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Abstract

Ensemble methods like bagging and boosting that
combine the decisions of multiple hypotheses are
some of the strongest existing machine learning
methods. The diversity of the members of an
ensemble is known to be an important factor in
determining its generalization error. This paper
presents a new method for generating ensembles
that directly constructs diverse hypotheses using
additional artificially-constructed training exam-
ples. The technique is a simple, general meta-
learner that can use any strong learner as a base
classifier to build diverse committees. Experimen-
tal results using decision-tree induction as a base
learner demonstrate that this approach consistently
achieves higher predictive accuracy than both the
base classifier and bagging (whereas boosting can
occasionally decrease accuracy), and also obtains
higher accuracy than boosting early in the learning
curve when training data is limited.

1 Introduction
One of the major advances in inductive learning in the past
decade was the development ofensembleor committeeap-
proaches that learn and retain multiple hypotheses and com-
bine their decisions during classification[Dietterich, 2000].
For example,boosting[Freund and Schapire, 1996], an en-
semble method that learns a series of “weak” classifiers each
one focusing on correcting the errors made by the previous
one, has been found to be one of the currently best generic
inductive classification methods[Hastieet al., 2001].

Constructing adiversecommittee in which each hypothesis
is as different as possible (decorrelated with other members
of the ensemble) while still maintaining consistency with the
training data is known to be a theoretically important property
of a good committee[Krogh and Vedelsby, 1995]. Although
all successful ensemble methods encourage diversity to some
extent, few have focused directly on the goal of maximizing
diversity. Existing methods that focus on achieving diversity
[Opitz and Shavlik, 1996; Rosen, 1996] are fairly complex
and are not generalmeta-learnerslike bagging[Breiman,
1996] and boosting that can be applied to any base learner
to produce an effective committee[Witten and Frank, 1999].

We present a new meta-learner (DECORATE, Diverse En-
semble Creation by Oppositional Relabeling of Artificial
Training Examples) that uses an existing “strong” learner
(one that provides high accuracy on the training data) to build
an effective diverse committee in a fairly simple, straightfor-
ward manner. This is accomplished by adding different ran-
domly constructed examples to the training set when building
new committee members. These artificially constructed ex-
amples are given category labels thatdisagreewith the cur-
rent decision of the committee, thereby easily and directly
increasing diversity when a new classifier is trained on the
augmented data and added to the committee.

Boosting and bagging provide diversity by sub-sampling
or re-weighting the existing training examples. If the train-
ing set is small, this limits the amount of ensemble diversity
that these methods can obtain. DECORATE ensures diversity
on an arbitrarily large set of additional artificial examples.
Therefore, one hypothesis is that it will result in higher gen-
eralization accuracy when the training set is small. This pa-
per presents experimental results on a wide range of UCI data
sets comparing boosting, bagging, and DECORATE, all using
J48 decision-tree induction (a Java implementation of C4.5
[Quinlan, 1993] introduced in[Witten and Frank, 1999]) as a
base learner. Cross-validated learning curves support the hy-
pothesis that “DECORATEd trees” generally result in greater
classification accuracy for small training sets.

2 Ensembles and Diversity
In an ensemble, the combination of the output of several
classifiers is only useful if they disagree on some inputs
[Krogh and Vedelsby, 1995]. We refer to the measure of
disagreement as thediversity of the ensemble. There have
been several methods proposed to measure ensemble diver-
sity [Kuncheva and Whitaker, 2002] — usually dependent
on the measure of accuracy. For regression, where the mean
squared error is commonly used to measure accuracy, vari-
ance can be used as a measure of diversity. So the diver-
sity of the ith classifier on examplex can be defined as
di(x) = [Ci(x) � C�(x)]2, whereCi(x) and C�(x) are
the predictions of theith classifier and the ensemble respec-
tively. For this setting Krogh et al[1995] show that the gen-
eralization error,E, of the ensemble can be expressed as
E = �E� �D, where�E and �D are the mean error and diversity
of the ensemble respectively.



For classification problems, where the 0/1 loss function is
most commonly used to measure accuracy, the diversity of
theith classifier can be defined as:

di(x) =

�
0 : if Ci(x) = C�(x)
1 : otherwise (1)

However, in this case the above simple linear relationship
does not hold betweenE, �E and �D. But there is still strong
reason to believe that increasing diversity should decrease en-
semble error[Zenobi and Cunningham, 2001]. The underly-
ing principle of our approach is to build ensembles of classi-
fiers that are consistent with the training data and maximize
diversity as defined in (1).

