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Ensemble methods like Bagging and Boosting which combine the decisions of mul-
tiple hypotheses are some of the strongest existing machine learning methedhversity
of the members of an ensemble is known to be an important factor in determinirenits g
eralization error. In this thesis, we present a new method for generatssgrbles, Bc-
ORATE (Diverse Ensemble Creation by Oppositional Relabeling of Artificial Trajrin-
amples), that directly constructs diverse hypotheses using additidifigialy-generated
training examples. The technique is a simple, general meta-learner thatecanyustrong
learner as a base classifier to build diverse committees. The diversel@as@roduced by
DECORATEare very effective for reducing the amount of supervision requivetdilding

accurate models. The first task we demonstrate this on is classificationagived train-
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ing set. Experimental results using decision-tree induction as a baserldamenstrate
that our approach consistently achieves higher predictive accuracythie base classifier,
Bagging and Random Forests. AISoECORATE attains higher accuracy than Boosting
on small training sets, and achieves comparable performance on laigergrsets. Ad-
ditional experiments demonstrateeDORATES resilience to imperfections in data, in the
form of missing features, classification noise, and feature noise.

DecoRrATEensembles can also be used to reduce supervision themtigk learn-
ing, in which the learner selects the most informative examples from a poollatbeled
examples, such that acquiring their labels will increase the accuracy dittsifier. Query
by Committee is one effective approach to active learning in which disagreesmiiin
the ensemble of hypotheses is used to select examples for labeling. @Uagding and
Query by Boosting are two practical implementations of this approach th&aggng and
Boosting respectively, to build the committees. For efficient active learniagiitical that
the committee be made up of consistent hypotheses that are very difter@rgdch other.
Since DECORATE explicitly builds such committees, it is well-suited for this task. We in-
troduce a new algorithm, &riveDECORATE, which uses BCORATEcommittees to select
good training examples. Experimental results demonstrate thatvisDECORATE typi-
cally requires labeling fewer examples to achieve the same accuracy asliyugagging
and Query by Boosting. Apart from optimizing classification accuracy, inynapplica-
tions, producing good class probability estimates is also important, e.g., indedection,
which has unequal misclassification costs. This thesis introduces a ppvebah to active
learning based on &rivEDECORATE which uses Jensen-Shannon divergence (a similar-
ity measure for probability distributions) to improve the selection of training elesripr
optimizing probability estimation. Comprehensive experimental results demntisa
benefits of our approach.

Unlike the active learning setting, in many learning problems the class labels for

all instances are known, but feature values may be missing and can liecdcat a cost.
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For building accurate predictive models, acquiring complete informatiorlfimséances is
often quite expensive, while acquiring information for a random sulisestances may not
be optimal. We formalize the task attive feature-value acquisitipmhich tries to reduce
the cost of achieving a desired model accuracy by identifying instancegich obtaining
complete information is most informative. We present an approach, basBd @ORATE,
in which instances are selected for acquisition based on the current madeliracy and
its confidence in the prediction. Experimental results demonstrate that proaah can
induce accurate models using substantially fewer feature-value acqusditian random

sampling.
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Chapter 1

Introduction

For many predictive modeling tasks, acquiring supervised training dathuftiing ac-
curate classifiers (models) is often difficult or expensive. In somescdlse amount of
available labeled training data is quite limited. In other cases, it may be possilugutivea
additional data, but there is a significant cost of acquisition. Hence, it iertiaut to be
able to build accurate classifiers with limited data, or with the most cost-effestiyeisi-
tion of additional data. We study this problem of learning with reduced sigien in the

following three settings.

e Passive Supervised Learning

Most of machine learning research has focused on this setting, whereevgézan

a fixed set of training exampl€$x1,y1), ..., (€m, ym)} for some unknown function

y = f(z). The values ofy are typically drawn from a discrete set of classes. A
learning algorithm is trained on the set of training examples, to produce sifidgs
which is a hypothesis about the true (target) functforGiven a new example, the
classifier predicts the correspondingalue. The aim of this classification task is to
learn a classifier that minimizes the error in predictions on an independeséted

examples.



In some domains, there is inherently a limited amount of training data available,
e.g., patient diagnostic data for a newly identified disease. In other doreacisas
personalization, if the model learned does not produce accurate tpadiwith very

little feedback (examples) from the user, then the user may stop using thensys

both these types of domains, it is important to be able to maximize the utility of small
training sets. Hence, the first part of our study focuses on buildingaiecciassifiers

given limited training data.

Active Learning

In some domains, there are a large number of unlabeled examples availabtarth
be labeled at a cost. For instance, in the task of web page classificatioragyis
to gain access to a large number of unlabeled web pages, but it takes ffornme
provide class labels to each of these pages. In such settings, the leamrs used
to select the most informative examples to be labeled, so that acquiring thete la
will increase the accuracy of the current classifier. Actively selectiagrtbst useful
examples to train on is good approach to reducing the amount of supemésioined
for effective learning. The second part of this study focuses oratttige learning

setting (Cohn, Atlas, & Ladner, 1994).

Active Feature-value Acquisition

In many tasks, the class labels of instances are known, but they may begiessin
ture values that can be acquired at a cost. For example, online custorfiéngdata

may contain incomplete customer information that can be filled in by an intermedi-
ary. For building accurate predictive models, acquiring complete informéaioal
instances is often prohibitively expensive, while acquiring informatiorafandom
subset of instances may not be most effective. The third part of thig sitrdduces

the task ofactive feature-value acquisitiofMelville, Saar-Tsechansky, Provost, &

Mooney, 2004), in which the learner tries to reduce the cost of achievishesired



model accuracy by identifying instances for which obtaining complete infoomés

most informative.

The main contribution of this thesis is the development of a new method for buiéing
ensemble of classifiers, that can be used to reduce the amount ofisigrerequired in
each of the above three settings. As a result, we are able to build morai@cpredictive

models than existing methods, at a lower costs of data acquisition.

1.1 TheDECORATEApproach

One of the major advances in inductive learning in the past decade wasvlegiment of
ensembler committeeapproaches that learn and retain multiple hypotheses and combine
their decisions during classification (Dietterich, 2000). For exampteyBoosT (Freund
& Schapire, 1996) is an ensemble method that learns a series of “weakifides each one
focusing on correcting the errors made by the previous one; and itrisntlyr one of the
best generic inductive classification methods (Hastie, Tibshirani, & Frieda@01).
Constructing aliversecommittee in which each hypothesis is as different as possi-
ble, while still maintaining consistency with the training data, is known to be a ttiealfg
important property of a good ensemble method (Krogh & Vedelsby, 198Bhough all
successful ensemble methods encourage diversity to some extentyviefotased directly
on the goal of maximizing diversity. Existing methods that focus on achieviveysity
(Opitz & Shavlik, 1996; Rosen, 1996) are fairly complex and are notggmeta-learners
like Bagging (Breiman, 1996) andod BoosTwhich can be applied to any base learner to
produce an effective committee (Witten & Frank, 1999).
This thesis presents a new meta-learn&txCDRATE (Diverse Ensemble Creation
by Oppositional Relabeling of Artificial Training Examples), that uses astieg “strong”
learner (one that provides high accuracy on the training data) to builéfestiee diverse

committee in a simple, straightforward manner. This is accomplished by addiegediff



randomly constructed examples to the training set when building new committee nsembe
These artificially constructed examples are given category labeldisegreewith the
current decision of the committee, thereby easily and directly increasiegsdiy when a
new classifier is trained on the augmented data and added to the committee.

In this thesis, we motivate the use ofeDORATE for each of the three settings
discussed in the previous section, and we provide empirical results thincats effec-
tiveness. In particular, for the passive supervised setting, we staiwtten training data
is limited, DECORATE produces more accurate classifiers than competing ensemble meth-
ods — Bagging, AAB0OST, and Random Forests (Breiman, 2001). In the active learning
setting, experiments demonstrate thad®RATE ensembles perform very well at select-
ing the most informative examples to be labeled, so as to improve classificatioraeg
Experiments on active feature-value acquisition, show thet@RATE can be used very
effectively in making cost-effective decisions of the most informative msga for which

to acquire missing feature values.

1.2 Thesis Outline

Below is a summary of the rest of the thesis:

e Chapter 2. Background: We provide a review of ensemble methods for classifi-
cation, and describe some commonly-used ensemble approaches — Bagming

BoosTand Random Forests.

e Chapter 3. The DECORATE Algorithm: This chapter presents the details of our

ensemble method BCORATE, and discusses some related approaches.

e Chapter 4. Passive Supervised Learningln this chapter, we present experiments
on thepassivdearning setting. It is shown that, when training data is limitedcb
ORATE outperforms Bagging, BABoosTand Random Forests. Moreover, even on

larger training sets, BCORATE performs better than Bagging and Random Forests,

4



and is competitive with AABOOST. This chapter also presents several additional

studies analyzing the BcorRATE algorithm.

Chapter 5. Imperfections in Data: We compare the sensitivity of BaggingpA-
BoosT, and DECORATEto three types of imperfect data: missing features, classi-
fication noise, and feature noise. Experimental results demonstrate iffenoesof

DECORATEt0 these imperfections in data.

Chapter 6. Active Learning for Classification Accuracy: This chapter discusses
the task of active learning, and presents an algoritr@mi%e DECORATE, which uses
DECORATE ensembles to reduce the number of labeled training examples required
to achieve high classification accuracy. Extensive experimental resultertstrate

that, in general, ATIVEDECORATE outperforms other active learners — Query by

Bagging and Query by Boosting (Abe & Mamitsuka, 1998).

Chapter 7. Active Learning for Class Probability Estimation: In this chapter,

we examine the task of active learning, when the objective is improving ctabs p
ability estimation, as opposed to classification accuracy. We propose thef use
Jensen-Shannon divergence as a measure of the utility of acquiringdadem-
ples. We improve on an existing active probability estimation method, and also ex-
tend ACTIVEDECORATE to effectively select training examples that improve class

probability estimates.

Chapter 8. Active Feature-value Acquisition:In this chapter, we present a general
framework for the task of active feature-value acquisition. Within this fraanlk,

we propose a method that significantly outperforms alternative appreaEixeeri-
mental results using ECORATE demonstrate that our approach can induce accurate
models using substantially fewer feature-value acquisitions as comparexiade-

line.



e Chapter 9. Future Work: This chapter discusses future research directions for the

work presented in this thesis.

e Chapter 10. Conclusions:In this chapter, we review the main contributions of our

work.

This thesis introduces theHZ ORATE algorithm, which produces a diverse set of classifiers
by manipulating artificial training examples. We demonstrate that the divesssmdates
produced by [BCORATE can be used to learn accurate classifiers in settings where there
is a limited amount of training data, and @&ative settings, where the learner can acquire
class labels for unlabeled examples or additional feature-values forpdes with missing
values. As a result, we are able to build more accurate predictive model®xisiimg

methods, with reduced supervision, which translates to lower costs of ctpiesiion.



Chapter 2

Background

In this chapter, we provide a brief background on the supervisediegiask and ensemble

methods for classification. We also review some commonly-used ensembbtaapes.

2.1 Ensembles of Classifiers

We begin by introducing some notation and defining the supervised learrskg &e
attempt to adhere to the notation and definitions in (Dietterich, 1997).

Y is a set of classes.

T is a set of training examples, i.e. description-classification pairs.

C is a classifier, a function from objects to classes.

C* is an ensemble of classifiers.

C; is thei" classifier in ensemblé™.

w; is the weight given to the vote df;.

n is the number of classifiers in ensemblé.

z; is the description of th&" example/instance.

y; is the correct classification of th& example.

m is the number of training instances.



L is a learner, a function from training sets to classifiers.
In supervised learning, a learning algorithm is given a set of traininmples or instances
of the form{(z1,v1), ..., (@m, ym)} for some unknown functiog = f(x). The descrip-
tion z; is usually a vector of the formt x; 1, z; 2, ..., x; , > Whose components are real or
discrete (nominal) values, such as height, weight, age, eye-colorpand hese compo-
nents of the description are often referred to as the features or attridfute®xample. The
values ofy are typically drawn from a discrete set of clas¥em the case otlassification
or from the real line in the case aégression Our work is primarily focused on the classi-
fication task. A learning algorithrm, is trained on a set of training examplgsto produce
aclassifierC. The classifier is a hypothesis about the true (target) fungtiddiven a new
examplez, the classifier predicts the correspondingalue. The aim of the classification
task is to learn a classifier that minimizes the error in predictions on an indepeedt set
of examples (generalization error). For classification, the most commoruneefas error
is the 0/1 loss function, given by:
errorc,f(x) = 0: 10 = flz) (2.1)
1 : otherwise
An ensemble (committeef classifiers is a set of classifiers whose individual deci-
sions are combined in some way (typically by weighted or unweighted votindassity
new examples. One of the most active areas of research in supenaseihdehas been
to study methods for constructing good ensembles of classifiers. Thissaref@rred to
by different names in the literature — committees of learners, mixtures of expkrssi-
fier ensembles, multiple classifier systems, consensus theory, etc. @an&hNhitaker,
2003). In general, an ensemble method is used to improve on the acctieagiyen learn-
ing algorithm. We will refer to this learning algorithm as thase learner The base learner
trained on the given set of training examples is referred to alsdke classifierlt has been

found that in most cases combining the predictions of an ensemble of claspifieluces



more accurate predictions than the base classifier (Dietterich, 1997).

There have been many methods developed for the construction of enseBSiee
of these methods, such as Bagging and Boostingr&ta-learners.e. they can be applied
to any base learner. Other methods are specific to particular learners. FoplexaNeg-
ative Correlation Learning (Liu & Yao, 1999) is used specifically to builchouttees of
Neural Networks. We focus primarily on ensemble methods thatnata-learners This
is because, some learning algorithms are often better suited for a partioutairdthan
others. Therefore generalensemble approach that is independent of the particular base
learner is preferred.

It the following sections, we present some ensemble approaches timabsirecle-

vant to this study. For an excellent survey on ensemble methods see (Diet®&00).

2.2 Bagging

In a Bagging ensemble, each classifier is trained on a set whining examples, drawn
randomly with replacement from the original training set of size Such a training set
is called abootstrap replicateof the original set. Each bootstrap replicate contains, on
average, 63.2% of the original training set, with many examples appearing Imtilies.
Predictions on new examples are made by taking the majority vote of the ensemble.
Bagging is typically applied to learning algorithms that arestable i.e., a small
change in the training set leads to a noticeable change in the model pro&ined each
ensemble member is not exposed to the same set of examples, they aretdiffenecach
other. By voting the predictions of each of these classifiers, Bagging seekduce the
error due to variance of the base classifier. Baggirgaiflelearners, such as Naive Bayes,

does not reduce error.



2.3 Boosting

There are several variations of Boosting that appear in the literaturenWh talk about
Boosting or ADABOOST, we refer to the AABoosST.M1 algorithm described by Freund
and Schapire (1996) (see Algorithm 1). This algorithm assumes that feelderner can
handle weighted examples. If the learner cannot directly handle weigkéeapdes, then
the training set can be sampled according to a weight distribution to prodwese @aining
set to be used by the learner. DABOOST maintains a set of weights over the training
examples; and in each iteratiorthe classifie(”; is trained to minimize the weighted error
on the training set. The weighted error@fis computed and used to update the distribution
of weights on the training examples. The weights of misclassified examplescaegased
and the weights on correctly classified examples are decreased. TlotassKier is trained
on the examples with this updated distribution and the process is repeated.

After training, the ensemble’s predictions are made using a weighted vote of th
individual classifiers) ", w;C;(x). The weight of each classifiar;, is computed according
to its accuracy on the weighted example set it was trained on.

ADABOOSTIs a very effective ensemble method that has been tested extensively
by many researchers (Bauer & Kohavi, 1999; Dietterich, 2000; Qujiila86a; Maclin &
Opitz, 1997). Applying AAB0OOSTto decision trees has been particularly successful, and
is considered one of the best off-the-shelf classification methods (Hastie 2001). The
success of AdaBoost has lead to its use in a host of different applisatiwiuding text
categorization (Schapire & Singer, 2000), online auctions (SchapioeeSMcAllester,
Littman, & Csirik, 2002), document routing (lyer, Lewis, Schapire, Singe Singhal,
2000), part-of-speech tagging (Abney, Schapire, & Singer, 198@pmmender systems
(Freund, lyer, Schapire, & Singer, 1998), first-order learningif@n, 1996b) and named-
entity extraction (Collins, 2002).

Despite its popularity, Boosting does suffer from some drawbacks. ricpiar,

Boosting can fail to perform well given insufficient data (Schapir@29This observation
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Algorithm 1 The AbAB0O0OST.M1 algorithm

Input:

BaseLearn - base learning algorithm

T - set ofm training examples< (z1,41), ..., (Zm, ym) > With labelsy; € Y
I - number of Boosting iterations

Initialize Distribution of weights on example$); (z;) = 1/mforallz; € T

1

2.

3.

. Fori=1toI

Train base learner given the distributiby, C; = BaseLearn(T, D;)

Calculate error of’;, ¢; = Z Di(z;)
JJJ'ET7
Ci(wj)#y;

If ; > 1/2 then setl =i — 1 and abort loop
Sets; = Gi/(l — 62‘)

B 1f Ci(xj) = y;

Update weightsD; 1 (z;) = D;(x;) X { 1 - otherwise

Normalize weightsD; 1 (z;) = _ Din(zy)
Z Diy1(x;)
z;€T
' . 1
Output: The final hypothesis)™(z) = arg max Z log—
ver :Ci(x)=y ’82
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is consistent with the Boosting theory. Boosting also does not performwhelh there is
a large amount of classification noise (i.e. training examples with incorress tdbels)

(Dietterich, 2000; Melville, Shah, Mihalkova, & Mooney, 2004).

2.4 Random Forests

Breiman (2001) introduces Random Forests, where he combines Bagginmgndom fea-
ture selection for decision trees. In this method, each member of the ensetnhiedd on

a bootstrap replicate as in Bagging. Decision trees are then grown byirsglie feature

to split on at each node frof randomly selected features. In our experiments, following
Breiman (2001), we sef' to |log,(k + 1) |, wherek is the total number of features. And
we also do not perform any pruning on the random trees.

Dietterich (2002) recommends Random Forests as the method of choiceifode
trees, as it compares favorably t@ABoosTand works well even with noise in the training
data. The focus of our work has been the development of ensemble mdtlabadraneta-
learners Random Forests do not fall in this class, as they can only be applied igatec
trees. However, as we applied our methods to tree induction we chose toaipare our

results with Random Forests.
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Chapter 3

The DECORATEAIgorithm

In this chapter, we discuss the notion of ensemble diversity, and explaialgorithm
DECORATE in detail. We also discuss other studies that are most closely related to our

approach.

3.1 Ensemble Diversity

In an ensemble, the combination of the output of several classifiers is safullif they
disagree on some inputs (Hansen & Salamon, 1990; Tumer & Ghosh, WW8égfer to the
measure of disagreement as thieersity/ambiguityof the ensemble. For regression prob-
lems, mean squared errois generally used to measure accuracy, eadanceis used to
measure diversity. In this setting, Krogh and Vedelsby (1995) showhbaieneralization
error, E, of the ensemble can be expressedvas E — D; whereE and D are the mean
error and diversity of the ensemble respectively. This result implies thegasing ensem-
ble diversity while maintaining the average error of ensemble members, sleauldo a
decrease in ensemble error. Unlike regression, for the classificatiotheaabove simple
linear relationship does not hold betwegn £ and D. But there is still strong reason to

believe that increasing diversity should decrease ensemble errasl{iZ&rCunningham,

13



2001).

There have been several measures of diversity for classifier eleseprbposed in
the literature. In a recent study, Kuncheva and Whitaker (2003) cadpen different mea-
sures of diversity. They found that most of these measures are highglated. However,
to the best of our knowledge, there has not been a conclusive stogyngfwhich measure

of diversity is the best to use for constructing and evaluating ensembles.

3.1.1 Our diversity measure

For our work, we use the disagreement of an ensemble member with the éeisqrdwlic-
tion as a measure of diversity. More precisely,'jfz) is the prediction of the-th classifier
for the label ofz; C*(x) is the prediction of the entire ensemble, then the diversity of the
i-th classifier on example is given by

0: if Cij(x) =C*(x

di(x) = ) ) (3.1)

1 : otherwise

To compute the diversity of an ensemble of sizen a training set of sizex, we average

the above term:

1 n m

i=1 j=1
This measure estimates the probability that a classifier in an ensemble will disaigne
the prediction of the ensemble as a whole. Our approach is to build ensemitieseh

consistent with the training data and that attempt to maximize this diversity term.

3.2 DECORATE Algorithm Definition

Melville and Mooney (2003, 2004a) introduced a new meta-learrst @RATE (Diverse
Ensemble Creation by Oppositional Relabeling of Artificial Training Examples) uses

an existing learner to build an effective diverse committee in a simple, straigatit man-
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ner. In DECORATE (see Algorithm 2), an ensemble is generated iteratively, first learning a
classifier and then adding it to the current ensemble. We initialize the ensendoletton
the classifier trained on the given training data. The classifiers in eachssinee iteration
are trained on the original training data combined with some artificial data.chnitzra-
tion, artificial training examples are generated from the data distributiomerthe number
of examples to be generated is specified as a fracfp,, of the training set size. The
labels for these artificially generated training examples are chosen soiistandximally
from the current ensemble’s predictions. The construction of the artifiata is explained
in greater detail in the following section. We refer to the labeled artificially gead train-
ing set as theliversity data We train a new classifier on the union of the original training
data and the diversity data, thereby forcing it to differ from the cureesemble. Therefore
adding this classifier to the ensemble should increase its diversity. Whiledativersity
we still want to maintain training accuracy. We do this by rejecting a new clas$#igding
it to the existing ensemble decreases its training accuracy. This procepsaad until we
reach the desired committee size or exceed the maximum number of iterations.

