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Abstract

The task of mining relations from collec-

tions of documents is usually approached

in two different ways. One type of sys-

tems do relation extraction from individ-

ual sentences, followed by an aggrega-

tion of the results over the entire collec-

tion. Other systems follow an entirely dif-

ferent approach, in which co-occurrence

counts are used to determine whether the

mentioning together of two entities is due

to more than simple chance. We show

that increased extraction performance can

be obtained by combining the two ap-

proaches into an integrated relation ex-

traction model.

1 Introduction

Information Extraction (IE) is a natural language

processing task in which text documents are ana-

lyzed with the aim of finding mentions of relevant

entities and important relationships between them.

In many cases, the subtask of relation extraction re-

duces to deciding whether a sentence asserts a par-

ticular relationship between two entities, which is

still a difficult, unsolved problem. There are how-

ever cases where the decision whether the two enti-

ties are in a relationship is made relative to an en-

tire document, or a collection of documents. In the

biomedical domain, for example, one may be inter-

ested in finding the pairs of human proteins that are

said to be interacting in any of the Medline abstracts,

where the answer is not required to specify which

abstracts are actually describing the interaction. As-

sembling a ranked list of interacting proteins can be

very useful to biologists - based on this list, they can

make more informed decisions with respect to which

genes to focus on in their research.

In this paper, we investigate methods that use

multiple occurrences of the same pair of entities

across a collection of documents in order to boost

the performance of a relation extraction system.

The proposed methods are evaluated on the task

of finding pairs of human proteins whose interac-

tions are reported in Medline abstracts. The major-

ity of known human protein interactions are derived

from individual, small-scale experiments reported in

Medline. Some of these interactions have already

been collected in the Reactome (Joshi-Tope et al.,

2005), BIND (Bader et al., 2003), DIP (Xenarios et

al., 2002), and HPRD (Peri et al., 2004) databases.

The amount of human effort involved in creating and

updating these databases is currently no match for

the continuous growth of Medline. It is therefore

very useful to have a method that automatically and

reliably extracts interaction pairs from Medline.

Systems that do relation extraction from a col-

lection of documents can be divided into two ma-

jor categories. In one category are IE systems

that first extract information from individual sen-

tences, and then combine the results into corpus-

level results (Craven, 1999; Skounakis and Craven,

2003). The second category corresponds to ap-

proaches that do not exploit much information from

the context of individual occurrences. Instead,

based on co-occurrence counts, various statistical



or information-theoretic tests are used to decide

whether the two entities in a pair appear together

more often than simple chance would predict (Lee

et al., 2004; Ramani et al., 2005). We believe that

a combination of the two approaches can inherit the

advantages of each method and lead to improved re-

lation extraction accuracy.

The following two sections describe the two or-

thogonal approaches to corpus-level relation extrac-

tion. A model that integrates the two approaches is

then introduced in Section 4. This is followed by a

description of the dataset used for evaluation in Sec-

tion 5, and experimental results in Section 6.

2 Sentence-level relation extraction

Most systems that identify relations between enti-

ties mentioned in text documents consider only pair

of entities that are mentioned in the same sentence

(Ray and Craven, 2001; Zhao and Grishman, 2005;

Bunescu and Mooney, 2005). To decide the exis-

tence and the type of a relationship, these systems

generally use lexico-semantic clues inferred from

the sentence context of the two entities. Much re-

search has been focused recently on automatically

identifying biologically relevant entities and their

relationships such as protein-protein interactions or

subcellular localizations. For example, the sentence

“TR6 specifically binds Fas ligand”, states an inter-

action between the two proteins TR6 and Fas ligand.

One of the first systems for extracting interactions

between proteins is described in (Blaschke and Va-

lencia, 2001). There, sentences are matched deter-

ministically against a set of manually developed pat-

terns, where a pattern is a sequence of words or Part-

of-Speech (POS) tags and two protein-name tokens.

Between every two adjacent words is a number in-

dicating the maximum number of words that can be

skipped at that position. An example is: “interaction

of (3) <P> (3) with (3) <P>”. This approach is

generalized in (Bunescu and Mooney, 2005), where

subsequences of words (or POS tags) from the sen-

tence are used as implicit features. Their weights are

learned by training a customized subsequence ker-

nel on a dataset of Medline abstracts annotated with

proteins and their interactions.