3 DECORATE: Algorithm Definition
In DECORATE (see Algorithm 1), an ensemble is generated
iteratively, learning a classifier at each iteration and adding it
to the current ensemble. We initialize the ensemble to contain
the classifier trained on the given training data. The classifiers
in each successive iteration are trained on the original training
data and also on some artificial data. In each iteration artifi-
cial training examples are generated from the data distribu-
tion; where the number of examples to be generated is spec-
ified as a fraction,Rsize, of the training set size. The labels
for these artificially generated training examples are chosen
so as to differ maximally from the current ensemble’s predic-
tions. The construction of the artificial data is explained in
greater detail in the following section. We refer to the labeled
artificially generated training set as thediversity data. We
train a new classifier on the union of the original training data
and the diversity data. If adding this new classifier to the cur-
rent ensemble increases the ensemble training error, then we
reject this classifier, else we add it to the current ensemble.
This process is repeated until we reach the desired committee
size or exceed the maximum number of iterations.

To classify an unlabeled example,x, we employ the fol-
lowing method. Each base classifier,Ci, in the ensemble
C� provides probabilities for the class membership ofx. If
PCi;y(x) is the probability of examplex belonging to class
y according to the classifierCi, then we compute the class
membership probabilities for the entire ensemble as:

Py(x) =

P
Ci2C�

PCi;y(x)

jC�j

wherePy(x) is the probability ofx belonging to classy.
We then select the most probable class as the label forx i.e.
C�(x) = argmaxy2Y Py(x)

3.1 Construction of Artificial Data
We generate artificial training data by randomly picking data
points from an approximation of the training-data distribu-
tion. For a numeric attribute, we compute the mean and stan-
dard deviation from the training set and generate values from
the Gaussian distribution defined by these. For a nominal
attribute, we compute the probability of occurrence of each
distinct value in its domain and generate values based on this
distribution. We use Laplace smoothing so that nominal at-
tribute values not represented in the training set still have a

non-zero probability of occurrence. In constructing artificial
data points, we make the simplifying assumption that the at-
tributes are independent. It is possible to more accurately es-
timate the joint probability distribution of the attributes; but
this would be time consuming and require a lot of data.

In each iteration, the artificially generated examples are la-
beled based on the current ensemble. Given an example, we
first find the class membership probabilities predicted by the
ensemble, replacing zero probabilities with a small non-zero
value. Labels are then selected, such that the probability of
selection is inversely proportional to the current ensemble’s
predictions.

Algorithm 1 The DECORATE algorithm

Input:
BaseLearn - base learning algorithm
T - set ofm training examples< (x1; y1); :::; (xm; ym) >
with labelsyj 2 Y
Csize - desired ensemble size
Imax - maximum number of iterations to build an ensemble
Rsize - factor that determines number of artificial examples
to generate

1. i = 1

2. trials = 1

3. Ci = BaseLearn(T )

4. Initialize ensemble,C� = fCig

5. Compute ensemble error,� =
P

xj2T :C�(xj )6=yj
1

m

6. While i < Csize andtrials < Imax

7. GenerateRsize � jT j training examples, R,
based on distribution of training data

8. Label examples in R with probability of class labels
inversely proportional toC�’s predictions

9. T = T
S
R

10. C 0 = BaseLearn(T )

11. C� = C�
S
fC 0g

12. T = T �R, remove the artificial data

13. Compute training error,�0, of C� as in step 5

14. If �0 � �

15. i = i+ 1

16. � = �0

17. otherwise,

18. C� = C� � fC 0g

19. trials = trials+ 1

4 Experimental Evaluation
4.1 Methodology
To evaluate the performance of DECORATE we ran experi-
ments on 15 representative data sets from the UCI repository
[Blake and Merz, 1998] used in similar studies[Webb, 2000;



Quinlan, 1996]. We compared the performance of DECO-
RATE to that of Adaboost, Bagging and J48, using J48 as the
base learner for the ensemble methods and using the Weka
implementations of these methods[Witten and Frank, 1999].
For the ensemble methods, we set the ensemble size to 15.
Note that in the case of DECORATE, we only specify a max-
imum ensemble size, the algorithm terminates if the number
of iterations exceeds the maximum limit even if the desired
ensemble size is not reached. For our experiments, we set
the maximum number of iterations in DECORATE to 50. We
ran experiments varying the amount of artificially generated
data,Rsize; and found that the results do not vary much for
the range 0.5 to 1. However,Rsize values lower than 0.5 do
adversely affect DECORATE, because there is insufficient ar-
tificial data to give rise to high diversity. The results we report
are forRsize set to 1, i.e. the number of artificially generated
examples is equal to the training set size.