To classify an unlabeled example, we employ the following method. Each base
classifier,(;, in the ensemblé€'™* provides probabilities for the class membershipoflf
]501.71/(93) is the estimated probability of exampiebelonging to clasg according to the

classifierC;, then we compute the class membership probabilities for the entire ensemble

Z Pci,y@:)

~ C,eC*

as:

whereﬁy(x) is the probability ofr belonging to clasg. We then select the most probable

class as the label for, i.e. C*(z) = arg max P,(z)
yE
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Algorithm 2 The DECORATE algorithm

Input:

BaseLearn - base learning algorithm

T - set ofm training examples< (x1,y1), ..., (Tm, ym) > With labelsy; € Y
Csize - desired ensemble size

I a2 - Maximum number of iterations to build an ensemble

Rs;.. - factor that determines number of artificial examples to generate

l.i=1

2. trials =1

3. C; = BaseLearn(T)

4. Initialize ensemblel* = {C;}

Z;L'jET,C*(Ej);éyj 1
m

5. Compute ensemble errer=

6. While: < Cy;,e andtrials < Iyax

~

GenerateR;.. x |T| training examples, R,
based on distribution of training data

8. Label examples in R with probability of class labels
inversely proportional to predictions 6f*

9. T=TUR
10. ' = BaseLearn(T)
11. C*=C*UY{C"}
12. T =T — R, remove the artificial data

13. Compute training erroe,, of C* as in step 5

14. Ifé <e
15. =1+ 1
16. e=¢

17. otherwise,
18. cr=C*—-{C"}

19. trials = trials +1
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3.2.1 Construction of Artificial Data

We generate artificial training data by randomly picking data points from aroziopa-
tion of the training-data distribution. For a numeric attribute, we compute the nmehn a
standard deviation from the training set and generate values from tresi@awistribution
defined by these. For a nominal attribute, we compute the probability ofrecme of each
distinct value in its domain and generate values based on this distribution.eN@apkace
smoothing so that nominal attribute values not represented in the trainintlisetse a
non-zero probability of occurrence. In constructing artificial datatspime make the sim-
plifying assumption that the attributes are independent. It is possible to moneassly
estimate the joint probability distribution of the attributes; but this would be time consu
ing and require a lot of data. Furthermore, the results seem to indicatedtamachieve
good performance even with the crude approximation we use. In SectiomedpBesent
experiments on alternate approaches to generating artificial data.

In each iteration, the artificially generated examples are labeled basedaunriet
ensemble. Given an example, we first find the class membership probabilddistpd by
the ensemble. We replace zero probabilities with a small non-zero valueamdlize the
probabilities to make it a distribution. Labels are then selected, such thatbalyiity of
selection is inversely proportional to the current ensemble’s predict®asf the current
ensemble predicts the class membership probabillﬁ;és), then a new label is selected

based on the new distributid®, where:

Yy X =

Ij)/( ): 1/Py($)
2y 1/Py()

3.3 Why DECORATE Should Work

Ensembles of classifiers are often more accurate than their componeiftectkagserrors
made by the ensemble members are uncorrelated (Hansen & Salamon, B&@jning

classifiers on oppositely labeled artificial example€CDRATE reduces the correlation
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between ensemble members. Furthermore, the algorithm ensures ttratrtimg error of
the ensemble is always less than or equal to the error of the base clasgifidr usually
results in a reduction ajeneralizatiorerror. This leads us to our first hypothesis:
Hypothesis 1 On average, using the predictions of @ BDRATE ensemble will improve
on the accuracy of the base classifier.

We believe that diversity is the key to constructing good ensembles, andsighiau
basis of our approach. Other ensemble methods also encouragétyliversin different
ways. Bagging implicitly creates ensemble diversity, by training classifierdifterent
subsets of the data. Boosting fosters diversity, by explicitly modifying theiloligions
of the training data given to subsequent classifiers. Random Foreshsder diversity by
training on different subsets of the data and feature sets. Howevéreaé methods rely
solely on thetraining data for encouraging diversity. So when the size of the training set
is small, they are limited in the amount of diversity they can produce. On the loémet,
DECORATE ensures diversity on an arbitrarily large set of additional artificial exesgp
while still exploiting all the available training data. This leads us to our next tigsis:
Hypothesis 2 DECORATEWiIll outperform Bagging, AABoosTtand Random Forests low
on the learning curve i.e. when training sets are small.

We empirically validate these hypotheses in the following chapter.

3.4 Related Work

3.4.1 Explicit Diversity-Based Approaches

DecoRrATE differs from ensemble methods, such as Bagging, in thexpticitly tries to
foster ensemble diversity. There have been other approaches todigngjty to guide
ensemble creation. We list some of them below.

Liu and Yao (1999) and Rosen (1996) simultaneously train neural niefwioran

ensemble using a correlation penalty term in their error functions. McKayAdobass
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(2001) use a similar method with a different penalty function. Brown andtiNg803)
provide a good theoretical analysis of these methods, commonly referiasi Negative
Correlation Learning. Opitz and Shavlik (1996) and Opitz (1999) usenatiyealgorithm
to search for a good ensemble of networks. To guide the search thegnusijective
function that incorporates both an accuracy and diversity term.

Tumer and Ghosh (1996) reduce the correlation between classifiergimsamble
by exposing them to different feature subsets. They tnaiciassifiers, one corresponding
to each class in an-class problem. For each class, a subset of features that have a low
correlation to that class is eliminated. The degree of correlation betweesifiel@scan
be controlled by the amount of features that are eliminated. This method, ogtled
decimation has been further explored by Tumer and Oza (1999).

Zenobi and Cunningham (2001) also build ensembles based on diffesgnre
subsets. In their approach, feature selection is done using a hill-climbetggtrbased
on classifier error and diversity. A classifier is rejected if the improvemeonhe of the
metrics leads to a “substantial” deterioration of the other; where “substaistidé¢fined by
a pre-set threshold.

All these approaches attempt to simultaneously optimize diversity and erior of
dividual ensemble members. On the other handcDRATEfocuses on reducing the error
of the entire ensemble by increasing diversity. At no point does the training accuriacy
the ensemble go below that of the base classifier; however, this is a possiftititgrevi-
ous methods. Furthermore, to the best of our knowledge, apart fratn @p99), none of
the previous studies compared their methods with standard ensemble &gsreach as

Boosting and Bagging.

3.4.2 Use of Artificial Examples

One ensemble approach that also utilizes artificial training data is the actiwmgeethod

introduced by Cohn et al. (1994). Rather than to improve accuracy,dhleoff the com-
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mittee here is to select good new training examples using the existing trainingTdeda.
labels of the artificial examples are selected to produce hypotheses tteataitiofully rep-
resent the entire version space rather than to produce diversity. 'sSCapproach labels
artificial data either all positive or all negative to encourage, respmdgtithe learning of
more general or more specific hypotheses.

Another application of artificial examples for ensembles is Combined Multiple
Models (CMMs) (Domingos, 1997). The aim of CMMs is to improve the com@nsibility
of an ensemble of classifiers, by approximating it by a single classifier. datixamples
are generated and labeled by a voted ensemble. They are then addeokrigitia training
set. The base learner is trained on this augmented training set to prodapprarimation
of the ensemble. The role of artificial examples here is to create less compttaymmt
to improve classification accuracy.

Craven and Shavlik (1995) use artificial examples to learn decision tregs f
trained neural networks. As in CMMs, the goal here is to create more abrapsible
models from existing classifiers. The artificial examples created are labgledgiven
neural network, and then used in constructing an equivalent decisien tr

To prevent overfitting in neural networks often noise is added to the imwisg
training. This is generally done by adding a random vector to the featutervef each
training example. Theggerturbedor jittered examples may also be considered as artificial
examples. Quite often training with noise improves network generalizationdBid995;
Raviv & Intrator, 1996). Adding noise to training examples differs froom method of
constructing examples from the data distribution. Furthermore, unlike addisg, Dec-

ORATE systematically labels artificial examples to improve generalization.
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Chapter 4

Passive Supervised Learning

In this chapter, we consider tlpassivesupervised learning setting, where the training set
is randomly sampled from the data distribution. In Chapters 6-8, we will loakftsr-
entactivesettings, where the learner can influence the process of data acquikitithre
following sections, we present experiments comparimg DRATEWith the leading ensem-
ble methods, Bagging, AdaBoost and Random Forests. We also dismesalsadditional

experiments that we ran to better understamtDRATES performance.

4.1 Experimental Methodology

To evaluate the performance ofEDORATE we ran experiments on 15 representative data
sets from the UCI repository (Blake & Merz, 1998) that were used in sirsilaties (Webb,
2000; Quinlan, 1996a). The data sets are summarized in Table 4.1. Notkdltztasets
vary in the numbers of training examples, classes, numeric and nominal tasrilbous
providing a diverse testbed.

We compared the performance oEDORATEt0 that of ADABOOST, Bagging, Ran-
dom Forests and J48, using J48 as the base learner for the ensemblésnaeithasing the

Weka implementations of these methods (Witten & Frank, 1999). For the ensamatiie
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Table 4.1: Summary of Data Sets

Name Examples| Classes Features
Numeric | Nominal
anneal 898 6 9 29
audio 226 6 - 69
autos 205 6 15 10
breast-w 699 2 9 -
credit-a 690 2 6 9
glass 214 6 9 -
heart-c 303 2 8 5
hepatitis 155 2 6 13
colic 368 2 10 12
iris 150 3 4 -
labor 57 2 8 8
lymph 148 4 - 18
segment 2310 7 19 -
soybean 683 19 - 35
splice 3190 3 - 62

ods, we set the ensemble size to 15. Note that in the case@dRATEWe can only specify
a desiredensemble size; the algorithm terminates if the number of iterations exceeds the
maximum limit set even if the desired ensemble size is not reached. For ceniragpts,
we set the maximum number of iterations iE@ORATEt0 50. We ran experiments varying
the amount of artificially generated dafa,;..; and found that the results do not vary much
for the range 0.5 to 1. HoweveR,;.. values lower than 0.5 do adversely affect &p-
RATE, because there is insufficient artificial data to give rise to high divershe results
we report are folR;,. setto 1, i.e. the number of artificially generated examples is equal
to the training set size.

The performance of each learning algorithm was evaluated using 10 dermmhes
of 10-fold cross-validation. In each 10-fold cross-validation, eaata g¢et is randomly
split into 10 equal-size segments and results are averaged over 10 traaleadh trial,

one segment is set aside for testing, while the remaining data is availableifimdraro
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test performance on varying amounts of training data, learning curves gemerated by
testing the system after training on increasing subsets of the overall trai@iagSince we
would like to summarize results over several data sets of different siresebect different
percentagesf the total training-set size as the points on the learning curve.

To compare two learning algorithms across all domains we employ the statistics
used in (Webb, 2000), namely the win/draw/loss record and the geometnicarrea ratio.
The win/draw/loss record presents three values, the number of datarsgtidh algorithm
A obtained better, equal, or worse performance than algothmith respect to classifica-
tion accuracy. We also report tettistically significantvin/draw/loss record; where a win
or loss is only counted if the difference in values is determined to be sigrtifitaine 0.05
level by a paired-test.

The geometric mean error ratio is defined @s]_[?zl g—g whereE 4 and Eg are
the mean errors of algorithmd and B on the same domain. If the geometric mean error
ratio is less than one it implies that algorithfrperforms better tha®, and vice versa. We
compute error ratios to capture the degree to which algorithms out-perfrinaher in

win or loss outcomes.

4.2 Results

Our results are summarized in Tables 4.2-4.5. Each cell in the tables préseatsuracy

of DECORATEVersus another algorithm. If the difference is statistically significant, then the
larger of the two is shown in bold. We varied the training set sizes from024l6¥ the total
available data, with more points lower on the learning curve since this is whesxpect

to see the most difference between algorithms. The bottom of the tablesesuritmary
statistics, as discussed above, for each of the points on the learnimg €arvetter visualize

the results from the tables, we present scatter-plots in Figures 4.1-44 pkea presents a
comparison of BECORATEVersus another learner for one point on the learning curve. Each

point in the scatter-plot represents one of the 15 datasets. The points thigodiagonal
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Table 4.2: DECORATEVS J48

Dataset | 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%
anneal 75.2972.49 78.1475.31 85.2482.08 92.2689.28 96.4895.57 97.3696.47 97.7397.3 98.1697.93 98.39/98.35 98.71/98.55
audio 16.66/16.66  23.73/23.07 41.72/41.1755.4251.67 64.0960.59 67.6264.84 70.4668.11 72.8270.77 77.875.15 82.177.22
autos 24.33/24.33  29.6/29.01 36.7334.37 42.89/41.22  52.2/50.53 59.8653.92 64.7759.68 68.665.24 78/73.15 83.6481.72
breast-w 92.3874.73 94.1287.34 95.0889.42 95.6492.21 95.5593.09 95.9¥93.36 96.293.85 96.0194.24 96.2894.65 96.3195.01
credit-a 71.78/69.54 74.83[7.46 80.61/81.57 83.09/82.35 84.38/84.29 84.68/84.585.2284.41 85.5784.78 85.61/85.43 85.93/85.57
glass 31.69/31.69 35.8632.96 44.538.34 55.446.62 61.7754.16 66.0160.63 68.0761.38 68.8963.69 72.7367.53 72.7767.77
heart-c 58.6849.57 65.1¥58.03 73.5867.71 75.05870.15 77.66873.44 78.3474.61 79.0974.78 79.4675.62 78.7476.7 78.4877.17
hepatitis 52.33/52.33 72.1465.93 76.872.75  79.48/78.25 80.778.61 81.8178.63 81.6979.35 83.1979.57 82.9979.04 82.6279.22
colic 58.3752.85 66.58/65.31 75.85/74.37 79.54/79.94 8B331 82.4783.41 83.02/83.55 83.B4.66 84.0285.18 84.69/85.16
iris 33.33/33.33 50.2733.33 80.6759.33 91.5384.33 93.291.33  94.292.73 94.7393 94.493.33  94.53/94.07 94.67/94.73
labor 54.27/54.27 54.27/54.27 67.6358.93 70.2364.77 79.7770.07 8373.7 84.1775.17 83.4375.8 89.7377.4  89.7378.8
lymph 48.39/48.39 53.6246.64 65.0660.39 71.268.21 76.7470.79 78.8473.58 78.1774.53 78.9973.34 79.1475.63 79.0876.06
segment 67.0352.43 81.1673.26 89.6185.41 92.8389.34 94.8892.22 95.9493.37 96.4794.34 96.9394.77 97.5895.94 98.0396.79
soybean 19.5713.69 32.422.32 55.3642.94 73.0659.04 85.1474.49 88.2781.59 90.2284.78 91.486.89 92.7589.44 93.8991.76
splice 62.7759.92  67.8/68.69  77.37/77.49 82.55/82.588.2487.98 90.47/90.44  91.84/91.77  92.41/92.4  93.44/93.47 .929M.03
Win/Draw/Loss 15/0/0 13/0/2 13/0/2 13/0/2 14/0/1 14/0/1 14/0/1 14/0/1 o1/ 12/0/3

Sig. W/D/L 7/8/0 9/5/1 11/4/0 10/5/0 12/2/1 12/2/1 13/2/0 13/1/1 10/4/ 10/4/1

GM error ratio 0.8627 0.8661 0.8099 0.8104 0.8172 0.8056 0.8081 0.8251 178.8 0.8303
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Table 4.3: IECORATEVS Bagging

Dataset | 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%
anneal 75.29/74.57 78.1476.42 85.2482.88 92.2689.87 96.4895.67 97.3696.89 97.7397.34 98.1697.78 98.39/98.53 98.71/98.83
audio 16.6612.98 23.73/23.68 41.7238.55 55.4251.34 64.0961.76 67.62/66.9  70.46/70.29 72.82/73.07  77.8/77.3282.180.71
autos 24.3322.16 29.6/28 36.73/35.88  42.89/44.65 52.2/54.32 58B6T  64.77/65.6 68.6/69.88 78/77.97 83.64/83.12
breast-w 92.3876.74 94.1288.07 95.0690.88 95.6493.41 95.5594.42 95.9194.95 96.294.95 96.0195.55 96.28/96.07  96.31/96.3
credit-a 71.78/69.54 74.837.99 80.6182.58 83.09/83.9 84.385.13 84.6885.78 85.22/85.59 85.57/85.64 85.8H.12 85.93/85.96
glass 31.6924.85 35.8631.47 44.540.87 55.449.6 61.7758.9 66.0164.35 68.07/66.3  68.85/68.44 72.73/72 T2ZIAT87
heart-c 58.6650.56 65.1155.67 73.5968.77 75.0973.17 77.6676.12  78.34/77.9  79.09/78.44  79.46/79.11 78.74/79.05 .48788.68
hepatitis 52.33/52.33 72.1463.18 76.8/75.2 79.48/78.64  80.7/80.42  81.81/81.07 5381622 83.1981.06 82.9980.87 82.62/81.34
colic 58.3753.14 66.5863.83 75.85/76.44 79.54/80.06 8183304 82.4783.58 83.0283.98 83.184.47 84.0285.4 84.69/85.34
iris 33.33/33.33 50.2733.33 80.6760.47 91.5381.4  93.290.67 94.292.33 94.7392.87  94.493.6 94.53/94.47 94.67/94.73
labor 54.27/54.27 54.27/54.27 67.6356.27 70.2365.9  79.7774.97 83/75.67 84.1776.27 83.4378.6 89.7380.83 89.7385.87
lymph 48.39/48.39 53.6247.11 65.0660.12 71.2/69.68 76.7473.6 78.8476.58 78.17/77.68 78.9976.98 79.1476.8  79.08/77.97
segment 67.0355.88 81.1676.36 89.6187.42 92.8391.01 94.8893.4 95.9494.65 96.4795.26 96.9395.82 97.5896.78 98.0397.41
soybean 19.5714.56  32.424.58 55.3647.46 73.0665.45 85.1479.29 88.2785.05 90.2287.89 91.489.22 92.7591.56 93.8992.71
splice 62.77/62.52 67.82.36 77.37B0.5 82.5585.44 88.2489.5 90.4791.44 91.8482.4 92.4103.07 93.44P4.06 93.9204.53
Win/Draw/Loss 15/0/0 13/0/2 12/0/3 11/0/4 11/0/4 12/0/3 11/0/4 10/0/5 01/ 8/0/7

Sig. W/D/L 8/7/0 10/3/2 10/3/2 9/5/1 10/2/3 8/4/3 6/7/2 8/5/2 5713 12/9
GM error ratio 0.8727 0.8785 0.8552 0.8655 0.8995 0.9036 0.8979 0.9214 312.9 0.9570
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Table 4.4: IECORATEVS Random Forests

Dataset | 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%
anneal 75.2972.07 78.1476.69 85.2484.21 92.2690.89 96.4895.71 97.367.54 97.73P08.16 98.1698.64 98.3999.01 98.7189.23
audio 16.6612.98 23.7320.47 41.7226.61 55.4230.73 64.0941.93 67.6251.14 70.4657.05 72.8260.69 77.869.43  82.173.47
autos 24.3322.16  29.681.65 36.7386.76 42.89A4.76 52.257.04 59.8663.53 64.7769.43 68.6/73.81 78/79.95 83.6485.24
breast-w 92.3881.52 94.1288.7 95.0892.07 95.6493.49 95.5594.37 95.9194.94 96.295.41 96.0195.77 96.2895.84 96.3195.85
credit-a 71.7860.61 74.8364.65 80.6170.38 83.0972.87 84.3876.55 84.6878.36 85.2279.54 85.5781.13 85.6182.35 85.9383.25
glass 31.6924.85 35.8631.79 44.542.19 55.452.84 61.7759.96 66.0163.4 68.0767.06 68.859.14 72.73F3.55 72.77/(6.4
heart-c 58.6850.06 65.1154.78 73.5566.86 75.0972.61 77.66876.14 78.3476.52 79.0977.63 79.4678.58 78.7479.28 78.48179.92
hepatitis 52.3352.33 72.1470.36 76.874.51 79.4877.26 80.780.37  81.8181.7 81.65981 83.1981.72 82.983.05 82.6282.9
colic 58.3752.73 66.5856.62 75.8964.52 79.5468.03 81.3374.6 82.4777.15 83.0279.54 83.181 84.0283.36 84.6984.34
iris 33.3333.33 50.2747 80.6767.07 91.5383.33 93.291.13 94.294 94.7394.47 94.494.33  94.5394.4  94.6794.2
labor 54.2754.27 54.2754.27 67.6365.3 70.2369.57 79.7775.23 8379.6 84.1780.03 83.4381.6 89.7382.83 89.7388.1
lymph 48.3948.39 53.6252.06 65.0660.55 71.265.48 76.7468.18 78.8471.37 78.1773.55 78.9976.34 79.1477.51 79.08/9.28
segment 67.0359.46 81.1674.16 89.6186.45 92.8391.25 94.8894.16 95.9495.42 96.4795.99 96.9396.39 97.5897.18 98.0397.59
soybean 19.5125.82  32.4B8.3 55.3%64.57 73.0666.52 85.1478.4 88.2783.94 90.2287 91.488.54 92.7990.73 93.8991.38
splice 62.7749.37 67.851.34 77.3751.92 82.5551.97 88.2452.03 90.4752.11 91.8452.17 92.4152.23 93.4452.42 93.9252.59
Win/Draw/Loss 14/0/1 13/0/2 14/0/1 14/0/1 14/0/1 13/0/2 13/0/2 12/0/3 o1/ 9/0/6
Sig. W/D/L 10/4/1 8/6/1 10/5/0 13/2/0 11/3/1 10/4/1 10/3/2 71612 7/6/2 6/5/4
GM error ratio 0.8603 0.8495 0.7814 0.7433 0.7486 0.7763 0.7915 0.8203 170.8 0.8364
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Table 4.5: IECORATEVS AdaBoost

Dataset | 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%
anneal 75.2973.02  78.14/77.12 85.287.51 92.2604.16 96.48097.13 97.3687.95 97.7308.54 98.16098.8 98.3909.23 98.7189.68
audio 16.66/16.66  23.73/23.41 41.7240.24 55.4252.7 64.09/64.15 67.62/68.91 70.48/07 72.82/5.92 77.881.74  82.1B4.52
autos 24.33/24.33  29.6/29.71 36.73/34.2  42.89/43.28 5BAB  59.8662.2 64.7769.14 68.6/72.03 78/80.28 83.6485.28
breast-w 92.3874.73 94.1287.84 95.0891.15 95.6493.75 95.5594.85 95.91/95.72  96.2/95.84  96.01/95.87  96.28/96.3 31986.47
credit-a 71.7868.8 74.83/75.3  80.61/79.68 83.0981.14 84.3883.04 84.68/84.22 85.2284.13 85.5784.58 85.61/84.93 85.93/85.42
glass 31.69/31.69 35.8632.93 44.540.71 55.449.78 61.7758.03 66.01/64.33 68.07/66.93 68.85/68.69 7ZZF9 72.77116.06
heart-c 58.6849.57 65.1¥58.65 73.5570.71 75.0972.5 77.66/76.65 78.34/78.26 79.09/78.96  79.46/79.55 .74789.06  78.48/79.22
hepatitis 52.33/52.33 72.1465.93 76.873.01 79.4876.95 80.7/79.44 81.8179.22 81.65/81.27 83.19/82.63 82.99/83.24 82.62/82.71
colic 58.3752.85 66.58/67.18 75.8972.85 79.5477.17 81.3379.36 82.4779.24 83.0279.51 83.1/80.22 84.0280.59 84.6981.93
iris 33.33/33.33 50.2733.33 80.6766.2 91.5384.53  93.290.73 94.293 94.7393.33  94.493.53 94.53/94.2 94.67/94.2
labor 54.27/54.27 54.27/54.27 67.6358.93 70.2365.1  79.7773.2 8376.9 84.1779.57 83.4380.1 89.7384.07 89.7386.37
lymph 48.39/48.39 53.6246.64 65.0660.54 71.2/69.57 76.7474.16 78.84/78.62 78.190.35 78.99/79.88 79.180.96 79.0881.75
segment 67.0360.22 81.1677.38 89.6188.5 92.83/92.71 94.88/95.01 95.94/96.03 9®BH  96.9397.23 97.5808 98.0308.34
soybean 19.5114.26  32.423.36  55.3649.37 73.0669.49 85.14/85.01 88.27/88.37 90.22/90.04  91.4/90.89 .75¥22.57 93.8992.88
splice 62.7765.11  67.8//3.9  77.37B2.22 82.5586.13 88.24/88.27 90.47/89.82 91.8490.8 92.4190.78 93.4492.63 93.92/93.59
Win/Draw/Loss 14/0/1 11/0/4 13/0/2 12/0/3 10/0/5 10/0/5 10/0/5 9/0/6 ®/0/ 6/0/9

Sig. W/D/L 771 8/6/1 11/2/2 10/3/2 7/6/2 4/9/2 5/5/5 5/6/4 3/6/6 8/6/
GM error ratio 0.8812 0.8937 0.8829 0.9104 0.9407 0.9598 0.9908 0.9957 371.0 1.0964




indicate that the accuracy of HEORATE is higher than the learner to which it is being
compared. We present these plots comparirg ORATE with the other learners given 1%
and 20% of the available training data.

