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Ensemble methods like Bagging and Boosting which combine the decisions of mul-

tiple hypotheses are some of the strongest existing machine learning methods.The diversity

of the members of an ensemble is known to be an important factor in determining its gen-

eralization error. In this thesis, we present a new method for generating ensembles, DEC-

ORATE (Diverse Ensemble Creation by Oppositional Relabeling of Artificial Training Ex-

amples), that directly constructs diverse hypotheses using additional artificially-generated

training examples. The technique is a simple, general meta-learner that can use any strong

learner as a base classifier to build diverse committees. The diverse ensembles produced by

DECORATEare very effective for reducing the amount of supervision required for building

accurate models. The first task we demonstrate this on is classification givena fixed train-
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ing set. Experimental results using decision-tree induction as a base learner demonstrate

that our approach consistently achieves higher predictive accuracy than the base classifier,

Bagging and Random Forests. Also, DECORATE attains higher accuracy than Boosting

on small training sets, and achieves comparable performance on larger training sets. Ad-

ditional experiments demonstrate DECORATE’s resilience to imperfections in data, in the

form of missing features, classification noise, and feature noise.

DECORATEensembles can also be used to reduce supervision throughactive learn-

ing, in which the learner selects the most informative examples from a pool of unlabeled

examples, such that acquiring their labels will increase the accuracy of theclassifier. Query

by Committee is one effective approach to active learning in which disagreement within

the ensemble of hypotheses is used to select examples for labeling. Query by Bagging and

Query by Boosting are two practical implementations of this approach that useBagging and

Boosting respectively, to build the committees. For efficient active learning itis critical that

the committee be made up of consistent hypotheses that are very different from each other.

Since DECORATE explicitly builds such committees, it is well-suited for this task. We in-

troduce a new algorithm, ACTIVEDECORATE, which uses DECORATEcommittees to select

good training examples. Experimental results demonstrate that ACTIVEDECORATE typi-

cally requires labeling fewer examples to achieve the same accuracy as Query by Bagging

and Query by Boosting. Apart from optimizing classification accuracy, in many applica-

tions, producing good class probability estimates is also important, e.g., in frauddetection,

which has unequal misclassification costs. This thesis introduces a novel approach to active

learning based on ACTIVEDECORATE which uses Jensen-Shannon divergence (a similar-

ity measure for probability distributions) to improve the selection of training examples for

optimizing probability estimation. Comprehensive experimental results demonstrate the

benefits of our approach.

Unlike the active learning setting, in many learning problems the class labels for

all instances are known, but feature values may be missing and can be acquired at a cost.

viii



For building accurate predictive models, acquiring complete information for all instances is

often quite expensive, while acquiring information for a random subset of instances may not

be optimal. We formalize the task ofactive feature-value acquisition, which tries to reduce

the cost of achieving a desired model accuracy by identifying instances for which obtaining

complete information is most informative. We present an approach, based on DECORATE,

in which instances are selected for acquisition based on the current model’s accuracy and

its confidence in the prediction. Experimental results demonstrate that our approach can

induce accurate models using substantially fewer feature-value acquisitions than random

sampling.
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Chapter 1

Introduction

For many predictive modeling tasks, acquiring supervised training data forbuilding ac-

curate classifiers (models) is often difficult or expensive. In some cases, the amount of

available labeled training data is quite limited. In other cases, it may be possible to acquire

additional data, but there is a significant cost of acquisition. Hence, it is important to be

able to build accurate classifiers with limited data, or with the most cost-effectiveacquisi-

tion of additional data. We study this problem of learning with reduced supervision in the

following three settings.

• Passive Supervised Learning

Most of machine learning research has focused on this setting, where we are given

a fixed set of training examples{(x1, y1), ..., (xm, ym)} for some unknown function

y = f(x). The values ofy are typically drawn from a discrete set of classes. A

learning algorithm is trained on the set of training examples, to produce a classifier,

which is a hypothesis about the true (target) functionf . Given a new examplex, the

classifier predicts the correspondingy value. The aim of this classification task is to

learn a classifier that minimizes the error in predictions on an independent test set of

examples.
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In some domains, there is inherently a limited amount of training data available,

e.g., patient diagnostic data for a newly identified disease. In other domains,such as

personalization, if the model learned does not produce accurate predictions with very

little feedback (examples) from the user, then the user may stop using the system. In

both these types of domains, it is important to be able to maximize the utility of small

training sets. Hence, the first part of our study focuses on building accurate classifiers

given limited training data.

• Active Learning

In some domains, there are a large number of unlabeled examples available, that can

be labeled at a cost. For instance, in the task of web page classification, it iseasy

to gain access to a large number of unlabeled web pages, but it takes some effort to

provide class labels to each of these pages. In such settings, the learnercan be used

to select the most informative examples to be labeled, so that acquiring these labels

will increase the accuracy of the current classifier. Actively selecting the most useful

examples to train on is good approach to reducing the amount of supervisionrequired

for effective learning. The second part of this study focuses on thisactive learning

setting (Cohn, Atlas, & Ladner, 1994).

• Active Feature-value Acquisition

In many tasks, the class labels of instances are known, but they may be missing fea-

ture values that can be acquired at a cost. For example, online customer-profiling data

may contain incomplete customer information that can be filled in by an intermedi-

ary. For building accurate predictive models, acquiring complete informationfor all

instances is often prohibitively expensive, while acquiring information fora random

subset of instances may not be most effective. The third part of this study introduces

the task ofactive feature-value acquisition(Melville, Saar-Tsechansky, Provost, &

Mooney, 2004), in which the learner tries to reduce the cost of achievinga desired

2



model accuracy by identifying instances for which obtaining complete information is

most informative.

The main contribution of this thesis is the development of a new method for buildingan

ensemble of classifiers, that can be used to reduce the amount of supervision required in

each of the above three settings. As a result, we are able to build more accurate predictive

models than existing methods, at a lower costs of data acquisition.

1.1 TheDECORATEApproach

One of the major advances in inductive learning in the past decade was the development of

ensembleor committeeapproaches that learn and retain multiple hypotheses and combine

their decisions during classification (Dietterich, 2000). For example, ADABOOST (Freund

& Schapire, 1996) is an ensemble method that learns a series of “weak” classifiers each one

focusing on correcting the errors made by the previous one; and it is currently one of the

best generic inductive classification methods (Hastie, Tibshirani, & Friedman, 2001).

Constructing adiversecommittee in which each hypothesis is as different as possi-

ble, while still maintaining consistency with the training data, is known to be a theoretically

important property of a good ensemble method (Krogh & Vedelsby, 1995).Although all

successful ensemble methods encourage diversity to some extent, few have focused directly

on the goal of maximizing diversity. Existing methods that focus on achieving diversity

(Opitz & Shavlik, 1996; Rosen, 1996) are fairly complex and are not generalmeta-learners

like Bagging (Breiman, 1996) and ADABOOSTwhich can be applied to any base learner to

produce an effective committee (Witten & Frank, 1999).

This thesis presents a new meta-learner DECORATE (Diverse Ensemble Creation

by Oppositional Relabeling of Artificial Training Examples), that uses an existing “strong”

learner (one that provides high accuracy on the training data) to build an effective diverse

committee in a simple, straightforward manner. This is accomplished by adding different

3



randomly constructed examples to the training set when building new committee members.

These artificially constructed examples are given category labels thatdisagreewith the

current decision of the committee, thereby easily and directly increasing diversity when a

new classifier is trained on the augmented data and added to the committee.

In this thesis, we motivate the use of DECORATE for each of the three settings

discussed in the previous section, and we provide empirical results that confirm its effec-

tiveness. In particular, for the passive supervised setting, we show that when training data

is limited, DECORATE produces more accurate classifiers than competing ensemble meth-

ods — Bagging, ADABOOST, and Random Forests (Breiman, 2001). In the active learning

setting, experiments demonstrate that DECORATE ensembles perform very well at select-

ing the most informative examples to be labeled, so as to improve classification accuracy.

Experiments on active feature-value acquisition, show that DECORATE can be used very

effectively in making cost-effective decisions of the most informative instances for which

to acquire missing feature values.

1.2 Thesis Outline

Below is a summary of the rest of the thesis:

• Chapter 2. Background: We provide a review of ensemble methods for classifi-

cation, and describe some commonly-used ensemble approaches — Bagging, ADA-

BOOSTand Random Forests.

• Chapter 3. The DECORATE Algorithm: This chapter presents the details of our

ensemble method DECORATE, and discusses some related approaches.

• Chapter 4. Passive Supervised Learning:In this chapter, we present experiments

on thepassivelearning setting. It is shown that, when training data is limited, DEC-

ORATE outperforms Bagging, ADABOOSTand Random Forests. Moreover, even on

larger training sets, DECORATE performs better than Bagging and Random Forests,

4



and is competitive with ADABOOST. This chapter also presents several additional

studies analyzing the DECORATEalgorithm.

• Chapter 5. Imperfections in Data: We compare the sensitivity of Bagging, ADA-

BOOST, and DECORATE to three types of imperfect data: missing features, classi-

fication noise, and feature noise. Experimental results demonstrate the resilience of

DECORATE to these imperfections in data.

• Chapter 6. Active Learning for Classification Accuracy: This chapter discusses

the task of active learning, and presents an algorithm ACTIVEDECORATE, which uses

DECORATE ensembles to reduce the number of labeled training examples required

to achieve high classification accuracy. Extensive experimental results demonstrate

that, in general, ACTIVEDECORATE outperforms other active learners — Query by

Bagging and Query by Boosting (Abe & Mamitsuka, 1998).

• Chapter 7. Active Learning for Class Probability Estimation: In this chapter,

we examine the task of active learning, when the objective is improving class prob-

ability estimation, as opposed to classification accuracy. We propose the useof

Jensen-Shannon divergence as a measure of the utility of acquiring labeled exam-

ples. We improve on an existing active probability estimation method, and also ex-

tend ACTIVEDECORATE to effectively select training examples that improve class

probability estimates.

• Chapter 8. Active Feature-value Acquisition: In this chapter, we present a general

framework for the task of active feature-value acquisition. Within this framework,

we propose a method that significantly outperforms alternative approaches. Experi-

mental results using DECORATE demonstrate that our approach can induce accurate

models using substantially fewer feature-value acquisitions as compared to the base-

line.

5



• Chapter 9. Future Work: This chapter discusses future research directions for the

work presented in this thesis.

• Chapter 10. Conclusions:In this chapter, we review the main contributions of our

work.

This thesis introduces the DECORATEalgorithm, which produces a diverse set of classifiers

by manipulating artificial training examples. We demonstrate that the diverse ensembles

produced by DECORATE can be used to learn accurate classifiers in settings where there

is a limited amount of training data, and inactivesettings, where the learner can acquire

class labels for unlabeled examples or additional feature-values for examples with missing

values. As a result, we are able to build more accurate predictive models thanexisting

methods, with reduced supervision, which translates to lower costs of data acquisition.
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Chapter 2

Background

In this chapter, we provide a brief background on the supervised learning task and ensemble

methods for classification. We also review some commonly-used ensemble approaches.

2.1 Ensembles of Classifiers

We begin by introducing some notation and defining the supervised learning task. We

attempt to adhere to the notation and definitions in (Dietterich, 1997).

Y is a set of classes.

T is a set of training examples, i.e. description-classification pairs.

C is a classifier, a function from objects to classes.

C∗ is an ensemble of classifiers.

Ci is theith classifier in ensembleC∗.

wi is the weight given to the vote ofCi.

n is the number of classifiers in ensembleC∗.

xi is the description of theith example/instance.

yi is the correct classification of theith example.

m is the number of training instances.

7



L is a learner, a function from training sets to classifiers.

In supervised learning, a learning algorithm is given a set of training examples or instances

of the form{(x1, y1), ..., (xm, ym)} for some unknown functiony = f(x). The descrip-

tion xi is usually a vector of the form< xi,1, xi,2, ..., xi,k > whose components are real or

discrete (nominal) values, such as height, weight, age, eye-color, and so on. These compo-

nents of the description are often referred to as the features or attributesof an example. The

values ofy are typically drawn from a discrete set of classesY in the case ofclassification

or from the real line in the case ofregression. Our work is primarily focused on the classi-

fication task. A learning algorithmL, is trained on a set of training examplesT , to produce

aclassifierC. The classifier is a hypothesis about the true (target) functionf . Given a new

examplex, the classifier predicts the correspondingy value. The aim of the classification

task is to learn a classifier that minimizes the error in predictions on an independent test set

of examples (generalization error). For classification, the most common measure for error

is the 0/1 loss function, given by:

errorC,f (x) =







0 : if C(x) = f(x)

1 : otherwise
(2.1)

An ensemble (committee)of classifiers is a set of classifiers whose individual deci-

sions are combined in some way (typically by weighted or unweighted voting) to classify

new examples. One of the most active areas of research in supervised learning has been

to study methods for constructing good ensembles of classifiers. This areais referred to

by different names in the literature — committees of learners, mixtures of experts, classi-

fier ensembles, multiple classifier systems, consensus theory, etc. (Kuncheva & Whitaker,

2003). In general, an ensemble method is used to improve on the accuracy of a given learn-

ing algorithm. We will refer to this learning algorithm as thebase learner. The base learner

trained on the given set of training examples is referred to as thebase classifier. It has been

found that in most cases combining the predictions of an ensemble of classifiers produces

8



more accurate predictions than the base classifier (Dietterich, 1997).

There have been many methods developed for the construction of ensembles. Some

of these methods, such as Bagging and Boosting aremeta-learnersi.e. they can be applied

to any base learner. Other methods are specific to particular learners. For example, Neg-

ative Correlation Learning (Liu & Yao, 1999) is used specifically to build committees of

Neural Networks. We focus primarily on ensemble methods that aremeta-learners. This

is because, some learning algorithms are often better suited for a particular domain than

others. Therefore ageneralensemble approach that is independent of the particular base

learner is preferred.

It the following sections, we present some ensemble approaches that aremost rele-

vant to this study. For an excellent survey on ensemble methods see (Dietterich, 2000).

2.2 Bagging

In a Bagging ensemble, each classifier is trained on a set ofm training examples, drawn

randomly with replacement from the original training set of sizem. Such a training set

is called abootstrap replicateof the original set. Each bootstrap replicate contains, on

average, 63.2% of the original training set, with many examples appearing multiple times.

Predictions on new examples are made by taking the majority vote of the ensemble.

Bagging is typically applied to learning algorithms that areunstable, i.e., a small

change in the training set leads to a noticeable change in the model produced. Since each

ensemble member is not exposed to the same set of examples, they are different from each

other. By voting the predictions of each of these classifiers, Bagging seeks to reduce the

error due to variance of the base classifier. Bagging ofstablelearners, such as Naive Bayes,

does not reduce error.

9



2.3 Boosting

There are several variations of Boosting that appear in the literature. When we talk about

Boosting or ADABOOST, we refer to the ADABOOST.M1 algorithm described by Freund

and Schapire (1996) (see Algorithm 1). This algorithm assumes that the base learner can

handle weighted examples. If the learner cannot directly handle weighted examples, then

the training set can be sampled according to a weight distribution to produce anew training

set to be used by the learner. ADABOOST maintains a set of weights over the training

examples; and in each iterationi, the classifierCi is trained to minimize the weighted error

on the training set. The weighted error ofCi is computed and used to update the distribution

of weights on the training examples. The weights of misclassified examples are increased

and the weights on correctly classified examples are decreased. The next classifier is trained

on the examples with this updated distribution and the process is repeated.

After training, the ensemble’s predictions are made using a weighted vote of the

individual classifiers:
∑

i wiCi(x). The weight of each classifier,wi, is computed according

to its accuracy on the weighted example set it was trained on.

ADABOOST is a very effective ensemble method that has been tested extensively

by many researchers (Bauer & Kohavi, 1999; Dietterich, 2000; Quinlan, 1996a; Maclin &

Opitz, 1997). Applying ADABOOST to decision trees has been particularly successful, and

is considered one of the best off-the-shelf classification methods (Hastieet al., 2001). The

success of AdaBoost has lead to its use in a host of different applications, including text

categorization (Schapire & Singer, 2000), online auctions (Schapire, Stone, McAllester,

Littman, & Csirik, 2002), document routing (Iyer, Lewis, Schapire, Singer, & Singhal,

2000), part-of-speech tagging (Abney, Schapire, & Singer, 1999), recommender systems

(Freund, Iyer, Schapire, & Singer, 1998), first-order learning (Quinlan, 1996b) and named-

entity extraction (Collins, 2002).

Despite its popularity, Boosting does suffer from some drawbacks. In particular,

Boosting can fail to perform well given insufficient data (Schapire, 1999). This observation
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Algorithm 1 The ADABOOST.M1 algorithm

Input:
BaseLearn - base learning algorithm
T - set ofm training examples< (x1, y1), ..., (xm, ym) > with labelsyj ∈ Y
I - number of Boosting iterations
Initialize Distribution of weights on examples,D1(xj) = 1/m for all xj ∈ T

1. Fori = 1 toI

2. Train base learner given the distributionDi, Ci = BaseLearn(T, Di)

3. Calculate error ofCi, ǫi =
∑

xj∈T,

Ci(xj) 6=yj

Di(xj)

4. If ǫi > 1/2 then setI = i − 1 and abort loop

5. Setβi = ǫi/(1 − ǫi)

6. Update weights,Di+1(xj) = Di(xj) ×

{

βt : if Ci(xj) = yj

1 : otherwise

7. Normalize weights,Di+1(xj) =
Di+1(xj)

∑

xj∈T

Di+1(xj)

Output: The final hypothesis,C∗(x) = arg max
y∈Y

∑

i:Ci(x)=y

log
1

βi
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is consistent with the Boosting theory. Boosting also does not perform wellwhen there is

a large amount of classification noise (i.e. training examples with incorrect class labels)

(Dietterich, 2000; Melville, Shah, Mihalkova, & Mooney, 2004).

2.4 Random Forests

Breiman (2001) introduces Random Forests, where he combines Baggingwith random fea-

ture selection for decision trees. In this method, each member of the ensemble istrained on

a bootstrap replicate as in Bagging. Decision trees are then grown by selecting the feature

to split on at each node fromF randomly selected features. In our experiments, following

Breiman (2001), we setF to ⌊log2(k + 1)⌋, wherek is the total number of features. And

we also do not perform any pruning on the random trees.

Dietterich (2002) recommends Random Forests as the method of choice for decision

trees, as it compares favorably to ADABOOSTand works well even with noise in the training

data. The focus of our work has been the development of ensemble methods that aremeta-

learners. Random Forests do not fall in this class, as they can only be applied to decision

trees. However, as we applied our methods to tree induction we chose to alsocompare our

results with Random Forests.
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Chapter 3

The DECORATEAlgorithm

In this chapter, we discuss the notion of ensemble diversity, and explain our algorithm

DECORATE in detail. We also discuss other studies that are most closely related to our

approach.

3.1 Ensemble Diversity

In an ensemble, the combination of the output of several classifiers is only useful if they

disagree on some inputs (Hansen & Salamon, 1990; Tumer & Ghosh, 1996). We refer to the

measure of disagreement as thediversity/ambiguityof the ensemble. For regression prob-

lems,mean squared erroris generally used to measure accuracy, andvarianceis used to

measure diversity. In this setting, Krogh and Vedelsby (1995) show thatthe generalization

error,E, of the ensemble can be expressed asE = Ē − D̄; whereĒ andD̄ are the mean

error and diversity of the ensemble respectively. This result implies that increasing ensem-

ble diversity while maintaining the average error of ensemble members, shouldlead to a

decrease in ensemble error. Unlike regression, for the classification task the above simple

linear relationship does not hold betweenE, Ē andD̄. But there is still strong reason to

believe that increasing diversity should decrease ensemble error (Zenobi & Cunningham,
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2001).

There have been several measures of diversity for classifier ensembles proposed in

the literature. In a recent study, Kuncheva and Whitaker (2003) compared ten different mea-

sures of diversity. They found that most of these measures are highly correlated. However,

to the best of our knowledge, there has not been a conclusive study showing which measure

of diversity is the best to use for constructing and evaluating ensembles.

3.1.1 Our diversity measure

For our work, we use the disagreement of an ensemble member with the ensemble’s predic-

tion as a measure of diversity. More precisely, ifCi(x) is the prediction of thei-th classifier

for the label ofx; C∗(x) is the prediction of the entire ensemble, then the diversity of the

i-th classifier on examplex is given by

di(x) =







0 : if Ci(x) = C∗(x)

1 : otherwise
(3.1)

To compute the diversity of an ensemble of sizen, on a training set of sizem, we average

the above term:
1

nm

n
∑

i=1

m
∑

j=1

di(xj) (3.2)

This measure estimates the probability that a classifier in an ensemble will disagree with

the prediction of the ensemble as a whole. Our approach is to build ensembles that are

consistent with the training data and that attempt to maximize this diversity term.

3.2 DECORATE: Algorithm Definition

Melville and Mooney (2003, 2004a) introduced a new meta-learner DECORATE (Diverse

Ensemble Creation by Oppositional Relabeling of Artificial Training Examples)that uses

an existing learner to build an effective diverse committee in a simple, straightforward man-
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ner. In DECORATE (see Algorithm 2), an ensemble is generated iteratively, first learning a

classifier and then adding it to the current ensemble. We initialize the ensemble tocontain

the classifier trained on the given training data. The classifiers in each successive iteration

are trained on the original training data combined with some artificial data. In each itera-

tion, artificial training examples are generated from the data distribution; where the number

of examples to be generated is specified as a fraction,Rsize, of the training set size. The

labels for these artificially generated training examples are chosen so as to differ maximally

from the current ensemble’s predictions. The construction of the artificial data is explained

in greater detail in the following section. We refer to the labeled artificially generated train-

ing set as thediversity data. We train a new classifier on the union of the original training

data and the diversity data, thereby forcing it to differ from the currentensemble. Therefore

adding this classifier to the ensemble should increase its diversity. While forcing diversity

we still want to maintain training accuracy. We do this by rejecting a new classifier if adding

it to the existing ensemble decreases its training accuracy. This process is repeated until we

reach the desired committee size or exceed the maximum number of iterations.

