRF protein-name tagger, the
corresponding Medline abstracts were processed as follows:
text was tokenized using white space as delimiters and treat-
ing all punctuation marks as separate tokens. The text was
segmented into sentences, and part-of-speech tags were
assigned to each token using Brill's tagger [42]. For each
token in each sentence, a vector of binary features was gener-
ated using the feature templates employed by the maximum
entropy approach described in [32]. Each feature occurring in
the training data was associated with a parameter in the CRF
model. We used the CRF implementation from McCallum
[43]. To train the CRF's parameters, we used 750 Medline
abstracts manually annotated for protein names [32]. We
then tagged predicted protein names in the entire set of
753,459 Medline abstracts using the version of the CRF algo-
rithm that utilizes the dictionary as part of the learned model
(Figure 2), and in this way linked each tagged name to a dic-
tionary entry. The Medline abstracts with marked-up protein
names are available on request.

The model assigns each candidate phrase a probability of
being a protein name. We selected all names scoring higher
than a given threshold (testing thresholds between 40% and
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Combined
(Reactome, BIND, HPRD)
15,888

Cocitation
5,788

Inferred from
orthology (all)
58,772

Figure 5

Comparison of extracted interactions with existing interactions. A
comparison of interactions inferred from orthology [21] and those
recovered by co-citation with the other existing human protein
interaction datasets reveals that the overlap is small. The trend implies
that the different methods are sampling relatively exclusive sets of
interactions although, with the exception of the orthology-derived
interactions, they are all derived directly from the primary biological
literature.

95%), retaining the proteins' LocusLink identifiers along with
the PubMed identifiers (PMID) of the associated abstracts.
The significance of co-citation of two protein names across a
set of Medline abstracts was calculated from the hypergeo-
metric distribution [14,26] as:

-1
p(#ofco—citing abstracts = | n,m,N) =1- p(k | n,m,N)
k=0

, where:

Ribosome

Elongation _a— Proteasome
factors

/\‘ \
Immune W

components

Replication components

Spliceosome

Figure 6

Visualization of the final consolidated network of protein interactions. A
view of the composite interaction network (31,609 interactions between
7,748 proteins). Of these, 6,706 proteins (87%) are connected by at least
one interaction into the central, connected network component. The
modularity in the network can be seen in the superimposed three-
dimensional visualization, a histogram in which higher peaks correspond to
larger numbers of edges per unit area. The network coordinates were
generated by LGL [46] and visualized with Zlab by Zack Simpson.
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and N equals the total number of abstracts, n of which cite the
first protein, m cite the second protein, and [ cite both.

The top-scoring 15,000 co-cited protein pairs were then re-
ranked according to the tendency of the co-citing abstracts to
discuss protein-protein interactions. Specifically, the likeli-
hood of a co-citing abstract to discuss physical protein inter-
actions was evaluated using the naive Bayesian classifier as
described in [36], which scores Medline abstracts according
to usage frequencies of discriminating words relating to pro-
tein-protein interactions. For each co-cited protein pair, we
calculated the average of the scores of the co-citing Medline
abstracts, then re-ranked the co-cited protein pairs by these
average scores.

Analysis of network properties

We evaluated the clustering of genes in an interaction net-
work [38] by calculating the average clustering coefficient
(<C>) of the N genes as:

1 ¥ 1 ¥ on
Cy=— C:. =— —1’
e lel 1 lelki(ki_l)

where C;is the clustering coefficient of gene 7, evaluated over
the set of genes with at least two interactions and measured as

Genome Biology 2005, 6:R40



http://genomebiology.com/2005/6/5/R40

the number of links, n, among the gene's k neighbors, divided
by the number of maximum possible linkages, k(k -1)/2.

Construction of the functional annotation benchmark
The specific GO and KEGG annotations for the functional
benchmarks were downloaded from the Gene Ontology
database [44] and the KEGG database [45]. Within the GO
process annotation hierarchy (more strictly, a directed acyclic
graph (DAG)), the number of distinct annotation terms is
maximal at level 8, where the level is defined as the number
of nestings from the root node (level 1), as given in the Gene
Ontology DAG file [44]. KEGG functional annotations were
constructed as the sets of numerical codes for the KEGG path-
way diagrams associated with each gene. The functional
annotation benchmark is composed of all pairs of human
genes sharing annotation from either source (KEGG or GO).
For training and testing sets, annotated genes were randomly
assigned into two categories and associations were only con-
sidered between genes of the same category.

The ID-Serve database

ID-Serve is a relational mySQL database of human proteins
created to simplify comparison of datasets with differing pro-
tein identifiers. The database maps 42,232 LocusLink (now
EntrezGene) identifiers to their corresponding Genecard,
Swiss-Prot, Ensembl, OMIM, Unigene, NCBI GI codes and
Accession numbers and to the GO and KEGG pathway anno-
tations. Protein interaction data can be retrieved from ID-
Serve, with co-citation derived interactions hyperlinked to
the supporting Medline abstracts.

Additional data files

The following additional data relevant to the analysis, train-
ing and testing carried out in this work are available with the
online version of this paper and can also be obtained from the
ID-Serve database [37]. Additional data files 1 and 2 contain
tables of protein 'tagger' training sets. Additional data file 3
contains a dictionary of human protein names and synonyms
indexed to LocusLink identifiers. Additional data file 4 con-
tains the final set of 31,609 protein interactions between
7,748 proteins derived from this analysis. Additional data file
5 contains the final set of co-citation/Bayesian classifier-
derived interactions with the PubMed identifiers of co-citing
abstracts. Additional data file 6 contains the benchmark
training set of functional annotations. Additional data file 7
contains the benchmark test set of functional annotations.
Additional data file 8 contains the benchmark set of physical
interactions. Additional data file 9 contains the discriminat-
ing word list used by the Bayesian classifier to estimate the

likelihood of Medline abstracts to discuss protein
interactions.
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