The results in Table 4.2 confirm our hypothesis that combining the predictions
of DECORATE ensembles will, on average, improve the accuracy of the base classifier.
DecorATEalmost always does better than J48, producing considerable reducgamin
throughout the learning curve.

DECORATE has moresignificantwins to losses over Bagging for all points along
the learning curve (see Table 4.3)EDORATEalso outperforms Bagging on the geometric
mean error ratio. This suggests that even in cases where Bagging lmsatRBre the
improvement is less thanHZ ORATES improvement on Bagging on the rest of the cases.

Similar results are observed in the comparison sEDRATEwWith Random Forests
(see Table 4.4). BcorATE exhibits superior performance through out the learning curve
on both wins/loss records as well as error ratios. The poor perfomrafritRandom Forests
maybe because we are using only 15 trees. Random Forests may benefising larger
ensembles; more so than other methods. However, to do a fair comparismewe same
ensemble size for all methods. Section 4.5 presents experiments on |agenxes, which
support our claims here.

DeCORATE outperforms ADABoOOST early on the learning curve both on signifi-
cant wins/draw/loss record and geometric mean ratio; however, the treekised when
given 75% or more of the data. Note that even with large amounts of traintag Oac-
ORATE's performance is quite competitive withbABoosT given 100% of the training
data, DECORATE produces higher accuracies on 6 out of 15 data sets. It has besmweibs
in previous studies (Webb, 2000; Bauer & Kohavi, 1999) that whitenBoOST usually
significantly reduces the error of the base learner, it occasionallyaseseit, often to a
large extent. BCORATEdoes not have this problem as is clear from Table 4.2.

On many data sets, FLORATE achieves the same or higher accuracy as Bagging,
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Figure 4.1: Comparing BCORATEWiIth other learners on 15 datasets given 1% of the data.
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30



100 T T T T T

Accuracy of Decorate
~
o
T
1

60 ]

50 | ;

40 < 1 1 1 1 1
40 50 60 70 80 90 100

Accuracy of J48

100 T T T T T

9 |- ]
80 F ° /,Q/o i

70 | .

Accuracy of Decorate

60 | |

50 ]

40 < 1 1 1 1 1
40 50 60 70 80 90 100

Accuracy of Bagging

Figure 4.3: Comparing BCORATE with other learners on 15 datasets given 20% of the
data.

31



100 T T T T T

o /&9’
90 | .
o]
o o]
o
S 80 S e 1
o 0.
o o
()
o)
© 70 8
>
[8)
© o P
> o,/’
8 60 8
<
/// o
50 8
40 // 1 1 1 1 1
40 50 60 70 80 90 100
Accuracy of Random Forests
100 T T T T T P
/’%//’6
90 | g/// o
[0} /O/ /

2z
S 80 o & .
3 o o7
o)
a
S5 70F 1
[8)
o o
> o /"
8 60 8
<

50 | ;

40 // 1 1 1 1 1

40 50 60 70 80 90 100

Accuracy of AdaBoost

Figure 4.4: Comparing BCORATE with other learners on 15 datasets given 20% of the
data.

32



ADABoOOsTor Random Forests with far fewer training examples. Figures 4.5 and@uwb sh
learning curves that clearly demonstrate this point. Hence, in domains Vittlerdata is
available or acquiring labels is expensives @ RATEhas a significant advantage over other

ensemble methods.

4.3 DECORATEWith Large Training Sets

The learning curve evaluation clearly showgs @RATES advantage when training sets
are small. The results also indicate that @RATE begins to lose out to BABOOST
with larger training sets. However, we claim that the performance of botieragson
large training sets is comparable. To support this we ran additional expesim@mparing
DecorATE with ADABoOST 0on a larger collection of 33 UCI datasets. We ran 10 fold
cross-validation using all the available training examples for each of theatatarhe re-
sults of this study are summarized in Table 4.6. We observe that on 25 of that@3:ts
there was no statistically significant difference between the two systemsDAQOGRATE
significantly outperforms AABoosTon four of the eight remaining datasets. We conjec-
ture that when the training set is large enough the classifiers producedamagiching the
Bayes-optimal performance, which makes improvements impossible. Suding eéect
has been observed in other empirical comparisons of ensemble methods &Bkohavi,
1999). However, by looking at performance on varying training sessize can get a better
understanding of the relative effectiveness of two learners. Ttrerefe strongly believe

that generating learning curves is crucial for making a good comparetwebn systems.

4.4 Diversity versus Error Reduction

Our approach is based on the claim that ensemble diversity is critical toreduaction.
We attempt to validate this claim by measuring the correlation between diverdityreor

reduction. We ran BCcoRrATEat 10 different settings aR,;.. ranging from 0.1 to 1.0, thus
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Dataset MABOOST DECORATE
audio 84.45 83.6
anneal 99.55 98.66
colic 83.13 85.58
balance-scale 78.56 80.98
credit-g 72.40 73.6
pima-diabetes 72.52 75.52
glass 76.58 72.34
heart-c 81.15 77.51
heart-h 78.56 79.98
credit-a 85.94 87.39
autos 86.33 85.79
kr-vs-kp 99.56 99.41
labor 88.33 83.00
lymph 82.43 78.29
mushroom 100.00 100.00
sonar 80.29 82.21
soybean 92.82 94.58
splice 93.17 93.89
vehicle 76.48 75.42
vote 95.17 95.18
vowel 93.94 96.87
breast-y 67.88 68.21
breast-w 96.42 96.85
heart-statlog 81.11 81.85
hepatitis 85.17 81.17
hypothyroid 99.66 98.6
ionosphere 93.75 92.6
iris 92.67 93.33
primary-tumor 40.09 44.53
segment 98.57 97.97
sick 99.23 98.49
waveform 81.58 80.92
Z00 96.18 94.18
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Table 4.7: Comparing ensemble diversity: Win-loss records.
Number of Training Examples

10 15 20 25 30
Decorate vs Bagging | 14-1 14-1 14-1 13-2 13-2
Decorate vs AdaBoost 15-0 14-1 14-1 14-1 14-1

varying the diversity of ensembles produced. We then compared thsithvef ensembles
with the reduction in generalization error, by computing Spearman’s ramklatbon be-
tween the two. Diversity of an ensemble is computed as the mean diversityarishenble
members (as given by Eq. 3.2). We compared ensemble diversity witndgnble error
reduction i.e. the difference between the average error of the ensemble memHbeditean
error of the entire ensemble (as in (Cunningham & Carney, 2000)).0Wfdfthat the cor-
relation coefficient between diversity and ensemble error reduction69D 6 < 107°),
which is fairly strongt Furthermore, we compared diversity with thase error reduction
i.e. the difference between the error of the base classifier and the dasaman. The base
error reduction gives a better indication of the improvement in performahaa ensem-
ble over the base classifier. The correlation of diversity versus the dyasr reduction is
0.1607 p < 107Y). We note that even though this correlation is weak, it is stita
tistically significantpositive correlation. These results reinforce our belief that increasing
ensemble diversity is a good approach to reducing generalization error.

By exploiting artificial examples, the BcORATE algorithm forces the construction
of adiverseset of hypotheses that are consistent with the training data. We believhithat
ensemble diversity is the key to the success aCDRATE when training data is limited.
We ran additional experiments to verify thaeDORATEdoes indeed produce more diverse
committees than Bagging oroaBOOST.

The diversity of each ensemble method was evaluated using 10-foldvalidation

on 15 UCI datasets. To test performance on varying amounts of data,sgsiem was

The p-value is the probability of getting a correlation as large as the observed bgliandom chance,
when the true correlation is zero (Spatz & Johnston, 1984).
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evaluated on the testing data, after training on increasing subsets of thiegddta. \We
focused on points early on the learning curve, wheecDBRATE is most effective. The
results (Table 4.7) are summarized in terms of significant win/loss recottteeva win

or loss is only counted if the difference diversity (not accuracy) is determined to be
significant at the 0.05 level by a pairedest. These results confirm that in most cases
DecoORATE does indeed produce significantly more diverse ensembles than Bagging o

ADABOOST.

4.5 Influence of Ensemble Size

To determine how the performance oEDORATE changes with ensemble size, we ran
experiments with increasing sizes. We compared results for training on R available
data since the advantage oEDORATEis most noticeable low on the learning curve. The
results were produced using 10-fold cross-validation. We presaphgofaccuracyersus
ensemble siztor five representative datasets (see Figure 4.7). The performanother
datasets is similar. We note, in general, that the accuracyeafdRATE increases with
ensemble size; though on most datasets, the performance levels out withesmbde size
of 10 to 25.

In our main results in Section 4.2 we used committees of size 15 for all methods.
However, different ensemble methods may be affected to varying extgrierbmittee
size. To verify that the other ensemble methods are not being disadvaribagenaller
ensembles, we ran additional experiments with ensemble size set to 108ingezurves
were generated as in Section 4.1 on the four datasets presented in Biguaesl 4.6. For
these experiments, we set the maximum number of iterationsEibdRATE to 300. The
results of testing with larger ensembles is presented in Figures 4.8 and 429t fAgm
slight improvements in accuracies for all methods, the trends of the reseiliseasame as

with ensembles of size 15.
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4.6 Generation of Artificial Data

The DecoRrATEalgorithm uses a fairly simple approach to generating artificial training ex-
amples. It generates feature values based on the training data distribssaming feature
independence and making simple assumptions about the underlying modsiatopegnthe
data (Section 3.2.1). It is possible to model the data more accurately, butnitlisan if
that is particularly beneficial. To verify this, we ran experiments using @hdalieal data

in place of artificial data. Using unlabeled data corresponds to perfectlgling the data,
since they come from the same distribution as the training data. As a contegiragpt,

we also tried relaxing our assumptions about the data, by assuming thatalefealues

come from uniform distributions. We describe these alternatives in morg loieliaw.
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4.6.1 Using Unlabeled Data

In some domains, such as web page classification, we often have acedasge amount
of unlabeled examples. In such domains, it is possible to exploit unlabetadrdplace
of artificial examples in the BcorATE algorithm. Unlike artificially-generated examples,
there is not an infinite supply of unlabeled examples; so we need to slightly yribeif
DecoRrATEalgorithm (see Algorithm 3). In the modified algorithm, we begin with a pool
of unlabeled examples, and at each iteration, we sample a set of exanoptethis pool.
This set of unlabeled examples is then used in the same way that artificial lesaang
used in DECORATE algorithm. We refer to this variation of the algorithm ag @RATE
(Unlabeled). We compared this variation to the origin@dd®RATE In DECORATE we
can generate an arbitrary amount of artificial examples, butso@RATE (Unlabeled) we
have a fixed amount of unlabeled examples to sample from. So to make a faiaisonp
we implemented another version 0EDORATE, which we call DECORATE (Sampled Ar-
tificial). In this approach, we initialize a fixed pool of artificial examples,,asichilarly to
DecoRrATE(Unlabeled), we sample from this pool at each iteration.

We ran experiments comparing the three versionset DRATEand the base learner,
J48. The performance of each algorithm was averaged over 10 fut3-fold cross-
validation. In each fold of cross-validation, we generated learningesunv the follow-
ing way. Initially, all examples are treated as unlabeled examples. For eathop the
curve, a subset of the examples are randomly sampled and their true blelssal@ given
to the learner. The remaining examples serve as the pool of unlabeledlegdorDec-
ORATE (Unlabeled). The performance of each learner is evaluated on imgeamounts
of labeled training examples to produce points on the learning curve. Sieceitha fixed
set of available examples for each dataset, as the number of labeled examoases, the
size of the unlabeled set decreases. Hence, we only run these tliB@% of the dataset
is used as labeled examples, so that the rest may be used as the unlabkled po

The results of these experiments are summarized in Tables 4.8-4.10. Ttis res
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Algorithm 3 The DECORATE (Unlabeled) algorithm

Input:

BaseLearn - base learning algorithm

T - set ofm training examples< (x1,y1), ..., (Tm, ym) > With labelsy; € Y
U - set of unlabeled examples

Csie - desired ensemble size

Imaz - maximum number of iterations to build an ensemble

Rs;.. - factor that determines number of additional examples to use

1.i=1

2. trials = 1

3. C; = BaseLearn(T)

4. Initialize ensembleC™* = {C;}

Zz]'ET,C*(Zj)#yj 1

m

. Compute ensemble errer=

5

6. Whilei < Cyj,e andirials < Ipgx
7. SampleR;.. x |T'| examples with repetition fror®y, to give setR
8

Label examples i with probability of class labels
inversely proportional to predictions 6f*

9. T=TUR
10. ' = BaseLearn(T)
11. C*=C*UY{C"}
12. T =T — R, remove the additional data

13. Compute training erroe,, of C* as in step 5

14. Ifé <e
15. =1+ 1
16. e=¢

17. otherwise,
18. cr=C*-{C"}

19. trials = trials + 1
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show that unlabeled data can be used effectively in place of artificiatalptaduce ensem-
bles that are more accurate than the base classifier. However, usirgaditifienerated
data, both in EcorRATEand DECORATE (Sampled Artificial), perform comparably or bet-
ter than using unlabeled data. Unlabeled data has a slight disadvantagetidiotal data,
because if the current ensemble has high accuracy, then its prediaiiotie funlabeled
data are likely to be correct. Flipping these labels may then make it difficult tcafimg
pothesis that is consistent with the training data and these new data. Thisodbeppen as
often in the case of artificial data, which are unlikely to contain mislabedabexamples.
Nevertheless, when a large pool of unlabeled data is available, it canesgipioited in

the DECORATEframework to improve over the base classifier. Using unlabeled data has the
advantage that it is computationally less expensive than using artificial éesrsmce we
avoid the step of generating artificial examples. The results also indicat® HtatRATE

and DECORATE (Sampled Artificial) exhibit similar performance on most datasets. The

trends discussed above can be clearly seen in Figures 4.10-4.11.

4.6.2 Using Uniform Distributions

An alternate approach to generating artificial examples is to assume thesfealwes are
sampled from uniform distributions. In this case, for a nominal featureigkegovalue from
the set of distinct values in its domain, selected uniformly at random. For arrufi@ature,
we select a random real number in the range defined by the minimum and maxaiues
observed in the training data. We refer to this version eBCDRATE as DECORATE (Uni-
form).
Experiments were run as in Section 4.1, comparimgLDRATE (Uniform), DECO-

RATE and J48. The results are summarized in Tables 4.11-4.12. Generatingahddia
assuming uniform distributions still produces significant improvements oedvdke clas-
sifer. For some datasets, the performance atDRATE (Uniform) is similar to that of

DECORATE, but on most others ECORATE performs better (see Figures 4.12 and 4.13).
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Table 4.8: EcCORATHUnlabeled) vs. J48

5% 10% 15% 20% 30% 40% 50%

Win/Draw/Loss
Sig. W/D/L
GM error ratio

9/0/6  7/0/8 9/0/6 11/0/4 11/0/4 12/0/3 12/0/3
6/6/3  4/9/2 5/8/2 5/8/2 6/8/1 5/9/1  8/6/1
0.9337 0.9726 0.9675 0.9664 0.9426 0.9187 0.9234

Table 4.9: ZEcoRATHUnlabeled) vs. BCORATE (Sampled Artificial)

5% 10% 15% 20% 30% 40% 50%

Win/Draw/Loss
Sig. W/D/L
GM error ratio

2/0/23 2/0/13 2/0/13 1/0/24 2/0/13 2/0/13 2/0/13
o/8/r 0/6/9 0/5/10 0/6/9 0/8/7 0/8/7 0/10/5
1.151 1.1733 1.2003 1.1857 1.170 1.1357 1.1095

Table 4.10: EcorRATHUnlabeled) vs. BECORATE

5% 10% 15% 20% 30% 40% 50%

Win/Draw/Loss
Sig. W/D/L
GM error ratio

2/0/13 3/0/12 1/0/14 0/0/15 1/0/14 1/0/14 3/0/12
0/6/9 0/6/9 0/5/10 0/6/9 0/6/9  0/8/7  0/9/6
1.0066 1.024 1.0054 1.0061 0.9997 1.0215 1.0167
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Figure 4.10: Comparing the use of unlabeled examples versus artificrapéesin DEC-
ORATE.

46



97 T T T T T T

>
Q
IS
‘5 4
Q
[&]
<
91 8
Decorate(Unlabeled) ——
90 F Decorate(Sampled Artificial) - 1
Decorate —-x--
e J48 o
89 1 1 1 1 1 1
50 100 150 200 250 300
Number of training examples
BREASTW
100 T T T T T T T T
98 8
96 8
94 8
3
8 92 - §
3
g 9r -
88 8
86 - 4 1
L Decorate(Unlabeled) ——
gal Decorate(Sampled Artificial) - |
Decorate -
f J48 e
82 o1 1 1 1 1 1 1 1

50 100 150 200 250 300 350 400
Number of training examples
ANNEAL

Figure 4.11. Comparing the use of unlabeled examples versus artificrapéesin DEC-
ORATE.

47



The results show that, when generating artificial data, it is beneficial noate
very relaxed assumptions about the data, as in the case of uniform distiyubut it is
also less effective to perfectly model the data, as in the case of unlab&leghkes. Using

an intermediate level of data modeling, as done BECDRATE, seems to work the best.

4.7 Importance of the Rejection Criterion

In building ensembles of classifiers, there is usually a tradeoff betweersidy and average
error of ensemble members. As such, iBEDRATE, we try to foster diversity, while still
maintaining the overall ensemble’s accuracy. We do this by rejecting a nesifida if
adding it to the existing ensemble decreases its training accuracy. To teaptbrtance of
this rejection criterion, we conducted an ablation study, in which we createdsson of
DEecoORATEwithout the rejection criterion, i.e., we excised steps 13-18 from Algorithm 2.
We refer to this version of the algorithm a€DoRATE (No Rejection). Experiments were
run as in Section 4.1, and our results are summarized in Tables 4.13-4.1&eWat for
most datasets removing the rejection criterion does not significantly huretfiermance
of DECORATE (see, e.g., Figure 4.14(a)). However, splice (Figure 4.14(b)), we see
that DECORATE(No Rejection) performs very poorly compared ta@oRATE Therefore,
having the rejection criterion is a good safety mechanism to guard againstlikely event

that DECORATEIntroduces too much diversity at the cost of generalization accuracy.

4.8 Experiments on Neural Networks

Since DECORATE is a meta-learning algorithm, it can be applied to any base learner to
produce an ensemble of classifiers. In most experiments EDORATE we have used
decision tree induction as the base learner. To verify that our resulesajee to other
base learners, we ran additional experiments using neural netwgrgsifi€ally, we used

the Weka implementation of neural networks, which uses backpropagadiwrirg (Witten
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Table 4.11: EcorRATHUniform) vs. J48

2% 5% 10% 20% 30% 40% 50% 75%  100%

1%
15/0/0 14/0/1 14/0/1 13/0/2 14/0/1 12/0/3

Win/Draw/Loss| 14/0/1 14/0/1 13/0/2 14/0/1
11/4/0 12/3/0 11/4/0 11/4/0 11/4/0 9/5/1

Sig. W/D/L 9/5/1 12/3/0 10/5/0 11/4/0
0.868 0.8623 0.8373 0.8423 0.8447 0.8583 0.845 0.8781 0.857 0.8889

GM error ratio

Table 4.12: ECORATHUniform) vs. DECORATE

1% 2% 5% 10% 20% 30%  40% 50% 75%  100%

Win/Draw/Loss| 8/0/7  6/0/9  6/0/9 6/0/9  7/0/8 3/0/12 4/0/11 5/0/10 5/0/10 3/0/12

Sig. W/D/L 0/12/3  3/9/3 0/13/2 2/9/4  1/9/5 0/10/5 0/9/6  1/7/7  3/7/5  0/6/9
GMerrorratio | 1.0131 1.0222 1.039 1.0405 1.0427 1.065 1.067 1.0727 1.0377 1.0975
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Table 4.13: EcORATENO Rejection) vs. BCORATE

1% 2% 5% 10% 20% 30% 40% 50% 75%  100%
Sig. W/D/L 0/15/0 0/15/0 2/11/2 0/12/3 0/11/4 0/11/4 1/11/3 2/12/1 0/14/1 1/11/3
Win/Draw/Loss| 11/0/4  7/0/8 10/0/5 5/0/10 5/0/10 4/0/11 7/0/8  7/0/8 5/0/10 7/0/8
GM errorratio | 1.0005 1.0014 1.0151 1.0278 1.0251 1.0263 1.0224 1.0182 1.0189 1.014

Table 4.14: corATHNO Rejection) vs. J48

1% 2% 5% 10% 20% 30% 40% 50% 75%  100%
Sig. W/D/L 9/5/1 10/3/2 11/3/1 11/2/2 12/2/1 13/1/1 13/1/1 11/2/2 11/2/2 10/4/1
Win/Draw/Loss| 14/0/1 13/0/2 14/0/1 13/0/2 13/0/2 13/0/2 13/0/2 13/0/2 12/0/3 12/0/3
GM errorratio | 0.9036 0.8801 0.9284 0.9679 0.9751 0.9806 0.9788 0.9818 0.9869 0.9825
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Table 4.15: EcoRATHNO Rejection) vs. Bagging

1%

2% 5%

10% 20% 30% 40% 50% 75%  100%

Sig. W/D/L 10/5/0 11/2/2 11/3/2  9/4/2  9/5/1  7/711  6/8/1  6/7/2  4/8/3  7/5/3
Win/Draw/Loss| 15/0/0 13/0/2 12/0/3 11/0/4 11/0/4 12/0/3 12/0/3 11/0/4 8/0/7  10/0/5
GM errorratio | 0.8834 0.8841 0.9462 0.9929 1.005 1.0093 1.0061 1.0075 1.0095 1.0062
Table 4.16: ZEcoRATENO Rejection) vs. AdaBoost

1% 2% 5% 10% 20%  30% 40% 50% 75% < 100%
Sig. W/D/L 8/7/0 8/6/1 12/1/2 7/6/2 7/5/3 7/6/2 5/4/6  3/6/6 4/318  4/4]7
Win/Draw/Loss| 13/0/2 13/0/2 13/0/2 13/0/2 9/0/6 8/0/7  9/0/6 9/0/6 6/0/9  7/0/8
GM errorratio | 0.9194 0.8949 0.9576 0.9967 1.009 1.0148 1.0166 1.015 1.0212 1.0153
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& Frank, 1999). For the network parameters, we set the learning ratelfoahd the
momentum term to 0.9, as done in a similar study on ensemble methods (Opitz & Maclin,
1999). The number of hidden layers was set to half the sum of the nurhatributes and
classes for each dataset. We trained the networks for 80 epochs, wdmctne maximum
used by Opitz and Maclin (1999). Experiments were run as in Section 4vieWo, since

the training time for neural networks is much longer than for decision trez=enly ran five

runs of 10-fold cross-validation on two datasets. We selected datassts@nDECORATE
applied to decision trees performed well, so that we could verify that tlesséts were not

an artifact of the base learner.