To classify an unlabeled example,x, we employ the following method. Each base

classifier,Ci, in the ensembleC∗ provides probabilities for the class membership ofx. If

P̂Ci,y(x) is the estimated probability of examplex belonging to classy according to the

classifierCi, then we compute the class membership probabilities for the entire ensemble

as:

P̂y(x) =

∑

Ci∈C∗

P̂Ci,y(x)

|C∗|

whereP̂y(x) is the probability ofx belonging to classy. We then select the most probable

class as the label forx, i.e. C∗(x) = arg max
y∈Y

P̂y(x)
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Algorithm 2 The DECORATE algorithm

Input:
BaseLearn - base learning algorithm
T - set ofm training examples< (x1, y1), ..., (xm, ym) > with labelsyj ∈ Y
Csize - desired ensemble size
Imax - maximum number of iterations to build an ensemble
Rsize - factor that determines number of artificial examples to generate

1. i = 1

2. trials = 1

3. Ci = BaseLearn(T )

4. Initialize ensemble,C∗ = {Ci}

5. Compute ensemble error,ǫ =

P

xj∈T,C∗(xj) 6=yj
1

m

6. While i < Csize andtrials < Imax

7. GenerateRsize × |T | training examples, R,
based on distribution of training data

8. Label examples in R with probability of class labels
inversely proportional to predictions ofC∗

9. T = T
⋃

R

10. C ′ = BaseLearn(T )

11. C∗ = C∗
⋃

{C ′}

12. T = T − R, remove the artificial data

13. Compute training error,ǫ′, of C∗ as in step 5

14. If ǫ′ ≤ ǫ

15. i = i + 1

16. ǫ = ǫ′

17. otherwise,

18. C∗ = C∗ − {C ′}

19. trials = trials + 1

16



3.2.1 Construction of Artificial Data

We generate artificial training data by randomly picking data points from an approxima-

tion of the training-data distribution. For a numeric attribute, we compute the mean and

standard deviation from the training set and generate values from the Gaussian distribution

defined by these. For a nominal attribute, we compute the probability of occurrence of each

distinct value in its domain and generate values based on this distribution. We use Laplace

smoothing so that nominal attribute values not represented in the training set still have a

non-zero probability of occurrence. In constructing artificial data points, we make the sim-

plifying assumption that the attributes are independent. It is possible to more accurately

estimate the joint probability distribution of the attributes; but this would be time consum-

ing and require a lot of data. Furthermore, the results seem to indicate that we can achieve

good performance even with the crude approximation we use. In Section 4.6we present

experiments on alternate approaches to generating artificial data.

In each iteration, the artificially generated examples are labeled based on thecurrent

ensemble. Given an example, we first find the class membership probabilities predicted by

the ensemble. We replace zero probabilities with a small non-zero value and normalize the

probabilities to make it a distribution. Labels are then selected, such that the probability of

selection is inversely proportional to the current ensemble’s predictions.So if the current

ensemble predicts the class membership probabilitiesP̂y(x), then a new label is selected

based on the new distribution̂P ′, where:

P̂ ′
y(x) =

1/P̂y(x)
∑

y 1/P̂y(x)

3.3 Why DECORATEShould Work

Ensembles of classifiers are often more accurate than their component classifiers if errors

made by the ensemble members are uncorrelated (Hansen & Salamon, 1990).By training

classifiers on oppositely labeled artificial examples, DECORATE reduces the correlation
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between ensemble members. Furthermore, the algorithm ensures that thetraining error of

the ensemble is always less than or equal to the error of the base classifier; which usually

results in a reduction ofgeneralizationerror. This leads us to our first hypothesis:

Hypothesis 1: On average, using the predictions of a DECORATE ensemble will improve

on the accuracy of the base classifier.

We believe that diversity is the key to constructing good ensembles, and is thus the

basis of our approach. Other ensemble methods also encourage diversity, but in different

ways. Bagging implicitly creates ensemble diversity, by training classifiers ondifferent

subsets of the data. Boosting fosters diversity, by explicitly modifying the distributions

of the training data given to subsequent classifiers. Random Forests produce diversity by

training on different subsets of the data and feature sets. However, allthese methods rely

solely on thetraining data for encouraging diversity. So when the size of the training set

is small, they are limited in the amount of diversity they can produce. On the otherhand,

DECORATE ensures diversity on an arbitrarily large set of additional artificial examples,

while still exploiting all the available training data. This leads us to our next hypothesis:

Hypothesis 2: DECORATEwill outperform Bagging, ADABOOSTand Random Forests low

on the learning curve i.e. when training sets are small.

We empirically validate these hypotheses in the following chapter.

3.4 Related Work

3.4.1 Explicit Diversity-Based Approaches

DECORATE differs from ensemble methods, such as Bagging, in that itexplicitly tries to

foster ensemble diversity. There have been other approaches to usingdiversity to guide

ensemble creation. We list some of them below.

Liu and Yao (1999) and Rosen (1996) simultaneously train neural networks in an

ensemble using a correlation penalty term in their error functions. McKay and Abbass
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(2001) use a similar method with a different penalty function. Brown and Wyatt (2003)

provide a good theoretical analysis of these methods, commonly referred toas Negative

Correlation Learning. Opitz and Shavlik (1996) and Opitz (1999) use a genetic algorithm

to search for a good ensemble of networks. To guide the search they usean objective

function that incorporates both an accuracy and diversity term.

Tumer and Ghosh (1996) reduce the correlation between classifiers in anensemble

by exposing them to different feature subsets. They trainm classifiers, one corresponding

to each class in am-class problem. For each class, a subset of features that have a low

correlation to that class is eliminated. The degree of correlation between classifiers can

be controlled by the amount of features that are eliminated. This method, calledinput

decimation, has been further explored by Tumer and Oza (1999).

Zenobi and Cunningham (2001) also build ensembles based on different feature

subsets. In their approach, feature selection is done using a hill-climbing strategy based

on classifier error and diversity. A classifier is rejected if the improvement of one of the

metrics leads to a “substantial” deterioration of the other; where “substantial”is defined by

a pre-set threshold.

All these approaches attempt to simultaneously optimize diversity and error ofin-

dividual ensemble members. On the other hand, DECORATE focuses on reducing the error

of the entire ensemble by increasing diversity. At no point does the training accuracyof

the ensemble go below that of the base classifier; however, this is a possibilitywith previ-

ous methods. Furthermore, to the best of our knowledge, apart from Opitz (1999), none of

the previous studies compared their methods with standard ensemble approaches such as

Boosting and Bagging.

3.4.2 Use of Artificial Examples

One ensemble approach that also utilizes artificial training data is the active learning method

introduced by Cohn et al. (1994). Rather than to improve accuracy, the goal of the com-
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mittee here is to select good new training examples using the existing training data.The

labels of the artificial examples are selected to produce hypotheses that more faithfully rep-

resent the entire version space rather than to produce diversity. Cohn’s approach labels

artificial data either all positive or all negative to encourage, respectively, the learning of

more general or more specific hypotheses.

Another application of artificial examples for ensembles is Combined Multiple

Models (CMMs) (Domingos, 1997). The aim of CMMs is to improve the comprehensibility

of an ensemble of classifiers, by approximating it by a single classifier. Artificial examples

are generated and labeled by a voted ensemble. They are then added to theoriginal training

set. The base learner is trained on this augmented training set to produce anapproximation

of the ensemble. The role of artificial examples here is to create less complex models,not

to improve classification accuracy.

Craven and Shavlik (1995) use artificial examples to learn decision trees from

trained neural networks. As in CMMs, the goal here is to create more comprehensible

models from existing classifiers. The artificial examples created are labeledby a given

neural network, and then used in constructing an equivalent decision tree.

To prevent overfitting in neural networks often noise is added to the inputsduring

training. This is generally done by adding a random vector to the feature vector of each

training example. Theseperturbedor jittered examples may also be considered as artificial

examples. Quite often training with noise improves network generalization (Bishop, 1995;

Raviv & Intrator, 1996). Adding noise to training examples differs from our method of

constructing examples from the data distribution. Furthermore, unlike addingnoise, DEC-

ORATE systematically labels artificial examples to improve generalization.
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Chapter 4

Passive Supervised Learning

In this chapter, we consider thepassivesupervised learning setting, where the training set

is randomly sampled from the data distribution. In Chapters 6-8, we will look atdiffer-

entactivesettings, where the learner can influence the process of data acquisition.In the

following sections, we present experiments comparing DECORATEwith the leading ensem-

ble methods, Bagging, AdaBoost and Random Forests. We also discuss several additional

experiments that we ran to better understand DECORATE’s performance.

4.1 Experimental Methodology

To evaluate the performance of DECORATE we ran experiments on 15 representative data

sets from the UCI repository (Blake & Merz, 1998) that were used in similarstudies (Webb,

2000; Quinlan, 1996a). The data sets are summarized in Table 4.1. Note thatthe datasets

vary in the numbers of training examples, classes, numeric and nominal attributes; thus

providing a diverse testbed.

We compared the performance of DECORATEto that of ADABOOST, Bagging, Ran-

dom Forests and J48, using J48 as the base learner for the ensemble methods and using the

Weka implementations of these methods (Witten & Frank, 1999). For the ensemblemeth-

21



Table 4.1: Summary of Data Sets
Name Examples Classes Features

Numeric Nominal
anneal 898 6 9 29
audio 226 6 – 69
autos 205 6 15 10
breast-w 699 2 9 –
credit-a 690 2 6 9
glass 214 6 9 –
heart-c 303 2 8 5
hepatitis 155 2 6 13
colic 368 2 10 12
iris 150 3 4 –
labor 57 2 8 8
lymph 148 4 – 18
segment 2310 7 19 –
soybean 683 19 – 35
splice 3190 3 – 62

ods, we set the ensemble size to 15. Note that in the case of DECORATEwe can only specify

a desiredensemble size; the algorithm terminates if the number of iterations exceeds the

maximum limit set even if the desired ensemble size is not reached. For our experiments,

we set the maximum number of iterations in DECORATEto 50. We ran experiments varying

the amount of artificially generated data,Rsize; and found that the results do not vary much

for the range 0.5 to 1. However,Rsize values lower than 0.5 do adversely affect DECO-

RATE, because there is insufficient artificial data to give rise to high diversity.The results

we report are forRsize set to 1, i.e. the number of artificially generated examples is equal

to the training set size.

The performance of each learning algorithm was evaluated using 10 complete runs

of 10-fold cross-validation. In each 10-fold cross-validation, each data set is randomly

split into 10 equal-size segments and results are averaged over 10 trials. For each trial,

one segment is set aside for testing, while the remaining data is available for training. To
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test performance on varying amounts of training data, learning curves were generated by

testing the system after training on increasing subsets of the overall trainingdata. Since we

would like to summarize results over several data sets of different sizes, we select different

percentagesof the total training-set size as the points on the learning curve.

To compare two learning algorithms across all domains we employ the statistics

used in (Webb, 2000), namely the win/draw/loss record and the geometric mean error ratio.

The win/draw/loss record presents three values, the number of data sets for which algorithm

A obtained better, equal, or worse performance than algorithmB with respect to classifica-

tion accuracy. We also report thestatistically significantwin/draw/loss record; where a win

or loss is only counted if the difference in values is determined to be significant at the 0.05

level by a pairedt-test.

The geometric mean error ratio is defined asn

√

∏n
i=1

EA

EB
, whereEA andEB are

the mean errors of algorithmA andB on the same domain. If the geometric mean error

ratio is less than one it implies that algorithmA performs better thanB, and vice versa. We

compute error ratios to capture the degree to which algorithms out-perform each other in

win or loss outcomes.

4.2 Results

Our results are summarized in Tables 4.2-4.5. Each cell in the tables presentsthe accuracy

of DECORATEversus another algorithm. If the difference is statistically significant, then the

larger of the two is shown in bold. We varied the training set sizes from 1-100% of the total

available data, with more points lower on the learning curve since this is where we expect

to see the most difference between algorithms. The bottom of the tables provide summary

statistics, as discussed above, for each of the points on the learning curve. To better visualize

the results from the tables, we present scatter-plots in Figures 4.1-4.4. Each plot presents a

comparison of DECORATEversus another learner for one point on the learning curve. Each

point in the scatter-plot represents one of the 15 datasets. The points above the diagonal
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Table 4.2: DECORATEvs J48
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/72.49 78.14/75.31 85.24/82.08 92.26/89.28 96.48/95.57 97.36/96.47 97.73/97.3 98.16/97.93 98.39/98.35 98.71/98.55
audio 16.66/16.66 23.73/23.07 41.72/41.1755.42/51.67 64.09/60.59 67.62/64.84 70.46/68.11 72.82/70.77 77.8/75.15 82.1/77.22
autos 24.33/24.33 29.6/29.01 36.73/34.37 42.89/41.22 52.2/50.53 59.86/53.92 64.77/59.68 68.6/65.24 78/73.15 83.64/81.72
breast-w 92.38/74.73 94.12/87.34 95.06/89.42 95.64/92.21 95.55/93.09 95.91/93.36 96.2/93.85 96.01/94.24 96.28/94.65 96.31/95.01
credit-a 71.78/69.54 74.83/77.46 80.61/81.57 83.09/82.35 84.38/84.29 84.68/84.5985.22/84.41 85.57/84.78 85.61/85.43 85.93/85.57
glass 31.69/31.69 35.86/32.96 44.5/38.34 55.4/46.62 61.77/54.16 66.01/60.63 68.07/61.38 68.85/63.69 72.73/67.53 72.77/67.77
heart-c 58.66/49.57 65.11/58.03 73.55/67.71 75.05/70.15 77.66/73.44 78.34/74.61 79.09/74.78 79.46/75.62 78.74/76.7 78.48/77.17
hepatitis 52.33/52.33 72.14/65.93 76.8/72.75 79.48/78.25 80.7/78.61 81.81/78.63 81.65/79.35 83.19/79.57 82.99/79.04 82.62/79.22
colic 58.37/52.85 66.58/65.31 75.85/74.37 79.54/79.94 81.33/82.71 82.47/83.41 83.02/83.55 83.1/84.66 84.02/85.18 84.69/85.16
iris 33.33/33.33 50.27/33.33 80.67/59.33 91.53/84.33 93.2/91.33 94.2/92.73 94.73/93 94.4/93.33 94.53/94.07 94.67/94.73
labor 54.27/54.27 54.27/54.27 67.63/58.93 70.23/64.77 79.77/70.07 83/73.7 84.17/75.17 83.43/75.8 89.73/77.4 89.73/78.8
lymph 48.39/48.39 53.62/46.64 65.06/60.39 71.2/68.21 76.74/70.79 78.84/73.58 78.17/74.53 78.99/73.34 79.14/75.63 79.08/76.06
segment 67.03/52.43 81.16/73.26 89.61/85.41 92.83/89.34 94.88/92.22 95.94/93.37 96.47/94.34 96.93/94.77 97.58/95.94 98.03/96.79
soybean 19.51/13.69 32.4/22.32 55.36/42.94 73.06/59.04 85.14/74.49 88.27/81.59 90.22/84.78 91.4/86.89 92.75/89.44 93.89/91.76
splice 62.77/59.92 67.8/68.69 77.37/77.49 82.55/82.5888.24/87.98 90.47/90.44 91.84/91.77 92.41/92.4 93.44/93.47 93.92/94.03
Win/Draw/Loss 15/0/0 13/0/2 13/0/2 13/0/2 14/0/1 14/0/1 14/0/1 14/0/1 13/0/2 12/0/3
Sig. W/D/L 7/8/0 9/5/1 11/4/0 10/5/0 12/2/1 12/2/1 13/2/0 13/1/1 10/4/1 10/4/1
GM error ratio 0.8627 0.8661 0.8099 0.8104 0.8172 0.8056 0.8081 0.8251 0.8173 0.8303
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Table 4.3: DECORATEvs Bagging
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/74.57 78.14/76.42 85.24/82.88 92.26/89.87 96.48/95.67 97.36/96.89 97.73/97.34 98.16/97.78 98.39/98.53 98.71/98.83
audio 16.66/12.98 23.73/23.68 41.72/38.55 55.42/51.34 64.09/61.76 67.62/66.9 70.46/70.29 72.82/73.07 77.8/77.3282.1/80.71
autos 24.33/22.16 29.6/28 36.73/35.88 42.89/44.65 52.2/54.32 59.86/59.67 64.77/65.6 68.6/69.88 78/77.97 83.64/83.12
breast-w 92.38/76.74 94.12/88.07 95.06/90.88 95.64/93.41 95.55/94.42 95.91/94.95 96.2/94.95 96.01/95.55 96.28/96.07 96.31/96.3
credit-a 71.78/69.54 74.83/77.99 80.61/82.58 83.09/83.9 84.38/85.13 84.68/85.78 85.22/85.59 85.57/85.64 85.61/86.12 85.93/85.96
glass 31.69/24.85 35.86/31.47 44.5/40.87 55.4/49.6 61.77/58.9 66.01/64.35 68.07/66.3 68.85/68.44 72.73/72 72.77/74.67
heart-c 58.66/50.56 65.11/55.67 73.55/68.77 75.05/73.17 77.66/76.12 78.34/77.9 79.09/78.44 79.46/79.11 78.74/79.05 78.48/78.68
hepatitis 52.33/52.33 72.14/63.18 76.8/75.2 79.48/78.64 80.7/80.42 81.81/81.07 81.65/81.22 83.19/81.06 82.99/80.87 82.62/81.34
colic 58.37/53.14 66.58/63.83 75.85/76.44 79.54/80.06 81.33/83.04 82.47/83.58 83.02/83.98 83.1/84.47 84.02/85.4 84.69/85.34
iris 33.33/33.33 50.27/33.33 80.67/60.47 91.53/81.4 93.2/90.67 94.2/92.33 94.73/92.87 94.4/93.6 94.53/94.47 94.67/94.73
labor 54.27/54.27 54.27/54.27 67.63/56.27 70.23/65.9 79.77/74.97 83/75.67 84.17/76.27 83.43/78.6 89.73/80.83 89.73/85.87
lymph 48.39/48.39 53.62/47.11 65.06/60.12 71.2/69.68 76.74/73.6 78.84/76.58 78.17/77.68 78.99/76.98 79.14/76.8 79.08/77.97
segment 67.03/55.88 81.16/76.36 89.61/87.42 92.83/91.01 94.88/93.4 95.94/94.65 96.47/95.26 96.93/95.82 97.58/96.78 98.03/97.41
soybean 19.51/14.56 32.4/24.58 55.36/47.46 73.06/65.45 85.14/79.29 88.27/85.05 90.22/87.89 91.4/89.22 92.75/91.56 93.89/92.71
splice 62.77/62.52 67.8/72.36 77.37/80.5 82.55/85.44 88.24/89.5 90.47/91.44 91.84/92.4 92.41/93.07 93.44/94.06 93.92/94.53
Win/Draw/Loss 15/0/0 13/0/2 12/0/3 11/0/4 11/0/4 12/0/3 11/0/4 10/0/5 10/0/5 8/0/7
Sig. W/D/L 8/7/0 10/3/2 10/3/2 9/5/1 10/2/3 8/4/3 6/7/2 8/5/2 5/7/3 4/9/2
GM error ratio 0.8727 0.8785 0.8552 0.8655 0.8995 0.9036 0.8979 0.9214 0.9312 0.9570
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Table 4.4: DECORATEvs Random Forests
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/72.07 78.14/76.69 85.24/84.21 92.26/90.89 96.48/95.71 97.36/97.54 97.73/98.16 98.16/98.64 98.39/99.01 98.71/99.23
audio 16.66/12.98 23.73/20.47 41.72/26.61 55.42/30.73 64.09/41.93 67.62/51.14 70.46/57.05 72.82/60.69 77.8/69.43 82.1/73.47
autos 24.33/22.16 29.6/31.65 36.73/36.76 42.89/44.76 52.2/57.04 59.86/63.53 64.77/69.43 68.6/73.81 78/79.95 83.64/85.24
breast-w 92.38/81.52 94.12/88.7 95.06/92.07 95.64/93.49 95.55/94.37 95.91/94.94 96.2/95.41 96.01/95.77 96.28/95.84 96.31/95.85
credit-a 71.78/60.61 74.83/64.65 80.61/70.38 83.09/72.87 84.38/76.55 84.68/78.36 85.22/79.54 85.57/81.13 85.61/82.35 85.93/83.25
glass 31.69/24.85 35.86/31.79 44.5/42.19 55.4/52.84 61.77/59.96 66.01/63.4 68.07/67.06 68.85/69.14 72.73/73.55 72.77/76.4
heart-c 58.66/50.06 65.11/54.78 73.55/66.86 75.05/72.61 77.66/76.14 78.34/76.52 79.09/77.63 79.46/78.58 78.74/79.28 78.48/79.92
hepatitis 52.33/52.33 72.14/70.36 76.8/74.51 79.48/77.26 80.7/80.37 81.81/81.7 81.65/81 83.19/81.72 82.99/83.05 82.62/82.9
colic 58.37/52.73 66.58/56.62 75.85/64.52 79.54/68.03 81.33/74.6 82.47/77.15 83.02/79.54 83.1/81 84.02/83.36 84.69/84.34
iris 33.33/33.33 50.27/47 80.67/67.07 91.53/83.33 93.2/91.13 94.2/94 94.73/94.47 94.4/94.33 94.53/94.4 94.67/94.2
labor 54.27/54.27 54.27/54.27 67.63/65.3 70.23/69.57 79.77/75.23 83/79.6 84.17/80.03 83.43/81.6 89.73/82.83 89.73/88.1
lymph 48.39/48.39 53.62/52.06 65.06/60.55 71.2/65.48 76.74/68.18 78.84/71.37 78.17/73.55 78.99/76.34 79.14/77.51 79.08/79.28
segment 67.03/59.46 81.16/74.16 89.61/86.45 92.83/91.25 94.88/94.16 95.94/95.42 96.47/95.99 96.93/96.39 97.58/97.18 98.03/97.59
soybean 19.51/25.82 32.4/38.3 55.36/54.57 73.06/66.52 85.14/78.4 88.27/83.94 90.22/87 91.4/88.54 92.75/90.73 93.89/91.38
splice 62.77/49.37 67.8/51.34 77.37/51.92 82.55/51.97 88.24/52.03 90.47/52.11 91.84/52.17 92.41/52.23 93.44/52.42 93.92/52.59
Win/Draw/Loss 14/0/1 13/0/2 14/0/1 14/0/1 14/0/1 13/0/2 13/0/2 12/0/3 10/0/5 9/0/6
Sig. W/D/L 10/4/1 8/6/1 10/5/0 13/2/0 11/3/1 10/4/1 10/3/2 7/6/2 7/6/2 6/5/4
GM error ratio 0.8603 0.8495 0.7814 0.7433 0.7486 0.7763 0.7915 0.8203 0.8171 0.8364
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Table 4.5: DECORATEvs AdaBoost
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/73.02 78.14/77.12 85.24/87.51 92.26/94.16 96.48/97.13 97.36/97.95 97.73/98.54 98.16/98.8 98.39/99.23 98.71/99.68
audio 16.66/16.66 23.73/23.41 41.72/40.24 55.42/52.7 64.09/64.15 67.62/68.91 70.46/73.07 72.82/75.92 77.8/81.74 82.1/84.52
autos 24.33/24.33 29.6/29.71 36.73/34.2 42.89/43.28 52.2/56.13 59.86/62.2 64.77/69.14 68.6/72.03 78/80.28 83.64/85.28
breast-w 92.38/74.73 94.12/87.84 95.06/91.15 95.64/93.75 95.55/94.85 95.91/95.72 96.2/95.84 96.01/95.87 96.28/96.3 96.31/96.47
credit-a 71.78/68.8 74.83/75.3 80.61/79.68 83.09/81.14 84.38/83.04 84.68/84.22 85.22/84.13 85.57/84.58 85.61/84.93 85.93/85.42
glass 31.69/31.69 35.86/32.93 44.5/40.71 55.4/49.78 61.77/58.03 66.01/64.33 68.07/66.93 68.85/68.69 72.73/74.69 72.77/76.06
heart-c 58.66/49.57 65.11/58.65 73.55/70.71 75.05/72.5 77.66/76.65 78.34/78.26 79.09/78.96 79.46/79.55 78.74/79.06 78.48/79.22
hepatitis 52.33/52.33 72.14/65.93 76.8/73.01 79.48/76.95 80.7/79.44 81.81/79.22 81.65/81.27 83.19/82.63 82.99/83.24 82.62/82.71
colic 58.37/52.85 66.58/67.18 75.85/72.85 79.54/77.17 81.33/79.36 82.47/79.24 83.02/79.51 83.1/80.22 84.02/80.59 84.69/81.93
iris 33.33/33.33 50.27/33.33 80.67/66.2 91.53/84.53 93.2/90.73 94.2/93 94.73/93.33 94.4/93.53 94.53/94.2 94.67/94.2
labor 54.27/54.27 54.27/54.27 67.63/58.93 70.23/65.1 79.77/73.2 83/76.9 84.17/79.57 83.43/80.1 89.73/84.07 89.73/86.37
lymph 48.39/48.39 53.62/46.64 65.06/60.54 71.2/69.57 76.74/74.16 78.84/78.62 78.17/80.35 78.99/79.88 79.14/80.96 79.08/81.75
segment 67.03/60.22 81.16/77.38 89.61/88.5 92.83/92.71 94.88/95.01 95.94/96.03 96.47/96.9 96.93/97.23 97.58/98 98.03/98.34
soybean 19.51/14.26 32.4/23.36 55.36/49.37 73.06/69.49 85.14/85.01 88.27/88.37 90.22/90.04 91.4/90.89 92.75/92.57 93.89/92.88
splice 62.77/65.11 67.8/73.9 77.37/82.22 82.55/86.13 88.24/88.27 90.47/89.82 91.84/90.8 92.41/90.78 93.44/92.63 93.92/93.59
Win/Draw/Loss 14/0/1 11/0/4 13/0/2 12/0/3 10/0/5 10/0/5 10/0/5 9/0/6 6/0/9 6/0/9
Sig. W/D/L 7/7/1 8/6/1 11/2/2 10/3/2 7/6/2 4/9/2 5/5/5 5/6/4 3/6/6 3/6/6
GM error ratio 0.8812 0.8937 0.8829 0.9104 0.9407 0.9598 0.9908 0.9957 1.0377 1.0964
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indicate that the accuracy of DECORATE is higher than the learner to which it is being