The performance of each learning algorithm was evaluated
using 10 complete 10-fold cross-validations. In each 10-fold
cross-validation each data set is randomly split into 10 equal-
size segments and results are averaged over 10 trials. For each
trial, one segment is set aside for testing, while the remaining
data is available for training. To test performance on vary-
ing amounts of training data, learning curves were generated
by testing the system after training on increasing subsets of
the overall training data. Since we would like to summarize
results over several data sets of different sizes, we select dif-
ferentpercentagesof the total training-set size as the points
on the learning curve.

To compare two learning algorithms across all domains
we employ the statistics used in[Webb, 2000], namely the
win/draw/loss record and the geometric mean error ratio. The
win/draw/loss record presents three values, the number of
data sets for which algorithmA obtained better, equal, or
worse performance than algorithmB with respect to classi-
fication accuracy. We also report thestatistically significant
win/draw/loss record; where a win or loss is only counted if
the difference in values is determined to be significant at the
0.05 level by a pairedt-test. The geometric mean error ratio

is defined asn
qQn

i=1
EA
EB

, whereEA andEB are the mean

errors of algorithmA andB on the same domain. If the ge-
ometric mean error ratio is less than one it implies that algo-
rithmA performs better thanB, and vice versa. We compute
error ratios so as to capture the degree to which algorithms
out-perform each other in win or loss outcomes.

4.2 Results
Our results are summarized in Tables 1-3. Each cell in the
tables presents the accuracy of DECORATEversus another al-
gorithm. If the difference is statistically significant, then the
larger of the two is shown in bold. We varied the training
set sizes from 1-100% of the total available data, with more
points lower on the learning curve since this is where we
expect to see the most difference between algorithms. The
bottom of the tables provide summary statistics, as discussed
above, for each of the points on the learning curve.

DECORATE has moresignificantwins to losses over Bag-
ging for all points along the learning curve (see Table 2).

DECORATEalso outperforms Bagging on the geometric mean
ratio. This suggests that even in cases where Bagging beats
DECORATE the improvement is less than DECORATE’s im-
provement on Bagging on the rest of the cases.

DECORATE outperforms AdaBoost early on the learning
curve both on significant wins/draw/loss record and geomet-
ric mean ratio; however, the trend is reversed when given 75%
or more of the data. Note that even with large amounts of
training data, DECORATE’s performance is quite competitive
with Adaboost - given 100% of the data DECORATEproduces
higher accuracies on 6 out of 15 data sets.

It has been observed in previous studies[Webb, 2000;
Bauer and Kohavi, 1999] that while AdaBoost usually sig-
nificantly reduces the error of the base learner, it occasionally
increases it, often to a large extent. DECORATEdoes not have
this problem as is clear from Table 1.

On many data sets, DECORATEachieves the same or higher
accuracy as Bagging and AdaBoost with many fewer training
examples. Figure 1 show learning curves that clearly demon-
strate this point. Hence, in domains where little data is avail-
able or acquiring labels is expensive, DECORATE has an ad-
vantage over other ensemble methods.

We performed additional experiments to analyze the role
that diversity plays in error reduction. We ran DECORATEat
10 different settings ofRsize ranging from 0.1 to 1.0, thus
varying the diversity of ensembles produced. We then com-
pared the diversity of ensembles with the reduction in gener-
alization error. Diversity of an ensemble is computed as the
mean diversity of the ensemble members (as given by Eq. 1).
We compared ensemble diversity with theensemble error re-
duction, i.e. the difference between the average error of the
ensemble members and the error of the entire ensemble (as in
[Cunningham and Carney, 2000]). We found that the correla-
tion coefficient between diversity and ensemble error reduc-
tion is 0.6225 (p1 � 10�50), which is fairly strong. Further-
more, we compared diversity with thebase error reduction,
i.e. the difference between the error of the base classifier and
the ensemble error. The base error reduction gives a better in-
dication of the improvement in performance of an ensemble
over the base classifier. The correlation of diversity versus
the base error reduction is 0.1552 (p� 10�50). We note that
even though this correlation is weak, it is still astatistically
significantpositive correlation. These results reinforce our
belief that increasing ensemble diversity is a good approach
to reducing generalization error.