The resulting learning curves are presented in Figure 4.15. The resnitsdtrate
that DECORATE significantly improves on the performance of neural networks, and is also
better than Bagging andBxBoOST. The significant advantage ofHZORATE early in
learning is clearly visible on thereast-wdataset. On both datasetspABoosTdoes not

produce a noticeable improvement over the base learner.

4.9 Experiments on Naive Bayes

The Naive Bayes algorithm (Duda & Hart, 1973) istablelearner, i.e., small changes in
the training set do not lead to significant changes in the classifier pradHosvever, most
ensemble methods are best suited toursgablebase learners, as they facilitate the creation
of a diverse set of classifiers. To test the effectiveness of ensemdtleods on stable
learners, we ran experiments comparing BaggingaBoosTand DECORATE applied to
Naive Bayes. We observed that none of the ensemble methods consigtedtige notable
improvements over the base classifier. One can expect to see similar reisiultsthver
stable learners, such as nearest neighbor classifiers. Our dises\are supported by a
recent study by Davidson (2004), which shows that Bagging, booatidddECORATE are

not very effective when applied to stable learners.
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Chapter 5

Imperfections in Data

In addition to their many other advantages, classifier ensembles hold the grofrds-

veloping learning methods that are robust in the presence of imperfeatidhe data in

terms of missing features and noise in both the class labels and the featoigstriining

data tends to increase the variance in the results produced by a givsifiedabowever,

by learning a committee of hypotheses and combining their decisions, thiseagdan be
reduced. In particular, variance-reducing methods suddeaging(Breiman, 1996) have
been shown to be robust in the presence of fairly high levels of noisle;ameverbenefit

from low levels of noise (Dietterich, 2000).

Bagging is a fairly simple ensemble method which is generally outperformed by
more sophisticated techniques such asaBoo0sT (Freund & Schapire, 1996; Quinlan,
1996a). However, AABOOST has a tendency to overfit when there is significant noise
in the training data, preventing it from learning an effective ensemble (Bi&tte2000).
Therefore, there is a need for a general ensemble meta-learner thigastas accurate as
ADABoOOsTwhen there is little or no noise, but is more robust to higher levels of random
error in the training data.

This chapter presents experiments from (Melville et al., 2004), in whichxpl®ee

the resilience of BCORATEto the various forms of imperfections in data. In our experi-
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ments, the training data is corrupted with missing features, and randora grtbe values
of both the category and the features. Results on a variety of UCI datandénatte that, in
general, ZECORATE continues to improve on the accuracy of the base learner, despite the
presence of each of the three forms of imperfections. FurthermaepRATE is clearly

more robust to missing features than the other ensemble methods.

5.1 Experimental Evaluation

5.1.1 Methodology

Three sets of experiments were conducted in order to compare therpanice of AA-
BoosT, Bagging, DECORATE, and the base classifier J48, under varying amounts of three
types of imperfections in the data: Each set of experiments differed frewttter two only

in the type of noise that was introduced:

1. Missing features: To introduceN % missing features to a data set bfinstances,
each of which had" features (excluding the class label), we select randomly with
replacement% instances and for each of them delete the value of a randomly
chosen feature. Missing features were introduced to both the trainingeatidg

sets.

2. Classification noise: To introduce N % classification noise to a data set bfin-
stances, we randomly sele%% instances with replacement and change their class
labels to one of thethervalues chosen randomly with equal probability. Classifica-

tion noise was introduced only to the training set and not to the test set.

3. Feature noise: To introduceN% feature noise to a data set bf instances, each
of which hasF features (excluding the class label), we randomly select with re-
placement-2:L instances and for each of them we change the value of a randomly

selected feature. For nominal features, the new value is chosen randdmbqual
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probability from the set oéll possible values. For numeric features, the new value
is generated from a Normal distribution defined by the mean and the staselard
ation of the given feature, which are estimated from the data set. Feaigsewes

introduced to both the training and testing sets.

In each set of experiments DABOOST, Bagging, DECORATE, and J48 were compared on
11 UCI data sets using the Weka implementations of these methods (Witten & E8&R,
Table 5.1 presents some statistics about the data sets. The target enseentle¢hsiAirst
three methods was set to 15. In the case BCDRATE, this size is only an upper bound
on the size of the ensemble, and the algorithm may terminate with a smaller ensemble if
the number of iterations exceeds the maximum limit. As in Chapter 4, this maximum limit
was set to 50 iterations, and the number of artificially generated example=gwalsto the
training set size.

To ascertain that no ensemble method was being disadvantaged by the saal en
ble size, we ran additional experiments on some datasets with the ensembég &z£08.
The trends of the results are similar to those with ensembles of size 15. So,dhabier,
we only present the results on ensembles of size 15.

For each set of experiments, the performance of each of the learasmvaluated
at increasing noise levels frof¥% to 40% at 5% intervals using 10 complete 10-fold cross
validations. As in Chapter 4, to compare two learning algorithms, we employ tlistista
used by (Webb, 2000), namely, the significant win/draw/loss recorthengeometric mean

error ratio.

5.1.2 Results

This section presents the results of running the four algorithms on eachk afitHatasets

summarized in Table 5.1.
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Table 5.1: Summary of Data Sets

Name Cases| Classes Attributes
Numeric | Nominal
autos 205 6 15 10
balance-scale 625 3 4 -
breast-w 699 2 9 -
colic 368 2 10 12
credit-a 690 2 6 9
glass 214 6 9 -
heart-c 303 2 8 5
hepatitis 155 2 6 13
iris 150 3 4 -
labor 57 2 8 8
lymph 148 4 - 18

Missing Features

The results of running the algorithms when missing features are introdaregpesented in
Tables 5.2-5.4. Each table compares the accuracyeafdRATE versus another algorithm
for increasing percentages of missing features. The last two lines bftalle present the
win/draw/loss record and the GM error ratio respectively.

These results demonstrate thaa @RATEIS fairly robust to missing features, con-
sistently beating the base learner, J48, at all noise levels (Table 5.2actinvwthen the
amount of missing features 2% or higher, DECORATE produces statistically significant
wins over J48 on all datasets. The amount of error reduction prodiycesing DECORATE
is also considerable, as is shown by the mean error ratios.

For this kind of imperfection in the data, in general, all of the ensemble meth-
ods produce some increase in accuracy over the base learner. étpthevimprovements
brought about by using BCORATE are higher than those obtained by both Bagging and
ADABOOST. The amount of error reduction achieved bg @RATE also increases with
greater amounts of missing features; as is clearly demonstrated by the GMatios.

Figure 5.1(a) shows the results on a dataset that clearly demonst=teRBTES

superior performance at all levels of missing features. In Figure 5 \b}¥ee a dataset on
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Table 5.2: Missing Features:HCORATEVS J48

Noise Level % | 0 | 5 | 10 ] 15 ] 20 ] 25 ] 30 35 40
autos 83.05/81.72[ 79.1174.19] 75.8669.7 | 71.7665.21 | 69.9962.82 | 64.9259.38 | 62.5654.96 | 62.1650.95 | 58.647.5
balance-scale | 81.3977.85 | 80.5777.11 | 79.6676.4 | 79.0775.29 | 77.0575.07 | 76.0372.86 | 74.9771.53 | 73.4870.47 | 72.4469.96
breast-w | 96.4795.01 | 96.1294.69 | 96.1/94.69 | 95.8494.25 | 95.8794.13 | 95.3993.89 | 95.1893.66 | 94.7293.19 | 94.3292.91
colic 84.91/85.16| 83.72/83.93| 82.71/82.63| 82.981.89 | 81.9580.56 | 81.2579.23 | 81.4978.56 | 80.7577.26 | 80.276.39
credit-a 86.1685.57 | 85.8384.33 | 85.1683.49 | 84.7282.59 | 84.4282.19 | 82.9780.77 | 82.2880.25 | 81.8779.61 | 81.2679.07
glass 71.5767.77 | 72.968.36 | 72.4768.73 | 70.5165.29 | 68.6966.15 | 66.0963.95 | 67.1961.46 | 63.159.46 | 61.3457.4
heart-c 78.4277.17 | 78.5276.76 | 79.3777.48 | 78.76/77.7 | 78.8476.92 | 78.1576.7 | 78.9776.54 | 77.0275.25 | 77.7474.79
hepatitis 83.5879.22 | 82.4180.09 | 84.4680.28 | 82.7879.83 | 82.8980.61 | 83.1980.96 | 83.0581.02 | 82.9380.72 | 83.5680.84
iris 94.93/94.73| 94.9392.73 | 94.691.67 | 94.691 | 93.1390.6 | 94.0790.67 | 92.489.6 | 92.1388.8 | 91.287.33
labor 9U78.8 | 91.0777.17 | 90.2377.4 | 89.3375.23 | 89.473.07 | 86.9771.13 | 87.0772.13 | 85.0371.53 | 84.5770.53
lymph 79.0876.06 | 78.8774.58 | 77.4874.99 | 77.4474.78 | 78.5574.53 | 75.7472.49 | 77.8674.5 | 75.8472.42 | 75.0570.33
Sig. WI/D/L 8/3/0 10/1/0 10/1/0 10/1/0 11/0/0 11/0/0 11/0/0 11/0/0 11/0/0
GM Error Ratio | 0.8286 0.7882 0.7877 0.7815 0.7921 0.8039 0.8004 0.8095 0.8047
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Table 5.3: Missing Features:H@ORATEVS Bagging

Noise Level % | 0 5 | 10 ] 15 ] 20 ] 25 ] 30 | 35 ] 40
autos 83.05/83.12 79.11/78.87| 75.86/75.02 71.76/71.35] 69.99/69.01] 64.9263.22 | 62.56/61.05] 62.1659.77 | 58.654.52
balance-scale | 81.3981.93 | 80.5781.3 | 79.66/80.25| 79.07/79.16| 77.05I'7.8 | 76.03/75.74| 74.97/74.48| 73.48/73.43| 72.4471.84
berast-w 96.47/96.3 | 96.12/96.2 | 96.1/96.04 | 95.81/95.82| 95.87/95.55| 95.39/95.65| 95.18/95.31| 94.72/95.05| 94.32/94.71
colic 84.91/85.34| 83.72/83.99| 82.71/82.63| 82.981.7 | 81.9580.67 | 81.2579.61| 81.4978.2 | 80.7577.26 | 80.276.58
credit-a 86.16/85.96| 85.83/85.72| 85.16/84.96| 84.72/84.45| 84.4283.71 | 82.97/82.45| 82.2881.67 | 81.8780.94 | 81.2680.16
glass 71.5774.67 | 72.9/72.47 | 72.4770.53 | 70.51/70.55| 68.69/69.85| 66.09/66.7 | 67.19/66.66| 63.1/63.62 | 61.34/62.48
heart-c 78.42/78.68| 78.52/79.55| 79.37/80.53| 78.76779.81 | 78.84/79.83| 78.15/79.04| 78.97/79.38| 77.02178.24 | 77.71/77.99
hepatitis 83.5881.34 | 82.41/81.31| 84.4682.18 | 82.78/81.59| 82.89/81.7 | 83.19/81.9 | 83.0581.44 | 82.9380.79 | 83.5679.93
iris 94.93/94.73| 94.9394.13 | 94.693.67 | 94.693.53 | 93.1392 | 94.0792.33 | 92.4/91.4 | 92.13/91.53| 91.289.6
labor 91/85.87 | 91.0783.13 | 90.2382.27 | 89.3379.77 | 89.478.67 | 86.9774.8 | 87.0776.17 | 85.0372.67 | 84.5771.2
lymph 79.08/77.97| 78.87/77.85| 77.48/78 | 77.41/77.03| 78.5576.54 | 75.74/75.42| 77.86/77.77| 75.84/74.94| 75.0572.8
Sig. WI/D/L 21712 2/8/1 47710 37771 5/5/1 47710 4/7/0 5/5/1 8/3/0
GM Error Ratio | 0.952 0.9298 0.9201 0.9177 0.9041 0.9083 0.9085 0.915 0.8882
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Table 5.4: Missing Features:HZORATEVS ADABOOST

Noise Level % | 0 | 5 | 10 ] 15 ] 20 ] 25 ] 30 | 35 ] 40
autos 83.0585.28 | 79.1182.44 ] 75.86778.42 [ 71.76773.79 | 69.99/71.33] 64.92/63.93] 62.5659.01 | 62.1652.79 | 58.648.19
balance-scale | 81.3977.76 | 80.5777.06 | 79.6676.91 | 79.0777.34 | 77.05/76.73| 76.0374.75 | 74.9773.32 | 73.4871.8 | 72.4470.54
breast-w | 96.47/96.47| 96.12/96.25| 96.1/96.18 | 95.81/95.71| 95.87/95.84| 95.39/95.47| 95.18/95.19| 94.72/95.04| 94.32/94.81
colic 84.9181.93 | 83.7281.22 | 82.7179.63 | 82.978.48 | 81.9579.08 | 81.2577.85 | 81.4977.99 | 80.7577.59 | 80.277.45
credit-a 86.1685.42 | 85.8383.77 | 85.1682.99 | 84.7281.74 | 84.4280.84 | 82.9780.1 | 82.2879.93 | 81.8779.74 | 81.2679.55
glass 71.5716.06 | 72.9/73.93 | 72.47/72.52| 70.51/70.2 | 68.69/69.34| 66.09/67.21| 67.1964.22 | 63.1/63.98 | 61.34/60.75
heart-c 78.42/79.22| 78.52119.94 | 79.37/78.36| 78.76/78.22| 78.84/78.2 | 78.15/77.06| 78.9776.64 | 77.02/76.67| 77.7175.61
hepatitis 83.58/82.71| 82.41/82.61| 84.4682.65 | 82.78/82.57| 82.89/81.44| 83.1981.47 | 83.05/81.63| 82.93/81.27| 83.5680.79
iris 94.93/94.2 | 94.9393.33 | 94.692.73 | 94.691.8 | 93.1390.47 | 94.0790.67 | 92.489.67 | 92.1389.13 | 91.288
labor 91/86.37 | 91.0786.93 | 90.2387.53 | 89.33/86.63| 89.485.63 | 86.9783.07 | 87.0782.83 | 85.0379.63 | 84.5778.23
lymph 79.0881.75 | 78.87/80.32| 77.48/78.99| 77.41/77.39| 78.55/79.11| 75.74/76.52| 77.86/76.48| 75.84/75.85 75.05/75.61
Sig. WI/D/L 41413 5/4/2 6/4/1 4/6/1 41710 6/5/0 8/3/0 6/5/0 8/3/0
GM Error Ratio | 0.9534 0.9382 0.9197 0.9024 0.9109 0.8982 0.8827 0.8968 0.8876




which ADAB0OOST has the best performance when there are no missing features; but with

increasing amounts of missing features, both Bagging amddR®ATE outperform it.

Classification Noise

The comparison of each ensemble method with the base learner, in thecgre$etassi-
fication noise are summarized in Tables 5.5-5.7. The tables provide summnigstycstaas
described above, for each of the noise levels considered.

The win/draw/loss records indicate that, both Bagging aad ®RATE consistently
outperform the base learner on most of the datasets at almost all noise deraonstrating
that both are quite robust to classification noise. In the range of 10-35%assification
noise, Bagging performs a little better tham@ORATE, as is seen from the error ratios.
This is because, occasionally, the addition of noise helps Bagging, aaseagbserved in
(Dietterich, 2000).

Unlike, Bagging and BCORATE, ADABOOSTIs very sensitive to noise in classi-
fications. Though AABooOSTsignificantly outperforms J48 on 7 of the 11 datasets in the
absence of noise, its performance degrades rapidly at noise levelw as 10%. With
35-40% noise, AABOOST performs significantly worse than the base learner on 7 of the
datasets. Our results on the performance bARB0OOST agree with previously published
studies (Dietterich, 2000; Bauer & Kohavi, 1999; McDonald, Eckley, &, 2002). As
pointed out in these studiespABoosTdegrades in performance because it tends to place
a lot of weight on the noisy examples.

Figure 5.2(a) shows a dataset on whichddRATEhas a clear advantage over other
methods, at all levels of noise. Figure 5.2(b) presents a dataset on Bégiing outper-
forms the other methods at most noise levels. This figure also clearly deatesstiow
rapidly the accuracy of BABoosTcan drop below that of the base learner. These results
confirm that, in domains with appreciable levels of classification noise, it isfloga to

use DECORATEOr Bagging, but detrimental to applyphBoosT.
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Table 5.5: Class Noise: ECORATEVS J48

Noise Level% | 0 5 10 | 158 | 20 [ 25 [ 3 | 35 40
autos 83.05/81.72] 79.73/77.97] 77.6375.58 | 74.471.65 | 71.768.71 | 66.65/65.49] 64.52/62.79] 6360.2 | 61.4158.43
balance-scale | 81.3977.85 | 81.5878.65 | 81.979.16 | 81.0878.1 | 80.4477.56 | 79.6476.99 | 79.3676.13 | 77.7975.23 | 77.3873.82
breastw | 96.4795.01 | 95.8994.34 | 95.1294.29 | 95.1193.41 | 93.8393.21 | 93.6392.73 | 93.1191.97 | 91.9690.96 | 91.6290.51
colic 84.91/85.16 84.37/84.91| 84.05/84.78| 82.6684.58 | 82.1684.47 | 80.1383.83 | 79.0583.47 | 78.2581.49 | 77.2B1.78
credita | 86.1685.57 | 85.12/85.09| 84.88/85.09| 83.0984.86 | 81.5483.41| 80.2982.9 | 77.9982.12 | 74.87719.57 | 73.1678.51
glass 71.5767.77 | 72.9267.29 | 71.664.4 | 70.6363.13 | 71.0362.4 | 69.8960.05| 66.4257 | 65.5955.68 | 64.6253.85
heart-c 78.4277.17 | 78.9476.6 | 78.3876.47 | 76.7474.97 | 76.4674.76 | 75.5873.37 | 73.370.08 | 72.0869.04 | 71.4967.09
hepatiis | 83.5879.22 | 81.178.09 | 80.1778.06 | 79.976.72 | 78.5275.8 | 76.65/76.3 | 74.14/73.15| 73.18/73.02| 72.15/71.98
iris 94.93/94.73| 94.67/94.2 | 94/93.2 | 92.8/91.8 | 92.13/90.93| 90.4/89.87 | 89.33/88.47| 87/86.47 | 87.683.67
labor 9U78.8 | 90.4380.37 | 86.2776.5 | 85.977.7 | 83.874.03 | 84.Y715 | 82.5773.23| 79.Y69.7 | 77.0366.3
lymph 79.0976.06 | 78.8675.02 | 78.9273.65 | 78.7475.01 | 78.1472.17 | 77.5871.35 | 76.971.12 | 73.7368.6 | 72.9967.15
Sig. W/DIL 8/3/0 71410 8/3/0 8/1/2 8/1/2 6/312 6/3/2 71212 8/1/2
GM Error Ratio | 0.8286 0.8398 0.8633 0.8734 0.8809 0.896 0.9121 0.9229 0.8995
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Table 5.6: Class Noise: Bagging vs J48