A relation extraction system that works at the

sentence-level and which outputs normalized confi-

dence values for each extracted pair of entities can

also be used for corpus-level relation extraction. A

straightforward way to do this is to apply an aggre-

gation operator over the confidence values inferred

for all occurrences of a given pair of entities. More

exactly, if p1 and p2 are two entities that occur in a

total of n sentences s1, s2, ..., sn in the entire corpusC , then the confidence P (R(p1; p2)jC) that they are

in a particular relationship R is defined as:P (R(p1; p2)jC) = �(fP (R(p1; p2)jsi)ji=1:ng)
Table 1 shows only four of the many possible

choices for the aggregation operator �.

max �max = maxi P (R(p1; p2)jsi)
noisy-or �nor = 1�Yi (1� P (R(p1; p2)jsi))
avg �avg =Xi P (R(p1; p2)jsi)n
and �and =Yi P (R(p1; p2)jsi)1=n

Table 1: Aggregation Operators.

Out of the four operators in Table 1, we believe

that the max operator is the most appropriate for ag-

gregating confidence values at the corpus-level. The

question that needs to be answered is whether there

is a sentence somewhere in the corpus that asserts

the relationship R between entities p1 and p2. Us-

ing avg instead would answer a different question -

whether R(p1; p2) is true in most of the sentences

containing p1 and p2. Also, the and operator would

be most appropriate for finding whether R(p1; p2)
is true in all corresponding sentences in the corpus.

The value of the noisy-or operator (Pearl, 1986) is

too dependent on the number of occurrences, there-

fore it is less appropriate for a corpus where the oc-

currence counts vary from one entity pair to another

(as confirmed in our experiments from Section 6).

For examples, if the confidence threshold is set at0:5, and the entity pair (p1; p2) occurs in 6 sentences

or less, each with confidence 0:1, then R(p1; p2) is

false, according to the noisy-or operator. However,

if (p1; p2) occur in more than 6 sentences, with the

same confidence value of 0:1, then the correspond-

ing noisy-or value exceeds 0:5, making R(p1; p2)
true.



3 Co-occurrence statistics

Given two entities with multiple mentions in a large

corpus, another approach to detect whether a re-

lationship holds between them is to use statistics

over their occurrences in textual patterns that are

indicative for that relation. Various measures such

as pointwise mutual information (PMI) , chi-square

(�2) or log-likelihood ratio (LLR) (Manning and

Schütze, 1999) use the two entities’ occurrence

statistics to detect whether their co-occurrence is due

to chance, or to an underlying relationship.

A recent example is the co-citation approach from

(Ramani et al., 2005), which does not try to find spe-

cific assertions of interactions in text, but rather ex-

ploits the idea that if many different abstracts refer-

ence both protein p1 and protein p2, then p1 and p2
are likely to interact. Particularly, if the two proteins

are co-cited significantly more often than one would

expect if they were cited independently at random,

then it is likely that they interact. The model used

to compute the probability of random co-citation is

based on the hypergeometric distribution (Lee et al.,

2004; Jenssen et al., 2001). Thus, if N is the total

number of abstracts, n of which cite the first protein,m cite the second protein, and k cite both, then the

probability of co-citation under a random model is:P (kjN;m; n) = � nk �� N � nm� k �� Nm � (1)

The approach that we take in this paper is to con-

strain the two proteins to be mentioned in the same

sentence, based on the assumption that if there is

a reason for two protein names to co-occur in the

same sentence, then in most cases that is caused by

their interaction. To compute the “degree of inter-

action” between two proteins p1 and p2, we use the

information-theoretic measure of pointwise mutual

information (Church and Hanks, 1990; Manning

and Schütze, 1999), which is computed based on the

following quantities:

1. N : the total number of protein pairs co-

occurring in the same sentence in the corpus.

2. P (p1; p2) ' n12=N : the probability that p1
and p2 co-occur in the same sentence; n12 = the

number of sentences mentioning both p1 andp2.

3. P (p1; p) ' n1=N : the probability that p1 co-

occurs with any other protein in the same sen-

tence; n1 = the number of sentences mention-

ing p1 and p.

4. P (p2; p) ' n2=N : the probability that p2 co-

occurs with any other protein in the same sen-

tence; n2 = the number of sentences mention-

ing p2 and p.