compared. We present these plots comparing DECORATEwith the other learners given 1%

and 20% of the available training data.

The results in Table 4.2 confirm our hypothesis that combining the predictions

of DECORATE ensembles will, on average, improve the accuracy of the base classifier.

DECORATE almost always does better than J48, producing considerable reduction inerror

throughout the learning curve.

DECORATE has moresignificantwins to losses over Bagging for all points along

the learning curve (see Table 4.3). DECORATEalso outperforms Bagging on the geometric

mean error ratio. This suggests that even in cases where Bagging beats DECORATE the

improvement is less than DECORATE’s improvement on Bagging on the rest of the cases.

Similar results are observed in the comparison of DECORATEwith Random Forests

(see Table 4.4). DECORATE exhibits superior performance through out the learning curve

on both wins/loss records as well as error ratios. The poor performance of Random Forests

maybe because we are using only 15 trees. Random Forests may benefit from using larger

ensembles; more so than other methods. However, to do a fair comparison weuse the same

ensemble size for all methods. Section 4.5 presents experiments on larger ensembles, which

support our claims here.

DECORATE outperforms ADABOOST early on the learning curve both on signifi-

cant wins/draw/loss record and geometric mean ratio; however, the trend isreversed when

given 75% or more of the data. Note that even with large amounts of training data, DEC-

ORATE’s performance is quite competitive with ADABOOST- given 100% of the training

data, DECORATEproduces higher accuracies on 6 out of 15 data sets. It has been observed

in previous studies (Webb, 2000; Bauer & Kohavi, 1999) that while ADABOOST usually

significantly reduces the error of the base learner, it occasionally increases it, often to a

large extent. DECORATEdoes not have this problem as is clear from Table 4.2.

On many data sets, DECORATE achieves the same or higher accuracy as Bagging,
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Figure 4.1: Comparing DECORATEwith other learners on 15 datasets given 1% of the data.
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Figure 4.2: Comparing DECORATEwith other learners on 15 datasets given 1% of the data.
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Figure 4.3: Comparing DECORATE with other learners on 15 datasets given 20% of the
data.
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Figure 4.4: Comparing DECORATE with other learners on 15 datasets given 20% of the
data.
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ADABOOSTor Random Forests with far fewer training examples. Figures 4.5 and 4.6 show

learning curves that clearly demonstrate this point. Hence, in domains wherelittle data is

available or acquiring labels is expensive, DECORATEhas a significant advantage over other

ensemble methods.

4.3 DECORATEwith Large Training Sets

The learning curve evaluation clearly shows DECORATE’s advantage when training sets

are small. The results also indicate that DECORATE begins to lose out to ADABOOST

with larger training sets. However, we claim that the performance of both systems on

large training sets is comparable. To support this we ran additional experiments comparing

DECORATE with ADABOOST on a larger collection of 33 UCI datasets. We ran 10 fold

cross-validation using all the available training examples for each of the datasets. The re-

sults of this study are summarized in Table 4.6. We observe that on 25 of the 33datasets

there was no statistically significant difference between the two systems. AndDECORATE

significantly outperforms ADABOOSTon four of the eight remaining datasets. We conjec-

ture that when the training set is large enough the classifiers produced maybe reaching the

Bayes-optimal performance, which makes improvements impossible. Such a ceiling effect

has been observed in other empirical comparisons of ensemble methods (Bauer & Kohavi,

1999). However, by looking at performance on varying training set sizes we can get a better

understanding of the relative effectiveness of two learners. Therefore we strongly believe

that generating learning curves is crucial for making a good comparison between systems.

4.4 Diversity versus Error Reduction

Our approach is based on the claim that ensemble diversity is critical to error reduction.

We attempt to validate this claim by measuring the correlation between diversity and error

reduction. We ran DECORATEat 10 different settings ofRsize ranging from 0.1 to 1.0, thus
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Figure 4.5: DECORATEcompared to ADABOOST, Bagging and Random Forests
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Dataset ADABOOST DECORATE

audio 84.45 83.6
anneal 99.55 98.66
colic 83.13 85.58
balance-scale 78.56 80.98
credit-g 72.40 73.6
pima-diabetes 72.52 75.52
glass 76.58 72.34
heart-c 81.15 77.51
heart-h 78.56 79.98
credit-a 85.94 87.39
autos 86.33 85.79
kr-vs-kp 99.56 99.41
labor 88.33 83.00
lymph 82.43 78.29
mushroom 100.00 100.00
sonar 80.29 82.21
soybean 92.82 94.58
splice 93.17 93.89
vehicle 76.48 75.42
vote 95.17 95.18
vowel 93.94 96.87
breast-y 67.88 68.21
breast-w 96.42 96.85
heart-statlog 81.11 81.85
hepatitis 85.17 81.17
hypothyroid 99.66 98.6
ionosphere 93.75 92.6
iris 92.67 93.33
primary-tumor 40.09 44.53
segment 98.57 97.97
sick 99.23 98.49
waveform 81.58 80.92
zoo 96.18 94.18

Table 4.6: DECORATEversus ADABOOSTwith large training sets
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Table 4.7: Comparing ensemble diversity: Win-loss records.
Number of Training Examples
10 15 20 25 30

Decorate vs Bagging 14-1 14-1 14-1 13-2 13-2
Decorate vs AdaBoost 15-0 14-1 14-1 14-1 14-1

varying the diversity of ensembles produced. We then compared the diversity of ensembles

with the reduction in generalization error, by computing Spearman’s rank correlation be-

tween the two. Diversity of an ensemble is computed as the mean diversity of theensemble

members (as given by Eq. 3.2). We compared ensemble diversity with theensemble error

reduction, i.e. the difference between the average error of the ensemble members and the

error of the entire ensemble (as in (Cunningham & Carney, 2000)). We found that the cor-

relation coefficient between diversity and ensemble error reduction is 0.6602 (p ≪ 10−50),

which is fairly strong.1 Furthermore, we compared diversity with thebase error reduction,

i.e. the difference between the error of the base classifier and the ensemble error. The base

error reduction gives a better indication of the improvement in performanceof an ensem-

ble over the base classifier. The correlation of diversity versus the base error reduction is

0.1607 (p ≪ 10−50). We note that even though this correlation is weak, it is still asta-

tistically significantpositive correlation. These results reinforce our belief that increasing

ensemble diversity is a good approach to reducing generalization error.

By exploiting artificial examples, the DECORATEalgorithm forces the construction

of adiverseset of hypotheses that are consistent with the training data. We believe thatthis

ensemble diversity is the key to the success of DECORATE when training data is limited.

We ran additional experiments to verify that DECORATEdoes indeed produce more diverse

committees than Bagging or ADABOOST.

The diversity of each ensemble method was evaluated using 10-fold cross-validation

on 15 UCI datasets. To test performance on varying amounts of data, each system was

1The p-value is the probability of getting a correlation as large as the observed value by random chance,
when the true correlation is zero (Spatz & Johnston, 1984).
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evaluated on the testing data, after training on increasing subsets of the training data. We

focused on points early on the learning curve, where DECORATE is most effective. The

results (Table 4.7) are summarized in terms of significant win/loss records; where a win

or loss is only counted if the difference indiversity (not accuracy) is determined to be

significant at the 0.05 level by a pairedt-test. These results confirm that in most cases

DECORATE does indeed produce significantly more diverse ensembles than Bagging or

ADABOOST.

4.5 Influence of Ensemble Size

To determine how the performance of DECORATE changes with ensemble size, we ran

experiments with increasing sizes. We compared results for training on 20% of the available

data since the advantage of DECORATE is most noticeable low on the learning curve. The

results were produced using 10-fold cross-validation. We present graphs ofaccuracyversus

ensemble sizefor five representative datasets (see Figure 4.7). The performance on other

datasets is similar. We note, in general, that the accuracy of DECORATE increases with

ensemble size; though on most datasets, the performance levels out with an ensemble size

of 10 to 25.

In our main results in Section 4.2 we used committees of size 15 for all methods.

However, different ensemble methods may be affected to varying extents by committee

size. To verify that the other ensemble methods are not being disadvantaged by smaller

ensembles, we ran additional experiments with ensemble size set to 100. Learning curves

were generated as in Section 4.1 on the four datasets presented in Figures4.5 and 4.6. For

these experiments, we set the maximum number of iterations in DECORATE to 300. The

results of testing with larger ensembles is presented in Figures 4.8 and 4.9. Apart from

slight improvements in accuracies for all methods, the trends of the results are the same as

with ensembles of size 15.
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Figure 4.7: DECORATEat different ensemble sizes

4.6 Generation of Artificial Data

The DECORATEalgorithm uses a fairly simple approach to generating artificial training ex-

amples. It generates feature values based on the training data distribution,assuming feature

independence and making simple assumptions about the underlying models generating the

data (Section 3.2.1). It is possible to model the data more accurately, but it is unclear if

that is particularly beneficial. To verify this, we ran experiments using unlabeledreal data

in place of artificial data. Using unlabeled data corresponds to perfectly modeling the data,

since they come from the same distribution as the training data. As a control experiment,

we also tried relaxing our assumptions about the data, by assuming that all feature values

come from uniform distributions. We describe these alternatives in more detail below.
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4.6.1 Using Unlabeled Data

In some domains, such as web page classification, we often have access toa large amount

of unlabeled examples. In such domains, it is possible to exploit unlabeled data in place

of artificial examples in the DECORATEalgorithm. Unlike artificially-generated examples,

there is not an infinite supply of unlabeled examples; so we need to slightly modify the

DECORATEalgorithm (see Algorithm 3). In the modified algorithm, we begin with a pool

of unlabeled examples, and at each iteration, we sample a set of examples from this pool.

This set of unlabeled examples is then used in the same way that artificial examples are

used in DECORATE algorithm. We refer to this variation of the algorithm as DECORATE

(Unlabeled). We compared this variation to the original DECORATE. In DECORATE we

can generate an arbitrary amount of artificial examples, but in DECORATE (Unlabeled) we

have a fixed amount of unlabeled examples to sample from. So to make a fair comparison,

we implemented another version of DECORATE, which we call DECORATE (Sampled Ar-

tificial). In this approach, we initialize a fixed pool of artificial examples, and, similarly to

DECORATE(Unlabeled), we sample from this pool at each iteration.

We ran experiments comparing the three versions of DECORATEand the base learner,

J48. The performance of each algorithm was averaged over 10 runs of 10-fold cross-

validation. In each fold of cross-validation, we generated learning curves in the follow-

ing way. Initially, all examples are treated as unlabeled examples. For each point on the

curve, a subset of the examples are randomly sampled and their true class labels are given

to the learner. The remaining examples serve as the pool of unlabeled examples for DEC-

ORATE (Unlabeled). The performance of each learner is evaluated on increasing amounts

of labeled training examples to produce points on the learning curve. Since there is a fixed

set of available examples for each dataset, as the number of labeled examples increases, the

size of the unlabeled set decreases. Hence, we only run these curvestill 50% of the dataset

is used as labeled examples, so that the rest may be used as the unlabeled pool.

The results of these experiments are summarized in Tables 4.8-4.10. The results
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Algorithm 3 The DECORATE (Unlabeled) algorithm

Input:
BaseLearn - base learning algorithm
T - set ofm training examples< (x1, y1), ..., (xm, ym) > with labelsyj ∈ Y
U - set of unlabeled examples
Csize - desired ensemble size
Imax - maximum number of iterations to build an ensemble
Rsize - factor that determines number of additional examples to use

1. i = 1

2. trials = 1

3. Ci = BaseLearn(T )

4. Initialize ensemble,C∗ = {Ci}

5. Compute ensemble error,ǫ =

P

xj∈T,C∗(xj) 6=yj
1

m

6. While i < Csize andtrials < Imax

7. SampleRsize × |T | examples with repetition fromU , to give setR

8. Label examples inR with probability of class labels
inversely proportional to predictions ofC∗

9. T = T
⋃

R

10. C ′ = BaseLearn(T )

11. C∗ = C∗
⋃

{C ′}

12. T = T − R, remove the additional data

13. Compute training error,ǫ′, of C∗ as in step 5

14. If ǫ′ ≤ ǫ

15. i = i + 1

16. ǫ = ǫ′

17. otherwise,

18. C∗ = C∗ − {C ′}

19. trials = trials + 1

43



show that unlabeled data can be used effectively in place of artificial datato produce ensem-

bles that are more accurate than the base classifier. However, using artificially-generated

data, both in DECORATEand DECORATE(Sampled Artificial), perform comparably or bet-

ter than using unlabeled data. Unlabeled data has a slight disadvantage over artificial data,

because if the current ensemble has high accuracy, then its predictions for the unlabeled

data are likely to be correct. Flipping these labels may then make it difficult to finda hy-

pothesis that is consistent with the training data and these new data. This doesnot happen as

often in the case of artificial data, which are unlikely to contain mislabeledreal examples.

Nevertheless, when a large pool of unlabeled data is available, it can still be exploited in

the DECORATEframework to improve over the base classifier. Using unlabeled data has the

advantage that it is computationally less expensive than using artificial examples, since we

avoid the step of generating artificial examples. The results also indicate thatDECORATE

and DECORATE (Sampled Artificial) exhibit similar performance on most datasets. The

trends discussed above can be clearly seen in Figures 4.10-4.11.

4.6.2 Using Uniform Distributions

An alternate approach to generating artificial examples is to assume the feature values are

sampled from uniform distributions. In this case, for a nominal feature we pick a value from

the set of distinct values in its domain, selected uniformly at random. For a numeric feature,

we select a random real number in the range defined by the minimum and maximumvalues

observed in the training data. We refer to this version of DECORATE as DECORATE (Uni-

form).

Experiments were run as in Section 4.1, comparing DECORATE(Uniform), DECO-

RATE and J48. The results are summarized in Tables 4.11-4.12. Generating artificial data

assuming uniform distributions still produces significant improvements over the base clas-

sifer. For some datasets, the performance of DECORATE (Uniform) is similar to that of

DECORATE, but on most others DECORATEperforms better (see Figures 4.12 and 4.13).
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Table 4.8: DECORATE(Unlabeled) vs. J48
5% 10% 15% 20% 30% 40% 50%

Win/Draw/Loss 9/0/6 7/0/8 9/0/6 11/0/4 11/0/4 12/0/3 12/0/3
Sig. W/D/L 6/6/3 4/9/2 5/8/2 5/8/2 6/8/1 5/9/1 8/6/1
GM error ratio 0.9337 0.9726 0.9675 0.9664 0.9426 0.9187 0.9234

Table 4.9: DECORATE(Unlabeled) vs. DECORATE(Sampled Artificial)
5% 10% 15% 20% 30% 40% 50%

Win/Draw/Loss 2/0/13 2/0/13 2/0/13 1/0/14 2/0/13 2/0/13 2/0/13
Sig. W/D/L 0/8/7 0/6/9 0/5/10 0/6/9 0/8/7 0/8/7 0/10/5
GM error ratio 1.151 1.1733 1.2003 1.1857 1.170 1.1357 1.1095

Table 4.10: DECORATE(Unlabeled) vs. DECORATE

5% 10% 15% 20% 30% 40% 50%
Win/Draw/Loss 2/0/13 3/0/12 1/0/14 0/0/15 1/0/14 1/0/14 3/0/12
Sig. W/D/L 0/6/9 0/6/9 0/5/10 0/6/9 0/6/9 0/8/7 0/9/6
GM error ratio 1.0066 1.024 1.0054 1.0061 0.9997 1.0215 1.0167
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Figure 4.10: Comparing the use of unlabeled examples versus artificial examples in DEC-
ORATE.
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The results show that, when generating artificial data, it is beneficial not tomake

very relaxed assumptions about the data, as in the case of uniform distributions; but it is

also less effective to perfectly model the data, as in the case of unlabeled examples. Using

an intermediate level of data modeling, as done in DECORATE, seems to work the best.

4.7 Importance of the Rejection Criterion

In building ensembles of classifiers, there is usually a tradeoff between diversity and average

error of ensemble members. As such, in DECORATE, we try to foster diversity, while still

maintaining the overall ensemble’s accuracy. We do this by rejecting a new classifier if

adding it to the existing ensemble decreases its training accuracy. To test theimportance of

this rejection criterion, we conducted an ablation study, in which we created aversion of

DECORATEwithout the rejection criterion, i.e., we excised steps 13-18 from Algorithm 2.

We refer to this version of the algorithm as DECORATE (No Rejection). Experiments were

run as in Section 4.1, and our results are summarized in Tables 4.13-4.16. Wesee that for

most datasets removing the rejection criterion does not significantly hurt the performance

of DECORATE (see, e.g., Figure 4.14(a)). However, onsplice (Figure 4.14(b)), we see

that DECORATE(No Rejection) performs very poorly compared to DECORATE. Therefore,

having the rejection criterion is a good safety mechanism to guard against theunlikely event

that DECORATE introduces too much diversity at the cost of generalization accuracy.