Noise Level % | 0 5 | 10 ] 15 ] 20 25 ] 30 | 35 ] 40
autos 83.12/81.72[ 81.3877.97 | 79.6875.58 [ 76.671.65 | 74.5468.71| 69.665.49 | 67.8162.79 | 64.0360.2 | 63.1/58.43
balance-scale | 81.9377.85 | 82.0978.65 | 81.6979.16 | 81.5878.1 | 81.0477.56 | 79.976.99 | 78.8276.13 | 77.6875.23 | 76.6773.82
breast-w 96.395.01 | 96.1794.34 | 95.8294.29 | 95.0993.41 | 94.9593.21 | 93.7992.73 | 93.1391.97 | 92.0890.96 | 91.1/90.51
colic 85.34/85.16| 85.18/84.91| 84.75/84.78| 84.45/84.58| 84.39/84.47| 83.42/83.83| 83.31/83.47| 81.38/81.49| 81.84/81.78
credit-a 85.96/85.57| 86.2685.09 | 85.7985.09 | 85.35/84.86| 83.9/83.41 | 82.12/82.9 | 79.7182.12 | 77.0679.57 | 76.2678.51
glass 74.6767.77 | 72.7167.29 | 72.6264.4 | 69.4563.13 | 69.5762.4 | 69.9360.05| 68.9957 | 65.7955.68 | 62.1853.85
heart-c 78.6877.17 | 79.7476.6 | 79.3Y76.47 | 79.5Y74.97 | 77.7374.76 | 77.7873.37 | 76.6170.08 | 76.6869.04 | 73.3767.09
hepatitis 81.3479.22 | 81.0278.09 | 81.378.06 | 80.5976.72 | 80.4775.8 | 78.3/76.3 | 77.2273.15| 74.88/73.02| 75.0971.98
iris 94.73/94.73| 94.13/94.2 | 93.8/93.2 | 92.7391.8 | 91.87/90.93| 89.87/89.87| 88.13/88.47| 85.47/86.47| 83.67/83.67
labor 85.8778.8 | 83.4780.37 | 81.8376.5 | 83.4377.7 | 81.374.03 | 81.2715 | 77.0373.23| 77.269.7 | 74.6366.3
lymph 77.9776.06 | 77.0575.02 | 78.0973.65 | 77.6975.01 | 76.6972.17 | 76.2971.35 | 75.7§71.12 | 73.0368.6 | 71.7567.15
Sig. WI/D/L 71410 9/2/0 9/2/0 9/2/0 8/3/0 71410 8/2/1 7131 71311
GM Error Ratio | 0.8704 0.8687 0.8526 0.8508 0.8443 0.8719 0.8867 0.8972 0.8995
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Table 5.7: Class Noise: BaAB0OOSTVS j48

Noise Level % | 0 | 5 | 10 ] 15 ] 20 ] 25 30 | 35 40
autos 85.2881.72 [ 79.9677.97 | 76.67/75.58] 70.6/71.65 | 66.95/68.71] 63.8/65.49 | 60.89/62.79] 58.69/60.2 | 57.56/58.43
balance-scale | 77.76/77.85| 76.49778.65 | 75.1879.16 | 73.6/78.1 | 70.8177.56 | 69.7876.99 | 69.0676.13 | 67.41775.23 | 66.86773.82
breast-w | 96.4795.01 | 94.11/94.34| 92.5904.29 | 91.4P3.41 | 90.303.21 | 90.1402.73 | 88.6401.97 | 88.5600.96 | 88.300.51
colic 81.9385.16 | 79.4384.91 | 77.0484.78 | 75.9284.58 | 73.2884.47 | 69.9583.83 | 69.5483.47 | 67.3881.49 | 65.2681.78
credit-a 85.42/85.57| 82.4685.09 | 81.185.09 | 77.5184.86 | 74.4183.41 | 73.3282.9 | 70.8782.12 | 68.5279.57 | 67.9378.51
glass 76.0667.77 | 75.4267.29 | 70.964.4 | 67.2763.13| 65.4862.4 | 65.8360.05| 61.6557 | 60.6655.68 | 58.4353.85
heart-c 79.2277.17 | 78.8276.6 | 77.7/76.47 | 75.58/74.97| 72.4174.76 | 71.4973.37 | 70.59/70.08| 69.03/69.04| 65.51/67.09
hepatitis 82.7179.22 | 79.8278.09 | 77.47/78.06| 75.92/76.72| 74.86/75.8 | 73.6/6.3 | 72.8/73.15 | 69.5373.02 | 69.1671.98
iris 94.2/94.73 | 91.3394.2 | 88.6793.2 | 8501.8 | 81.3300.93| 80.689.87 | 77.2788.47 | 76.0786.47 | 75.2783.67
labor 86.3778.8 | 85.6780.37 | 79.1/76.5 | 80.77/77.7 | 75.27/74.03| 76.3771.5 | 73.83/73.23| 72.93/69.7 | 68.63/66.3
lymph 81.7976.06 | 79.7975.02 | 77.7873.65| 76/75.01 | 74/72.17 | 69.75/71.35| 68.0671.12 | 64.9768.6 | 63.6367.15
Sig. WI/D/L 7131 6/1/4 2/4]5 1/5/5 1/4/6 21217 1/416 17317 17317
GM Error Ratio | 0.8691 0.993 1.0984 1.1604 1.2322 1.2242 1.2431 1.212 1.1989
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Feature Noise

The results of running the algorithms with noise in the features are preserables 5.8—
5.10. Each table compares the accuracy of each ensemble method ¥&rfusdcreasing
amounts of feature noise.

In most cases, all ensemble methods improve on the accuracy of the brase, lag
all levels of feature noise. Bagging performs a little better than the other ngtimagrms
of significant wins according to the win/draw/loss record. In generakyatlems degrade
in performance with added feature noise. The drop in accuracy of gengie methods
seems to mirror that of the base learner, as can be seen in Figure 5.3 efftienance
of the ensemble methods seems to be tied to how well the base learner dealsatita fe

noise.

5.2 Related Work

Several previous studies have focused on exploring the performévegiaus ensemble
methods in the presence of noise. A thorough comparison of BaggingBAosT, and
Randomization (a method for building a committee of decision trees, which randieels
mine the split at each internal tree node) is presented by Dietterich (ZDI0B)study con-
cludes that while AaBoosToutperforms Bagging and Randomization in settings where
there is no noise, it performs significantly worse when classification noisdrigluced.
This behavior of AABOOST is attributed to its tendency to overfit by assigning large
weights to noisy examples.

Other studies have reached similar conclusions about AdaBoost (Baeahnavi,
1999; McDonald et al., 2002), and several variations of AdaBoogt baen developed to
address this issue. For example, Kalai and Servedio (2003) presemt hoosting algo-
rithm and prove that it can attain arbitrary accuracy when classificatitse n® present.

Another algorithm, Smooth Boosting, that is proven to tolerate a combinationgsifita-
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Table 5.8: Feature Noise:HZORATEVS J48

Noise Level % | 0 5 10 15 20 25 30 35 40
autos 83.05/81.72| 78.2272.9 | 72.8665.45| 67.6259.69 | 6355.23 | 60.7552.69 | 56.8549.51 | 50.4845.23 | 4943.21
balance-scale | 81.3977.85| 80.1777.37 | 78.2275.16 | 76.5373.42 | 74.5671.52 | 72.9369.49 | 72.1968.37 | 69.2866.85 | 68.9665.16
breast-w 96.4795.01 | 96.0893.91 | 95.7193.26 | 95.5592.72 | 94.4491.75 | 94.5290.42 | 94.0190.36 | 93.5889.47 | 93.7988.69
colic 84.91/85.16| 82.98/83.64| 81.6/81.9 | 79.6/79.94 | 77.5/77.83 | 76.63/76.54| 76.2/75.41 | 74.05/73.26| 71.36/71.52
credit-a 86.1685.57 | 83.96/84.07| 82.03/81.8 | 80.19/80.55| 78.0979 78.3/78.97 | 76.03/76.52| 74.29/74.7 | 73.16/73.64
glass 71.5767.77 | 71.8667.03 | 69.1562.46 | 64.8958.72 | 63.4155.53 | 59.6953.7 | 59.452.92 | 54.8646.95 | 52.6445.04
heart-c 78.4277.17 | 76.76/75.92| 76.46/75.34| 73.25/73.32| 72.33/72.56| 72.42/71.55| 72.41/71.49| 69.43/69.74| 69.75/70.28
hepatitis 83.5879.22 | 81.478.44 | 80.0478.22 | 81.1878.36 | 79.11/78.15| 79.24/77.7 | 77.28/77.25| 79.7277.12 | 77.47/77.12
iris 94.93/94.73| 93.33/92.33| 91.2790 91.288 88.3385.4 | 85.3381.73 | 84.682.47 81.276.8 81.677.2
labor 91/78.8 89.0378.47 | 87.1376.9 | 84.1373.77 | 81.270.93 | 79.1771.27 | 82.372.4 | 76.5768.23 | 76.8770.57
lymph 79.0876.06 | 76.874.31 | 71.85/71.77| 74.0271.31 | 72.4368.44 | 70.2567.22 | 68.79/68.32| 65.56/64.46| 64.69/63.69
Sig. W/D/L 8/3/0 7/4/0 7/4/0 8/3/0 7/3/1 7/4/0 6/5/0 7/4/0 6/5/0
GM Error Ratio 0.8286 0.8335 0.8434 0.8329 0.8593 0.8554 0.8690 0.8723 0.8782
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Table 5.9: Feature Noise: Bagging vs. J48

Noise Level % | 0 | 5 | 10 ] 15 20 25 30 35 40
autos 83.12/81.72] 78.1272.9 [ 72.7165.45 [ 67.8259.69 | 64.6455.23 [ 62.8952.69 | 57.8449.51 [ 55.3145.23 [ 52.5543.21
balance-scale | 81.9377.85 | 80.8377.37 | 78.7975.16 | 76.973.42 | 74.8471.52 | 73.1969.49 | 72/68.37 | 69.5966.85 | 68.865.16
breast-w 96.395.01 | 95.7793.91 | 95.4893.26 | 94.9692.72 | 94.3991.75 | 93.7690.42 | 93.4690.36 | 92.4689.47 | 91.9588.69
colic 85.34/85.16| 83.44/83.64| 82.01/81.9 | 80.52/79.94| 78.15/77.83| 77.01/76.54| 76.3875.41 | 74.6573.26 | 73.2971.52
credit-a 85.96/85.57| 84.9484.07 | 82.8181.8 | 81.4980.55 | 80.2279 | 79.29/78.97| 78.0376.52 | 75.42/74.7 | 74.7873.64
glass 74.6767.77 | 70.467.03 | 69.0462.46 | 64.2958.72 | 63.7355.53 | 61.0853.7 | 58.5152.92 | 54.7346.95 | 53.4445.04
heart-c 78.6877.17 | 78.9475.92 | 78.3575.34 | 77.673.32 | 76.572.56 | 75.8471.55 | 76.1671.49 | 74.0369.74 | 72.8670.28
hepatitis | 81.3479.22 | 82.3178.44 | 82.0378.22 | 81.7378.36 | 80.6178.15 | 80.0377.7 | 80.8977.25 | 79.8377.12 | 80.2477.12
iris 94.73/94.73| 93.0792.33 | 91.2790 89.688 | 87.2785.4 | 83.481.73 | 84.3382.47 | 79.6776.8 | 80.3377.2
labor 85.8778.8 | 82.6778.47 | 81.8376.9 | 78.573.77 | 77.2770.93 | 73.8/71.27 | 76.4372.4 | 73.668.23 | 74/70.57
lymph 77.9776.06 | 77.4674.31 | 74.671.77 | 75.371.31 | 72.7868.44 | 71.8867.22 | 70.44/68.32| 70.3864.46 | 69.3363.69
Sig. W/D/L 71410 10/1/0 10/1/0 10/1/0 10/1/0 8/3/0 10/1/0 10/1/0 10/1/0
GM Error Ratio | 0.8704 0.8586 0.8450 0.8496 0.8473 0.8627 0.8634 0.8614 0.8661
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Table 5.10: Feature Noise:bxBooOSTVS. J48

NoiseLevel% | 0 | 5 | 10 | 15 | 20 | 25 | 30 35 | 40
autos 85.2881.72 | 80.8272.9 | 74.0265.45 | 70.7759.69 | 66.8655.23 | 63.6452.69 | 59.8349.51 | 52.9245.23 | 52.8543.21
balance-scale | 77.76/77.85| 76.8/77.37 | 75.04/75.16| 73.42/73.42| 72.23/71.52| 70.4869.49 | 69.6168.37 | 67.49/66.85| 67.5365.16
breastw | 96.4795.01 | 96.1¥93.91 | 95.7493.26 | 95.6992.72 | 94.6291.75 | 94.4890.42 | 94.1690.36 | 93.3289.47 | 92.8188.69
colic 81.9385.16 | 80.6883.64 | 78.2881.9 | 76.5879.94 | 75.6877.83 | 73.6576.54 | 72.4175.41 | 71.69/73.26| 69.98/71.52
credita | 85.42/85.57| 83.1784.07 | 81.38/81.8 | 80.23/80.55 77.8879 | 77.0378.97 | 75.7/76.52 | 73.97/74.7 | 72.51713.64
glass 76.0867.77 | 73.4967.03 | 68.7962.46 | 65.1358.72 | 63.9755.53 | 61.253.7 | 58.5852.92 | 53.3846.95 | 52.0645.04
heart-c 79.2277.17 | 78.7775.92 | 78.1875.34 | 77/73.32 | 75.8472.56 | 75.371.55 | 75.1471.49 | 72.3869.74 | 73.0770.28
hepatiis | 82.7479.22 | 82.6278.44 | 81.9878.22 | 82.4378.36 | 80.878.15 | 79.26/77.7 | 79.5Y77.25 | 80.977.12 | 78.47/77.12
iris 94.2/94.73 | 92.67/92.33| 91.290 | 89.27/88 | 87.285.4 | 83.9381.73 | 83.4/82.47 | 79.3376.8 | 80.4777.2
labor 86.3778.8 | 85.378.47 | 81.9776.9 | 81.473.77 | 80.0370.93 | 78.8371.27 | 77.8372.4 | 73.1768.23 | 77/70.57
lymph 81.7976.06 | 81.3974.31 | 78.971.77 | 76.5171.31 | 75.4868.44 | 74.1667.22 | 71.4868.32 | 66.41/64.46| 68.9863.69
Sig. WIDIL 77311 71212 8/2/1 77311 8/1/2 8/1/2 8/2/1 71410 8/2/1
GM Error Ratio | 0.8691 0.8449 0.8575 0.8455 0.8463 0.8564 0.8830 0.8900 0.8750
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tion and feature noise is presented in (Servedio, 2003). McDonald €@03) compare
ADABOOSTto two other boosting algorithms, LogitBoost and BrownBoost, and conclude
that BrownBoost is quite robust to noise. In an earlier study an extefrsiBrownBoost

for multi-class problems was presented and shown empirically to outperfaaBAOST

on noisy data (McDonald et al., 2002). However, BrownBoost’s desklis that it requires

a time-out parameter to be set, which can be done only if the user can estimiztecticd

noise.

5.3 Chapter Summary

This chapter evaluates the performance of three ensemble methods, BaypyBooOST

and DECORATE, in the presence of different kinds of imperfections in the data. Experi-
ments using J48 as the base learner, show that in the case of missingsiec@lgeoRATE
significantly outperforms the other approaches. In the case of clasificzoise, both
DecorATEand Bagging are effective at decreasing the error of the base lpaimereas
ADABOOST degrades rapidly in performance, often performing worse than J48enn
eral, Bagging performs the best at combatting high amounts of classificatie®. rin the
presence of noise in the features, all ensemble methods produce agunsigvements
over the base learner. These results suggest that, when there arenimaimg features in
the data, or noise in the classification labels, it is better to usedRATE or Bagging over

ADABOOST.

75



Chapter 6

Active Learning for Classification

Accuracy

Most research in inductive learning has focused on learning fronmingpéxamples that are
randomly selected from the data distribution. On the other harafk;time learning(Cohn,
Ghahramani, & Jordan, 1996) the learning algorithm exerts some com&oiich exam-
ples upon which it is trained. The ability to actively select the most usefulitigaigxam-
ples is an important approach to reducing the amount of supervision eddoir effective
learning. In particularpool-based sample selectian which the learner chooses the best
instances for labeling from a given set of unlabeled examples, is the naasical approach
for problems in which unlabeled data is relatively easily available (Cohn €13984). A
theoretically well-motivated approach to sample selectioQuery by CommitteéSeung,
Opper, & Sompolinsky, 1992), in which an ensemble of hypotheses islgamd examples
that cause maximum disagreement amongst this committee (with respect to tiotepred
categorization) are selected as the most informative. Popular ensemhladesgorithms,
such as Bagging and Boosting, have been used to efficiently leartiveffeommittees for
active learning (Abe & Mamitsuka, 1998). Meta-learning ensemble algorjtsoch as

Bagging and Boosting, that employ an arbitrary base classifier are partyouseful since
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they are general purpose and can be applied to improve any learnés difgctive for a
given domain.

An important property of a good ensemble for committee-based active leasning
diversity. Only a committee of hypotheses that effectively samples the wespaxe of all
consistent hypotheses is productive for sample selection (Cohn et @4).1Since Ec-
ORATE explicitly builds such committees, it is well suited for this task. We believe that
the added diversity of BCORATE ensembles should help select more informative exam-
ples than other Query by Committee methods. Melville and Mooney (2004b) urdeod
a new approach to active learningcANVEDECORATE, which uses committees produced
by DECORATEto select examples for labeling. Extensive experimental results on severa
real-world datasets show that using this approach produces subsiiaptialement over
using DEcoRATEwith random sampling. ATIVEDECORATErequires far fewer examples
than DECORATE, and on average also produces considerable reductions in ergeménal,
our approach also outperforms both Query by Bagging and Query bgtiBg.

In this chapter, we will focus on active learning of classifiers, whereotjjective
is to improve classification accuracy. In Chapter 7, we will discuss the depaitdblem of

active learning to improve class probability estimation.

6.1 Query by Committee

Query by Committee (QBC) is a very effective active learning approadttsbeen suc-
cessfully applied to different classification problems (McCallum & Nigam,899agan
& Engelson, 1995; Liere & Tadepalli, 1997). A generalized outline of tBC@pproach
is presented in Algorithm 4. Given a pool of unlabeled examples, QBC itehatelects
examples to be labeled for training. In each iteration, it generates a committiessifiers
based on the current training set. Then it evaluates the potential utility bfesaenple in
the unlabeled set, and selects a subset of examples with the highest éxgéditie The

labels for these examples are acquired and they are transfered to tivgtsain Typically,
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the utility of an example is determined by some measurisafgreemenin the committee
about its predicted label. This process is repeated until the number oftdgaiguests for
labels is exhausted.

Freund, Seung, Shamir, and Tishby (1997) showed that under cassimptions,
Query by Committee can achieve an exponential decrease in the numbemagbles re-
quired to attain a particular level of accuracy, as compared to randonlisgmigowever,
these theoretical results assume that the Gibbs algorithm is used to gene@amthittee
of hypotheses used for sample selection. The Gibbs algorithm for mostiiterproblems
is computationally intractable. To tackle this issue, Abe and Mamitsuka (1968pged
two variants of QBC, Query by Bagging and Query by Boosting, whepgBag and AA-
BoosTare used to construct the committees for sample selection. In their apptioagh,
evaluate the utility of candidate examples based omthagin of the example; where the
margin is defined as the difference between the number of votes in theccommmittee
for the most popular class label, and that for the second most populariEadaenples with

smaller margins are considered to have higher utility.

6.2 ACTIVEDECORATE

Itis beneficial in QBC to use an ensemble method that buittisexrsecommittee, in which

each hypothesis is as different as possible, while still maintaining consjsteitit the
training data. Since BCORATE explicitly focuses on creating ensembles that are diverse,
we propose a variant of Query by Committee; AVEDECORATE, that uses BCORATE

(in Algorithm 4) to construct committees for sample selection.

To evaluate the expected utility of unlabeled examples, we also used the margins

on the examples, as done by Abe and Mamitsuka (1998). We generalizeddfigition,

to allow the base classifiers in the ensemble to provide class probabilities diro$tpest

the most likely class label. Given the class membership probabilities predicteéd bgpm-

mittee, the margin is then defined as the difference between the highest and bé&ghest
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Algorithm 4 Generalized Query by Committee

Given:

T - set of training examples

U - set of unlabeled training examples
BaseLearn - base learning algorithm

k - number of selective sampling iterations
m - size of each sample

1. Repeak times

2. Generate a committee of classifiers,
C* = EnsembleMethod(BaseLearn,T)

Vz; € U, computelUtility(C*, z;), based on the current committee

Select a subsét of m examples that maximizes utility

3
4
5. Label examples i¥
6 Remove examples ii from U and add tdl’
7

. ReturnEnsemble M ethod(BaseLearn,T')
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predicted probabilities.

6.3 Experimental Evaluation

6.3.1 Methodology

To evaluate the performance ofcAlIVEDECORATE, we ran experiments on 15 represen-
tative data sets from the UCI repository (Blake & Merz, 1998). We coetpéne perfor-
mance of ALTIVEDECORATEwith that of Query by Bagging (QBag), Query by Boosting
(QBoost) and [ECORATE, all using an ensemble size of 15. J48 decision-tree induction
was used as the base learner for all methods.

The performance of each algorithm was averaged over two runs fafld @ross-
validation. In each fold of cross-validation, we generated learningesuirvthe following
fashion. The set of available training examples was treated as an unlgoeleaf exam-
ples, and at each iteration the active learner selected a sample of pointtateles and
added to the training set. FOrHBORATE, the examples in each iteration were selected ran-
domly. The resulting curves evaluate how well an active learner ordersethof available
examples in terms of utility. At the end of the learning curve, all algorithms saetlgxthe
same training examples.

To maximize the gains of active learning, it is best to acquire a single example
in each iteration. However to make our experiments computationally feasiblehoase
larger sample sizes for the bigger data sets. In particular, we used a sapeptd two for
the primary dataset, and three foreast-w, soybean, diabetes, vowaticredit-g

The primary aim of active learning is to reduce the amount of training datiedde
induce an accurate model. To evaluate this, we first defintatget error rateas the error
that DECORATE can achieve on a given dataset, as determined by its error rate averaged
over the points on the learning curve corresponding to the last 50 trairangpes. We

then record the smallest number of examples required by a learner to eth&egame
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or lower error. We define thdata utilization ratiq as the number of examples an active
learner requires to reach the target error rate divided by the numbeoRATE requires.
This metric reflects how efficiently the active learner is using the data and is isimiga
measure used by Abe and Mamitsuka (1998).

Another metric for evaluating an active learner is how much it improves acgur
over random sampling given a fixed amount of labeled data. Therefer@lso compute
the percentage reduction in error oveE@DRATE averaged over points on the learning
curve. As mentioned above, towards the end of the learning curve, albdsethill have
seen almost all the same examples. Hence, the main impact of active learnimgis lo
on the learning curve. To capture this, we report the percentagerethoction averaged
over only the 20% of points on the learning curve, where the largest iraprents are
produced. This is similar to a measure reported by Saar-Tsechansirevust (2001).
When computing the error reduction of one system over another, theti@ais considered
significantif the difference in the errors of the two systems averaged across tloeskle
points on the learning curve is determined to be statistically significant acgajpeired

t-tests p < 0.05).