To determine how the performance of DECORATEchanges
with ensemble size, we ran experiments with increasing sizes.
We compared results for training on 20% of available data,
since the advantage of DECORATEis most noticeable low on
the learning curve. Due to lack of space, we do not include
the results for all 15 datasets, but present five representative
datasets (see Figure 2). The performance on other datasets is
similar. We note, in general, that the accuracy of DECORATE
increases with ensemble size; though on most datasets, the
performance levels out with an ensemble size of 10 to 25.

1Thep-value is the probability of getting a correlation as large as
the observed value by random chance, when the true correlation is
zero.
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Figure 1: DECORATEcompared to AdaBoost and Bagging
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Figure 2: DECORATEat different ensemble sizes

5 Related Work
There have been some other attempts at building ensembles
that focus on the issue of diversity. Liu et al[1999] and Rosen
[1996] simultaneously train neural networks in an ensemble
using a correlation penalty term in their error functions. Opitz
and Shavlik[1996] use a genetic algorithm to search for a
good ensemble of networks. To guide the search they use
an objective function that incorporates both an accuracy and
diversity term. Zenobi et al[2001] build ensembles based
on different feature subsets; where feature selection is done
using a hill-climbing strategy based on classifier error and
diversity. A classifier is rejected if the improvement of one of
the metrics lead to a “substantial” deterioration of the other;
where “substantial” is defined by a pre-set threshold.

In all these approaches, ensembles are built attempting to
simultaneously optimize the accuracy and diversity of indi-
vidual ensemble members. However, in DECORATE, our goal
is to minimizeensemble errorby increasing diversity. At no
point does the training accuracy of the ensemble go below



Table 1: DECORATEvs J48
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/72.49 78.14/75.31 85.24/82.08 92.26/89.28 96.48/95.57 97.36/96.47 97.73/97.3 98.16/97.93 98.39/98.35 98.71/98.55
audio 16.66/16.66 23.73/23.07 41.72/41.17 55.42/51.67 64.09/60.59 67.62/64.84 70.46/68.11 72.82/70.77 77.8/75.15 82.1/77.22
autos 24.33/24.33 29.6/29.01 36.73/34.37 42.89/41.22 52.2/50.53 59.86/53.92 64.77/59.68 68.6/65.24 78/73.15 83.64/81.72
breast-w 92.38/74.73 94.12/87.34 95.06/89.42 95.64/92.21 95.55/93.09 95.91/93.36 96.2/93.85 96.01/94.24 96.28/94.65 96.31/95.01
credit-a 71.78/69.54 74.83/77.46 80.61/81.57 83.09/82.35 84.38/84.29 84.68/84.5985.22/84.41 85.57/84.78 85.61/85.43 85.93/85.57
Glass 31.69/31.69 35.86/32.96 44.5/38.34 55.4/46.62 61.77/54.16 66.01/60.63 68.07/61.38 68.85/63.69 72.73/67.53 72.77/67.77
heart-c 58.66/49.57 65.11/58.03 73.55/67.71 75.05/70.15 77.66/73.44 78.34/74.61 79.09/74.78 79.46/75.62 78.74/76.7 78.48/77.17
hepatitis 52.33/52.33 71.95/65.93 76.59/72.75 78.85/78.25 80.28/78.61 81.14/78.63 81.53/79.35 81.68/79.57 82.37/79.04 82.43/79.22
colic 59.85/52.85 68.19/65.31 74.91/74.37 78.45/79.94 81.81/82.71 82.47/83.41 82.74/83.55 83.5/84.66 83.93/85.18 85.24/85.16
iris 33.33/33.33 50.87/33.33 80.67/59.33 91.27/84.33 93.07/91.33 94.4/92.73 95.07/93 94.07/93.33 94.67/94.07 94.93/94.73
labor 54.27/54.27 54.27/54.27 67.7/58.93 71.47/64.77 78.6/70.07 81.67/73.7 85.67/75.17 84.2/75.8 87.53/77.4 89.5/78.8
lymph 48.39/48.39 53.49/46.64 65.73/60.39 72.79/68.21 74.57/70.79 78.84/73.58 78.37/74.53 78.31/73.34 78.06/75.63 78.74/76.06
segment 67.94/52.43 80.75/73.26 89.52/85.41 92.87/89.34 94.99/92.22 95.82/93.37 96.54/94.34 96.93/94.77 97.56/95.94 98.02/96.79
soybean 19.37/13.69 32.12/22.32 55.55/42.94 73.51/59.04 84.63/74.49 88.52/81.59 90.37/84.78 91.35/86.89 92.85/89.44 93.81/91.76
splice 63.48/59.92 67.56/68.69 77.34/77.49 82.62/82.58 88.2/87.98 90.46/90.44 91.82/91.77 92.5/92.4 93.41/93.47 93.92/94.03
Win/Draw/Loss 15/0/0 13/0/2 13/0/2 14/0/1 14/0/1 14/0/1 14/0/1 14/0/1 13/0/2 14/0/1
Sig. W/D/L 7/8/0 10/3/2 11/4/0 10/5/0 11/4/0 12/3/0 13/2/0 12/2/1 10/4/1 10/4/1
GM error ratio 0.858 0.8649 0.8116 0.8098 0.8269 0.8103 0.7983 0.8305 0.8317 0.8293