4.8 Experiments on Neural Networks

Since DECORATE is a meta-learning algorithm, it can be applied to any base learner to

produce an ensemble of classifiers. In most experiments on DECORATE we have used

decision tree induction as the base learner. To verify that our results generalize to other

base learners, we ran additional experiments using neural networks. Specifically, we used

the Weka implementation of neural networks, which uses backpropagation learning (Witten
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Table 4.11: DECORATE(Uniform) vs. J48
1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

Win/Draw/Loss 14/0/1 14/0/1 13/0/2 14/0/1 15/0/0 14/0/1 14/0/1 13/0/2 14/0/1 12/0/3
Sig. W/D/L 9/5/1 12/3/0 10/5/0 11/4/0 11/4/0 12/3/0 11/4/0 11/4/0 11/4/0 9/5/1
GM error ratio 0.868 0.8623 0.8373 0.8423 0.8447 0.8583 0.845 0.8781 0.857 0.8889

Table 4.12: DECORATE(Uniform) vs. DECORATE

1% 2% 5% 10% 20% 30% 40% 50% 75% 100%
Win/Draw/Loss 8/0/7 6/0/9 6/0/9 6/0/9 7/0/8 3/0/12 4/0/11 5/0/10 5/0/10 3/0/12
Sig. W/D/L 0/12/3 3/9/3 0/13/2 2/9/4 1/9/5 0/10/5 0/9/6 1/7/7 3/7/5 0/6/9
GM error ratio 1.0131 1.0222 1.039 1.0405 1.0427 1.065 1.067 1.0727 1.0377 1.0975
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Table 4.13: DECORATE(No Rejection) vs. DECORATE

1% 2% 5% 10% 20% 30% 40% 50% 75% 100%
Sig. W/D/L 0/15/0 0/15/0 2/11/2 0/12/3 0/11/4 0/11/4 1/11/3 2/12/1 0/14/1 1/11/3
Win/Draw/Loss 11/0/4 7/0/8 10/0/5 5/0/10 5/0/10 4/0/11 7/0/8 7/0/8 5/0/10 7/0/8
GM error ratio 1.0005 1.0014 1.0151 1.0278 1.0251 1.0263 1.0224 1.0182 1.0189 1.014

Table 4.14: DECORATE(No Rejection) vs. J48
1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

Sig. W/D/L 9/5/1 10/3/2 11/3/1 11/2/2 12/2/1 13/1/1 13/1/1 11/2/2 11/2/2 10/4/1
Win/Draw/Loss 14/0/1 13/0/2 14/0/1 13/0/2 13/0/2 13/0/2 13/0/2 13/0/2 12/0/3 12/0/3
GM error ratio 0.9036 0.8801 0.9284 0.9679 0.9751 0.9806 0.9788 0.9818 0.9869 0.9825
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Table 4.15: DECORATE(No Rejection) vs. Bagging
1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

Sig. W/D/L 10/5/0 11/2/2 11/3/1 9/4/2 9/5/1 7/7/1 6/8/1 6/7/2 4/8/3 7/5/3
Win/Draw/Loss 15/0/0 13/0/2 12/0/3 11/0/4 11/0/4 12/0/3 12/0/3 11/0/4 8/0/7 10/0/5
GM error ratio 0.8834 0.8841 0.9462 0.9929 1.005 1.0093 1.0061 1.0075 1.0095 1.0062

Table 4.16: DECORATE(No Rejection) vs. AdaBoost
1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

Sig. W/D/L 8/7/0 8/6/1 12/1/2 7/6/2 7/5/3 7/6/2 5/4/6 3/6/6 4/3/8 4/4/7
Win/Draw/Loss 13/0/2 13/0/2 13/0/2 13/0/2 9/0/6 8/0/7 9/0/6 9/0/6 6/0/9 7/0/8
GM error ratio 0.9194 0.8949 0.9576 0.9967 1.009 1.0148 1.0166 1.015 1.0212 1.0153
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Figure 4.12: Comparing different approaches to generating artificial examples for DECO-
RATE.
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54



& Frank, 1999). For the network parameters, we set the learning rate to 0.15 and the

momentum term to 0.9, as done in a similar study on ensemble methods (Opitz & Maclin,

1999). The number of hidden layers was set to half the sum of the number of attributes and

classes for each dataset. We trained the networks for 80 epochs, whichwas the maximum

used by Opitz and Maclin (1999). Experiments were run as in Section 4.1. However, since

the training time for neural networks is much longer than for decision trees, we only ran five

runs of 10-fold cross-validation on two datasets. We selected datasets onwhich DECORATE

applied to decision trees performed well, so that we could verify that these results were not

an artifact of the base learner.

The resulting learning curves are presented in Figure 4.15. The results demonstrate

that DECORATEsignificantly improves on the performance of neural networks, and is also

better than Bagging and ADABOOST. The significant advantage of DECORATE early in

learning is clearly visible on thebreast-wdataset. On both datasets, ADABOOST does not

produce a noticeable improvement over the base learner.

4.9 Experiments on Naive Bayes

The Naive Bayes algorithm (Duda & Hart, 1973) is astablelearner, i.e., small changes in

the training set do not lead to significant changes in the classifier produced. However, most

ensemble methods are best suited to useunstablebase learners, as they facilitate the creation

of a diverse set of classifiers. To test the effectiveness of ensemblemethods on stable

learners, we ran experiments comparing Bagging, ADABOOSTand DECORATEapplied to

Naive Bayes. We observed that none of the ensemble methods consistentlyproduce notable

improvements over the base classifier. One can expect to see similar results with other

stable learners, such as nearest neighbor classifiers. Our observations are supported by a

recent study by Davidson (2004), which shows that Bagging, boostingand DECORATEare

not very effective when applied to stable learners.
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Chapter 5

Imperfections in Data

In addition to their many other advantages, classifier ensembles hold the promise of de-

veloping learning methods that are robust in the presence of imperfectionsin the data in

terms of missing features and noise in both the class labels and the features. Noisy training

data tends to increase the variance in the results produced by a given classifier; however,

by learning a committee of hypotheses and combining their decisions, this variance can be

reduced. In particular, variance-reducing methods such asBagging(Breiman, 1996) have

been shown to be robust in the presence of fairly high levels of noise, and can evenbenefit

from low levels of noise (Dietterich, 2000).

Bagging is a fairly simple ensemble method which is generally outperformed by

more sophisticated techniques such as ADABOOST (Freund & Schapire, 1996; Quinlan,

1996a). However, ADABOOST has a tendency to overfit when there is significant noise

in the training data, preventing it from learning an effective ensemble (Dietterich, 2000).

Therefore, there is a need for a general ensemble meta-learner that is at least as accurate as

ADABOOST when there is little or no noise, but is more robust to higher levels of random

error in the training data.

This chapter presents experiments from (Melville et al., 2004), in which we explore

the resilience of DECORATE to the various forms of imperfections in data. In our experi-
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ments, the training data is corrupted with missing features, and random errors in the values

of both the category and the features. Results on a variety of UCI data demonstrate that, in

general, DECORATE continues to improve on the accuracy of the base learner, despite the

presence of each of the three forms of imperfections. Furthermore, DECORATE is clearly

more robust to missing features than the other ensemble methods.

5.1 Experimental Evaluation

5.1.1 Methodology

Three sets of experiments were conducted in order to compare the performance of ADA-

BOOST, Bagging, DECORATE, and the base classifier J48, under varying amounts of three

types of imperfections in the data: Each set of experiments differed from the other two only

in the type of noise that was introduced:

1. Missing features: To introduceN% missing features to a data set ofD instances,

each of which hasF features (excluding the class label), we select randomly with

replacementN ·D·F
100 instances and for each of them delete the value of a randomly

chosen feature. Missing features were introduced to both the training andtesting

sets.

2. Classification noise: To introduceN% classification noise to a data set ofD in-

stances, we randomly selectN ·D
100 instances with replacement and change their class

labels to one of theothervalues chosen randomly with equal probability. Classifica-

tion noise was introduced only to the training set and not to the test set.

3. Feature noise: To introduceN% feature noise to a data set ofD instances, each

of which hasF features (excluding the class label), we randomly select with re-

placementN ·D·F
100 instances and for each of them we change the value of a randomly

selected feature. For nominal features, the new value is chosen randomlywith equal
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probability from the set ofall possible values. For numeric features, the new value

is generated from a Normal distribution defined by the mean and the standarddevi-

ation of the given feature, which are estimated from the data set. Feature noise was

introduced to both the training and testing sets.

In each set of experiments, ADABOOST, Bagging, DECORATE, and J48 were compared on

11 UCI data sets using the Weka implementations of these methods (Witten & Frank,1999).

Table 5.1 presents some statistics about the data sets. The target ensemble size of the first

three methods was set to 15. In the case of DECORATE, this size is only an upper bound

on the size of the ensemble, and the algorithm may terminate with a smaller ensemble if

the number of iterations exceeds the maximum limit. As in Chapter 4, this maximum limit

was set to 50 iterations, and the number of artificially generated examples wasequal to the

training set size.

To ascertain that no ensemble method was being disadvantaged by the small ensem-

ble size, we ran additional experiments on some datasets with the ensemble size set to 100.

The trends of the results are similar to those with ensembles of size 15. So, in thischapter,

we only present the results on ensembles of size 15.

For each set of experiments, the performance of each of the learners was evaluated

at increasing noise levels from0% to 40% at5% intervals using 10 complete 10-fold cross

validations. As in Chapter 4, to compare two learning algorithms, we employ the statistics

used by (Webb, 2000), namely, the significant win/draw/loss record andthe geometric mean

error ratio.

5.1.2 Results

This section presents the results of running the four algorithms on each of the 11 datasets

summarized in Table 5.1.
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Table 5.1: Summary of Data Sets
Name Cases Classes Attributes

Numeric Nominal
autos 205 6 15 10
balance-scale 625 3 4 –
breast-w 699 2 9 –
colic 368 2 10 12
credit-a 690 2 6 9
glass 214 6 9 –
heart-c 303 2 8 5
hepatitis 155 2 6 13
iris 150 3 4 –
labor 57 2 8 8
lymph 148 4 – 18

Missing Features

The results of running the algorithms when missing features are introduced,are presented in

Tables 5.2–5.4. Each table compares the accuracy of DECORATEversus another algorithm

for increasing percentages of missing features. The last two lines of each table present the

win/draw/loss record and the GM error ratio respectively.

These results demonstrate that DECORATE is fairly robust to missing features, con-

sistently beating the base learner, J48, at all noise levels (Table 5.2). In fact, when the

amount of missing features is20% or higher, DECORATEproduces statistically significant

wins over J48 on all datasets. The amount of error reduction producedby using DECORATE

is also considerable, as is shown by the mean error ratios.

For this kind of imperfection in the data, in general, all of the ensemble meth-

ods produce some increase in accuracy over the base learner. However, the improvements

brought about by using DECORATE are higher than those obtained by both Bagging and

ADABOOST. The amount of error reduction achieved by DECORATE also increases with

greater amounts of missing features; as is clearly demonstrated by the GM error ratios.

Figure 5.1(a) shows the results on a dataset that clearly demonstrates DECORATE’s

superior performance at all levels of missing features. In Figure 5.1(b), we see a dataset on
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Table 5.2: Missing Features: DECORATEvs J48
Noise Level % 0 5 10 15 20 25 30 35 40

autos 83.05/81.72 79.11/74.19 75.86/69.7 71.76/65.21 69.99/62.82 64.92/59.38 62.56/54.96 62.16/50.95 58.6/47.5
balance-scale 81.39/77.85 80.57/77.11 79.66/76.4 79.07/75.29 77.05/75.07 76.03/72.86 74.97/71.53 73.48/70.47 72.44/69.96

breast-w 96.47/95.01 96.12/94.69 96.1/94.69 95.81/94.25 95.87/94.13 95.39/93.89 95.18/93.66 94.72/93.19 94.32/92.91
colic 84.91/85.16 83.72/83.93 82.71/82.63 82.9/81.89 81.95/80.56 81.25/79.23 81.49/78.56 80.75/77.26 80.2/76.39

credit-a 86.16/85.57 85.83/84.33 85.16/83.49 84.72/82.59 84.42/82.19 82.97/80.77 82.28/80.25 81.87/79.61 81.26/79.07
glass 71.57/67.77 72.9/68.36 72.47/68.73 70.51/65.29 68.69/66.15 66.09/63.95 67.19/61.46 63.1/59.46 61.34/57.4

heart-c 78.42/77.17 78.52/76.76 79.37/77.48 78.76/77.7 78.84/76.92 78.15/76.7 78.97/76.54 77.02/75.25 77.71/74.79
hepatitis 83.58/79.22 82.41/80.09 84.46/80.28 82.78/79.83 82.89/80.61 83.19/80.96 83.05/81.02 82.93/80.72 83.56/80.84

iris 94.93/94.73 94.93/92.73 94.6/91.67 94.6/91 93.13/90.6 94.07/90.67 92.4/89.6 92.13/88.8 91.2/87.33
labor 91/78.8 91.07/77.17 90.23/77.4 89.33/75.23 89.4/73.07 86.97/71.13 87.07/72.13 85.03/71.53 84.57/70.53
lymph 79.08/76.06 78.87/74.58 77.48/74.99 77.41/74.78 78.55/74.53 75.74/72.49 77.86/74.5 75.84/72.42 75.05/70.33

Sig. W/D/L 8/3/0 10/1/0 10/1/0 10/1/0 11/0/0 11/0/0 11/0/0 11/0/0 11/0/0
GM Error Ratio 0.8286 0.7882 0.7877 0.7815 0.7921 0.8039 0.8004 0.8095 0.8047
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Table 5.3: Missing Features: DECORATEvs Bagging
Noise Level % 0 5 10 15 20 25 30 35 40

autos 83.05/83.12 79.11/78.87 75.86/75.02 71.76/71.35 69.99/69.01 64.92/63.22 62.56/61.05 62.16/59.77 58.6/54.52
balance-scale 81.39/81.93 80.57/81.3 79.66/80.25 79.07/79.16 77.05/77.8 76.03/75.74 74.97/74.48 73.48/73.43 72.44/71.84

berast-w 96.47/96.3 96.12/96.2 96.1/96.04 95.81/95.82 95.87/95.55 95.39/95.65 95.18/95.31 94.72/95.05 94.32/94.71
colic 84.91/85.34 83.72/83.99 82.71/82.63 82.9/81.7 81.95/80.67 81.25/79.61 81.49/78.2 80.75/77.26 80.2/76.58

credit-a 86.16/85.96 85.83/85.72 85.16/84.96 84.72/84.45 84.42/83.71 82.97/82.45 82.28/81.67 81.87/80.94 81.26/80.16
glass 71.57/74.67 72.9/72.47 72.47/70.53 70.51/70.55 68.69/69.85 66.09/66.7 67.19/66.66 63.1/63.62 61.34/62.48

heart-c 78.42/78.68 78.52/79.55 79.37/80.53 78.76/79.81 78.84/79.83 78.15/79.04 78.97/79.38 77.02/78.24 77.71/77.99
hepatitis 83.58/81.34 82.41/81.31 84.46/82.18 82.78/81.59 82.89/81.7 83.19/81.9 83.05/81.44 82.93/80.79 83.56/79.93

iris 94.93/94.73 94.93/94.13 94.6/93.67 94.6/93.53 93.13/92 94.07/92.33 92.4/91.4 92.13/91.53 91.2/89.6
labor 91/85.87 91.07/83.13 90.23/82.27 89.33/79.77 89.4/78.67 86.97/74.8 87.07/76.17 85.03/72.67 84.57/71.2
lymph 79.08/77.97 78.87/77.85 77.48/78 77.41/77.03 78.55/76.54 75.74/75.42 77.86/77.77 75.84/74.94 75.05/72.8

Sig. W/D/L 2/7/2 2/8/1 4/7/0 3/7/1 5/5/1 4/7/0 4/7/0 5/5/1 8/3/0
GM Error Ratio 0.952 0.9298 0.9201 0.9177 0.9041 0.9083 0.9085 0.915 0.8882
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Table 5.4: Missing Features: DECORATEvs ADABOOST
Noise Level % 0 5 10 15 20 25 30 35 40

autos 83.05/85.28 79.11/82.44 75.86/78.42 71.76/73.79 69.99/71.33 64.92/63.93 62.56/59.01 62.16/52.79 58.6/48.19
balance-scale 81.39/77.76 80.57/77.06 79.66/76.91 79.07/77.34 77.05/76.73 76.03/74.75 74.97/73.32 73.48/71.8 72.44/70.54

breast-w 96.47/96.47 96.12/96.25 96.1/96.18 95.81/95.71 95.87/95.84 95.39/95.47 95.18/95.19 94.72/95.04 94.32/94.81
colic 84.91/81.93 83.72/81.22 82.71/79.63 82.9/78.48 81.95/79.08 81.25/77.85 81.49/77.99 80.75/77.59 80.2/77.45

credit-a 86.16/85.42 85.83/83.77 85.16/82.99 84.72/81.74 84.42/80.84 82.97/80.1 82.28/79.93 81.87/79.74 81.26/79.55
glass 71.57/76.06 72.9/73.93 72.47/72.52 70.51/70.2 68.69/69.34 66.09/67.21 67.19/64.22 63.1/63.98 61.34/60.75

heart-c 78.42/79.22 78.52/79.94 79.37/78.36 78.76/78.22 78.84/78.2 78.15/77.06 78.97/76.64 77.02/76.67 77.71/75.61
hepatitis 83.58/82.71 82.41/82.61 84.46/82.65 82.78/82.57 82.89/81.44 83.19/81.47 83.05/81.63 82.93/81.27 83.56/80.79

iris 94.93/94.2 94.93/93.33 94.6/92.73 94.6/91.8 93.13/90.47 94.07/90.67 92.4/89.67 92.13/89.13 91.2/88
labor 91/86.37 91.07/86.93 90.23/87.53 89.33/86.63 89.4/85.63 86.97/83.07 87.07/82.83 85.03/79.63 84.57/78.23
lymph 79.08/81.75 78.87/80.32 77.48/78.99 77.41/77.39 78.55/79.11 75.74/76.52 77.86/76.48 75.84/75.85 75.05/75.61

Sig. W/D/L 4/4/3 5/4/2 6/4/1 4/6/1 4/7/0 6/5/0 8/3/0 6/5/0 8/3/0
GM Error Ratio 0.9534 0.9382 0.9197 0.9024 0.9109 0.8982 0.8827 0.8968 0.8876
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which ADABOOST has the best performance when there are no missing features; but with

increasing amounts of missing features, both Bagging and DECORATEoutperform it.

Classification Noise

The comparison of each ensemble method with the base learner, in the presence of classi-

fication noise are summarized in Tables 5.5-5.7. The tables provide summary statistics, as

described above, for each of the noise levels considered.

The win/draw/loss records indicate that, both Bagging and DECORATEconsistently

outperform the base learner on most of the datasets at almost all noise levels; demonstrating

that both are quite robust to classification noise. In the range of 10-35% of classification

noise, Bagging performs a little better than DECORATE, as is seen from the error ratios.

This is because, occasionally, the addition of noise helps Bagging, as wasalso observed in

(Dietterich, 2000).

Unlike, Bagging and DECORATE, ADABOOST is very sensitive to noise in classi-

fications. Though ADABOOSTsignificantly outperforms J48 on 7 of the 11 datasets in the

absence of noise, its performance degrades rapidly at noise levels as low as10%. With

35-40% noise, ADABOOST performs significantly worse than the base learner on 7 of the

datasets. Our results on the performance of ADABOOST agree with previously published

studies (Dietterich, 2000; Bauer & Kohavi, 1999; McDonald, Eckley, & Hand, 2002). As

pointed out in these studies, ADABOOSTdegrades in performance because it tends to place

a lot of weight on the noisy examples.

Figure 5.2(a) shows a dataset on which DECORATEhas a clear advantage over other

methods, at all levels of noise. Figure 5.2(b) presents a dataset on whichBagging outper-

forms the other methods at most noise levels. This figure also clearly demonstrates how

rapidly the accuracy of ADABOOSTcan drop below that of the base learner. These results

confirm that, in domains with appreciable levels of classification noise, it is beneficial to

use DECORATEor Bagging, but detrimental to apply ADABOOST.
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Table 5.5: Class Noise: DECORATEvs J48
Noise Level % 0 5 10 15 20 25 30 35 40

autos 83.05/81.72 79.73/77.97 77.63/75.58 74.4/71.65 71.7/68.71 66.65/65.49 64.52/62.79 63/60.2 61.41/58.43
balance-scale 81.39/77.85 81.58/78.65 81.8/79.16 81.08/78.1 80.44/77.56 79.64/76.99 79.36/76.13 77.79/75.23 77.38/73.82

breast-w 96.47/95.01 95.85/94.34 95.12/94.29 95.11/93.41 93.83/93.21 93.63/92.73 93.11/91.97 91.96/90.96 91.62/90.51
colic 84.91/85.16 84.37/84.91 84.05/84.78 82.66/84.58 82.16/84.47 80.13/83.83 79.05/83.47 78.25/81.49 77.2/81.78

credit-a 86.16/85.57 85.12/85.09 84.88/85.09 83.09/84.86 81.54/83.41 80.29/82.9 77.99/82.12 74.87/79.57 73.16/78.51
glass 71.57/67.77 72.92/67.29 71.6/64.4 70.63/63.13 71.03/62.4 69.89/60.05 66.42/57 65.55/55.68 64.62/53.85

heart-c 78.42/77.17 78.94/76.6 78.38/76.47 76.74/74.97 76.46/74.76 75.58/73.37 73.3/70.08 72.08/69.04 71.45/67.09
hepatitis 83.58/79.22 81.1/78.09 80.17/78.06 79.5/76.72 78.52/75.8 76.65/76.3 74.14/73.15 73.18/73.02 72.15/71.98

iris 94.93/94.73 94.67/94.2 94/93.2 92.8/91.8 92.13/90.93 90.4/89.87 89.33/88.47 87/86.47 87.6/83.67
labor 91/78.8 90.43/80.37 86.27/76.5 85.8/77.7 83.8/74.03 84.1/71.5 82.57/73.23 79.1/69.7 77.03/66.3
lymph 79.08/76.06 78.86/75.02 78.92/73.65 78.74/75.01 78.14/72.17 77.58/71.35 76.5/71.12 73.73/68.6 72.95/67.15

Sig. W/D/L 8/3/0 7/4/0 8/3/0 8/1/2 8/1/2 6/3/2 6/3/2 7/2/2 8/1/2
GM Error Ratio 0.8286 0.8398 0.8633 0.8734 0.8809 0.896 0.9121 0.9229 0.8995
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Table 5.6: Class Noise: Bagging vs J48
Noise Level % 0 5 10 15 20 25 30 35 40

autos 83.12/81.72 81.38/77.97 79.68/75.58 76.6/71.65 74.54/68.71 69.6/65.49 67.81/62.79 64.03/60.2 63.1/58.43
balance-scale 81.93/77.85 82.09/78.65 81.69/79.16 81.58/78.1 81.04/77.56 79.9/76.99 78.82/76.13 77.68/75.23 76.67/73.82

breast-w 96.3/95.01 96.17/94.34 95.82/94.29 95.05/93.41 94.95/93.21 93.79/92.73 93.13/91.97 92.08/90.96 91.1/90.51
colic 85.34/85.16 85.18/84.91 84.75/84.78 84.45/84.58 84.39/84.47 83.42/83.83 83.31/83.47 81.38/81.49 81.84/81.78

credit-a 85.96/85.57 86.26/85.09 85.75/85.09 85.35/84.86 83.9/83.41 82.12/82.9 79.71/82.12 77.06/79.57 76.26/78.51
glass 74.67/67.77 72.71/67.29 72.62/64.4 69.45/63.13 69.57/62.4 69.93/60.05 68.98/57 65.79/55.68 62.18/53.85

heart-c 78.68/77.17 79.74/76.6 79.31/76.47 79.51/74.97 77.73/74.76 77.78/73.37 76.61/70.08 76.68/69.04 73.37/67.09
hepatitis 81.34/79.22 81.02/78.09 81.3/78.06 80.59/76.72 80.47/75.8 78.3/76.3 77.22/73.15 74.88/73.02 75.09/71.98

iris 94.73/94.73 94.13/94.2 93.8/93.2 92.73/91.8 91.87/90.93 89.87/89.87 88.13/88.47 85.47/86.47 83.67/83.67
labor 85.87/78.8 83.47/80.37 81.83/76.5 83.43/77.7 81.3/74.03 81.2/71.5 77.03/73.23 77.2/69.7 74.63/66.3
lymph 77.97/76.06 77.05/75.02 78.09/73.65 77.69/75.01 76.69/72.17 76.29/71.35 75.78/71.12 73.03/68.6 71.75/67.15