6.3.2 Results

The data utilization of the different active learners with respect BEC ORATE is summa-
rized in Table 6.1. We present the number of examples required for gaigmnsto achieve
the target error rate and, in parentheses, the data utilization ratio. The sthmailfeber

of examples needed for each dataset is presented in bold font. On alhbulataset,
AcCTIVEDECORATE produces improvements overeERORATE in terms of data utilization.
Furthermore, ATIVEDECORATE outperforms both the other active learners on 10 of the
datasets. QBag and QBoost were unable to achieve the target erranratevel and
QBoost also failed to achieve the target erropoimary. Furthermore, on several datasets

QBag and QBoost required more training examples thea@RATE On average, ATIVE-
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Table 6.1: Data utilization with respect to Decorate

Dataset Tot. Size  Decorate QBag QBoost ActiveDecorate Target%jr.(
Soybean 615 492(1.00) 267(0.54) 219(0.45) 144(0.29) 6.59
Vowel 891 840(1.00) - - 477(0.57) 3.81
Statlog 243  81(1.00) 84(1.04) 89(1.10) 46(0.57) 19.21
Hepatitis 140 39(1.00) 30(0.77)  43(1.10) 23(0.59) 16.96
Primary 305 238(1.00) 202(0.85) - 164(0.69) 56.23
Heart-c 273  50(1.00) 57(1.14) 41(0.82) 36(0.72) 20.97
Sonar 187 125(1.00) 186(1.49) 131(1.05) 99(0.79) 18.39
Heart-h 265  49(1.00) 31(0.63) 47(0.96) 39(0.80) 19.93
Glass 193 118(1.00) 97(0.82) 101(0.86) 100(0.85) 27.00
Diabetes 691 234(1.00) 114(0.49) 393(1.68) 201(0.86) 25.09
Lymph 133 27(1.00) 40(1.48) 40(1.48) 24(0.89) 22.21
Labor 51 13(1.00) 26(2.00) 19(1.46) 12(0.92) 15.14
Iris 135  32(1.00) 33(1.03) 125(3.91) 30(0.94) 5.25
Credit-g 900 498(1.00) 213(0.43) 243(0.49) 495(0.99) 26.36
Breast-w 629 30(1.00) 45(1.50) 75(2.50) 39(1.30) 3.94
No. of Wins 1 4 0 10

DECORATE required 78% of the number of examples thaddRATE used to reach the

target error. It is important to note thateERORATE itself achieves the target error with

far fewer examples than available in the full training set, as seen by corgparthe to-

tal dataset sizes. Hence, improving on the data utilizationseef @RATEIs a fairly difficult

task. Figure 6.1 presents learning curves that clearly demonstrate tngagly of ATIVE-

DECORATE On one datasehreast-w ACTIVEDECORATErequires a few more examples

than DECORATE This dataset exhibits a ceiling effect in learning, wheEECDRATE man-

ages to reach the target error rate using only 30 of the 629 available lpsamaking it

difficult to improve on (Figure 6.2).

Our results on error reductions are summarized in Table 6.2. The sighifiabn

ues are presented in bold font. We observed that on almost all datasetsEDECORATE

produces substantial reductions in error oveId®RATE Furthermore, on 8 of the datasets,

AcTivEDECORATEproduces higher reductions in error than the other active-learning meth-

ods. Depending on the datasetc AVEDECORATE produces a wide range of improve-

ments, from moderate (4.16% oredit-g) to high (70.68% owowe). On average, ATIVE-
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Table 6.2: Top 20% percent error reduction over Decorate

Dataset QBag QBoost ActiveDecorate
Soybean 30.50 34.17 45.84
Vowel 22.65 42.09 70.68
Statlog 11.31 10.34 11.43
Hepatitis 12.13 16.68 19.31
Primary 3.23 0.43 5.74
Heart-c 15.40 19.40 12.56
Sonar 1.88 8.09 16.47
Heart-h 16.22 14.68 12.14
Glass 10.58 16.88 15.83
Diabetes 8.68 4.01 5.94
Lymph 19.65 28.51 18.84
Labor -2.61 12.55 36.33
Iris 22.78 1.22 22.53
Credit-g 9.43 6.71 4.16
Breast-w 15.12 18.89 19.51
Mean 13.13 15.64 21.15
No. of Wins 4 3 8

DECORATEproduces a 21.15% reduction in error.

6.4 Additional Experiments

6.4.1 Jensen-Shannon Divergence

There are two main aspects to any Query by Committee approach. The firstmethod
employed to construct the committee, and the second is the measure usedthe natility
of unlabeled examples given this committee. Thus far, we have only comgdfeent
methods for constructing the committees. Following Abe and Mamitsuka (1988anked
unlabeled examples based on the margin of the committee’s prediction for thelexa

An alternate approach is to use an information theoretic measure suchsag-Jen
Shannon (JS) divergence (Lin, 1991) to evaluate the potential utility afneles. JS-

divergence is a measure of the “distance” between two probability distritzutidich can
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also be generalized to measure the distance (similarity) between a finite nuintisrio
butions (Dhillon, Mallela, & Kumar, 2002). JS-divergence is a naturétmsion of the
Kullback-Leibler (KL) divergence to a set of distributions. KL divenge is defined be-
tween two distributions, and the JS-divergence of a set of distributiong iaviérage KL
divergence of each distribution to the mean of the set. Unlike KL divergel®-divergence
is a true metric and is bounded. If a classifier can provide a distribution &f cfember-
ship probabilities for a given example, then we can use JS-divergenoetuute a measure
of similarity between the distributions produced by a set (ensemble) of sassifeers. If
P;(z) is the class probability distribution given by theh classifier for the example
(which we will abbreviate a®;) we can then compute the JS-divergence of a set ofrsize

as:

JS(Py, Py, .y Po) = H(Y wiP) =Y wiH(P)
=1 =1

wherew; is the vote weight of the-th classifier in the set;and H(P) is the Shannon

entropy of the distributio® = {p; : j =1, ..., K'}, defined as:

K
H(P)=-> pjlogp;
j=1

Higher values for JS-divergence indicate a greater spread in thietgedlass probability
distributions, and it is zero if and only if the distributions are identical. A similarsusa
was used for active learning for text categorization by McCallum andiNid2@98).

We implemented a version of&x1vEDECORATEthat selects the unlabeled exam-
ples with the highest JS-divergence. This measure incorporates mom@atfon about the
predicted class distribution than using margins, and hence could result $eldation of
more informative examples. To test the effectiveness of using JSgdnee, we ran ex-
periments comparing it to using the margin measure. The experiments wengctahds

described in Section 6.3.1. Table 6.3 summarizes the results of the compdribertvwo

10Our experiments use uniform vote weights, normalized to sum to one.
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Table 6.3: Comparing measures of utility: Data utilization and top 20% erroctieuwith
respect to Decorate.

Data Utilization %Error Reduction

Dataset Margins JS Div.| Margins JS Div.
Soybean 144(0.29) 369(0.75)| 45.84 18.67
Vowel 477(0.57) 525(0.62) 70.68 63.26
Statlog 46(0.57) 76(0.94) 1143 11.52

Hepatitis | 23(0.59) 19(0.49)| 19.31 15.90
Primary | 164(0.69) 212(0.89)| 574  3.84

Heart-c 36(0.72) 28(0.56)| 12.56 13.97
Sonar 99(0.79) 94(0.75)| 16.47 16.71
Heart-h 39(0.80) 38(0.78)| 12.14 10.81
Glass 100(0.85) 118(1.00)| 15.83 10.46
Diabetes | 201(0.86) 150(0.64)| 5.94  5.03
Lymph 24(0.89) 20(0.74)| 18.84 12.18
Labor 12(0.92) 10(0.77)| 36.33 29.77
Iris 30(0.94) 41(1.28)| 22.53 23.01

Credit-g 495(0.99) 330(0.66) 4.16 3.91
Breast-w 39(1.30) 45(1.50) 19.51 19.20
Mean 0.78 0.83] 21.15 17.22
No. of Wins 7 8 11 4

measures. All the error reductions are significant(0.05), so we only present the better

of the two columns in bold font. In terms of data utilization, the methods seem equally
matched; JS-divergence performs better than margins on 8 of the 1&tdatdewever, on

the error reduction metric, using margins outperforms JS-divergenté& ohthe datasets.
The results also show, that there are datasets on which JS-diveryathoeargins achieve

the target error rate with comparable number of examples, but the eduatien produced

by margins is higher. Figure 6.3 clearly demonstrates this phenomenon.

Note that while ALTIVEDECORATE using either measure of utility produces sub-
stantial error reductions, in general using margins produces greatssviempents. Using
the JS-divergence measure tends to select examples that would regluoeeitainty of the
predicted class membership probabilities, which helps to improve classificatonaay.

On the other hand, using margins focuses more directly on determining tiseddmund-
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ary. This may account for its better performance. For making cost-send#cisions, it is
very useful to have accurate class probability estimates (Saar-Tségt&Rrovost, 2001).
In such cases, we conjecture that using JS-divergence could beczeffextive approach.

This conjecture is empirically validated in Chapter 7.

6.4.2 Committees for Sample Selection vs. Prediction

All the active learning methods that we have described use committees to deterhian
examples to select. But in addition to using committees for sample selection, theselsneth
also use the committees for prediction. So werakevaluating which method selects the
best queries for thbase learnerbut which combination of sample selection and ensem-
ble method works the best. The fact that AVvEDECORATE performs better than QBag
may just be testament to the fact thae @ORATE performs better than Bagging. However,
we claim that not only does BCORATE produce accurate committees, but the committees

produced are also more effective in sample selection. To verify this, we inepied an
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Table 6.4: Comparing different ensemble methods for selection for ADearate: Per-
centage error reduction over Decorate.

Dataset | Maximum Selectw/ Selectw/ Select w/
Train Size Bagging AdaBoost Decorate
Soybean 300 18.55 17.27 27.38
Glass 100 6.57 4.72 8.85
Primary 200 0.2 2.46 3.75
Statlog 100 -1.79 -1.18 1.73

alternate version of ATIVEDECORATE, where at each iteration a committee constructed
by Bagging is used to select the examples givent@ORATE. In this way, we separate the
evaluation of the method used for sample selection from the method used dictiome
Similarly, we implemented a version ofcXIVEDECORATEuUSiNg ADABOOSTto perform

the sample selection.

We compared the three methods of sample selection ErdRATE on four of the
datasets on which @riveDECORATEexhibited good performance. We generated learning
curves as described in Section 6.3.1. However, we did not run the Igamive trials until
all the available training data was exhausted, since the active learning raetbed fewer
examples to achieve the target error rates.

The error reductions overErORATEaveraged across all the points on the learning
curve are presented in Table 6.Zhe significant error reductions are shown in bold. The
table also includes the maximum training set size, which corresponds to theilaisop
the learning curve. The results show that, on 3 of the 4 datasets, usirgf treyensem-
ble sample selection methods in conjunction withd®RATE produces better results than
DECORATE Furthermore, BCORATE committees select more informative examples for
training DECORATE than the other committee sample selection methods. These trends are
clearly seen in Figure 6.4. It would also be interesting to run similar experimesitsg

DEcoORATEensembles to pick examples for training BagginpAB00ST, or J48.

2These results are not directly comparable to those in Table 6.2.
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6.5 Related Work

In their QBC approach, Dagan and Engelson (1995) measure the utilityaofpes by
vote entropywhich is the entropy of the class distribution, based on the majority votes of
each committee member. McCallum and Nigam (1998) showed/thatentropydoes not
perform as well as JS-divergence for pool-based sample selectimihér recently devel-
oped effective committee-based active learner is Co-Testing (Musle&miga Knoblock,
2000); however, it requires two redundaigwsof the data. Since most data sets do not have
redundant views, Co-Testing has rather limited applicability. Another geappaoach to
sample selection igncertainty samplingLewis & Catlett, 1994); however, this approach
requires a learner that accurately estimates the uncertainty of its decigrahsgends to
over-sample the boundaries of its current incomplete hypothesis (Caddin €094). Fi-

nally, expected-error reductiomethods for active learning (Cohn et al., 1996; Roy & Mc-
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Callum, 2001; Zhu, Lafferty, & Ghahramani, 2003) attempt to statistically sélaining
examples that are expected to minimize error on the actual test distributionaggrisach
has the advantage of avoiding the selection of outliers whose labeling withpoove ac-
curacy on typical examples. However, this method is computationally intemdenast be
carefully tailored to a specific learning algorithm (e.g. naive Bayes)hamde, cannot be
used to select examples for an arbitrary learner. Active meta-learnei®@Uigey by Bag-
ging/Boosting and ATIVEDECORATE have the advantage of being able to select queries

to improve any learner appropriate for a given domain.

6.6 Chapter Summary

ACTIVEDECORATE is a simple, yet effective approach to active learning for improving
classification accuracy. Experimental results show that, in general, fhieagh leads to
more effective sample selection than Query by Bagging and Query bytiBgo®©n aver-
age, ACTIVEDECORATE requires only 78% of the number of training examples required
by DECORATE with random sampling. As shown in Section 4.4, for small training sets
DECORATE produces more diverse ensembles than BaggingmxBoosT. We believe
this increased diversity is the key tacAlVEDECORATES superior performance.

Our results also show that using JS-divergence to evaluate the utility ofpdes
is less effective for improving classification accuracy than using marglB8sdivergence
may be a better measure when the objective is improving class probability estifhigs

conjecture is explored in detail in the next chapter.

90



Chapter 7

Active Learning for Class Probability

Estimation

Many supervised learning applications require more than a simple classificdtion
stances. Often, also having accurate Class Probability Estimates (CPESYa for the
task. Class probability estimation is a fundamental concept used in a varegipldations
including marketing, fraud detection and credit ranking. For example, @tdimarketing
the probability that each customer would purchase an item is employed intor@imize
marketing budget expenditure. Similarly, in credit scoring, class probabihtie used to
estimate the utility of various courses of actions, such as the profitability ofirtor
approving a credit application. While prediction accuracy of CPE improitsthe avail-
ability of more labeled examples, acquiring labeled data is sometimes costly. d&mpkex
customers’ preferences may be induced from customers’ responséferiags; but so-
licitations made to acquire customer responses (labels) may be costly, deravasnted
solicitations can result in negative customer attitudes. It is therefore bahédicise ac-
tive learning to reduce the number of label acquisitions necessary to ebti@sired CPE
accuracy.

Almost all prior work in active learning has focused on acquisition policas f
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inducing accuratelassificationmodels and thus are aimed at improving classification ac-
curacy. Although active learning algorithms for classification can be apfibielearning
accurate CPEs, they may not be optimal. Active learning algorithms for ctaggifi may
(and indeed should) avoid acquisitions that can improve CPEs but ali&eigtto impact
classification. Accurate classification only requires that the model aetyi@ssigns the
highest CPE to the correct class, even if the CPEs across classes magdeate. There-
fore, to perform well, active learning methods for classification oughttuise labels of
examples that are likely to change the rank-order of the most likely classiprove CPEs,
however, it is necessary to identify potential acquisitions that would impiteer«CPE ac-
curacy, regardless of the implications for classification accuracy.

In Chapter 6, we introduced a methodgc AVEDECORATE, for active learning for
classification. Melville, Yang, Saar-Tsechansky, and Mooney (2@g&nded this work
to active learning for probability estimation. In particular, we propose tleeofiddensen-
Shannon (JS) divergence (Section 6.4.1) to measure the utility of acglabets for ex-
amples, when the objective is to improve class probability estimates. In this chapte
demonstrate that, for the task of active learning for CPETIXEDECORATE using JS-
divergence indeed performs significantly better than using margins.

To the best of our knowledge, Bootstrap-LV (Saar-Tsechanskyodat, 2001) is
the only prior approach to active probability estimation. This methods was aesigecif-
ically to improve CPEs for binary class problems. The method acquires laivesdmples
for which the current model exhibits high variance for its CPESOOBSTRARLV was
shown to significantly reduce the number of label acquisitions requirechievaca given
CPE accuracy compared to random acquisitions and existing active igappnoaches for
classification.

This chapter also presents two new active learning approaches reBedboSTRAP
LV. In contrast to BDOTSTRARLV, the methods we propose can be applied to acquire

labels to improve the CPEs of an arbitrary number of classes. The two matifeds

92



fer by the measures each employs to identify informative examples: the gpsbach,
BooTsTRARJS, employs the JS-divergence measure. The second apprasehs BRAR
LV-EXT, uses a measure of variance inspired by the local variance measps@doin
BooTsTRARLV. We demonstrate that for binary class problems@ sSTRARJS is supe-
riorto BOOTSTRARLV. In addition, we establish that for multi-class problemg @& STRAP
JS and BOTSTRARLV-EXT identify particularly informative examples that significantly

improve the CPEs compared to random sampling.

7.1 ActiveDecorate and JS-divergence

In the previous chapter, we compared two measures of utility forlREDECORATE—
marginsand JS-divergence. It was shown that vEDECORATEUsIng either measure of
utility produces substantial error reductions in classification compareddonasampling.
However, in general, using margins produces greater improvementsy USidivergence
tends to select examples that reduce the uncertainty in CPE, which indirefghbyto im-
prove classification accuracy. On the other handT&EDECORATE using margins fo-
cuses more directly on determining the decision boundary. This may adooutstbetter
classification performance. It was conjectured that if the objective is MidCPES, then
JS-divergence may be a better measure.

In this chapter, we validate this conjecture. In addition to using JS-dineegave
made two more changes to the original algorithm, each of which independentigvietp
its performance. First, each example in the unlabeled set is assighedabiptplof be-
ing sampled, which is proportional to the measure of utility for the example. ddsié
selecting the examples with the highest utilities, we sample the unlabeled set based on
the assigned probabilities (as iMBTSTRAPLV). This sampling has been shown to im-
prove the selection mechanism as it reduces the probability of adding otdltbestraining
data and avoids selecting many similar or identical examples (Saar-TskgléaRsovost,

2004).
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The second change we made is in thed®RATE algorithm. DECORATE ensem-
bles are created iteratively; where in each iteration a new classifier isdrdfrazlding this
new classifier to the current ensemble increases the ensemble traininghemahis clas-
sifier is rejected, else it is added to the current ensemble. In previoks tkaining error
was evaluated using the 0/1 loss function; howevexCDRATE can use any loss (error)
function. Since we are interested in improving CPE we experimented with twoatiéer
error functions — Mean Squared Error (MSE) and Area Under theQlitirt (AULC) (de-
fined in Section 7.3.1). Using MSE performed better on the two metrics usad present
these results in the rest of this chapter. Our approaciT)YEDECORATE-JS, is shown in

Algorithm 5.

Algorithm 5 ActiveDecorate-JS
Given:
T - set of training examples
U - set of unlabeled training examples
L - base learning algorithm
n - desired ensemble size
m - Size of each sample

1. Repeat until stopping criterion is met
Generate an ensemble of classifiérs,= Decorate(L, T, n)
For eachr; € U

VC; € C* generate CPE distributioR;(z;)

2

3

4

5. score; = JS(Py, Py, ..., P)
6 Vaj € U, D(x;) = scorej/ ), score;

7 Sample a subsétof m examples fronU based on the distributio
8 Remove examples ii from U and add tdl’

9

. ReturnDecorate(L,T,n)
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7.2 Bootstrap-LV and JS-divergence

To the best of our knowledge, Bootstrap-LV (Saar-Tsechanskyodat, 2001) is the only
active learning algorithm designed for learning CPEs. It was showrgtareesignificantly
fewer training examples to achieve a given CPE accuracy compareddomasampling
and uncertainty samplingwhich is an active learning method focused on classification
accuracy (Lewis & Catlett, 1994). Bootstrap-LV reduces CPE erraduyiring examples
for which the current model exhibits relatively high local variance (L\8,, the variance
in CPE for a particular example. A high LV for an unlabeled example indicatsthie
model’s estimation of its class membership probabilities is likely to be erroneodishan
example is therefore more desirable to be selected for learning.

Bootstrap-LV, as defined by Saar-Tsechansky and Provost 200daly applicable
to binary class problems. We first provide the details of this method, and tkerilwkehow
we extended it to solve multi-class problems. Bootstrap-LV is an iterativeitidgothat

can be applied to any base learner. At each iteration, we generatefandabatstrap sam

ples (Efron & Tibshirani, 1993) from the training set, and apply the gigamerL to each
sample to generate classifier’; : i = 1,...,n. For each example in the unlabeled Eet
we compute a score which determines its probability of being selected, ankl i&pimpor-
tional to the variance of the CPEs. More specifically, the score for exampsecomputed
as(>1y (pi(x;) — D;)%)/Djmin; Wherep;(z;) denotes the estimated probability the clas-
sifier C; assigns to the event that examplebelongs to class 0 (the choice of performing
the calculation for class 0 is arbitrary, since the variance for both clasgéemntical),p; is

the average estimate for class 0 across classifigrandp; ,,,;,, is the average probability
estimate assigned to the minority class by the different classifiers. Saarahsky and
Provost (2001) attempt to compensate for the under-representation mitbrity class by
introducing the ternp, ,,,;,, in the utility score. The scores produced for the set of unlabeled
examples are normalized to produce a distribution, and then a subsetloéledaxamples

are selected based on this distribution. The labels for these examplegamedand the
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process is repeated.

The model's CPE variance allows the identification of examples that can improve
CPE accuracy. However as noted above, the local variance estimaBsobtstrap-LV cap-
tures the CPE variance of a single class and thus is not applicable to multpodrsms.
Since we have a set of probability distributions for each example, we cteahsuse an
information theoretic measure, such as JS-divergence to measure the fitilitgxample.
The advantage to using JS-divergence is that it is a distance measym@lbability dis-
tributions (Lin, 1991) that can be used to capture the uncertainty of the distsibution
estimation; and furthermore, it naturally extends to distributions over multipleedasie
propose a variation of BOTSTRARLV, where the utility score for each example is com-
puted as the JS-divergence of the CPEs produced by the set of elagsifiThis approach,
BOOTSTRARJS, is presented in Algorithm 6.

Our second approach@TSTRAPLV- EXT, is inspired by the Local Variance con-
cept proposed in BOTSTRARLV. For each example and for each class, the variance in the
prediction of the class probability across classifiéfsi = 1, ..., n is computed, capturing
the uncertainty of the CPE for this class. Subsequently, the utility scoreébr gotential
acquisition is calculated as the mean variance across classes, reflectavgrihge uncer-
tainty in the estimations of all classes. UnlikeoBTSTRAPLV, BOOTSTRARLV-EXT

does not incorporate the factor®f,,;, in the score for multi-class problems.

man

7.3 Experimental Evaluation

7.3.1 Methodology

To evaluate the performance of the different active CPE methods, vexpaniments on 24
representative data sets from the UCI repository (Blake & Merz, 199Bdf these datasets
were two-class problems, the rest being multi-class. For three datksetsKp sick and

optdigity, we used a random sample of 1000 instances to reduce experimentation time.
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Algorithm 6 Bootstrap-JS
Given:
T - set of training examples
U - set of unlabeled training examples
L - base learning algorithm
n - number of bootstrap samples
m - Size of each sample

Repeat until stopping criterion is met
Generatey bootstrap sampleB;,i = 1,...,nfromT
Apply learner to each sampl®; to produce classifief’;

Foreach; € U

1.