Table 2: DECORATEvs Bagging
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/74.57 78.14/76.42 85.24/82.88 92.26/89.87 96.48/95.67 97.36/96.89 97.73/97.34 98.16/97.78 98.39/98.53 98.71/98.83
audio 16.66/12.98 23.73/23.68 41.72/38.55 55.42/51.34 64.09/61.76 67.62/66.9 70.46/70.29 72.82/73.07 77.8/77.3282.1/80.71
autos 24.33/22.16 29.6/28 36.73/35.88 42.89/44.65 52.2/54.32 59.86/59.67 64.77/65.6 68.6/69.88 78/77.97 83.64/83.12
breast-w 92.38/76.74 94.12/88.07 95.06/90.88 95.64/93.41 95.55/94.42 95.91/94.95 96.2/94.95 96.01/95.55 96.28/96.07 96.31/96.3
credit-a 71.78/69.54 74.83/77.99 80.61/82.58 83.09/83.9 84.38/85.13 84.68/85.78 85.22/85.59 85.57/85.64 85.61/86.12 85.93/85.96
Glass 31.69/24.85 35.86/31.47 44.5/40.87 55.4/49.6 61.77/58.9 66.01/64.35 68.07/66.3 68.85/68.44 72.73/72 72.77/74.67
heart-c 58.66/50.56 65.11/55.67 73.55/68.77 75.05/73.17 77.66/76.12 78.34/77.9 79.09/78.44 79.46/79.11 78.74/79.05 78.48/78.68
hepatitis 52.33/52.33 72.14/63.18 76.8/75.2 79.48/78.64 80.7/80.42 81.81/81.07 81.65/81.2283.19/81.06 82.99/80.87 82.62/81.34
colic 58.37/53.14 66.58/63.83 75.85/76.44 79.54/80.06 81.33/83.04 82.47/83.58 83.02/83.98 83.1/84.47 84.02/85.4 84.69/85.34
iris 33.33/33.33 50.27/33.33 80.67/60.47 91.53/81.4 93.2/90.67 94.2/92.33 94.73/92.87 94.4/93.6 94.53/94.47 94.67/94.73
labor 54.27/54.27 54.27/54.27 67.63/56.27 70.23/65.9 79.77/74.97 83/75.67 84.17/76.27 83.43/78.6 89.73/80.83 89.73/85.87
lymph 48.39/48.39 53.62/47.11 65.06/60.12 71.2/69.68 76.74/73.6 78.84/76.58 78.17/77.68 78.99/76.98 79.14/76.8 79.08/77.97
segment 67.03/55.88 81.16/76.36 89.61/87.42 92.83/91.01 94.88/93.4 95.94/94.65 96.47/95.26 96.93/95.82 97.58/96.78 98.03/97.41
soybean 19.51/14.56 32.4/24.58 55.36/47.46 73.06/65.45 85.14/79.29 88.27/85.05 90.22/87.89 91.4/89.22 92.75/91.56 93.89/92.71
splice 62.77/62.52 67.8/72.36 77.37/80.5 82.55/85.44 88.24/89.5 90.47/91.44 91.84/92.4 92.41/93.07 93.44/94.06 93.92/94.53
Win/Draw/Loss 15/0/0 13/0/2 12/0/3 11/0/4 11/0/4 12/0/3 11/0/4 10/0/5 10/0/5 8/0/7
Sig. W/D/L 8/7/0 10/3/2 10/3/2 9/5/1 10/2/3 8/4/3 6/7/2 8/5/2 5/7/3 4/9/2
GM error ratio 0.8727 0.8785 0.8552 0.8655 0.8995 0.9036 0.8979 0.9214 0.9312 0.9570