The PMI is then defined as in Equation 2 below:PMI(p1; p2) = log P (p1; p2)P (p1; p) � P (p2; p)' logN n12n1 � n2 (2)

Given that the PMI will be used only for ranking

pairs of potentially interacting proteins, the constant

factor N and the log operator can be ignored. For

sake of simplicity, we use the simpler formula from

Equation 3. sPMI(p1; p2) = n12n1 � n2 (3)

4 Integrated model

The sPMI(p1; p2) formula can be rewritten as:sPMI(p1; p2) = 1n1 � n2 � n12Xi=1 1 (4)

Let s1, s2, ..., sn12 be the sentence contexts corre-

sponding to the n12 co-occurrences of p1 and p2,

and assume that a sentence-level relation extractor

is available, with the capability of computing nor-

malized confidence values for all extractions. Then

one way of using the extraction confidence is to have

each co-occurrence weighted by its confidence, i.e.

replace the constant 1 with the normalized scoresP (R(p1; p2)jsi), as illustrated in Equation 5. This

results in a new formula wPMI (weighted PMI),

which is equal with the product between sPMI and

the average aggregation operator �avg .wPMI(p1; p2) = 1n1 � n2 � n12Xi=1 P (R(p1; p2)jsi)= n12n1 � n2 � �avg (5)



The operator �avg can be replaced with any other ag-

gregation operator from Table 1. As argued in Sec-

tion 2, we consider max to be the most appropriate

operator for our task, therefore the integrated model

is based on the weighted PMI product illustrated in

Equation 6.wPMI(p1; p2) = n12n1 � n2 � �max (6)= n12n1 � n2 �maxi P (R(p1; p2)jsi)
If a pair of entities p1 and p2 is ranked by wPMI

among the top pairs, this means that it is unlikely

that p1 and p2 have co-occurred together in the en-

tire corpus by chance, and at the same time there is

at least one mention where the relation extractor de-

cides with high confidence that R(p1; p2) = 1.

5 Evaluation Corpus

Contrasting the performance of the integrated model

against the sentence-level extractor or the PMI-

based ranking requires an evaluation dataset that

provides two types of annotations:

1. The complete list of interactions reported in the

corpus (Section 5.1).

2. Annotation of mentions of genes and proteins,

together with their corresponding gene identi-

fiers (Section 5.2).

We do not differentiate between genes and their

protein products, mapping them to the same gene

identifiers. Also, even though proteins may partic-

ipate in different types of interactions, we are con-

cerned only with detecting whether they interact in

the general sense of the word.

5.1 Medline Abstracts and Interactions

In order to compile an evaluation corpus and an as-

sociated comprehensive list of interactions, we ex-

ploited information contained in the HPRD (Peri

et al., 2004) database. Every interaction listed in

HPRD is linked to a set of Medline articles where the

corresponding experiment is reported. More exactly,

each interaction is specified in the database as a tuple

that contains the LocusLink (now EntrezGene) iden-

tifiers of all genes involved and the PubMed identi-

fiers of the corresponding articles (as illustrated in

Table 2).

Interaction (XML) (HPRD)<interaction><gene>2318</gene><gene>58529</gene><pubmed>10984498 11171996</pubmed></interaction>
Participant Genes (XML) (NCBI)<gene id=”2318”><name>FLNC</name><description>filamin C, gamma</description><synonyms><synonym>ABPA</synonym><synonym>ABPL</synonym><synonym>FLN2</synonym><synonym>ABP-280</synonym><synonym>ABP280A</synonym></synonyms><proteins><protein>gamma filamin</protein><protein>filamin 2</protein><protein>gamma-filamin</protein><protein>ABP-L, gamma filamin</protein><protein>actin-binding protein 280</protein><protein>gamma actin-binding protein</protein><protein>filamin C, gamma</protein></proteins></gene><gene id=”58529”><name>MYOZ1</name><description>myozenin 1</description><synonyms> ... </synonyms><proteins> ... </proteins></gene>
Medline Abstract (XML) (NCBI)<PMID>10984498</PMID><AbstractText>
We found that this protein binds to three other Z-disc pro-
teins; therefore, we have named it FATZ, gamma-filamin,
alpha-actinin and telethonin binding protein of the Z-disc.</AbstractText>

Table 2: Interactions, Genes and Abstracts.

The evaluation corpus (henceforth referred to as

the HPRD corpus) is created by collecting the Med-

line abstracts corresponding to interactions between

human proteins, as specified in HPRD. In total,

5,617 abstracts are included in this corpus, with an

associated list of 7,785 interactions. This list is com-

prehensive - the HPRD database is based on an an-

notation process in which the human annotators re-

port all interactions described in a Medline article.