Sig. W/D/L 7/4/0 9/2/0 9/2/0 9/2/0 8/3/0 7/4/0 8/2/1 7/3/1 7/3/1
GM Error Ratio 0.8704 0.8687 0.8526 0.8508 0.8443 0.8719 0.8867 0.8972 0.8995
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Table 5.7: Class Noise: ADABOOSTvs j48
Noise Level % 0 5 10 15 20 25 30 35 40

autos 85.28/81.72 79.96/77.97 76.67/75.58 70.6/71.65 66.95/68.71 63.8/65.49 60.89/62.79 58.69/60.2 57.56/58.43
balance-scale 77.76/77.85 76.49/78.65 75.18/79.16 73.6/78.1 70.81/77.56 69.78/76.99 69.06/76.13 67.41/75.23 66.86/73.82

breast-w 96.47/95.01 94.11/94.34 92.59/94.29 91.4/93.41 90.3/93.21 90.14/92.73 88.64/91.97 88.56/90.96 88.3/90.51
colic 81.93/85.16 79.43/84.91 77.04/84.78 75.92/84.58 73.28/84.47 69.95/83.83 69.54/83.47 67.38/81.49 65.26/81.78

credit-a 85.42/85.57 82.46/85.09 81.1/85.09 77.51/84.86 74.41/83.41 73.32/82.9 70.87/82.12 68.52/79.57 67.93/78.51
glass 76.06/67.77 75.42/67.29 70.9/64.4 67.27/63.13 65.48/62.4 65.83/60.05 61.65/57 60.66/55.68 58.43/53.85

heart-c 79.22/77.17 78.82/76.6 77.7/76.47 75.58/74.97 72.41/74.76 71.49/73.37 70.59/70.08 69.03/69.04 65.51/67.09
hepatitis 82.71/79.22 79.82/78.09 77.47/78.06 75.92/76.72 74.86/75.8 73.6/76.3 72.8/73.15 69.53/73.02 69.16/71.98

iris 94.2/94.73 91.33/94.2 88.67/93.2 85/91.8 81.33/90.93 80.6/89.87 77.27/88.47 76.07/86.47 75.27/83.67
labor 86.37/78.8 85.67/80.37 79.1/76.5 80.77/77.7 75.27/74.03 76.37/71.5 73.83/73.23 72.93/69.7 68.63/66.3
lymph 81.75/76.06 79.75/75.02 77.78/73.65 76/75.01 74/72.17 69.75/71.35 68.06/71.12 64.97/68.6 63.63/67.15

Sig. W/D/L 7/3/1 6/1/4 2/4/5 1/5/5 1/4/6 2/2/7 1/4/6 1/3/7 1/3/7
GM Error Ratio 0.8691 0.993 1.0984 1.1604 1.2322 1.2242 1.2431 1.212 1.1989
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Feature Noise

The results of running the algorithms with noise in the features are presentedin Tables 5.8–

5.10. Each table compares the accuracy of each ensemble method versus J48 for increasing

amounts of feature noise.

In most cases, all ensemble methods improve on the accuracy of the base learner, at

all levels of feature noise. Bagging performs a little better than the other methods, in terms

of significant wins according to the win/draw/loss record. In general, allsystems degrade

in performance with added feature noise. The drop in accuracy of the ensemble methods

seems to mirror that of the base learner, as can be seen in Figure 5.3. The performance

of the ensemble methods seems to be tied to how well the base learner deals with feature

noise.

5.2 Related Work

Several previous studies have focused on exploring the performance of various ensemble

methods in the presence of noise. A thorough comparison of Bagging, ADABOOST, and

Randomization (a method for building a committee of decision trees, which randomlydeter-

mine the split at each internal tree node) is presented by Dietterich (2000).This study con-

cludes that while ADABOOST outperforms Bagging and Randomization in settings where

there is no noise, it performs significantly worse when classification noise isintroduced.

This behavior of ADABOOST is attributed to its tendency to overfit by assigning large

weights to noisy examples.

Other studies have reached similar conclusions about AdaBoost (Bauer& Kohavi,

1999; McDonald et al., 2002), and several variations of AdaBoost have been developed to

address this issue. For example, Kalai and Servedio (2003) present anew boosting algo-

rithm and prove that it can attain arbitrary accuracy when classification noise is present.

Another algorithm, Smooth Boosting, that is proven to tolerate a combination of classifica-
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Table 5.8: Feature Noise: DECORATEvs J48
Noise Level % 0 5 10 15 20 25 30 35 40

autos 83.05/81.72 78.22/72.9 72.86/65.45 67.62/59.69 63/55.23 60.75/52.69 56.85/49.51 50.48/45.23 49/43.21
balance-scale 81.39/77.85 80.17/77.37 78.22/75.16 76.53/73.42 74.56/71.52 72.93/69.49 72.19/68.37 69.26/66.85 68.96/65.16

breast-w 96.47/95.01 96.08/93.91 95.71/93.26 95.55/92.72 94.44/91.75 94.52/90.42 94.01/90.36 93.58/89.47 93.79/88.69
colic 84.91/85.16 82.98/83.64 81.6/81.9 79.6/79.94 77.5/77.83 76.63/76.54 76.2/75.41 74.05/73.26 71.36/71.52

credit-a 86.16/85.57 83.96/84.07 82.03/81.8 80.19/80.55 78.09/79 78.3/78.97 76.03/76.52 74.29/74.7 73.16/73.64
glass 71.57/67.77 71.86/67.03 69.15/62.46 64.89/58.72 63.41/55.53 59.69/53.7 59.4/52.92 54.86/46.95 52.64/45.04

heart-c 78.42/77.17 76.76/75.92 76.46/75.34 73.25/73.32 72.33/72.56 72.42/71.55 72.41/71.49 69.43/69.74 69.75/70.28
hepatitis 83.58/79.22 81.4/78.44 80.04/78.22 81.18/78.36 79.11/78.15 79.24/77.7 77.28/77.25 79.72/77.12 77.47/77.12

iris 94.93/94.73 93.33/92.33 91.27/90 91.2/88 88.33/85.4 85.33/81.73 84.6/82.47 81.2/76.8 81.6/77.2
labor 91/78.8 89.03/78.47 87.13/76.9 84.13/73.77 81.2/70.93 79.17/71.27 82.3/72.4 76.57/68.23 76.87/70.57
lymph 79.08/76.06 76.8/74.31 71.85/71.77 74.02/71.31 72.43/68.44 70.25/67.22 68.79/68.32 65.56/64.46 64.69/63.69

Sig. W/D/L 8/3/0 7/4/0 7/4/0 8/3/0 7/3/1 7/4/0 6/5/0 7/4/0 6/5/0
GM Error Ratio 0.8286 0.8335 0.8434 0.8329 0.8593 0.8554 0.8690 0.8723 0.8782
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Table 5.9: Feature Noise: Bagging vs. J48
Noise Level % 0 5 10 15 20 25 30 35 40

autos 83.12/81.72 78.12/72.9 72.71/65.45 67.82/59.69 64.64/55.23 62.89/52.69 57.84/49.51 55.31/45.23 52.55/43.21
balance-scale 81.93/77.85 80.83/77.37 78.79/75.16 76.9/73.42 74.84/71.52 73.15/69.49 72/68.37 69.55/66.85 68.8/65.16

breast-w 96.3/95.01 95.77/93.91 95.48/93.26 94.96/92.72 94.35/91.75 93.76/90.42 93.46/90.36 92.46/89.47 91.95/88.69
colic 85.34/85.16 83.44/83.64 82.01/81.9 80.52/79.94 78.15/77.83 77.01/76.54 76.38/75.41 74.65/73.26 73.29/71.52

credit-a 85.96/85.57 84.94/84.07 82.81/81.8 81.49/80.55 80.22/79 79.29/78.97 78.03/76.52 75.42/74.7 74.78/73.64
glass 74.67/67.77 70.4/67.03 69.04/62.46 64.29/58.72 63.73/55.53 61.08/53.7 58.51/52.92 54.73/46.95 53.44/45.04

heart-c 78.68/77.17 78.94/75.92 78.35/75.34 77.6/73.32 76.5/72.56 75.84/71.55 76.16/71.49 74.03/69.74 72.86/70.28
hepatitis 81.34/79.22 82.31/78.44 82.03/78.22 81.73/78.36 80.61/78.15 80.03/77.7 80.85/77.25 79.83/77.12 80.21/77.12

iris 94.73/94.73 93.07/92.33 91.27/90 89.6/88 87.27/85.4 83.4/81.73 84.33/82.47 79.67/76.8 80.33/77.2
labor 85.87/78.8 82.67/78.47 81.83/76.9 78.5/73.77 77.27/70.93 73.8/71.27 76.43/72.4 73.6/68.23 74/70.57
lymph 77.97/76.06 77.46/74.31 74.6/71.77 75.3/71.31 72.78/68.44 71.88/67.22 70.44/68.32 70.38/64.46 69.33/63.69

Sig. W/D/L 7/4/0 10/1/0 10/1/0 10/1/0 10/1/0 8/3/0 10/1/0 10/1/0 10/1/0
GM Error Ratio 0.8704 0.8586 0.8450 0.8496 0.8473 0.8627 0.8634 0.8614 0.8661
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Table 5.10: Feature Noise: ADABOOSTvs. J48
Noise Level % 0 5 10 15 20 25 30 35 40

autos 85.28/81.72 80.82/72.9 74.02/65.45 70.77/59.69 66.86/55.23 63.64/52.69 59.83/49.51 52.92/45.23 52.85/43.21
balance-scale 77.76/77.85 76.8/77.37 75.04/75.16 73.42/73.42 72.23/71.52 70.48/69.49 69.61/68.37 67.49/66.85 67.53/65.16

breast-w 96.47/95.01 96.11/93.91 95.74/93.26 95.65/92.72 94.62/91.75 94.48/90.42 94.16/90.36 93.32/89.47 92.81/88.69
colic 81.93/85.16 80.68/83.64 78.28/81.9 76.58/79.94 75.68/77.83 73.65/76.54 72.41/75.41 71.69/73.26 69.98/71.52

credit-a 85.42/85.57 83.17/84.07 81.38/81.8 80.23/80.55 77.88/79 77.03/78.97 75.7/76.52 73.97/74.7 72.51/73.64
glass 76.06/67.77 73.45/67.03 68.78/62.46 65.13/58.72 63.97/55.53 61.2/53.7 58.58/52.92 53.38/46.95 52.06/45.04

heart-c 79.22/77.17 78.77/75.92 78.18/75.34 77/73.32 75.84/72.56 75.3/71.55 75.11/71.49 72.38/69.74 73.07/70.28
hepatitis 82.71/79.22 82.62/78.44 81.98/78.22 82.43/78.36 80.8/78.15 79.26/77.7 79.51/77.25 80.9/77.12 78.47/77.12

iris 94.2/94.73 92.67/92.33 91.2/90 89.27/88 87.2/85.4 83.93/81.73 83.4/82.47 79.33/76.8 80.47/77.2
labor 86.37/78.8 85.3/78.47 81.97/76.9 81.4/73.77 80.03/70.93 78.83/71.27 77.83/72.4 73.17/68.23 77/70.57
lymph 81.75/76.06 81.38/74.31 78.8/71.77 76.51/71.31 75.48/68.44 74.16/67.22 71.48/68.32 66.41/64.46 68.98/63.69

Sig. W/D/L 7/3/1 7/2/2 8/2/1 7/3/1 8/1/2 8/1/2 8/2/1 7/4/0 8/2/1
GM Error Ratio 0.8691 0.8449 0.8575 0.8455 0.8463 0.8564 0.8830 0.8900 0.8750
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tion and feature noise is presented in (Servedio, 2003). McDonald et al.(2003) compare

ADABOOST to two other boosting algorithms, LogitBoost and BrownBoost, and conclude

that BrownBoost is quite robust to noise. In an earlier study an extensionto BrownBoost

for multi-class problems was presented and shown empirically to outperform ADABOOST

on noisy data (McDonald et al., 2002). However, BrownBoost’s drawback is that it requires

a time-out parameter to be set, which can be done only if the user can estimate thelevel of

noise.

5.3 Chapter Summary

This chapter evaluates the performance of three ensemble methods, Bagging, ADABOOST

and DECORATE, in the presence of different kinds of imperfections in the data. Experi-

ments using J48 as the base learner, show that in the case of missing features, DECORATE

significantly outperforms the other approaches. In the case of classification noise, both

DECORATE and Bagging are effective at decreasing the error of the base learner; whereas

ADABOOST degrades rapidly in performance, often performing worse than J48. Ingen-

eral, Bagging performs the best at combatting high amounts of classification noise. In the

presence of noise in the features, all ensemble methods produce consistent improvements

over the base learner. These results suggest that, when there are manymissing features in

the data, or noise in the classification labels, it is better to use DECORATEor Bagging over

ADABOOST.
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Chapter 6

Active Learning for Classification

Accuracy

Most research in inductive learning has focused on learning from training examples that are

randomly selected from the data distribution. On the other hand, inactive learning(Cohn,

Ghahramani, & Jordan, 1996) the learning algorithm exerts some control over which exam-

ples upon which it is trained. The ability to actively select the most useful training exam-

ples is an important approach to reducing the amount of supervision required for effective

learning. In particular,pool-based sample selection, in which the learner chooses the best

instances for labeling from a given set of unlabeled examples, is the most practical approach

for problems in which unlabeled data is relatively easily available (Cohn et al.,1994). A

theoretically well-motivated approach to sample selection isQuery by Committee(Seung,

Opper, & Sompolinsky, 1992), in which an ensemble of hypotheses is learned and examples

that cause maximum disagreement amongst this committee (with respect to the predicted

categorization) are selected as the most informative. Popular ensemble learning algorithms,

such as Bagging and Boosting, have been used to efficiently learn effective committees for

active learning (Abe & Mamitsuka, 1998). Meta-learning ensemble algorithms, such as

Bagging and Boosting, that employ an arbitrary base classifier are particularly useful since
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they are general purpose and can be applied to improve any learner thatis effective for a

given domain.

An important property of a good ensemble for committee-based active learningis

diversity. Only a committee of hypotheses that effectively samples the version space of all

consistent hypotheses is productive for sample selection (Cohn et al., 1994). Since DEC-

ORATE explicitly builds such committees, it is well suited for this task. We believe that

the added diversity of DECORATE ensembles should help select more informative exam-

ples than other Query by Committee methods. Melville and Mooney (2004b) introduced

a new approach to active learning, ACTIVEDECORATE, which uses committees produced

by DECORATE to select examples for labeling. Extensive experimental results on several

real-world datasets show that using this approach produces substantialimprovement over

using DECORATEwith random sampling. ACTIVEDECORATErequires far fewer examples

than DECORATE, and on average also produces considerable reductions in error. Ingeneral,

our approach also outperforms both Query by Bagging and Query by Boosting.

In this chapter, we will focus on active learning of classifiers, where theobjective

is to improve classification accuracy. In Chapter 7, we will discuss the related problem of

active learning to improve class probability estimation.

6.1 Query by Committee

Query by Committee (QBC) is a very effective active learning approach that has been suc-

cessfully applied to different classification problems (McCallum & Nigam, 1998; Dagan

& Engelson, 1995; Liere & Tadepalli, 1997). A generalized outline of the QBC approach

is presented in Algorithm 4. Given a pool of unlabeled examples, QBC iteratively selects

examples to be labeled for training. In each iteration, it generates a committee ofclassifiers

based on the current training set. Then it evaluates the potential utility of each example in

the unlabeled set, and selects a subset of examples with the highest expected utility. The

labels for these examples are acquired and they are transfered to the training set. Typically,
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the utility of an example is determined by some measure ofdisagreementin the committee

about its predicted label. This process is repeated until the number of available requests for

labels is exhausted.

Freund, Seung, Shamir, and Tishby (1997) showed that under certainassumptions,

Query by Committee can achieve an exponential decrease in the number of examples re-

quired to attain a particular level of accuracy, as compared to random sampling. However,

these theoretical results assume that the Gibbs algorithm is used to generate the committee

of hypotheses used for sample selection. The Gibbs algorithm for most interesting problems

is computationally intractable. To tackle this issue, Abe and Mamitsuka (1998) proposed

two variants of QBC, Query by Bagging and Query by Boosting, where Bagging and ADA-

BOOST are used to construct the committees for sample selection. In their approach,they

evaluate the utility of candidate examples based on themarginof the example; where the

margin is defined as the difference between the number of votes in the current committee

for the most popular class label, and that for the second most popular label. Examples with

smaller margins are considered to have higher utility.

6.2 ACTIVEDECORATE

It is beneficial in QBC to use an ensemble method that builds adiversecommittee, in which

each hypothesis is as different as possible, while still maintaining consistency with the

training data. Since DECORATE explicitly focuses on creating ensembles that are diverse,

we propose a variant of Query by Committee, ACTIVEDECORATE, that uses DECORATE

(in Algorithm 4) to construct committees for sample selection.

To evaluate the expected utility of unlabeled examples, we also used the margins

on the examples, as done by Abe and Mamitsuka (1998). We generalized their definition,

to allow the base classifiers in the ensemble to provide class probabilities, instead of just

the most likely class label. Given the class membership probabilities predicted bythe com-

mittee, the margin is then defined as the difference between the highest and second highest
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Algorithm 4 Generalized Query by Committee

Given:
T - set of training examples
U - set of unlabeled training examples
BaseLearn - base learning algorithm
k - number of selective sampling iterations
m - size of each sample

1. Repeatk times

2. Generate a committee of classifiers,
C∗ = EnsembleMethod(BaseLearn, T )

3. ∀xj ∈ U , computeUtility(C∗, xj), based on the current committee

4. Select a subsetS of m examples that maximizes utility

5. Label examples inS

6. Remove examples inS from U and add toT

7. ReturnEnsembleMethod(BaseLearn, T )
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predicted probabilities.

6.3 Experimental Evaluation

6.3.1 Methodology

To evaluate the performance of ACTIVEDECORATE, we ran experiments on 15 represen-

tative data sets from the UCI repository (Blake & Merz, 1998). We compared the perfor-

mance of ACTIVEDECORATE with that of Query by Bagging (QBag), Query by Boosting

(QBoost) and DECORATE, all using an ensemble size of 15. J48 decision-tree induction

was used as the base learner for all methods.

The performance of each algorithm was averaged over two runs of 10-fold cross-

validation. In each fold of cross-validation, we generated learning curves in the following

fashion. The set of available training examples was treated as an unlabeledpool of exam-

ples, and at each iteration the active learner selected a sample of points to belabeled and

added to the training set. For DECORATE, the examples in each iteration were selected ran-

domly. The resulting curves evaluate how well an active learner orders the set of available

examples in terms of utility. At the end of the learning curve, all algorithms see exactly the

same training examples.

To maximize the gains of active learning, it is best to acquire a single example

in each iteration. However to make our experiments computationally feasible, wechoose

larger sample sizes for the bigger data sets. In particular, we used a samplesize of two for

theprimarydataset, and three forbreast-w, soybean, diabetes, vowelandcredit-g.

The primary aim of active learning is to reduce the amount of training data needed to

induce an accurate model. To evaluate this, we first define thetarget error rateas the error

that DECORATE can achieve on a given dataset, as determined by its error rate averaged

over the points on the learning curve corresponding to the last 50 training examples. We

then record the smallest number of examples required by a learner to achieve the same
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or lower error. We define thedata utilization ratio, as the number of examples an active

learner requires to reach the target error rate divided by the number DECORATE requires.

This metric reflects how efficiently the active learner is using the data and is similar to a

measure used by Abe and Mamitsuka (1998).

Another metric for evaluating an active learner is how much it improves accuracy

over random sampling given a fixed amount of labeled data. Therefore,we also compute

the percentage reduction in error over DECORATE averaged over points on the learning

curve. As mentioned above, towards the end of the learning curve, all methods will have

seen almost all the same examples. Hence, the main impact of active learning is lower

on the learning curve. To capture this, we report the percentage errorreduction averaged

over only the 20% of points on the learning curve, where the largest improvements are

produced. This is similar to a measure reported by Saar-Tsechansky andProvost (2001).

When computing the error reduction of one system over another, the reduction is considered

significant if the difference in the errors of the two systems averaged across the selected

points on the learning curve is determined to be statistically significant according to paired

t-tests (p < 0.05).

6.3.2 Results

The data utilization of the different active learners with respect to DECORATE is summa-

rized in Table 6.1. We present the number of examples required for each system to achieve

the target error rate and, in parentheses, the data utilization ratio. The smallest number

of examples needed for each dataset is presented in bold font. On all butone dataset,

ACTIVEDECORATE produces improvements over DECORATE in terms of data utilization.