2

3

4

5. VC; generate CPE distributioR;(z;)
6 score; = JS(Py, Py, ..., P,)

7 Va; € U, D(x;) = scorej/ ), score;

8 Sample a subsét of m examples fron/ based on the distributioP
9. Remove examples il from U and add tdl"

10. ReturnC' = £(T)

All the active learning methods we discuss in this chapter are meta-leareers,
they can be applied to any base learner. For our experiments, as aldesfier we use
a Probability Estimation Tree (PET) (Provost & Domingos, 2003), which isrgruned
C4.5 decision tree for which Laplace correction is applied at the leaves-TSachansky
and Provost (2001) showed that using Bagged-PETs for prediata@iuped better proba-
bility estimates than single PETs fod®TSTRARLV; so we used Bagged-PETs for both
BOOTSTRARLV and BoOTSTRARJS. The number of bootstrap samples and the size of
ensembles in ATIVEDECORATEWas set to 15.

The performance of each algorithm was averaged over 10 runs fufld @ross-

validation. In each fold of cross-validation, we generated learningesuag follows. The
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set of available training examples was treated as an unlabeled pool oflesaamml at each
iteration the active learner selected a sample of points to be labeled andadietraining
set. Each method was allowed to select a total of 33 batches of training esampkesuring
performance after each batch in order to generate a learning curvedlioe computation
costs, and because of diminishing variance in performance for diffeetected examples
along the learning curve, we incrementally selected larger batches a@gabition phase.
The resulting curves evaluate how well an active learner orders théaeilable examples
in terms of utility for learning CPEs. As a baseline, we used random samplimgrevthe
examples in each iteration were selected randomly.

To the best of our knowledge, there are no publicly-available datasetgrthade
true class probabilities for instances; hence there is no direct measuhe faccuracy of
CPEs. Instead, we use two indirect metrics proposed in other studie®ts (Zadrozny
& Elkan, 2001). The first metric is squared error, which is defined fomatancer;, as
>y (Prrue(ylz;) — P(yl|z;))? whereP(y|z;) is the predicted probability that; belongs
to classy, and Py,..(y|x;) is the true probability that; belongs toy. We compute the
Mean Squared Error (MSE) as the mean of this squared error for @ahple in the
test set. Since we only know the true class labels and not the probabilitiedefine
Pirue(y|z;) to be 1 when the class af; is y and 0 otherwise. Given that we are comparing
with this extreme distribution, squared error tends to favor classifiers tbdtipe accurate
classification, but with extreme probability estimates. Hence, we do not recotnséng
this metric by itself.

The second measure we employ is the area under the lift chart (AULClséNie
2004), which is computed as follows. First, for each claswe take thex% of instances
with the highest probability estimates for class r, is defined to be the proportion of
these instances actually belonging to clasandriqg is the proportion of all test instances
that are from clas#. The lift i(«), is then computed age-. The AULGC, is calculated

by numeric integration of(«) from 0 to 100 with a step-size of 5. The overall AULC is
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computed as the weighted-average of AULIGr eachk; where AULG; is weighted by
the prior class probability of according to the training set. AULC is a measure of how
good the probability estimates are for ranking examples correctly, buomoaibcurate the
estimates are. However, in the absence of a direct measure, an examafdi&t and
AULC in tandem provides a good indication of CPE accuracy. We also mehsng-loss

or cross-entropy, but these results were highly correlated with MSEesdo not report
them here.

To effectively summarize the comparison of two algorithms, we compute the per-
centage reduction in MSE of one over the other, averaged along the pbihts learning
curve. We consider the reduction in error todignificantif the difference in the errors of
the two systems, averaged across the points on the learning curve, iideteto be statis-
tically significant according to paired t-tesis< 0.05). Similarly, we report the percentage

increasein AULC, since a larger AULC usually implies better probability estimates.

7.3.2 Results

The results of all our comparisons are presented in Tables 7.1-7.Xhnadde we present
two active learning methods compared to random sampling as well as to each \bth
present the statisti MSE reductiorand% AULC increaseaveraged across the learning
curves. All statistically significant results are presented in bold font. Ttim of each
table presents the win/draw/loss (w/d/l) record; where a win or loss is onigted if the

improved performance is determined to be significant as defined above.

7.3.3 ActiveDecorate: JS-divergence versus Margins

Table 7.1 shows the results of using JS-divergence versus margis fovEDECORATE
In Chapter 6, it was shown thatoAIVEDECORATE, with both these measures, performs
very well on the task of active learning for classification. Our resulte henfirm that both

measures are also effective for active learning for CPETIXEDECORATE using mar-
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Table 7.1: ACTIVEDECORATEJS versus Margins

% MSE Reduction % AULC Increase
Dataset| Margin JSvs. JSvs.| Margin JSvs. JSvs.
vs. Rand. Rand. Margin vs. Rand. Rand. Margir

breast-w 9.32 2391 12.73 0.29 -0.50 -0.79

colic 8.65 1799 10.17 4 2.44 -1.47
credit-a 15.83 21.97 7.08 2.85 2.98 0.07
credit-g 7.06 8.91 2.02 6.98 7.79 0.75

diabetes| -3.11 0.07 2.9 4,98 0.84 -3.94
heart-c 4.66 6.3 1.72 1.54 0.53 -0.99
hepatitis 4.49 7.34 2.99 1.93 0.14 -1.95
ion 29.23 36.51 10.01 5.73 5.53 -0.2
kr-vs-kp 34 65.27 50.77 6.46 2.19 -3.99
sick 39.18 64.38 42.24| 10.49 9.11 -1.24
sonar 9.3 9.31 0.15 5.84 5.37 -0.41
vote 12.15 45.79 38.12 0.81 -0.51 -1.31

anneal 45,51 63.8 321 7.62 11.14 3.27
autos 8.32 11.38 3.57 15.34 11.52 -3.34
balance-s| 14.1 24.63 12.05 5.24 6.14 0.86

car 2.9 53.32 5227| 556 1623  10.3
glass 762 1231 502 | 862 1051 182
hypo 31.37 89.87 86.34| 4.03 47 0.65

iris 132 3432 327 | -15 152  3.16

nursery 2.62 69.99 69.52 0.56 6.43 5.9
optdigits | 32.56 39.8 10.67| 19.38 17.79 -1.4
segment| 56.95 7112  27.27 6.11 6.85 0.71
soybean| 15.82 21.84 7.42 211 34.35 10.89
wine 17.09 28.85 13.81 1.66 1.17 -0.5
wi/d/l 22/0/2 23/1/0  23/1/0|] 23/0/1 22/2/0  10/3/11

gins focuses on picking examples that reduce the uncertainty of the dasisiiiboundary.
Since having better probability estimates usually improves accuracy, it isipstsng that
a method focused on improving classification accuracy selects examplesahatso im-
prove CPE. However, using JS-divergence directly focuses arciegl the uncertainty in
probability estimates and hence performs much better on this task than margirtee O
AULC metric both measures seem to perform comparably; however, on, MSkg JS-
divergence shows clear and significant advantages over using mawyinoted above,
one needs to analyze a combination of these metrics to effectively evaluatectwve

CPE method. Figure 7.1 presents the comparison @f I#EDECORATE-JS versus us-
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ing margins on the AULC metric oglass The two methods appear to be comparable, with
JS-divergence performing better earlier in the curve and marginsrpenip better later.
However, when the two methods are compared on the same dataset, usingEhmét-

ric (Figure 7.2), we note that JS-divergence outperforms marginsghout the learning
curve. Based on the combination of these results, we may conclude ttaiB8sitivergence

is more likely to produce accurate CPEs for this dataset. This example c=sftre need

for examining multiple metrics.

7.3.4 Bootstrap-JS, Bootstrap-LV and Bootstrap-LV-EXT

We first examine the performance obBTSTRARJS for binary-class problems and com-
pared it with that of BOTSTRARLV and of random sampling. As shown in Table 7.2,
BooTSTRARJS often exhibits significant improvements oves@ STRARLV, or is oth-
erwise comparable to @0TSTRARLV. For all data sets, BOTSTRARJS shows substan-
tial improvements with respect to examples selected uniformly at random om&ihand
AULC. The effectiveness of BOTSTRARJS can be clearly seen in Figure 7.3. (The plot
shows the part of learning curve where the two active learners divengerformance.)
Since BOOTSTRARLV cannot be applied to multi-class problems, we compare
BooOTSTRARJS and BOTSTRAPLV-EXT with acquisitions of a representative set of ex-
amples selected uniformly at random. Table 7.3 presents results on multi-atassets for
BooTsSTRARJIS and BOTSTRARLV-EXT. Both active methods acquire particularly in-
formative examples, such that for a given number of acquisitions, bothooheitroduce
significant reductions in error over random sampling. The two active rdstperform
comparably to each other for most data sets, and JS-divergencenpedlghtly better in
some domains. Because JS-divergence successfully measuresdhaintycof the distri-
bution estimation over all classes, we would recommend usogBTRAP-JS for actively

learning CPE models in multi-class domains.
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Table 7.2: BDOTSTRAPJS versus BOTSTRARLV on binary datasets

%MSE Reduction %AULC Increase
Data set| LV vs. JSvs. JSvsl LVvs. JSvs. JSvs
Random Random LV | Random Random LV
breast-w| 14.92 1481 -0.12| 0.55 0.52 -0.02
colic -1.45 -0.04 1.39 -0.95 -0.56 0.41
credit-a 2.1 3.98 1.92| -0.49 -0.01 0.48
credit-g | -0.16 0.77 0.93 -0.01 0.3 0.32
diabetes| 1.01 1.75 0.75| 0.18 0.58 0.4
heart-c 1.68 0.29 -1.43 0.57 -0.08 -0.64
hepatitis| 0.19 2.64 2.43 0.19 1.03 0.84
ion 10.65 12.26 1.82| 1.13 0.96 -0.16
kr-vs-kp | 38.97 43 8.07| 1.64 1.79 0.15
sick 19.97 20.84 1.03| 0.62 0.41 -0.21
sonar 2.44 1.32 -1.17| 0.58 0.74 0.16
vote 6.3 9.14 3.08| 0.28 0.46 0.18
w/d/l 9/2/1 10/2/0  9/1/2| 7/3/2 9/2/1 8/2/2

Table 7.3: BDOTSTRARJS versus BOTSTRARLV-EXT on multi-class datasets

% MSE Reduction % AULC Increase
Dataset| LV-Ext JSvs. JSvs.| LV-Ext JSvs. JSvs.
vs. Rand. Rand. LV-Extvs. Rand. Rand. LV-Ext
anneal 12.27 13.06 0.89 0.05 0.5 0.45
autos 0.96 0.38 -0.58 1.51 0.83 -0.66
balance-§ 1.39 0.92 -0.48 0.72 058 -0.14
car 7.21 6.93 -0.31 1.53 1.41 -0.12
glass -0.55 -0.19 0.36 0.61 0.48 -0.11
hypo 46.62 46.41 -0.9 0.49 0.47 -0.02
iris 6.64 10.79 4.58 0.46 0.83 0.39
nursery 14.37 14.25 -0.20 0.44 0.42 -0.01
optdigits 0.35 0.71 0.35 0.9 1.13 0.23
segment| 11.08 11.19 0.08 0.83 0.79 -0.04
soybean 15 0.78 -0.74 -0.46 0.4 0.87
wine 13.13 13.34 0.36 1.11 1.08 -0.02
w/d/l 10/1/1 11/1/0  4/5/3| 10/1/1 12/0/0  4/6/2

103



01 T T T

‘Random ———
Bootstrap-LV -
Bootstrap-JS -

0.09 |
0.08
0.07 |

0.06 |

MSE

0.05

0.04 -

0.03

0.02 + \"'“’\-\iffff:iijf;—; ,,,,,,, R 1

0.0l 1 1 1 1 1
100 200 300 400 500

Number of Examples Labeled

Figure 7.3: Comparing different algorithms knrvs-kp

7.3.5 ActiveDecorate-JS vs Bootstrap-JS

In addition to demonstrating the effectiveness of JS-divergence, wecatapare the two
active CPE methods that use JS-divergence. The comparison is madesoemarios. In
the full datasetscenario, the setting is the same as in previous experiments. bathe
stagesscenario, each algorithm is allowed to select 1 example at each iterationgstartin
from 5 examples and going up to 20 examples. This characterizes thenpanice at the
beginning of the learning curve. Table 7.4 summarizes the results in terms/df avirloss
records on the 24 datasets. For thik datasef on the AULC metric, the methods perform
comparably, but BOTSTRAR-JS outperforms ATIVEDECORATEJS on MSE. However,
for most datasets, @&rlVEDECORATE-JS shows significant advantages overdd STRAP
JS in theearly stages These results could be explained by the fact thet DRATE (used
byAcTIVEDECORATEJS) has a clear advantage over Bagging (used®gmBTRARJS)

when training sets are small, as explained in Chapter 4.
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Table 7.4: BDOTSTRARJS vs. ACTIVEDECORATEJS: Win/Draw/Loss records
| % MSE Reduction % AULC Increase

Full dataset 18/0/6 13/0/11
Early stages 8/2/14 2/5/17

For DECORATE, we only specify the desired ensemble size; the ensembles formed
could be smaller depending on the maximum number of classifiers it is permitted to ex
plore. In our experiments, the desired size was set to 15 and a maximunctsstfiers
were explored. On averageeElRORATE ensembles formed by &' IVEDECORATE-JS are
much smaller than those formed by Bagging in®@sTRARJS. Having larger ensembles
generally increases classification accuracy (Melville & Mooney, 2008)raay improve
CPE. This may account for the weaker overall performance ©fREDECORATEJS to

BooTsTRARJS; and may be significantly improved by increasing the ensemble size.

7.4 Chapter Summary

In this chapter, we propose the use of Jensen-Shannon divergeaceeasure of the utility
of acquiring labeled examples for learning accurate class probability essintatéensive
experiments have demonstrated that JS-divergence effectively esphea uncertainty of
class probability estimation and allows us to identify particularly informative elespat
significantly improve the model’s class distribution estimation. In particular, wev shat
when JS-divergence is used witlitAlVEDECORATE, an active learner for classification, it
produces substantial improvements over using margins, which focusdassification ac-
curacy. We have also demonstrated that for binary-class probleow 8 RAPJS which
employs JS-divergence to acquire training examples is either comparagifgndicantly
superior to BDOTSTRAPRLV, an existing active CPE learner for binary class problems.
BooTsTRARJS maintains its effectiveness for multi-class domains as well: it acquires
informative examples which result in significantly more accurate models asazethjo

models induced from examples selected uniformly at random. Furthermareesults
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indicate that, on average,d®TSTRAPJS with Bagged-PETs is a preferable method for
active CPE compared to@¥IVEDECORATEJS. However, if one is concerned primarily

with the early stages of learning, thertAVEDECORATEJS has a significant advantage.
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Chapter 8

Active Feature-value Acquisition

Unlike the active learning setting, in many predictive modeling tasks, the claels far all
instances are known, but feature values may be missing and can besdcafuér cost. For
building accurate models, ignoring instances with missing values leads to mfieoidel
performance (Quinlan, 1989; Leigh & James, 2004), while acquiring tetmmformation
for all instances often is prohibitively expensive or unnecessaryretiace the cost of
acquiring feature information, it is desirable to identify a subset of the instafor which
complete information is most informative to acquire.

The setting we explore was first introduced by Zheng and Padmanapb@ég)(
and applies to a variety of business and other domains. Consider an oetdiiier learning
a predictive model to estimate customers’ propensities to buy. The retailersagyivate
information on its customers and their buying behavior over time, as captardtie re-
tailer's own web log-files. To improve the model, the retailer may also acquditiaual
information capturing its customers’ buying preferences and lifestyle ekdirom a third-
party information intermediary (Hagel & Singerare, 1999). Acquiring cletepdata for
all customers may be prohibitively expensive (New York Times, 1999hcHethe retailer
could benefit from having a cost-efficient feature acquisition strateglydain select the

customers it should acquire complete information for, so as to most benefitdtictive
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model. A similar challenge is faced by marketing research firms that, in orderdelrmmon-
sumer behavior, often obtain consumer responses to a short surdeyua to the cost of
acquiring information, acquire responses to an extended survey fiyra emall, represen-
tative subset of those consumers. An effective acquisition strategpdhjatres complete
responses from consumers that are particularly informative for the Inaadeincrease the
accuracy of the model compared to that induced with the default strategy.

In this chapter, we address this problemactive feature-value acquisitiofAFA)
for classifier induction (Melville et al., 2004): given a model built on incortgleaining
data, identify the instances with missing values for which acquiring compleie ésiafor-
mation will result in the greatest increase in model accuracy. Formallyyessalnstances,
each represented byfeaturesuq, ..., a,,. For all instances, the values of a subset of the fea-
turesay, .. ., a; are known, along with the class labels. The values of the remaining features
ai+1,-- - ,an are unknown and can be acquired at a cost.

The approach we present for active feature acquisition is based dolliwsing
three observationg(1) Most classification models provide estimates of the confidence of
classification, such as estimated probabilities of class membership. Tieepeiociples
underlying existing active-learning methods like uncertainty sampling (Cohh,e1994)
can be applied(2) For the data items subject to active feature-value acquisition, the correct
classifications are known during training. Therefore, unlike with traditiaotive learning,
it is possible to employ direct measures of the current model’s accuraegtimating the
value of potential acquisitiong3) Class labels are available for all complete and incomplete
instances. Therefore, we can exploit all instances (including incompktmices) to induce
models, and to guide feature acquisition.

The approach we propose is simple-to-implement, computationally efficient and
results in significant improvements compared to random sampling and a compaitgtio

intensive method proposed earlier for this problem (Zheng & Padmanabt@z2).
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8.1 Task Definition and Algorithm

8.1.1 Pool-based Active Feature Acquisition

Assume a classifier induction problem, where each instance is represétitedfeature
values and a class label. For a suligatf the training sef’, the values of alh features are
known. We refer to these instances as complete instances. For all othecesinl’, only
the values of a subset of the featurgs. . ., a; are known. The values of the remaining
featuresa; 11, . .., a, are missing and the set can be acquired at a fixed cost. We refer to
these instances as incomplete instances, and the set of all incomplete ins$aheroted
asl. The class labels of all instancesiinare known.

Unlike prior work (Zheng & Padmanabhan, 2002), we assume that modeis-a
duced from the entire training set (rather than just i@ This is because both parametric
and non-parametric models induced from all available data have been shdw superior
to models induced when instances with missing values are ignored (Leigh &,Ja0tat).
Beyond improved accuracy, the choice of model induction setting alss beportant im-
plications for the active acquisition mechanism, because the estimation of aisieq's
marginal utility is derived with respect to the model. We discuss this issue and iisamp
tions in detail in Section 8.3. Note that some induction algorithms (e.g., C4.5) inatuite
ternal mechanism for incorporating instances with missing feature-vaQuéslén, 1989);
other induction algorithms require that missing values be imputed first befduetion is
performed (Leigh & James, 2004). For the latter learners, many imputatioramisats are
available to fill in missing values (e.g., multiple imputation, nearest neighbor) (LitR&
bin, 1987; Batista & Monard, 2003)). Henceforth, we assume that thecfimh algorithm
includes some treatment for instances with missing values.

We study active feature-value acquisition policies within a generic iteratirad-
work, shown in Algorithm 7. Each iteration estimates the utility of acquiring complete

feature information for each available incomplete example. The missing featues of a
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subsetS € I of incomplete instances with the highest utility values are acquired and added
to T (these examples move fromto G). A new model is then induced froffi, and the
process is repeated. Different AFA policies correspond to differedsures of utility em-
ployed to evaluate the informativeness of acquiring features for an oest&ur baseline
policy, random selection, selects acquisitions at random, which implicitly tendeeter
examples from dense areas of the example space (Saar-TsechaRskyadst, 2004). In

this study, we propose the useBifror Sampling described below, which is based on the

observations made in the previous section.

Algorithm 7 Active Feature-Value Acquisition Framework

Given:

G - set of complete instances

I - set of incomplete instances
T - set of training instanceg; U 1
L - learning algorithm

m - Size of each sample

1. Repeat until stopping criterion is met

2 Generate a classifier, = £(T')

3. Vz; € I, computeScore(C, z;) based on the current classifier
4

Select a subsét of m instances with the highest utility
based on the score

Acquire values for missing features for each instancg in

5
6. Remove instances is from / and add ta>
7 Update training sef, = G U I

8

. Return(T")
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8.1.2 Error Sampling

For a model trained on incomplete instances, acquiring missing featuresvale#ective

if it enables a learner to capture additional discriminative patterns that imaphevmodel’'s
prediction. Specifically, acquired feature-values are likely to have andngpesubsequent
model induction when the acquired values pertain to a misclassified exampheagneim-
bed predictive patterns that can be potentially captured by the model armiigrthe model.
In contrast, acquiring feature-values of instances for which the mumedel already em-
beds correct discriminative patterns is not likely to impact model accuraagiagerably.
Motivated by this reasoning, our approdetior Samplingprefers to acquire feature-values
for instances that the current model misclassifies. At each iteration,dbnaly selectsn
incomplete instances that have been misclassified by the model.

If there are fewer tham misclassified instances, th&mror Samplingselects the
remaining instances based on thecertaintyscore which we describe next. The notion of
uncertainty, in this context, originated in work on optimum experimental de&igdgrov,
1972) and has been extensively applied in the active learning literatoren(€ al., 1994;
Saar-Tsechansky & Provost, 2004). Thiecertaintyscore captures the model’s ability to
distinguish between cases of different classes and prefers acquifimmation regarding
instances whose predictions are most uncertain. The acquisition of additidorma-
tion for these cases is more likely to impact prediction, whereas informatidaipeg to
strong discriminative patterns captured by the model is less likely to changeoithel. For
a probabilistic model, the absence of discriminative patterns in the data reghiésiodel
assigning similar likelihoods for class membership of different classescd;¢émeUncer-
tainty score is calculated as thmeargin (Chapter 6), i.e., the absolute difference between
the estimated class probabilities of the two most likely classes. Formally, foramaes;,
let P,(x) be the estimated probability thatbelongs to clasg as predicted by the model.
Then theUncertaintyscore is given by, (z) — P,,(x), whereP,, (x) and P, (z) are the

first-highest and second-highest predicted probability estimates teshed-ormally, the
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Error Samplingscore for a potential acquisition is set to -1 for misclassified instances; and
for correctly classified instances we employ thecertaintyscore. At each iteration of the
AFA algorithm, complete feature information is acquired for thencomplete instances

with the lowest scores.