On the other hand, the fact that only abstracts are

included in the corpus (as opposed to including the

full article) means that the list may contain interac-

tions that are not actually reported in the HPRD cor-

pus. Nevertheless, if the abstracts were annotated



with gene mentions and corresponding GIDs, then

a “quasi-exact” interaction list could be computed

based on the following heuristic:

[H] If two genes with identifiers gid1 and gid2 are

mentioned in the same sentence in an abstract with

PubMed identifier pmid, and if gid1 and gid2 are

participants in an interaction that is linked to pmid
in HPRD, then consider that the abstract (and con-

sequently the entire HPRD corpus) reports the inter-

action between gid1 and gid2. �
An application of the above heuristic is shown at

the bottom of Table 2. The HPRD record at the

top of the table specifies that the Medline article

with ID 10984498 reports an interaction between the

proteins FATZ (with ID 58529) and gamma-filamin

(with ID 2318). The two protein names are men-

tioned in a sentence in the abstract for 10984498,

therefore, by [H], we consider that the HPRD cor-

pus reports this interaction.

This is very similar to the procedure used in

(Craven, 1999) for creating a “weakly-labeled”

dataset of subcellular-localization relations. [H] is

a strong heuristic – it is already known that the full

article reports an interaction between the two genes.

Finding the two genes collocated in the same sen-

tence in the abstract is very likely to be due to the

fact that the abstract discusses their interaction. The

heuristic can be made even more accurate if a pair

of genes is considered as interacting only if they co-

occur in a (predefined) minimum number of sen-

tences in the entire corpus – with the evaluation

modified accordingly, as described later in Section 6.

5.2 Gene Name Annotation and Normalization

For the annotation of gene names and their normal-

ization, we use a dictionary-based approach similar

to (Cohen, 2005). NCBI1 provides a comprehen-

sive dictionary of human genes, where each gene is

specified by its unique identifier, and qualified with

an official name, a description, synonym names and

one or more protein names, as illustrated in Table 2.

All of these names, including the description, are

considered as potential referential expressions for

the gene entity. Each name string is reduced to a

normal form by: replacing dashes with spaces, intro-

ducing spaces between sequences of letters and se-

1URL: http://www.ncbi.nih.gov

quences of digits, replacing Greek letters with their

Latin counterparts (capitalized), substituting Roman

numerals with Arabic numerals, decapitalizing the

first word if capitalized. All names are further tok-

enized, and checked against a dictionary of close to

100K English nouns. Names that are found in this

dictionary are simply filtered out. We also ignore

all ambiguous names (i.e. names corresponding to

more than one gene identifier). The remaining non-

ambiguous names are added to the final gene dictio-

nary, which is implemented as a trie-like structure in

order to allow a fast lookup of gene IDs based on the

associated normalized sequences of tokens.

Each abstract from the HPRD corpus is tokenized

and segmented in sentences using the OpenNLP2

package. The resulting sentences are then annotated

by traversing them from left to right and finding the

longest token sequences whose normal forms match

entries from the gene dictionary.

6 Experimental Evaluation

The main purpose of the experiments in this section

is to compare the performance of the following four

methods on the task of corpus-level relation extrac-

tion:

1. Sentence-level relation extraction followed by

the application of an aggregation operator that

assembles corpus-level results (SSK.Max).

2. Pointwise Mutual Information (PMI).

3. The integrated model, a product of the two base

models (PMI.SSK.Max).

4. The hypergeometric co-citation method (HG).

7 Experimental Methodology

All abstracts, either from the HPRD corpus, or

from the entire Medline, are annotated using the

dictionary-based approach described in Section 5.2.

The sentence-level extraction is done with the sub-

sequence kernel (SSK) approach from (Bunescu and

Mooney, 2005), which was shown to give good re-

sults on extracting interactions from biomedical ab-

stracts. The subsequence kernel was trained on a

set of 225 Medline abstracts which were manually

2URL: http://opennlp.sourceforge.net



annotated with protein names and their interactions.

It is known that PMI gives undue importance to

low frequency events (Dunning, 1993), therefore the

evaluation considers only pairs of genes that occur at

least 5 times in the whole corpus.

When evaluating corpus-level extraction on

HPRD, because the “quasi-exact” list of interactions

is known, we report the precision-recall (PR) graphs,

where the precision (P) and recall (R) are computed

as follows:P = #true interactions extracted#total interaction extractedR = #true interactions extracted#true interactions

All pairs of proteins are ranked based on each scor-

ing method, and precision recall points are com-

puted by considering the top N pairs, where N
varies from 1 to the total number of pairs.

When evaluating on the entire Medline, we used

the shared protein function benchmark described in

(Ramani et al., 2005). Given the set of interacting

pairs recovered at each recall level, this benchmark

calculates the extent to which interaction partners

in a data set share functional annotation, a measure

previously shown to correlate with the accuracy of

functional genomics data sets (Lee et al., 2004). The

KEGG (Kanehisa et al., 2004) and Gene Ontology

(Ashburner et al., 2000) databases provide specific

pathway and biological process annotations for ap-

proximately 7,500 human genes, assigning human

genes into 155 KEGG pathways (at the lowest level

of KEGG) and 1,356 GO pathways (at level 8 of the

GO biological process annotation).