Furthermore, ACTIVEDECORATE outperforms both the other active learners on 10 of the

datasets. QBag and QBoost were unable to achieve the target error rateon vowel; and

QBoost also failed to achieve the target error onprimary. Furthermore, on several datasets

QBag and QBoost required more training examples than DECORATE. On average, ACTIVE-
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Table 6.1: Data utilization with respect to Decorate

Dataset Tot. Size Decorate QBag QBoost ActiveDecorate Target Err.(%)
Soybean 615 492(1.00) 267(0.54) 219(0.45) 144(0.29) 6.59
Vowel 891 840(1.00) - - 477(0.57) 3.81
Statlog 243 81(1.00) 84(1.04) 89(1.10) 46(0.57) 19.21
Hepatitis 140 39(1.00) 30(0.77) 43(1.10) 23(0.59) 16.96
Primary 305 238(1.00) 202(0.85) - 164(0.69) 56.23
Heart-c 273 50(1.00) 57(1.14) 41(0.82) 36(0.72) 20.97
Sonar 187 125(1.00) 186(1.49) 131(1.05) 99(0.79) 18.39
Heart-h 265 49(1.00) 31(0.63) 47(0.96) 39(0.80) 19.93
Glass 193 118(1.00) 97(0.82) 101(0.86) 100(0.85) 27.00
Diabetes 691 234(1.00) 114(0.49) 393(1.68) 201(0.86) 25.09
Lymph 133 27(1.00) 40(1.48) 40(1.48) 24(0.89) 22.21
Labor 51 13(1.00) 26(2.00) 19(1.46) 12(0.92) 15.14
Iris 135 32(1.00) 33(1.03) 125(3.91) 30(0.94) 5.25
Credit-g 900 498(1.00) 213(0.43) 243(0.49) 495(0.99) 26.36
Breast-w 629 30(1.00) 45(1.50) 75(2.50) 39(1.30) 3.94
No. of Wins 1 4 0 10

DECORATE required 78% of the number of examples that DECORATE used to reach the

target error. It is important to note that DECORATE itself achieves the target error with

far fewer examples than available in the full training set, as seen by comparing to the to-

tal dataset sizes. Hence, improving on the data utilization of DECORATE is a fairly difficult

task. Figure 6.1 presents learning curves that clearly demonstrate the advantage of ACTIVE-

DECORATE. On one dataset,breast-w, ACTIVEDECORATE requires a few more examples

than DECORATE. This dataset exhibits a ceiling effect in learning, where DECORATEman-

ages to reach the target error rate using only 30 of the 629 available examples, making it

difficult to improve on (Figure 6.2).

Our results on error reductions are summarized in Table 6.2. The significant val-

ues are presented in bold font. We observed that on almost all datasets, ACTIVEDECORATE

produces substantial reductions in error over DECORATE. Furthermore, on 8 of the datasets,

ACTIVEDECORATEproduces higher reductions in error than the other active-learning meth-

ods. Depending on the dataset, ACTIVEDECORATE produces a wide range of improve-

ments, from moderate (4.16% oncredit-g) to high (70.68% onvowel). On average, ACTIVE-
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Table 6.2: Top 20% percent error reduction over Decorate

Dataset QBag QBoost ActiveDecorate
Soybean 30.50 34.17 45.84
Vowel 22.65 42.09 70.68
Statlog 11.31 10.34 11.43
Hepatitis 12.13 16.68 19.31
Primary 3.23 0.43 5.74
Heart-c 15.40 19.40 12.56
Sonar 1.88 8.09 16.47
Heart-h 16.22 14.68 12.14
Glass 10.58 16.88 15.83
Diabetes 8.68 4.01 5.94
Lymph 19.65 28.51 18.84
Labor -2.61 12.55 36.33
Iris 22.78 1.22 22.53
Credit-g 9.43 6.71 4.16
Breast-w 15.12 18.89 19.51
Mean 13.13 15.64 21.15
No. of Wins 4 3 8

DECORATEproduces a 21.15% reduction in error.

6.4 Additional Experiments

6.4.1 Jensen-Shannon Divergence

There are two main aspects to any Query by Committee approach. The first is the method

employed to construct the committee, and the second is the measure used to rankthe utility

of unlabeled examples given this committee. Thus far, we have only compareddifferent

methods for constructing the committees. Following Abe and Mamitsuka (1998), we ranked

unlabeled examples based on the margin of the committee’s prediction for the example.

An alternate approach is to use an information theoretic measure such as Jensen-

Shannon (JS) divergence (Lin, 1991) to evaluate the potential utility of examples. JS-

divergence is a measure of the “distance” between two probability distributions which can
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also be generalized to measure the distance (similarity) between a finite number of distri-

butions (Dhillon, Mallela, & Kumar, 2002). JS-divergence is a natural extension of the

Kullback-Leibler (KL) divergence to a set of distributions. KL divergence is defined be-

tween two distributions, and the JS-divergence of a set of distributions is the average KL

divergence of each distribution to the mean of the set. Unlike KL divergence, JS-divergence

is a true metric and is bounded. If a classifier can provide a distribution of class member-

ship probabilities for a given example, then we can use JS-divergence tocompute a measure

of similarity between the distributions produced by a set (ensemble) of such classifiers. If

Pi(x) is the class probability distribution given by thei-th classifier for the examplex

(which we will abbreviate asPi) we can then compute the JS-divergence of a set of sizen

as:

JS(P1, P2, ..., Pn) = H(
n

∑

i=1

wiPi) −
n

∑

i=1

wiH(Pi)

wherewi is the vote weight of thei-th classifier in the set;1 andH(P ) is the Shannon

entropy of the distributionP = {pj : j = 1, ..., K}, defined as:

H(P ) = −
K

∑

j=1

pj log pj

Higher values for JS-divergence indicate a greater spread in the predicted class probability

distributions, and it is zero if and only if the distributions are identical. A similar measure

was used for active learning for text categorization by McCallum and Nigam (1998).

We implemented a version of ACTIVEDECORATE that selects the unlabeled exam-

ples with the highest JS-divergence. This measure incorporates more information about the

predicted class distribution than using margins, and hence could result in theselection of

more informative examples. To test the effectiveness of using JS-divergence, we ran ex-

periments comparing it to using the margin measure. The experiments were conducted as

described in Section 6.3.1. Table 6.3 summarizes the results of the comparison of the two

1Our experiments use uniform vote weights, normalized to sum to one.
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Table 6.3: Comparing measures of utility: Data utilization and top 20% error reduction with
respect to Decorate.

Data Utilization %Error Reduction
Dataset Margins JS Div. Margins JS Div.
Soybean 144(0.29) 369(0.75) 45.84 18.67
Vowel 477(0.57) 525(0.62) 70.68 63.26
Statlog 46(0.57) 76(0.94) 11.43 11.52
Hepatitis 23(0.59) 19(0.49) 19.31 15.90
Primary 164(0.69) 212(0.89) 5.74 3.84
Heart-c 36(0.72) 28(0.56) 12.56 13.97
Sonar 99(0.79) 94(0.75) 16.47 16.71
Heart-h 39(0.80) 38(0.78) 12.14 10.81
Glass 100(0.85) 118(1.00) 15.83 10.46
Diabetes 201(0.86) 150(0.64) 5.94 5.03
Lymph 24(0.89) 20(0.74) 18.84 12.18
Labor 12(0.92) 10(0.77) 36.33 29.77
Iris 30(0.94) 41(1.28) 22.53 23.01
Credit-g 495(0.99) 330(0.66) 4.16 3.91
Breast-w 39(1.30) 45(1.50) 19.51 19.20
Mean 0.78 0.83 21.15 17.22
No. of Wins 7 8 11 4

measures. All the error reductions are significant (p < 0.05), so we only present the better

of the two columns in bold font. In terms of data utilization, the methods seem equally

matched; JS-divergence performs better than margins on 8 of the 15 datasets. However, on

the error reduction metric, using margins outperforms JS-divergence on11 of the datasets.

The results also show, that there are datasets on which JS-divergenceand margins achieve

the target error rate with comparable number of examples, but the error reduction produced

by margins is higher. Figure 6.3 clearly demonstrates this phenomenon.

Note that while ACTIVEDECORATE using either measure of utility produces sub-

stantial error reductions, in general using margins produces greater improvements. Using

the JS-divergence measure tends to select examples that would reduce the uncertainty of the

predicted class membership probabilities, which helps to improve classification accuracy.

On the other hand, using margins focuses more directly on determining the decision bound-
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Figure 6.3: Comparing measures of utility: JS Divergence vs Margins onVowel.

ary. This may account for its better performance. For making cost-sensitive decisions, it is

very useful to have accurate class probability estimates (Saar-Tsechansky & Provost, 2001).

In such cases, we conjecture that using JS-divergence could be a more effective approach.

This conjecture is empirically validated in Chapter 7.

6.4.2 Committees for Sample Selection vs. Prediction

All the active learning methods that we have described use committees to determine which

examples to select. But in addition to using committees for sample selection, these methods

also use the committees for prediction. So we arenot evaluating which method selects the

best queries for thebase learner, but which combination of sample selection and ensem-

ble method works the best. The fact that ACTIVEDECORATE performs better than QBag

may just be testament to the fact that DECORATEperforms better than Bagging. However,

we claim that not only does DECORATEproduce accurate committees, but the committees

produced are also more effective in sample selection. To verify this, we implemented an
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Table 6.4: Comparing different ensemble methods for selection for Active-Decorate: Per-
centage error reduction over Decorate.

Dataset Maximum Select w/ Select w/ Select w/
Train Size Bagging AdaBoost Decorate

Soybean 300 18.55 17.27 27.38
Glass 100 6.57 4.72 8.85
Primary 200 0.2 2.46 3.75
Statlog 100 -1.79 -1.18 1.73

alternate version of ACTIVEDECORATE, where at each iteration a committee constructed

by Bagging is used to select the examples given to DECORATE. In this way, we separate the

evaluation of the method used for sample selection from the method used for prediction.

Similarly, we implemented a version of ACTIVEDECORATEusing ADABOOST to perform

the sample selection.

We compared the three methods of sample selection for DECORATEon four of the

datasets on which ACTIVEDECORATEexhibited good performance. We generated learning

curves as described in Section 6.3.1. However, we did not run the learning curve trials until

all the available training data was exhausted, since the active learning methods need fewer

examples to achieve the target error rates.

The error reductions over DECORATEaveraged across all the points on the learning

curve are presented in Table 6.4.2 The significant error reductions are shown in bold. The

table also includes the maximum training set size, which corresponds to the last point on

the learning curve. The results show that, on 3 of the 4 datasets, using anyof the ensem-

ble sample selection methods in conjunction with DECORATE produces better results than

DECORATE. Furthermore, DECORATE committees select more informative examples for

training DECORATE than the other committee sample selection methods. These trends are

clearly seen in Figure 6.4. It would also be interesting to run similar experiments, using

DECORATEensembles to pick examples for training Bagging, ADABOOST, or J48.

2These results are not directly comparable to those in Table 6.2.
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6.5 Related Work

In their QBC approach, Dagan and Engelson (1995) measure the utility of examples by

vote entropy, which is the entropy of the class distribution, based on the majority votes of

each committee member. McCallum and Nigam (1998) showed thatvote entropydoes not

perform as well as JS-divergence for pool-based sample selection. Another recently devel-

oped effective committee-based active learner is Co-Testing (Muslea, Minton, & Knoblock,

2000); however, it requires two redundantviewsof the data. Since most data sets do not have

redundant views, Co-Testing has rather limited applicability. Another general approach to

sample selection isuncertainty sampling(Lewis & Catlett, 1994); however, this approach

requires a learner that accurately estimates the uncertainty of its decisions,and tends to

over-sample the boundaries of its current incomplete hypothesis (Cohn etal., 1994). Fi-

nally, expected-error reductionmethods for active learning (Cohn et al., 1996; Roy & Mc-
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Callum, 2001; Zhu, Lafferty, & Ghahramani, 2003) attempt to statistically select training

examples that are expected to minimize error on the actual test distribution. Thisapproach

has the advantage of avoiding the selection of outliers whose labeling will notimprove ac-

curacy on typical examples. However, this method is computationally intense, and must be

carefully tailored to a specific learning algorithm (e.g. naive Bayes); andhence, cannot be

used to select examples for an arbitrary learner. Active meta-learners likeQuery by Bag-

ging/Boosting and ACTIVEDECORATE have the advantage of being able to select queries

to improve any learner appropriate for a given domain.

6.6 Chapter Summary

ACTIVEDECORATE is a simple, yet effective approach to active learning for improving

classification accuracy. Experimental results show that, in general, this approach leads to

more effective sample selection than Query by Bagging and Query by Boosting. On aver-

age, ACTIVEDECORATE requires only 78% of the number of training examples required

by DECORATE with random sampling. As shown in Section 4.4, for small training sets

DECORATE produces more diverse ensembles than Bagging or ADABOOST. We believe

this increased diversity is the key to ACTIVEDECORATE’s superior performance.

Our results also show that using JS-divergence to evaluate the utility of examples

is less effective for improving classification accuracy than using margins.JS-divergence

may be a better measure when the objective is improving class probability estimates. This

conjecture is explored in detail in the next chapter.
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Chapter 7

Active Learning for Class Probability

Estimation

Many supervised learning applications require more than a simple classificationof in-

stances. Often, also having accurate Class Probability Estimates (CPEs) is critical for the

task. Class probability estimation is a fundamental concept used in a variety ofapplications

including marketing, fraud detection and credit ranking. For example, in direct marketing

the probability that each customer would purchase an item is employed in orderto optimize

marketing budget expenditure. Similarly, in credit scoring, class probabilities are used to

estimate the utility of various courses of actions, such as the profitability of denying or

approving a credit application. While prediction accuracy of CPE improveswith the avail-

ability of more labeled examples, acquiring labeled data is sometimes costly. For example,

customers’ preferences may be induced from customers’ responses toofferings; but so-

licitations made to acquire customer responses (labels) may be costly, because unwanted

solicitations can result in negative customer attitudes. It is therefore beneficial to use ac-

tive learning to reduce the number of label acquisitions necessary to obtaina desired CPE

accuracy.

Almost all prior work in active learning has focused on acquisition policies for
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inducing accurateclassificationmodels and thus are aimed at improving classification ac-

curacy. Although active learning algorithms for classification can be applied for learning

accurate CPEs, they may not be optimal. Active learning algorithms for classification may

(and indeed should) avoid acquisitions that can improve CPEs but are notlikely to impact

classification. Accurate classification only requires that the model accurately assigns the

highest CPE to the correct class, even if the CPEs across classes may beinaccurate. There-

fore, to perform well, active learning methods for classification ought to acquire labels of

examples that are likely to change the rank-order of the most likely class. Toimprove CPEs,

however, it is necessary to identify potential acquisitions that would improvethe CPE ac-

curacy, regardless of the implications for classification accuracy.

In Chapter 6, we introduced a method, ACTIVEDECORATE, for active learning for

classification. Melville, Yang, Saar-Tsechansky, and Mooney (2005)extended this work

to active learning for probability estimation. In particular, we propose the use of Jensen-

Shannon (JS) divergence (Section 6.4.1) to measure the utility of acquiringlabels for ex-

amples, when the objective is to improve class probability estimates. In this chapter, we

demonstrate that, for the task of active learning for CPE, ACTIVEDECORATE using JS-

divergence indeed performs significantly better than using margins.

To the best of our knowledge, Bootstrap-LV (Saar-Tsechansky & Provost, 2001) is

the only prior approach to active probability estimation. This methods was designed specif-

ically to improve CPEs for binary class problems. The method acquires labels for examples

for which the current model exhibits high variance for its CPEs. BOOTSTRAP-LV was

shown to significantly reduce the number of label acquisitions required to achieve a given

CPE accuracy compared to random acquisitions and existing active learning approaches for

classification.

This chapter also presents two new active learning approaches based on BOOTSTRAP-

LV. In contrast to BOOTSTRAP-LV, the methods we propose can be applied to acquire

labels to improve the CPEs of an arbitrary number of classes. The two methodsdif-
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fer by the measures each employs to identify informative examples: the first approach,

BOOTSTRAP-JS, employs the JS-divergence measure. The second approach, BOOTSTRAP-

LV- EXT, uses a measure of variance inspired by the local variance measure proposed in

BOOTSTRAP-LV. We demonstrate that for binary class problems, BOOTSTRAP-JS is supe-

rior to BOOTSTRAP-LV. In addition, we establish that for multi-class problems, BOOTSTRAP-

JS and BOOTSTRAP-LV- EXT identify particularly informative examples that significantly

improve the CPEs compared to random sampling.

7.1 ActiveDecorate and JS-divergence

In the previous chapter, we compared two measures of utility for ACTIVEDECORATE—

marginsand JS-divergence. It was shown that ACTIVEDECORATEusing either measure of

utility produces substantial error reductions in classification compared to random sampling.

However, in general, using margins produces greater improvements. Using JS-divergence

tends to select examples that reduce the uncertainty in CPE, which indirectly helps to im-

prove classification accuracy. On the other hand, ACTIVEDECORATE using margins fo-

cuses more directly on determining the decision boundary. This may accountfor its better

classification performance. It was conjectured that if the objective is improving CPEs, then

JS-divergence may be a better measure.

In this chapter, we validate this conjecture. In addition to using JS-divergence, we

made two more changes to the original algorithm, each of which independently improved

its performance. First, each example in the unlabeled set is assigned a probability of be-

ing sampled, which is proportional to the measure of utility for the example. Instead of

selecting the examples with them highest utilities, we sample the unlabeled set based on

the assigned probabilities (as in BOOTSTRAP-LV). This sampling has been shown to im-

prove the selection mechanism as it reduces the probability of adding outliersto the training

data and avoids selecting many similar or identical examples (Saar-Tsechansky & Provost,

2004).
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The second change we made is in the DECORATE algorithm. DECORATE ensem-

bles are created iteratively; where in each iteration a new classifier is trained. If adding this

new classifier to the current ensemble increases the ensemble training error, then this clas-

sifier is rejected, else it is added to the current ensemble. In previous work, training error

was evaluated using the 0/1 loss function; however, DECORATE can use any loss (error)

function. Since we are interested in improving CPE we experimented with two alternate

error functions — Mean Squared Error (MSE) and Area Under the LiftChart (AULC) (de-

fined in Section 7.3.1). Using MSE performed better on the two metrics used, sowe present

these results in the rest of this chapter. Our approach, ACTIVEDECORATE-JS, is shown in

Algorithm 5.

Algorithm 5 ActiveDecorate-JS
Given:
T - set of training examples
U - set of unlabeled training examples
L - base learning algorithm
n - desired ensemble size
m - size of each sample

1. Repeat until stopping criterion is met

2. Generate an ensemble of classifiers,C∗ = Decorate(L, T, n)

3. For eachxj ∈ U

4. ∀Ci ∈ C∗ generate CPE distributionPi(xj)

5. scorej = JS(P1, P2, ..., Pn)

6. ∀xj ∈ U, D(xj) = scorej/
∑

j scorej

7. Sample a subsetS of m examples fromU based on the distributionD

8. Remove examples inS from U and add toT

9. ReturnDecorate(L, T, n)
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7.2 Bootstrap-LV and JS-divergence

To the best of our knowledge, Bootstrap-LV (Saar-Tsechansky & Provost, 2001) is the only

active learning algorithm designed for learning CPEs. It was shown to require significantly

fewer training examples to achieve a given CPE accuracy compared to random sampling

and uncertainty sampling, which is an active learning method focused on classification

accuracy (Lewis & Catlett, 1994). Bootstrap-LV reduces CPE error byacquiring examples

for which the current model exhibits relatively high local variance (LV),i.e., the variance

in CPE for a particular example. A high LV for an unlabeled example indicates that the

model’s estimation of its class membership probabilities is likely to be erroneous, and the

example is therefore more desirable to be selected for learning.

Bootstrap-LV, as defined by Saar-Tsechansky and Provost (2001) is only applicable

to binary class problems. We first provide the details of this method, and then describe how

we extended it to solve multi-class problems. Bootstrap-LV is an iterative algorithm that

can be applied to any base learner. At each iteration, we generate a set of n bootstrap sam-

ples (Efron & Tibshirani, 1993) from the training set, and apply the givenlearnerL to each

sample to generaten classifiersCi : i = 1, ..., n. For each example in the unlabeled setU ,

we compute a score which determines its probability of being selected, and which is propor-

tional to the variance of the CPEs. More specifically, the score for examplexj is computed

as(
∑n

i=1 (pi(xj) − pj)
2)/pj,min; wherepi(xj) denotes the estimated probability the clas-

sifier Ci assigns to the event that examplexj belongs to class 0 (the choice of performing

the calculation for class 0 is arbitrary, since the variance for both classesis identical),pj is

the average estimate for class 0 across classifiersCi, andpj,min is the average probability

estimate assigned to the minority class by the different classifiers. Saar-Tsechansky and

Provost (2001) attempt to compensate for the under-representation of the minority class by

introducing the termpj,min in the utility score. The scores produced for the set of unlabeled

examples are normalized to produce a distribution, and then a subset of unlabeled examples

are selected based on this distribution. The labels for these examples are acquired and the
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process is repeated.

The model’s CPE variance allows the identification of examples that can improve

CPE accuracy. However as noted above, the local variance estimated byBootstrap-LV cap-

tures the CPE variance of a single class and thus is not applicable to multi-classproblems.

Since we have a set of probability distributions for each example, we can instead, use an

information theoretic measure, such as JS-divergence to measure the utility of an example.

The advantage to using JS-divergence is that it is a distance measure forprobability dis-

tributions (Lin, 1991) that can be used to capture the uncertainty of the class distribution

estimation; and furthermore, it naturally extends to distributions over multiple classes. We

propose a variation of BOOTSTRAP-LV, where the utility score for each example is com-

puted as the JS-divergence of the CPEs produced by the set of classifiersCi. This approach,

BOOTSTRAP-JS, is presented in Algorithm 6.

Our second approach, BOOTSTRAP-LV- EXT, is inspired by the Local Variance con-

cept proposed in BOOTSTRAP-LV. For each example and for each class, the variance in the

prediction of the class probability across classifiersCi, i = 1, ..., n is computed, capturing

the uncertainty of the CPE for this class. Subsequently, the utility score for each potential

acquisition is calculated as the mean variance across classes, reflecting theaverage uncer-

tainty in the estimations of all classes. Unlike BOOTSTRAP-LV, B OOTSTRAP-LV- EXT

does not incorporate the factor ofpj,min in the score for multi-class problems.