8.2 Experimental Evaluation

8.2.1 Methodology

We first comparedrror Samplingto random feature acquisition. The performance of each
system was averaged over five runs of 10-fold cross-validationadh #ld, we generated
learning curves in the following fashion. Initially, the learner has accea#i incomplete
instances, and is given complete feature-values for a randomly selebkest of sizen, of
these instances. The learner builds a classifier based on this data. Botithestrategies,
a sample of instances is then selected from the pool of incomplete instarsegsdrathe
measure of utility using the current classification model. The missing valuethdse
instances are acquired, making them complete instances. A new classifeanr getierated
based on this updated training set, and the process is repeated until tiod ipoomplete
instances is exhausted.

In the case of random selection, the incomplete instances are selectathiynéb
random from the pool. Each system is evaluated on the held-out teftesedach iteration
of feature acquisition. As in the work of Zheng and Padmanabhan (20@2)est data set
contains only complete instances, since we want to estimate the true generalzatioacy
of the constructed model given complete data. The resulting learningsceveduate how
well an active feature-value acquisition method orders its acquisitionfesteel by model
accuracy. Note that, at the end of the learning curve, all algorithms sedyethe same set
of complete training instances. To maximize the gains of AFA, it is best to acigaiteres

for a single instance in each iteration; however, to make our experimentutatopally
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feasible, we selected instances in batches of 10 (i.e., sampleisizE0).

We can compare the performance of any two schemes)d B, by comparing the
errors produced by both, given that we are limited to acquiring a fixed auoftcomplete
instances. To measure this, we compute the percentage reduction infedrover B and
report the average over all points on the learning curve. The reduotemor is considered
to besignificantif the average errors across the points on the learning curveisiower
than that ofB according to a paired t-tegt & 0.05).

As mentioned above, towards the end of the learning curve, all methodsawél h
seen almost all the same training examples. Hence, the main impact of AFA isdoviles
learning curve. To capture this, we also report the percentage ethaction averaged over
only the 20% of points on the learning curve where the largest improvenrenpsaiuced.
We refer to this as theop-20% percentage error reductipwhich is similar to a measure
reported by Saar-Tsechansky and Provost (2001).

All the experiments were run on 5 web-usage datasets (used by Padraanab
Zheng, and Kimbrough (2001)) and 5 datasets from the UCI machindrgampository
(Blake & Merz, 1998). The web-usage data contain information frorufaomn-line re-
tailers about customer behavior and purchases. These datasets erhthited dichotomy,
with a subset of features owned by a particular retailer and a set ofdéedhat the retailer
may acquire at a cost. In particular, each retailer privately owns informatiout its cus-
tomers’ behavior as captured by web logfiles. The retailer's privateatattain features
such as user demographics, the time of the session or whether the sessioedon a
weekday. These are referred tosit®-centricfeatures. In addition, the data contain infor-
mation that is not owned by any individual retailer, capturing each custemggregated
behavior and purchasing patterns across a variety of on-line retaileese are referred
to asuser-centricfeatures. The learning task is to induce models to predict whether a cus-
tomer will purchase an item during a visit to the store. The web usage data ¢tlaar

division of features—the first 15 are site-centric and the rest arecesdric. Hence the
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pool of incomplete instances was initialized with only the first 15 features. aleted
several UCI datasets that had more than 25 features. For these d@@%ets the features
were randomly selected to be used in the incomplete instances. A diffeteftraadomly
selected features was used for each train-test split of the data. All theetiaused in this

study are summarized in Table 8.1.

Table 8.1: Summary of Data Sets

Name Instances Classes| Features|
bmg 2417 2 40
expedia 3125 2 40
gvc 2152 2 40
etoys 270 2 40
priceline 447 2 40
anneal 898 6 38
soybean 683 19 35
kr-vs-kp 3196 2 36
hypo 3772 4 29
autos 205 6 25

The AFA framework we have proposed can be implemented using an aylpitcdr-

abilistic classifier as a learner. We experimented with two learners — J48 BOdRNTE

8.2.2 Results using J48 Tree Induction

The results comparingrror Samplingto random selection are summarized in Table 8.2.
All error reductions reported are statistically significant. The results shatfor all data
sets usingerror Samplingsignificantly improves on the model accuracy compared to ran-
dom sampling. Figures 8.1 and 8.2 present learning curves that dentetise@advantage

of using an AFA scheme over random acquisition. Apart from averadection in error,

a good indicator of the effectiveness of an active feature-valueigitqn scheme is the
number of acquisitions required to obtain a desired accuracy. For exaompleeanneal
data setError Samplingachieves an accuracy of 98% with only 200 acquisitions of com-

plete instances. In contrast, random selection requires more than 40Gt®mptances to
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achieve the same accuracy level.
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Table 8.2: Error reduction dError Samplingwith respect to random sampling.

Dataset | %Error Reduction Top-20% %Err. Red.
bmg 10.67 17.77
etoys 10.34 23.88
expedia 19.83 29.12
priceline 24.45 34.49
gvc 15.44 24.75
anneal 22.65 49.27
soybean 8.03 14.79
autos 4.24 10.50
kr-vs-kr 36.82 53.23
hypo 16.79 40.48
Mean 16.93 29.83

8.2.3 Results orDECORATE

In addition to J48, we also test&gror Samplingusing DECORATEas a learner. BCORATE

is well-suited for this task for the following three reasons: (BBHd®RATE ensembles of
decision trees produce higher accuracies than single trees (Chap@r BECORATE has
been successfully used for active learning usingUineertaintymeasure described here
(Chapter 6); and (3) BCORATE is more resilient to missing features than single decision
trees, Bagging, and BABoosT(Chapter 5).

In our experiments, we built BCORATE ensembles of 15 classifiers, using J48 as
our base learner and generated learning curves as described im$e2tio In each itera-
tion of AFA, we selected instances in batches of 20. The results comgamiogSampling
to random selection for BCORATE are summarized in Table 8.3. The error reductions on
all datasets, exceptoys are significant. BCORATEwith random sampling is more accu-
rate than single trees; hence, improving on it through active sampling is acmaltenging
task. But as can be seen from the results, ukimgr Samplinggives considerable improve-
ments in accuracy over ELORATE using random sampling. Figures 8.3 and 8.4 presents
datasets which clearly demonstrate the advantage of using active fealueeacquisition

over random selection for BCORATE For example, omvc once random sampling ac-
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Table 8.3: Error reduction dError Samplingwith respect to random sampling.

Dataset | %Error Reduction Top-20% %Err. Red.
bmg 16.26 21.89
etoys 1.93 10.07
expedia 16.75 23.82
priceline 28.31 41.49
gvc 24.44 35.91
anneal 21.41 4451
soybean 9.99 17.67
autos 3.95 8.49
kr-vs-kr 27.79 5491
hypo 21.61 39.49
Mean 17.24 29.83

quires approximately 1200 complete instances, itinduces a model with araegof 90%;
while, Error Samplingrequires approximately 200 complete instances to achieve the same

accuracy. This could translate to a substantial reduction in the cost chctpuigsition.

8.3 Comparison with GODA

The most closely related work to ours, is the study by Zheng and Padnmam&2002) of
the active feature-value acquisition schemen@. GODA measures the utility of acquiring
feature-values for a particular incomplete instance in the following wagds &he instance
to the training set, imputing the values that are missing. It then induces a new amolde
measures its performance on the training set. This process is repeategiiincomplete
instance, and the instance that leads to the model with the best expeciaunaade is
selected for feature-value acquisition.

GoDA has an important difference from the methods we have proposed: itaaduc
its models from only the complete instances—ignoring the incomplete instanceshéathe
one chooses to use or to ignore incomplete instances when inducing a medesigaifi-
cant bearing on the acquisition scheme 3 estimates the value of potential acquisitions

by the model’'s improved performance resulting from adding the example toaimenty
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set. This confounds the improvement due to acquiring the previously wmkfeature val-

ues with the improvement due to including the already known feature valnesintrast,

the policies we propose estimate the marginal utility of missing feature acquisition with
respect to a model induced from all available dataoD@&'s measure of utility cannot be
employed directly when the models are induced from all incomplete instandesling
imputations of their missing features. Nevertheless, sinoeASs (to our knowledge) the
only other technique designed for the same acquisition setting, it is inforntatoe@mpare
performance with our approach.

To compare to our approach, we implementedD@ as described in (Zheng &
Padmanabhan, 2002), using J48 tree induction as the learner and csigcy as the
goodness measudf the model. As in (Zheng & Padmanabhan, 2002), wemskiple im-
putationwith Expectation-Maximization to impute missing values for incomplete instances.
Experiments comparingrror Samplingusing J48 to @DA were run as in Section 8.2.1.
However, due to GDA’s tremendous computational requirements, we only ran one run of
10-fold cross-validation on three of the datasets. The datasets wenmedismed in size to
make running @DA feasible.

A summary of the results, along with the reduced dataset sizes, is preseited
ble 8.4. The results show that in spite of the high computational complexityoafaGit
results in inferior performance comparedg&oor Samplingfor all three domains. All im-
provements obtained iyrror Samplingwith respect to @DA are statistically significant.
Figure 8.5 presents learning curves for firiceline dataset that clearly demonstrate the
superior performance dError Sampling These results suggest that the abilitykafor
Samplingio capitalize on information from incomplete instances, and to utilize this knowl-
edge in feature acquisition, allows it to capture better predictive pattemgared to those
captured by GDA.

Recall that when an instance is selected for acquisiioror Samplingadds to the

training data only the acquired feature valueso@, however, adds to the training data
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the entire instance, i.e., the feature values that are known ex ante (batehait used for
induction by GDA 1) as well as the acquired feature values and the instance’s class mem-
bership. Hence, even when the same instance is selected by GODA Endbgampling

the relative increase in accuracy for GODA is likely to be greater than tihease obtained

for a model induced wittError Sampling This difference contributes to the steep learning
curve exhibited by the model generated in GODA.

In addition to superior accuracy for a given humber of acquisitionsapproach
also has the advantage of being simple-to-implement and having a relativetpfoputa-
tional complexity. ®DA, on the other hand, requires inducing a different model for esti-
mating each potential acquisition (i.€L| models are induced). Hence for even moderately
large data sets this approach is prohibitively expensive, except (mrvgh an incremen-
tal learner such as Naive Bayes. Our AFA framework is significantly reffient because
only a single model is induced for estimating the utilities of an arbitrarily large nuwibe

potential feature acquisitions.

Table 8.4: Comparingrror Samplingwith GODA: Percent error reduction.

Dataset | Size | % Error Reduction
bmg 200 19.48
gvc 100 20.03
priceline | 100 17.75

8.4 Related Work

Recent work onbudgeted learningLizotte, Madani, & Greiner, 2003) also addresses
the issue of active feature-value acquisition. However, the policiedajmet by Lizotte
et al. (2003) assume feature-values are discrete, and considegthisitaan of individual

feature-values for instances of a given class (i.e., queries are dfre‘dcquire value of

1This explains why ®DA starts with lower accuracy.

120



Accuracy

75 R
04 / :
65 I |
/ Error Sampling (J48) ——
60 I I I I I \GODA T”Xﬁ"

10 20 30 40 50 60 70 80 90
Number of complete instances

Figure 8.5: Comparin@rror Samplingto GODA on priceline

feature f for some instance in clags’). Therefore, unlike our approach, the policies do
not consider requesting additional features for a specific incompleteaestén addition,
the policies cannot be directly applied to estimate the value of acquiring setatafds (as
is required in our problem setting). Another important aspect of the pol@sosed by
Lizotte et al. (2003) is that for each feature and class membership theyeesgtimating
the performance of all models induced from each possible value assignieminduc-
tion of most learners is not incremental, hence for each feature class paw model is
required to be induced for each value assignment. Although the framewoplosed by
Lizotte et al. (2003) was not designed to solve the problem discusseddrex may con-
sider an extension to this framework for estimating the utility of acquiring valoiea et
of features for incomplete instances. However, the number of possibie aasignments,
and consequently the number of model inductions required will increasedsyably. It is
unclear whether an algorithm with such a high complexity would be feasibletipe.

Some work oncost sensitivdearning (Turney, 2000) has addressed the issue of
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inducing economical classifiers when there are costs associated withigt@ature val-
ues. However, most of this work assumes thatthiming data are complete and focuses on
learning classifiers that minimize the cost of classifying incompietéinstances. An ex-
ception, CS-ID3 (Tan & Schlimmer, 1990), also attempts to minimize the cost ofraug)
features during training; however, it processes examples incrememntdltaa only request
additional information for the current training instance. CS-ID3 uses alsigipedy strat-
egy that requests the value of the cheapest unknown feature wheddtiegehypothesis is
unable to correctly classify the current instance. It does not actieddgsthe most useful
information to acquire from a pool of incomplete training examples. The LAGSrthm
(Greiner, Grove, & Roth, 2002) also addresses the issue of ecorldgatare acquisition
during both training and testing; however, it also adopts a very simple stridtagdoes
not actively select the most informative data to collect during training. Rat&€* sim-

ply requests complete information on a random sample of instances in repgpletion
phases that are intermixed wigkploitationphases that use the current learned classifier to

economically classify instances.

8.5 Chapter Summary

We have presented a general framework for active feature-valygisitton that can be
applied to different learners and can use alternate measures of utilitgrfking acquisi-
tions. Within this framework, we present an approach in which instaneesedected for
acquisition based on the current model’'s accuracy and its confidenaedicion. We
show empirically that this approackyror Sampling significantly improves the accuracy
of models learned for fixed feature acquisition budgets, when compatied wolicy that
requests features randomly. In particular, we have shown that &smg Samplingwith
DecorATEensembles is very effective for the task of active feature-value dtignis

A direct comparison oError Samplingwith GODA, an alternate AFA approach,

demonstrates that in spite of its simplicigtror Samplingexhibits superior performance.
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Error Samplings utilization of all known feature-values and of a simple measure of the
potential for improvement from an acquisition, results in advantages botbnipatation
time and model accuracy.

The effectiveness, simplicity, and computational efficiencyegbr Samplingar-
gues that this policy should be considered by any practitioner or rémgdeced with the
problem of feature set acquisition. From a research perspectiveyggest that th&rror
Samplingpolicy be a baseline (in addition to random selection) for future studiestiveac

feature selection.
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Chapter 9

Future Work

In this chapter, we discuss some future directions for the researatnpeesn this thesis.

9.1 Further Analysis on DECORATE

Our current study has focused primarily on building ensembles of dedigies. However,
DECORATE, being a meta-learner, can be applied to any learning algorithm. One direction
for future work is to experiment with other base learners. Initial experisnen apply-
ing DECORATE to neural networks look promising. It would be good to perform a more
thorough study, and compareEDORATE to diversity-based ensemble methods designed
specifically for neural networks (Opitz & Shavlik, 1996; Rosen, 1996;& Yao, 1999).
DecORATEhas been tested extensively on many datasets from the UCI repository.
However, these datasets are fairly low-dimensional, having at most auiesiréd features.
It would be useful to see how effectiveeRORATE is for domains with high-dimensional
data, having tens of thousands of features, such as text categoriZatiosting has been
successfully used for text categorization, in a system called BoosT&«deapire & Singer,
2000), so it would interesting to see ifHBORATE can perform better.

In Chapter 5, we studied the impact of imperfections in data on differeeneoie
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methods. Our results showed thabABOOSTIs very sensitive to classification noise. Sev-
eral variations of MABoosThave been recently developed to address this issue (Servedio,
2003; Oza, 2004; McDonald et al., 2003). An interesting avenue farduvork would be

to compare the performance oERORATEwith these new boosting algorithms.

The empirical success of HLORATE in the classification task, raises the issue of
the need for a sound theoretical understanding of its effectiverreparticular, it would be
useful to provide a theoretical guarantee that tlscDRATE algorithm improves the bound
on generalization error. Furthermore, it would be useful to study theemion between
DecoraTEand methods that attempt to maximize the margins on the training sample, such
as AdaBoost (Schapire, Freund, Bartlett, & Lee, 1998).

Recent studies have analyzed how different ensemble methods affecintiniéu-
tion of biasandvarianceto generalization error (Suen, Melville, & Mooney, 2005; Bauer
& Kohavi, 1999; Webb, 2000). Performing a similar bias-variance aisabfSDECORATE

may provide some useful insights about the algorithm.

9.2 Active Learning for Probability Estimation

In our experiments on active probability estimation in Chapter 7, we aredaocese indi-
rect metrics to measure CPE accuracy, since we do not have dataseteWm true class
probabilities for instances. However, in the absence of real data with gtababilities, it
would be useful to also evaluate our methods on synthetic data, as donarbin&antu
and Dietterich (2002).

Our study uses standard metrics for evaluating CPE employed in existiragaiase
(Nielsen, 2004). However, we have shown that JS-divergence @d measure for se-
lecting examples for improving CPE; and therefore it should also be a goadurefor
evaluating CPE. In future work, when the true class probabilities are knew suggest
evaluating CPE by computing the JS-divergence between the estimated angethkass

distributions.
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9.3 Active Feature-value Acquisition

In our current AFA setting in Chapter 8, we assume that for all instarthesyalues of

a subset of the features,...,a; are known, and the values of the remaining features

ai+1,-- -, a0, are unknown and can be acquired at a cost. We also assume thatliectade
instance, the entire set of missing features-values can be acquirezkatamthermore, we
assume that the cost of acquiring complete information is the same for diffestances.
These assumptions were based on the web-usage datasets(Padmanahbh2001) that
motivated our study. However, these assumption may not be very realistathfer do-
mains. As such, in recent work (Melville, Saar-Tsechansky, Prog€&iponey, 2005b,
2005a), we have studied a more general form of the AFA problem, wheriearner may
request the value of a specific feature for a selected instance. In thingsgve also as-
sume that the cost of acquiring each feature-value may vary. We pi@sapproach that
acquires feature values for inducing a classification model based ostiamation of the
expected improvement in model accuracy per unit cost. Experimentédtisresinonstrate
that our approach consistently reduces the cost of producing a micaldlesired accuracy
compared to random feature acquisitions.

Similarly to previous studies on active feature acquisition (Zheng & Padrhanab
2002) the test instances in this study are complete. We test on complete isstanoder
to estimate the model’s performance without confounding effects of incomyaéies in
test instances. However, it is important to explore the setting in which feadlwes can
also be acquired for incomplete test instances. Some work in this directiomedesly

been done by Kapoor and Greiner (2005).
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Chapter 10

Conclusions

This thesis has introduced th&eDoRrATEalgorithm, which is a simple yet effective method
that uses diversity to guide ensemble construction. By manipulating artifesiairtg exam-

ples, DECORATEIs able to use a strong base learner to produce an accurate and deterse
of classifiers. This thesis demonstrates that the diverse ensemblesguidiyuDECORATE

can be used to learner accurate classifiers in settings where there is a limitedteof
training data, and iactivesettings, where the learner can acquire class labels for unlabeled
examples or additional feature-values for examples with missing values.

We first examined th@assivelearning setting, where the training set is randomly
sampled from the data distribution. Experimental results demonstrate tabRATE
produces highly accurate ensembles that outperform BaggingB&0sT and Random
Forests low on the learning curve. Moreover, even on larger trainisg BECORATE out-
performs Bagging and Random Forests, and is competitive WithBOOST.

We ran additional experiments comparing the sensitivity of BaggimgpBOOST,
and DECORATE to three types of imperfect data: missing features, classification noise,
and feature noise. Our experiments, using J48 as a base learnetthstiowthe case of
missing features, BCORATE significantly outperforms the other approaches. In the case

of classification noise, both BCORATE and Bagging are effective at decreasing the error
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of the base learner. However,DABOOST degrades rapidly in performance, even with
small amounts of classification noise, often performing worse than J48e lprédsence of
noise in the features, all ensemble methods produce consistent improvewaritse base
learner. These results suggest that, when there are many missing daatthre data, or
appreciable noise in the classification labels, it is advisable to EsORATE or Bagging
over ADABOOST.

For the task of active learning, we propose the algorithomi&EDECORATE, which
uses [ECORATEensembles to help select the most informative examples to be labeled. Em-
pirical results show that this approach is very effective at reducingineber of labeled
training examples required to achieve high classification accuracy. Qage/e’CTIVE-
DEecoRrATErequires only 78% of the number of training examples required bg @RATE
using random sampling. Experimental results also demonstrate that, ogevAcaIVE-
DeCORATE performs better that the competing active learners — Query by Bagging and
Query by Boosting.

Another contribution of this thesis, is proposing the use of Jensen-Shativer-
gence for measuring the utility of acquiring labeled examples for activeitepai prob-
ability estimates. Extensive experiments have demonstrated that JS-deeféectively
captures the uncertainty of class probability estimation and allows us to ideatifgydarly
informative examples that significantly improve the model’s class distribution dgtima
In particular, we show that when JS-divergence is used withixe DECORATEIt produces
substantial improvements over using margins, which focuses on classifieatiaracy. We
also improve on BOTSTRARLV, an existing active CPE learner for binary class problems,
by using JS-divergence in place of itgal variancemeasure. Apart from requiring fewer
labeled examples to achieve accurate probability estimates, our methods hadeahiage
of being applicable to multi-class domains.

This thesis also presents a general framework for the task of actigdealue

acquisition (AFA). Within this framework, we present an approach in wirstances are
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selected for acquisition based on the current model’s accuracy anahftderace in predic-
tion. Experiments on this approaditror Sampling using DECORATE demonstrate that
our method can induce accurate models using substantially fewer fealues-acquisi-
tions as compared to a random acquisition policy. A direct comparis@mnrof Sampling
with GODA, an alternate AFA approach, demonstrates that in spite of its simpEkgsityr
Samplingexhibits superior performanc&rror Samplings utilization of all known feature-
values and of a simple measure of the potential for improvement from arsdigqy makes
it computationally more efficient and leads to more accurate classifiers than.G

This thesis introduces theHZORATE algorithm, which produces a diverse set of
classifiers by manipulating artificial training examples. We demonstrate thaivibiesel
ensembles produced byERORATE can be used to learn accurate classifiers in settings
where there is a limited amount of training data, an@dtive settings, where the learner
can acquire class labels for unlabeled examples or additional featues\far examples
with missing values. As a result, we are able to build more accurate predictigelsno
than existing methods, with reduced supervision, which translates to lowts cbdata

acquisition.
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