The scoring scheme for measuring interaction set

accuracy is in the form of a log odds ratio of gene

pairs sharing functional annotations. To evaluate a

data set, a log likelihood ratio (LLR) is calculated as

follows:LLR = ln P (DjI)P (Dj:I) = lnP (IjD)P (:I)P (:IjD)P (I) (7)

where P (DjI) and P (Dj:I) are the probability

of observing the data D conditioned on the genes

sharing benchmark associations (I) and not sharing

benchmark associations (:I). In its expanded form

(obtained by Bayes theorem), P (IjD) and P (:IjD)

are estimated using the frequencies of interactions

observed in the given data set D between annotated

genes sharing benchmark associations and not shar-

ing associations, respectively, while the priors P (I)
and P (:I) are estimated based on the total frequen-

cies of all benchmark genes sharing the same asso-

ciations and not sharing associations, respectively.

A score of zero indicates interaction partners in the

data set being tested are no more likely than random

to belong to the same pathway or to interact; higher

scores indicate a more accurate data set.

8 Experimental Results

The results for the HPRD corpus-level extraction are

shown in Figure 1. Overall, the integrated model has

a more consistent performance, with a gain in preci-

sion mostly at recall levels past 40%. The SSK.Max

and HG models both exhibit a sudden decrease in

precision at around 5% recall level. While SSK.Max

goes back to a higher precision level, the HG model

begins to recover only late at 70% recall.
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Figure 1: PR curves for corpus-level extraction.

A surprising result in this experiment is the be-

havior of the HG model, which is significantly out-

performed by PMI, and which does only marginally

better than a simple baseline that considers all pairs

to be interacting.

We also compared the two methods on corpus-

level extraction from the entire Medline, using the

shared protein function benchmark. As before, we

considered only protein pairs occurring in the same



sentence, with a minimum frequency count of 5. The

resulting 47,436 protein pairs were ranked accord-

ing to their PMI and HG scores, with pairs that are

most likely to be interacting being placed at the top.

For each ranking, the LLR score was computed for

the top N proteins, where N varied in increments of

1,000.

The comparative results for PMI and HG are

shown in Figure 2, together with the scores for three

human curated databases: HPRD, BIND and Reac-

tome. On the top 18,000 protein pairs, PMI outper-

forms HG substantially, after which both converge

to the same value for all the remaining pairs.
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Figure 2: Functional annotation benchmark.

Figure 3 shows a comparison of the four aggre-

gation operators on the same HPRD corpus, which

confirms that, overall, max is most appropriate for

integrating corpus-level results.

9 Future Work

The piece of related work that is closest to the aim of

this paper is the Bayesian approach from (Skounakis

and Craven, 2003). In their probabilistic model, co-

occurrence statistics are taken into account by using

a prior probability that a pair of proteins are inter-

acting, given the number of co-occurrences in the

corpus. However, they do not use the confidences of

the sentence-level extractions. The GeneWays sys-

tem from (Rzhetsky et al., 2004) takes a different

approach, in which co-occurrence frequencies are

simply used to re-rank the ouput from the relation

extractor.

An interesting direction for future research is to
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Figure 3: PR curves for aggregation operators.

design a model that takes into account both the ex-

traction confidences and the co-occurrence statis-

tics, without losing the probabilistic (or information-

theoretic) interpretation. One could investigate ways

of integrating the two orthogonal approaches to

corpus-level extraction based on other statistical

tests, such as chi-square and log-likelihood ratio.

The sentence-level extractor used in this paper

was trained to recognize relation mentions in iso-

lation. However, the trained model is later used,

through the max aggregation operator, to recognize

whether multiple mentions of the same pair of pro-

teins indicate a relationship between them. This

points to a fundamental mismatch between the train-

ing and testing phases of the model. We expect that

better accuracy can be obtained by designing an ap-

proach that is using information from multiple oc-

currences of the same pair in both training and test-

ing.

10 Conclusion

Extracting relations from a collection of documents

can be approached in two fundamentally different

ways. In one approach, an IE system extracts rela-

tion instances from corpus sentences, and then ag-

gregates the local extractions into corpus-level re-

sults. In the second approach, statistical tests based

on co-occurrence counts are used for deciding if a

given pair of entities are mentioned together more

often than chance would predict. We have described



a method to integrate the two approaches, and given

experimental results that confirmed our intuition that

an integrated model would have a better perfor-

mance.
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