7.3 Experimental Evaluation

7.3.1 Methodology

To evaluate the performance of the different active CPE methods, we ranexperiments on 24

representative data sets from the UCI repository (Blake & Merz, 1998). 12 of these datasets

were two-class problems, the rest being multi-class. For three datasets (kr-vs-kp, sick, and

optdigits), we used a random sample of 1000 instances to reduce experimentation time.
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Algorithm 6 Bootstrap-JS
Given:
T - set of training examples
U - set of unlabeled training examples
L - base learning algorithm
n - number of bootstrap samples
m - size of each sample

1. Repeat until stopping criterion is met

2. Generaten bootstrap samplesBi, i = 1, ..., n from T

3. Apply learnerL to each sampleBi to produce classifierCi

4. For eachxj ∈ U

5. ∀Ci generate CPE distributionPi(xj)

6. scorej = JS(P1, P2, ..., Pn)

7. ∀xj ∈ U, D(xj) = scorej/
∑

j scorej

8. Sample a subsetS of m examples fromU based on the distributionD

9. Remove examples inS from U and add toT

10. ReturnC = L(T )

All the active learning methods we discuss in this chapter are meta-learners,i.e.,

they can be applied to any base learner. For our experiments, as a base classifier we use

a Probability Estimation Tree (PET) (Provost & Domingos, 2003), which is anunpruned

C4.5 decision tree for which Laplace correction is applied at the leaves. Saar-Tsechansky

and Provost (2001) showed that using Bagged-PETs for prediction produced better proba-

bility estimates than single PETs for BOOTSTRAP-LV; so we used Bagged-PETs for both

BOOTSTRAP-LV and BOOTSTRAP-JS. The number of bootstrap samples and the size of

ensembles in ACTIVEDECORATEwas set to 15.

The performance of each algorithm was averaged over 10 runs of 10-fold cross-

validation. In each fold of cross-validation, we generated learning curves as follows. The
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set of available training examples was treated as an unlabeled pool of examples, and at each

iteration the active learner selected a sample of points to be labeled and addedto the training

set. Each method was allowed to select a total of 33 batches of training examples, measuring

performance after each batch in order to generate a learning curve. Toreduce computation

costs, and because of diminishing variance in performance for different selected examples

along the learning curve, we incrementally selected larger batches at eachacquisition phase.

The resulting curves evaluate how well an active learner orders the setof available examples

in terms of utility for learning CPEs. As a baseline, we used random sampling, where the

examples in each iteration were selected randomly.

To the best of our knowledge, there are no publicly-available datasets that provide

true class probabilities for instances; hence there is no direct measure for the accuracy of

CPEs. Instead, we use two indirect metrics proposed in other studies for CPEs (Zadrozny

& Elkan, 2001). The first metric is squared error, which is defined for an instancexj , as
∑

y(Ptrue(y|xj) − P (y|xj))
2; whereP (y|xj) is the predicted probability thatxj belongs

to classy, andPtrue(y|xj) is the true probability thatxj belongs toy. We compute the

Mean Squared Error (MSE) as the mean of this squared error for eachexample in the

test set. Since we only know the true class labels and not the probabilities, wedefine

Ptrue(y|xj) to be 1 when the class ofxj is y and 0 otherwise. Given that we are comparing

with this extreme distribution, squared error tends to favor classifiers that produce accurate

classification, but with extreme probability estimates. Hence, we do not recommend using

this metric by itself.

The second measure we employ is the area under the lift chart (AULC) (Nielsen,

2004), which is computed as follows. First, for each classk, we take theα% of instances

with the highest probability estimates for classk. rα is defined to be the proportion of

these instances actually belonging to classk; andr100 is the proportion of all test instances

that are from classk. The lift l(α), is then computed asrα

r100
. The AULCk is calculated

by numeric integration ofl(α) from 0 to 100 with a step-size of 5. The overall AULC is
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computed as the weighted-average of AULCk for eachk; where AULCk is weighted by

the prior class probability ofk according to the training set. AULC is a measure of how

good the probability estimates are for ranking examples correctly, but not how accurate the

estimates are. However, in the absence of a direct measure, an examinationof MSE and

AULC in tandem provides a good indication of CPE accuracy. We also measured log-loss

or cross-entropy, but these results were highly correlated with MSE, sowe do not report

them here.

To effectively summarize the comparison of two algorithms, we compute the per-

centage reduction in MSE of one over the other, averaged along the pointsof the learning

curve. We consider the reduction in error to besignificantif the difference in the errors of

the two systems, averaged across the points on the learning curve, is determined to be statis-

tically significant according to paired t-tests (p < 0.05). Similarly, we report the percentage

increasein AULC, since a larger AULC usually implies better probability estimates.

7.3.2 Results

The results of all our comparisons are presented in Tables 7.1-7.3. In each table we present

two active learning methods compared to random sampling as well as to each other. We

present the statistics% MSE reductionand% AULC increaseaveraged across the learning

curves. All statistically significant results are presented in bold font. The bottom of each

table presents the win/draw/loss (w/d/l) record; where a win or loss is only counted if the

improved performance is determined to be significant as defined above.

7.3.3 ActiveDecorate: JS-divergence versus Margins

Table 7.1 shows the results of using JS-divergence versus margins forACTIVEDECORATE.

In Chapter 6, it was shown that ACTIVEDECORATE, with both these measures, performs

very well on the task of active learning for classification. Our results here confirm that both

measures are also effective for active learning for CPE. ACTIVEDECORATE using mar-
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Table 7.1: ACTIVEDECORATE-JS versus Margins
% MSE Reduction % AULC Increase

Data set Margin JS vs. JS vs. Margin JS vs. JS vs.
vs. Rand. Rand. Margin vs. Rand. Rand. Margin

breast-w 9.32 23.91 12.73 0.29 -0.50 -0.79
colic 8.65 17.99 10.17 4 2.44 -1.47

credit-a 15.83 21.97 7.08 2.85 2.98 0.07
credit-g 7.06 8.91 2.02 6.98 7.79 0.75
diabetes -3.11 0.07 2.9 4.98 0.84 -3.94
heart-c 4.66 6.3 1.72 1.54 0.53 -0.99

hepatitis 4.49 7.34 2.99 1.93 0.14 -1.95
ion 29.23 36.51 10.01 5.73 5.53 -0.2

kr-vs-kp 34 65.27 50.77 6.46 2.19 -3.99
sick 39.18 64.38 42.24 10.49 9.11 -1.24
sonar 9.3 9.31 0.15 5.84 5.37 -0.41
vote 12.15 45.79 38.12 0.81 -0.51 -1.31

anneal 45.51 63.8 32.1 7.62 11.14 3.27
autos 8.32 11.38 3.57 15.34 11.52 -3.34

balance-s 14.1 24.63 12.05 5.24 6.14 0.86
car 2.9 53.32 52.27 5.56 16.23 10.3

glass 7.62 12.31 5.02 8.62 10.51 1.82
hypo 31.37 89.87 86.34 4.03 4.7 0.65
iris -1.32 34.32 32.7 -1.56 1.52 3.16

nursery 2.62 69.99 69.52 0.56 6.43 5.9
optdigits 32.56 39.8 10.67 19.38 17.79 -1.4
segment 56.95 71.12 27.27 6.11 6.85 0.71
soybean 15.82 21.84 7.42 21.1 34.35 10.89

wine 17.09 28.85 13.81 1.66 1.17 -0.5
w/d/l 22/0/2 23/1/0 23/1/0 23/0/1 22/2/0 10/3/11

gins focuses on picking examples that reduce the uncertainty of the classification boundary.

Since having better probability estimates usually improves accuracy, it is not surprising that

a method focused on improving classification accuracy selects examples thatmay also im-

prove CPE. However, using JS-divergence directly focuses on reducing the uncertainty in

probability estimates and hence performs much better on this task than margins. On the

AULC metric both measures seem to perform comparably; however, on MSE, using JS-

divergence shows clear and significant advantages over using margins. As noted above,

one needs to analyze a combination of these metrics to effectively evaluate any active

CPE method. Figure 7.1 presents the comparison of ACTIVEDECORATE-JS versus us-
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ing margins on the AULC metric onglass. The two methods appear to be comparable, with

JS-divergence performing better earlier in the curve and margins performing better later.

However, when the two methods are compared on the same dataset, using the MSE met-

ric (Figure 7.2), we note that JS-divergence outperforms margins throughout the learning

curve. Based on the combination of these results, we may conclude that using JS-divergence

is more likely to produce accurate CPEs for this dataset. This example reinforces the need

for examining multiple metrics.

7.3.4 Bootstrap-JS, Bootstrap-LV and Bootstrap-LV-EXT

We first examine the performance of BOOTSTRAP-JS for binary-class problems and com-

pared it with that of BOOTSTRAP-LV and of random sampling. As shown in Table 7.2,

BOOTSTRAP-JS often exhibits significant improvements over BOOTSTRAP-LV, or is oth-

erwise comparable to BOOTSTRAP-LV. For all data sets, BOOTSTRAP-JS shows substan-

tial improvements with respect to examples selected uniformly at random on bothMSE and

AULC. The effectiveness of BOOTSTRAP-JS can be clearly seen in Figure 7.3. (The plot

shows the part of learning curve where the two active learners diverge in performance.)

Since BOOTSTRAP-LV cannot be applied to multi-class problems, we compare

BOOTSTRAP-JS and BOOTSTRAP-LV- EXT with acquisitions of a representative set of ex-

amples selected uniformly at random. Table 7.3 presents results on multi-class datasets for

BOOTSTRAP-JS and BOOTSTRAP-LV- EXT. Both active methods acquire particularly in-

formative examples, such that for a given number of acquisitions, both methods produce

significant reductions in error over random sampling. The two active methods perform

comparably to each other for most data sets, and JS-divergence performs slightly better in

some domains. Because JS-divergence successfully measures the uncertainty of the distri-

bution estimation over all classes, we would recommend using BOOTSTRAP-JS for actively

learning CPE models in multi-class domains.
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Table 7.2: BOOTSTRAP-JS versus BOOTSTRAP-LV on binary datasets
%MSE Reduction %AULC Increase

Data set LV vs. JS vs. JS vs. LV vs. JS vs. JS vs.
Random Random LV Random Random LV

breast-w 14.92 14.81 -0.12 0.55 0.52 -0.02
colic -1.45 -0.04 1.39 -0.95 -0.56 0.41

credit-a 2.1 3.98 1.92 -0.49 -0.01 0.48
credit-g -0.16 0.77 0.93 -0.01 0.3 0.32
diabetes 1.01 1.75 0.75 0.18 0.58 0.4
heart-c 1.68 0.29 -1.43 0.57 -0.08 -0.64

hepatitis 0.19 2.64 2.43 0.19 1.03 0.84
ion 10.65 12.26 1.82 1.13 0.96 -0.16

kr-vs-kp 38.97 43 8.07 1.64 1.79 0.15
sick 19.97 20.84 1.03 0.62 0.41 -0.21

sonar 2.44 1.32 -1.17 0.58 0.74 0.16
vote 6.3 9.14 3.08 0.28 0.46 0.18
w/d/l 9/2/1 10/2/0 9/1/2 7/3/2 9/2/1 8/2/2

Table 7.3: BOOTSTRAP-JS versus BOOTSTRAP-LV- EXT on multi-class datasets
% MSE Reduction % AULC Increase

Data set LV-Ext JS vs. JS vs. LV-Ext JS vs. JS vs.
vs. Rand. Rand. LV-Ext vs. Rand. Rand. LV-Ext

anneal 12.27 13.06 0.89 0.05 0.5 0.45
autos 0.96 0.38 -0.58 1.51 0.83 -0.66

balance-s 1.39 0.92 -0.48 0.72 0.58 -0.14
car 7.21 6.93 -0.31 1.53 1.41 -0.12

glass -0.55 -0.19 0.36 0.61 0.48 -0.11
hypo 46.62 46.41 -0.9 0.49 0.47 -0.02
iris 6.64 10.79 4.58 0.46 0.83 0.39

nursery 14.37 14.25 -0.20 0.44 0.42 -0.01
optdigits 0.35 0.71 0.35 0.9 1.13 0.23
segment 11.08 11.19 0.08 0.83 0.79 -0.04
soybean 1.5 0.78 -0.74 -0.46 0.4 0.87

wine 13.13 13.34 0.36 1.11 1.08 -0.02
w/d/l 10/1/1 11/1/0 4/5/3 10/1/1 12/0/0 4/6/2
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7.3.5 ActiveDecorate-JS vs Bootstrap-JS

In addition to demonstrating the effectiveness of JS-divergence, we also compare the two

active CPE methods that use JS-divergence. The comparison is made in twoscenarios. In

the full datasetscenario, the setting is the same as in previous experiments. In theearly

stagesscenario, each algorithm is allowed to select 1 example at each iteration starting

from 5 examples and going up to 20 examples. This characterizes the performance at the

beginning of the learning curve. Table 7.4 summarizes the results in terms of win/draw/loss

records on the 24 datasets. For thefull dataset, on the AULC metric, the methods perform

comparably, but BOOTSTRAP-JS outperforms ACTIVEDECORATE-JS on MSE. However,

for most datasets, ACTIVEDECORATE-JS shows significant advantages over BOOTSTRAP-

JS in theearly stages. These results could be explained by the fact that DECORATE (used

byACTIVEDECORATE-JS) has a clear advantage over Bagging (used by BOOTSTRAP-JS)

when training sets are small, as explained in Chapter 4.
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Table 7.4: BOOTSTRAP-JS vs. ACTIVEDECORATE-JS: Win/Draw/Loss records
% MSE Reduction % AULC Increase

Full dataset 18/0/6 13/0/11
Early stages 8/2/14 2/5/17

For DECORATE, we only specify the desired ensemble size; the ensembles formed

could be smaller depending on the maximum number of classifiers it is permitted to ex-

plore. In our experiments, the desired size was set to 15 and a maximum of 50classifiers

were explored. On average DECORATE ensembles formed by ACTIVEDECORATE-JS are

much smaller than those formed by Bagging in BOOTSTRAP-JS. Having larger ensembles

generally increases classification accuracy (Melville & Mooney, 2003) and may improve

CPE. This may account for the weaker overall performance of ACTIVEDECORATE-JS to

BOOTSTRAP-JS; and may be significantly improved by increasing the ensemble size.

7.4 Chapter Summary

In this chapter, we propose the use of Jensen-Shannon divergenceas a measure of the utility

of acquiring labeled examples for learning accurate class probability estimates. Extensive

experiments have demonstrated that JS-divergence effectively captures the uncertainty of

class probability estimation and allows us to identify particularly informative examples that

significantly improve the model’s class distribution estimation. In particular, we show that

when JS-divergence is used with ACTIVEDECORATE, an active learner for classification, it

produces substantial improvements over using margins, which focuses onclassification ac-

curacy. We have also demonstrated that for binary-class problems, BOOTSTRAP-JS which

employs JS-divergence to acquire training examples is either comparable orsignificantly

superior to BOOTSTRAP-LV, an existing active CPE learner for binary class problems.

BOOTSTRAP-JS maintains its effectiveness for multi-class domains as well: it acquires

informative examples which result in significantly more accurate models as compared to

models induced from examples selected uniformly at random. Furthermore, our results

105



indicate that, on average, BOOTSTRAP-JS with Bagged-PETs is a preferable method for

active CPE compared to ACTIVEDECORATE-JS. However, if one is concerned primarily

with the early stages of learning, then ACTIVEDECORATE-JS has a significant advantage.

106



Chapter 8

Active Feature-value Acquisition

Unlike the active learning setting, in many predictive modeling tasks, the class labels for all

instances are known, but feature values may be missing and can be acquired at a cost. For

building accurate models, ignoring instances with missing values leads to inferior model

performance (Quinlan, 1989; Leigh & James, 2004), while acquiring complete information

for all instances often is prohibitively expensive or unnecessary. Toreduce the cost of

acquiring feature information, it is desirable to identify a subset of the instances for which

complete information is most informative to acquire.

The setting we explore was first introduced by Zheng and Padmanabhan (2002),

and applies to a variety of business and other domains. Consider an on-lineretailer learning

a predictive model to estimate customers’ propensities to buy. The retailer may use private

information on its customers and their buying behavior over time, as captured from the re-

tailer’s own web log-files. To improve the model, the retailer may also acquire additional

information capturing its customers’ buying preferences and lifestyle choices from a third-

party information intermediary (Hagel & Singerare, 1999). Acquiring complete data for

all customers may be prohibitively expensive (New York Times, 1999). Hence, the retailer

could benefit from having a cost-efficient feature acquisition strategy that can select the

customers it should acquire complete information for, so as to most benefit thepredictive
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model. A similar challenge is faced by marketing research firms that, in order to model con-

sumer behavior, often obtain consumer responses to a short survey, and due to the cost of

acquiring information, acquire responses to an extended survey from only a small, represen-

tative subset of those consumers. An effective acquisition strategy thatacquires complete

responses from consumers that are particularly informative for the model, can increase the

accuracy of the model compared to that induced with the default strategy.

In this chapter, we address this problem ofactive feature-value acquisition(AFA)

for classifier induction (Melville et al., 2004): given a model built on incomplete training

data, identify the instances with missing values for which acquiring complete feature infor-

mation will result in the greatest increase in model accuracy. Formally, assumem instances,

each represented byn featuresa1, ..., an. For all instances, the values of a subset of the fea-

turesa1, . . . , ai are known, along with the class labels. The values of the remaining features

ai+1, . . . , an are unknown and can be acquired at a cost.

The approach we present for active feature acquisition is based on thefollowing

three observations:(1) Most classification models provide estimates of the confidence of

classification, such as estimated probabilities of class membership. Therefore principles

underlying existing active-learning methods like uncertainty sampling (Cohn et al., 1994)

can be applied.(2) For the data items subject to active feature-value acquisition, the correct

classifications are known during training. Therefore, unlike with traditional active learning,

it is possible to employ direct measures of the current model’s accuracy for estimating the

value of potential acquisitions.(3)Class labels are available for all complete and incomplete

instances. Therefore, we can exploit all instances (including incomplete instances) to induce

models, and to guide feature acquisition.

The approach we propose is simple-to-implement, computationally efficient and

results in significant improvements compared to random sampling and a computationally-

intensive method proposed earlier for this problem (Zheng & Padmanabhan, 2002).
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8.1 Task Definition and Algorithm

8.1.1 Pool-based Active Feature Acquisition

Assume a classifier induction problem, where each instance is representedwith n feature

values and a class label. For a subsetG of the training setT , the values of alln features are

known. We refer to these instances as complete instances. For all other instances inT , only

the values of a subset of the featuresa1, . . . , ai are known. The values of the remaining

featuresai+1, . . . , an are missing and the set can be acquired at a fixed cost. We refer to

these instances as incomplete instances, and the set of all incomplete instances is denoted

asI. The class labels of all instances inT are known.

Unlike prior work (Zheng & Padmanabhan, 2002), we assume that models are in-

duced from the entire training set (rather than just fromG). This is because both parametric

and non-parametric models induced from all available data have been shown to be superior

to models induced when instances with missing values are ignored (Leigh & James, 2004).

Beyond improved accuracy, the choice of model induction setting also bears important im-

plications for the active acquisition mechanism, because the estimation of an acquisition’s

marginal utility is derived with respect to the model. We discuss this issue and its implica-

tions in detail in Section 8.3. Note that some induction algorithms (e.g., C4.5) includean in-

ternal mechanism for incorporating instances with missing feature-values (Quinlan, 1989);

other induction algorithms require that missing values be imputed first before induction is

performed (Leigh & James, 2004). For the latter learners, many imputation mechanisms are

available to fill in missing values (e.g., multiple imputation, nearest neighbor) (Little &Ru-

bin, 1987; Batista & Monard, 2003)). Henceforth, we assume that the induction algorithm

includes some treatment for instances with missing values.

We study active feature-value acquisition policies within a generic iterative frame-

work, shown in Algorithm 7. Each iteration estimates the utility of acquiring complete

feature information for each available incomplete example. The missing featurevalues of a
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subsetS ∈ I of incomplete instances with the highest utility values are acquired and added

to T (these examples move fromI to G). A new model is then induced fromT , and the

process is repeated. Different AFA policies correspond to differentmeasures of utility em-

ployed to evaluate the informativeness of acquiring features for an instance. Our baseline

policy, random selection, selects acquisitions at random, which implicitly tends toprefer

examples from dense areas of the example space (Saar-Tsechansky &Provost, 2004). In

this study, we propose the use ofError Sampling, described below, which is based on the

observations made in the previous section.

Algorithm 7 Active Feature-Value Acquisition Framework

Given:
G - set of complete instances
I - set of incomplete instances
T - set of training instances,G ∪ I
L - learning algorithm
m - size of each sample

1. Repeat until stopping criterion is met

2. Generate a classifier,C = L(T )

3. ∀xj ∈ I, computeScore(C, xj) based on the current classifier

4. Select a subsetS of m instances with the highest utility
based on the score

5. Acquire values for missing features for each instance inS

6. Remove instances inS from I and add toG

7. Update training set,T = G ∪ I

8. ReturnL(T )
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8.1.2 Error Sampling

For a model trained on incomplete instances, acquiring missing feature-values is effective

if it enables a learner to capture additional discriminative patterns that improve the model’s

prediction. Specifically, acquired feature-values are likely to have an impact on subsequent

model induction when the acquired values pertain to a misclassified example andmay em-

bed predictive patterns that can be potentially captured by the model and improve the model.

In contrast, acquiring feature-values of instances for which the current model already em-

beds correct discriminative patterns is not likely to impact model accuracy considerably.

Motivated by this reasoning, our approachError Samplingprefers to acquire feature-values

for instances that the current model misclassifies. At each iteration, it randomly selectsm

incomplete instances that have been misclassified by the model.

If there are fewer thanm misclassified instances, thenError Samplingselects the

remaining instances based on theUncertaintyscore which we describe next. The notion of

uncertainty, in this context, originated in work on optimum experimental design (Federov,

1972) and has been extensively applied in the active learning literature (Cohn et al., 1994;

Saar-Tsechansky & Provost, 2004). TheUncertaintyscore captures the model’s ability to

distinguish between cases of different classes and prefers acquiringinformation regarding

instances whose predictions are most uncertain. The acquisition of additional informa-

tion for these cases is more likely to impact prediction, whereas information pertaining to

strong discriminative patterns captured by the model is less likely to change themodel. For

a probabilistic model, the absence of discriminative patterns in the data results inthe model

assigning similar likelihoods for class membership of different classes. Hence, theUncer-

tainty score is calculated as themargin (Chapter 6), i.e., the absolute difference between

the estimated class probabilities of the two most likely classes. Formally, for an instancex,

let Py(x) be the estimated probability thatx belongs to classy as predicted by the model.

Then theUncertaintyscore is given byPy1(x) − Py2(x), wherePy1(x) andPy2(x) are the

first-highest and second-highest predicted probability estimates respectively. Formally, the
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Error Samplingscore for a potential acquisition is set to -1 for misclassified instances; and

for correctly classified instances we employ theUncertaintyscore. At each iteration of the

AFA algorithm, complete feature information is acquired for them incomplete instances

with the lowest scores.

8.2 Experimental Evaluation

8.2.1 Methodology

We first comparedError Samplingto random feature acquisition. The performance of each

system was averaged over five runs of 10-fold cross-validation. In each fold, we generated

learning curves in the following fashion. Initially, the learner has access toall incomplete

instances, and is given complete feature-values for a randomly selected subset, of sizem, of

these instances. The learner builds a classifier based on this data. For theactive strategies,

a sample of instances is then selected from the pool of incomplete instances based on the

measure of utility using the current classification model. The missing values forthese

instances are acquired, making them complete instances. A new classifier is then generated

based on this updated training set, and the process is repeated until the pool of incomplete

instances is exhausted.

In the case of random selection, the incomplete instances are selected uniformly at

random from the pool. Each system is evaluated on the held-out test set after each iteration

of feature acquisition. As in the work of Zheng and Padmanabhan (2002), the test data set

contains only complete instances, since we want to estimate the true generalization accuracy

of the constructed model given complete data. The resulting learning curves evaluate how

well an active feature-value acquisition method orders its acquisitions as reflected by model

accuracy. Note that, at the end of the learning curve, all algorithms see exactly the same set

of complete training instances. To maximize the gains of AFA, it is best to acquirefeatures

for a single instance in each iteration; however, to make our experiments computationally
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feasible, we selected instances in batches of 10 (i.e., sample sizem = 10).

We can compare the performance of any two schemes,A andB, by comparing the

errors produced by both, given that we are limited to acquiring a fixed number of complete

instances. To measure this, we compute the percentage reduction in error of A overB and

report the average over all points on the learning curve. The reductionin error is considered

to besignificantif the average errors across the points on the learning curve ofA is lower

than that ofB according to a paired t-test (p < 0.05).

As mentioned above, towards the end of the learning curve, all methods will have

seen almost all the same training examples. Hence, the main impact of AFA is loweron the

learning curve. To capture this, we also report the percentage error reduction averaged over

only the 20% of points on the learning curve where the largest improvements are produced.

We refer to this as thetop-20% percentage error reduction, which is similar to a measure

reported by Saar-Tsechansky and Provost (2001).

All the experiments were run on 5 web-usage datasets (used by Padmanabhan,

Zheng, and Kimbrough (2001)) and 5 datasets from the UCI machine learning repository

(Blake & Merz, 1998). The web-usage data contain information from popular on-line re-

tailers about customer behavior and purchases. These datasets exhibit anatural dichotomy,

with a subset of features owned by a particular retailer and a set of features that the retailer

may acquire at a cost. In particular, each retailer privately owns information about its cus-

tomers’ behavior as captured by web logfiles. The retailer’s private datacontain features

such as user demographics, the time of the session or whether the session occurred on a

weekday. These are referred to assite-centricfeatures. In addition, the data contain infor-

mation that is not owned by any individual retailer, capturing each customer’s aggregated

behavior and purchasing patterns across a variety of on-line retailers.These are referred

to asuser-centricfeatures. The learning task is to induce models to predict whether a cus-

tomer will purchase an item during a visit to the store. The web usage data hasa clear

division of features—the first 15 are site-centric and the rest are user-centric. Hence the
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pool of incomplete instances was initialized with only the first 15 features. We selected

several UCI datasets that had more than 25 features. For these datasets, 30% of the features

were randomly selected to be used in the incomplete instances. A different set of randomly

selected features was used for each train-test split of the data. All the datasets used in this

study are summarized in Table 8.1.

Table 8.1: Summary of Data Sets
Name Instances Classes Features
bmg 2417 2 40
expedia 3125 2 40
qvc 2152 2 40
etoys 270 2 40
priceline 447 2 40
anneal 898 6 38
soybean 683 19 35
kr-vs-kp 3196 2 36
hypo 3772 4 29
autos 205 6 25

The AFA framework we have proposed can be implemented using an arbitrary prob-

abilistic classifier as a learner. We experimented with two learners — J48 and DECORATE.

8.2.2 Results using J48 Tree Induction

The results comparingError Samplingto random selection are summarized in Table 8.2.

All error reductions reported are statistically significant. The results showthat for all data

sets usingError Samplingsignificantly improves on the model accuracy compared to ran-

dom sampling. Figures 8.1 and 8.2 present learning curves that demonstrate the advantage

of using an AFA scheme over random acquisition. Apart from average reduction in error,

a good indicator of the effectiveness of an active feature-value acquisition scheme is the

number of acquisitions required to obtain a desired accuracy. For example, on theanneal

data set,Error Samplingachieves an accuracy of 98% with only 200 acquisitions of com-

plete instances. In contrast, random selection requires more than 400 complete instances to
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achieve the same accuracy level.
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Table 8.2: Error reduction ofError Samplingwith respect to random sampling.
Dataset %Error Reduction Top-20% %Err. Red.
bmg 10.67 17.77
etoys 10.34 23.88
expedia 19.83 29.12
priceline 24.45 34.49
qvc 15.44 24.75
anneal 22.65 49.27
soybean 8.03 14.79
autos 4.24 10.50
kr-vs-kr 36.82 53.23
hypo 16.79 40.48
Mean 16.93 29.83

8.2.3 Results onDECORATE

In addition to J48, we also testedError Samplingusing DECORATEas a learner. DECORATE

is well-suited for this task for the following three reasons: (1) DECORATE ensembles of

decision trees produce higher accuracies than single trees (Chapter 4); (2) DECORATEhas

been successfully used for active learning using theUncertaintymeasure described here

(Chapter 6); and (3) DECORATE is more resilient to missing features than single decision

trees, Bagging, and ADABOOST(Chapter 5).

In our experiments, we built DECORATE ensembles of 15 classifiers, using J48 as

our base learner and generated learning curves as described in Section 8.2.1. In each itera-

tion of AFA, we selected instances in batches of 20. The results comparingError Sampling

to random selection for DECORATE are summarized in Table 8.3. The error reductions on

all datasets, exceptetoys, are significant. DECORATEwith random sampling is more accu-

rate than single trees; hence, improving on it through active sampling is a morechallenging

task. But as can be seen from the results, usingError Samplinggives considerable improve-

ments in accuracy over DECORATE using random sampling. Figures 8.3 and 8.4 presents

datasets which clearly demonstrate the advantage of using active feature-value acquisition

over random selection for DECORATE. For example, onqvc, once random sampling ac-
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Table 8.3: Error reduction ofError Samplingwith respect to random sampling.
Dataset %Error Reduction Top-20% %Err. Red.
bmg 16.26 21.89
etoys 1.93 10.07
expedia 16.75 23.82
priceline 28.31 41.49
qvc 24.44 35.91
anneal 21.41 44.51
soybean 9.99 17.67
autos 3.95 8.49
kr-vs-kr 27.79 54.91
hypo 21.61 39.49
Mean 17.24 29.83

quires approximately 1200 complete instances, it induces a model with an accuracy of 90%;

while, Error Samplingrequires approximately 200 complete instances to achieve the same

accuracy. This could translate to a substantial reduction in the cost of dataacquisition.

8.3 Comparison with GODA

The most closely related work to ours, is the study by Zheng and Padmanabhan (2002) of

the active feature-value acquisition scheme GODA. GODA measures the utility of acquiring

feature-values for a particular incomplete instance in the following way. It adds the instance

to the training set, imputing the values that are missing. It then induces a new model and

measures its performance on the training set. This process is repeated foreach incomplete

instance, and the instance that leads to the model with the best expected performance is

selected for feature-value acquisition.

GODA has an important difference from the methods we have proposed: it induces

its models from only the complete instances—ignoring the incomplete instances. Whether

one chooses to use or to ignore incomplete instances when inducing a model has a signifi-

cant bearing on the acquisition scheme. GODA estimates the value of potential acquisitions

by the model’s improved performance resulting from adding the example to the training
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set. This confounds the improvement due to acquiring the previously unknown feature val-

ues with the improvement due to including the already known feature values. In contrast,

the policies we propose estimate the marginal utility of missing feature acquisition with

respect to a model induced from all available data. GODA’s measure of utility cannot be

employed directly when the models are induced from all incomplete instances including

imputations of their missing features. Nevertheless, since GODA is (to our knowledge) the

only other technique designed for the same acquisition setting, it is informativeto compare

performance with our approach.

To compare to our approach, we implemented GODA as described in (Zheng &

Padmanabhan, 2002), using J48 tree induction as the learner and using accuracy as the

goodness measureof the model. As in (Zheng & Padmanabhan, 2002), we usemultiple im-

putationwith Expectation-Maximization to impute missing values for incomplete instances.

Experiments comparingError Samplingusing J48 to GODA were run as in Section 8.2.1.

However, due to GODA’s tremendous computational requirements, we only ran one run of

10-fold cross-validation on three of the datasets. The datasets were alsoreduced in size to

make running GODA feasible.

A summary of the results, along with the reduced dataset sizes, is presentedin Ta-

ble 8.4. The results show that in spite of the high computational complexity of GODA, it

results in inferior performance compared toError Samplingfor all three domains. All im-

provements obtained byError Samplingwith respect to GODA are statistically significant.

Figure 8.5 presents learning curves for thepriceline dataset that clearly demonstrate the

superior performance ofError Sampling. These results suggest that the ability ofError

Samplingto capitalize on information from incomplete instances, and to utilize this knowl-

edge in feature acquisition, allows it to capture better predictive patterns compared to those

captured by GODA.

Recall that when an instance is selected for acquisition,Error Samplingadds to the

training data only the acquired feature values. GODA, however, adds to the training data
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the entire instance, i.e., the feature values that are known ex ante (but thatare not used for

induction by GODA 1) as well as the acquired feature values and the instance’s class mem-

bership. Hence, even when the same instance is selected by GODA and byError Sampling,

the relative increase in accuracy for GODA is likely to be greater than the increase obtained

for a model induced withError Sampling. This difference contributes to the steep learning

curve exhibited by the model generated in GODA.

In addition to superior accuracy for a given number of acquisitions, ourapproach

also has the advantage of being simple-to-implement and having a relatively lowcomputa-

tional complexity. GODA, on the other hand, requires inducing a different model for esti-

mating each potential acquisition (i.e.,|I| models are induced). Hence for even moderately

large data sets this approach is prohibitively expensive, except (perhaps) with an incremen-

tal learner such as Naive Bayes. Our AFA framework is significantly moreefficient because

only a single model is induced for estimating the utilities of an arbitrarily large number of

potential feature acquisitions.

Table 8.4: ComparingError Samplingwith GODA: Percent error reduction.

Dataset Size % Error Reduction
bmg 200 19.48
qvc 100 20.03
priceline 100 17.75

8.4 Related Work

Recent work onbudgeted learning(Lizotte, Madani, & Greiner, 2003) also addresses

the issue of active feature-value acquisition. However, the policies developed by Lizotte

et al. (2003) assume feature-values are discrete, and consider the acquisition of individual

feature-values for instances of a given class (i.e., queries are of the form “acquire value of

1This explains why GODA starts with lower accuracy.
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featuref for some instance in classc.”). Therefore, unlike our approach, the policies do

not consider requesting additional features for a specific incomplete instance. In addition,

the policies cannot be directly applied to estimate the value of acquiring sets of features (as

is required in our problem setting). Another important aspect of the policiesproposed by

Lizotte et al. (2003) is that for each feature and class membership they require estimating

the performance of all models induced from each possible value assignment. The induc-

tion of most learners is not incremental, hence for each feature class pair, a new model is

required to be induced for each value assignment. Although the frameworkproposed by

Lizotte et al. (2003) was not designed to solve the problem discussed here, one may con-

sider an extension to this framework for estimating the utility of acquiring values for a set

of features for incomplete instances. However, the number of possible value assignments,

and consequently the number of model inductions required will increase considerably. It is

unclear whether an algorithm with such a high complexity would be feasible in practice.

Some work oncost sensitivelearning (Turney, 2000) has addressed the issue of
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inducing economical classifiers when there are costs associated with obtaining feature val-

ues. However, most of this work assumes that thetraining data are complete and focuses on

learning classifiers that minimize the cost of classifying incompletetestinstances. An ex-

ception, CS-ID3 (Tan & Schlimmer, 1990), also attempts to minimize the cost of acquiring

features during training; however, it processes examples incrementally and can only request

additional information for the current training instance. CS-ID3 uses a simple greedy strat-

egy that requests the value of the cheapest unknown feature when the existing hypothesis is

unable to correctly classify the current instance. It does not actively select the most useful

information to acquire from a pool of incomplete training examples. The LAC* algorithm

(Greiner, Grove, & Roth, 2002) also addresses the issue of economical feature acquisition

during both training and testing; however, it also adopts a very simple strategy that does

not actively select the most informative data to collect during training. Rather, LAC* sim-

ply requests complete information on a random sample of instances in repeatedexploration

phases that are intermixed withexploitationphases that use the current learned classifier to

economically classify instances.

8.5 Chapter Summary

We have presented a general framework for active feature-value acquisition that can be

applied to different learners and can use alternate measures of utility for ranking acquisi-

tions. Within this framework, we present an approach in which instances are selected for

acquisition based on the current model’s accuracy and its confidence in prediction. We

show empirically that this approach,Error Sampling, significantly improves the accuracy

of models learned for fixed feature acquisition budgets, when compared with a policy that

requests features randomly. In particular, we have shown that usingError Samplingwith

DECORATEensembles is very effective for the task of active feature-value acquisition.

A direct comparison ofError Samplingwith GODA, an alternate AFA approach,

demonstrates that in spite of its simplicity,Error Samplingexhibits superior performance.
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Error Sampling’s utilization of all known feature-values and of a simple measure of the

potential for improvement from an acquisition, results in advantages both in computation

time and model accuracy.

The effectiveness, simplicity, and computational efficiency ofError Samplingar-

gues that this policy should be considered by any practitioner or researcher faced with the

problem of feature set acquisition. From a research perspective, wesuggest that theError

Samplingpolicy be a baseline (in addition to random selection) for future studies of active

feature selection.
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Chapter 9

Future Work

In this chapter, we discuss some future directions for the research presented in this thesis.

9.1 Further Analysis onDECORATE

Our current study has focused primarily on building ensembles of decisiontrees. However,

DECORATE, being a meta-learner, can be applied to any learning algorithm. One direction

for future work is to experiment with other base learners. Initial experiments on apply-

ing DECORATE to neural networks look promising. It would be good to perform a more

thorough study, and compare DECORATE to diversity-based ensemble methods designed

specifically for neural networks (Opitz & Shavlik, 1996; Rosen, 1996;Liu & Yao, 1999).

DECORATEhas been tested extensively on many datasets from the UCI repository.

However, these datasets are fairly low-dimensional, having at most a few hundred features.

It would be useful to see how effective DECORATE is for domains with high-dimensional

data, having tens of thousands of features, such as text categorization. Boosting has been

successfully used for text categorization, in a system called BoosTexter(Schapire & Singer,

2000), so it would interesting to see if DECORATEcan perform better.

In Chapter 5, we studied the impact of imperfections in data on different ensemble
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methods. Our results showed that ADABOOST is very sensitive to classification noise. Sev-

eral variations of ADABOOSThave been recently developed to address this issue (Servedio,

2003; Oza, 2004; McDonald et al., 2003). An interesting avenue for future work would be

to compare the performance of DECORATEwith these new boosting algorithms.

The empirical success of DECORATE in the classification task, raises the issue of

the need for a sound theoretical understanding of its effectiveness. In particular, it would be

useful to provide a theoretical guarantee that the DECORATEalgorithm improves the bound

on generalization error. Furthermore, it would be useful to study the connection between

DECORATEand methods that attempt to maximize the margins on the training sample, such

as AdaBoost (Schapire, Freund, Bartlett, & Lee, 1998).

Recent studies have analyzed how different ensemble methods affect thecontribu-

tion of biasandvarianceto generalization error (Suen, Melville, & Mooney, 2005; Bauer

& Kohavi, 1999; Webb, 2000). Performing a similar bias-variance analysis of DECORATE

may provide some useful insights about the algorithm.

9.2 Active Learning for Probability Estimation

In our experiments on active probability estimation in Chapter 7, we are forced to use indi-

rect metrics to measure CPE accuracy, since we do not have datasets thatprovide true class

probabilities for instances. However, in the absence of real data with class probabilities, it

would be useful to also evaluate our methods on synthetic data, as done by Margineantu

and Dietterich (2002).

Our study uses standard metrics for evaluating CPE employed in existing research

(Nielsen, 2004). However, we have shown that JS-divergence is a good measure for se-

lecting examples for improving CPE; and therefore it should also be a good measure for

evaluating CPE. In future work, when the true class probabilities are known, we suggest

evaluating CPE by computing the JS-divergence between the estimated and thetrue class

distributions.
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9.3 Active Feature-value Acquisition

In our current AFA setting in Chapter 8, we assume that for all instances,the values of

a subset of the featuresa1, . . . , ai are known, and the values of the remaining features

ai+1, . . . , an are unknown and can be acquired at a cost. We also assume that for a selected

instance, the entire set of missing features-values can be acquired at once. Furthermore, we

assume that the cost of acquiring complete information is the same for different instances.

These assumptions were based on the web-usage datasets(Padmanabhan et al., 2001) that

motivated our study. However, these assumption may not be very realistic for other do-

mains. As such, in recent work (Melville, Saar-Tsechansky, Provost,& Mooney, 2005b,

2005a), we have studied a more general form of the AFA problem, wherethe learner may

request the value of a specific feature for a selected instance. In this setting, we also as-

sume that the cost of acquiring each feature-value may vary. We present an approach that

acquires feature values for inducing a classification model based on an estimation of the

expected improvement in model accuracy per unit cost. Experimental results demonstrate

that our approach consistently reduces the cost of producing a model of a desired accuracy

compared to random feature acquisitions.

Similarly to previous studies on active feature acquisition (Zheng & Padmanabhan,

2002) the test instances in this study are complete. We test on complete instances in order

to estimate the model’s performance without confounding effects of incompletevalues in

test instances. However, it is important to explore the setting in which featurevalues can

also be acquired for incomplete test instances. Some work in this direction hasrecently

been done by Kapoor and Greiner (2005).
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Chapter 10

Conclusions

This thesis has introduced the DECORATEalgorithm, which is a simple yet effective method

that uses diversity to guide ensemble construction. By manipulating artificial training exam-

ples, DECORATE is able to use a strong base learner to produce an accurate and diverseset

of classifiers. This thesis demonstrates that the diverse ensembles produced by DECORATE

can be used to learner accurate classifiers in settings where there is a limited amount of

training data, and inactivesettings, where the learner can acquire class labels for unlabeled

examples or additional feature-values for examples with missing values.

We first examined thepassivelearning setting, where the training set is randomly

sampled from the data distribution. Experimental results demonstrate that DECORATE

produces highly accurate ensembles that outperform Bagging, ADABOOST and Random

Forests low on the learning curve. Moreover, even on larger training sets, DECORATEout-

performs Bagging and Random Forests, and is competitive with ADABOOST.

We ran additional experiments comparing the sensitivity of Bagging, ADABOOST,

and DECORATE to three types of imperfect data: missing features, classification noise,

and feature noise. Our experiments, using J48 as a base learner, showthat in the case of

missing features, DECORATE significantly outperforms the other approaches. In the case

of classification noise, both DECORATE and Bagging are effective at decreasing the error
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of the base learner. However, ADABOOST degrades rapidly in performance, even with

small amounts of classification noise, often performing worse than J48. In the presence of

noise in the features, all ensemble methods produce consistent improvementsover the base

learner. These results suggest that, when there are many missing features in the data, or

appreciable noise in the classification labels, it is advisable to use DECORATE or Bagging

over ADABOOST.

For the task of active learning, we propose the algorithm ACTIVEDECORATE, which

uses DECORATEensembles to help select the most informative examples to be labeled. Em-

pirical results show that this approach is very effective at reducing thenumber of labeled

training examples required to achieve high classification accuracy. On average, ACTIVE-

DECORATErequires only 78% of the number of training examples required by DECORATE

using random sampling. Experimental results also demonstrate that, on average, ACTIVE-

DECORATE performs better that the competing active learners — Query by Bagging and

Query by Boosting.

Another contribution of this thesis, is proposing the use of Jensen-Shannon diver-

gence for measuring the utility of acquiring labeled examples for active learning of prob-

ability estimates. Extensive experiments have demonstrated that JS-divergence effectively

captures the uncertainty of class probability estimation and allows us to identify particularly

informative examples that significantly improve the model’s class distribution estimation.

In particular, we show that when JS-divergence is used with ACTIVEDECORATEit produces

substantial improvements over using margins, which focuses on classification accuracy. We

also improve on BOOTSTRAP-LV, an existing active CPE learner for binary class problems,

by using JS-divergence in place of itslocal variancemeasure. Apart from requiring fewer

labeled examples to achieve accurate probability estimates, our methods have theadvantage

of being applicable to multi-class domains.

This thesis also presents a general framework for the task of active feature-value

acquisition (AFA). Within this framework, we present an approach in whichinstances are
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selected for acquisition based on the current model’s accuracy and its confidence in predic-

tion. Experiments on this approach,Error Sampling, using DECORATE demonstrate that

our method can induce accurate models using substantially fewer feature-value acquisi-

tions as compared to a random acquisition policy. A direct comparison ofError Sampling

with GODA, an alternate AFA approach, demonstrates that in spite of its simplicity,Error

Samplingexhibits superior performance.Error Sampling’s utilization of all known feature-

values and of a simple measure of the potential for improvement from an acquisition, makes

it computationally more efficient and leads to more accurate classifiers than GODA.

This thesis introduces the DECORATE algorithm, which produces a diverse set of

classifiers by manipulating artificial training examples. We demonstrate that the diverse

ensembles produced by DECORATE can be used to learn accurate classifiers in settings

where there is a limited amount of training data, and inactivesettings, where the learner

can acquire class labels for unlabeled examples or additional feature-values for examples

with missing values. As a result, we are able to build more accurate predictive models

than existing methods, with reduced supervision, which translates to lower costs of data

acquisition.
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