that of the base classifier; however, this is a possibility with
previous methods. Furthermore, none of the previous stud-
ies compared their methods with the standard ensemble ap-
proaches such as Boosting and Bagging ([Opitz and Shavlik,
1996] compares with Bagging, but not Boosting).

Compared to boosting, which requires a “weak” base
learner that does not completely fit the training data (boosting
terminates once it constructs a hypothesis with zero training
error), DECORATErequires a strong learner, otherwise the ar-
tificial diversity training data may prevent it from adequately
fitting the real data. When applying boosting to strong base
learners, they must first be appropriately weakened in order
to benefit from boosting. Therefore, DECORATE may be a
preferable ensemble meta-learner for strong learners.

To our knowledge, the only other ensemble approach to uti-
lize artificial training data is the active learning method intro-
duced in[Cohnet al., 1994]. The goal of the committee here
is to select good new training examples rather than to improve
accuracy using the existing training data. Also, the labels of
the artificial examples are selected to produce hypotheses that
more faithfully represent the entire version space rather than
to produce diversity. Cohn’s approach labels artificial data ei-
ther all positive or all negative to encourage, respectively, the
learning of more general or more specific hypotheses.

6 Future Work and Conclusion

In our current approach, we are encouraging diversity using
artificial training examples. However, in many domains, a
large amount of unlabeled data is already available. We could
exploit these unlabeled examples and label them as diversity
data. This would allow DECORATEto act as a form ofsemi-
supervised learningthat exploits both labeled and unlabeled
data[Nigamet al., 2000].

Our current study has used J48 as a base learner; how-
ever, we would expect similarly good results with other base
learners. Decision-tree induction has been the most com-
monly used base learner in other ensemble studies, but there
has been some work using neural networks and naive Bayes
[Bauer and Kohavi, 1999; Opitz and Maclin, 1999]. Exper-
iments on “DECORATing” other learners is another area for
future work.

By manipulating artificial training examples, DECORATE
is able to use a strong base learner to produce an effective,
diverse ensemble. Experimental results demonstrate that the
approach is particularly effective at producing highly accurate
ensembles when training data is limited, outperforming both
bagging and boosting low on the learning curve. The empir-
ical success of DECORATE raises the issue of developing a
sound theoretical understanding of its effectiveness. In gen-



Table 3: DECORATEvs AdaBoost
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/73.02 78.14/77.12 85.24/87.51 92.26/94.16 96.48/97.13 97.36/97.95 97.73/98.54 98.16/98.8 98.39/99.23 98.71/99.68
audio 16.66/16.66 23.73/23.41 41.72/40.24 55.42/52.7 64.09/64.15 67.62/68.91 70.46/73.07 72.82/75.92 77.8/81.74 82.1/84.52
autos 24.33/24.33 29.6/29.71 36.73/34.2 42.89/43.28 52.2/56.13 59.86/62.2 64.77/69.14 68.6/72.03 78/80.28 83.64/85.28
breast-w 92.38/74.73 94.12/87.84 95.06/91.15 95.64/93.75 95.55/94.85 95.91/95.72 96.2/95.84 96.01/95.87 96.28/96.3 96.31/96.47
credit-a 71.78/68.8 74.83/75.3 80.61/79.68 83.09/81.14 84.38/83.04 84.68/84.22 85.22/84.13 85.57/84.58 85.61/84.93 85.93/85.42
Glass 31.69/31.69 35.86/32.93 44.5/40.71 55.4/49.78 61.77/58.03 66.01/64.33 68.07/66.93 68.85/68.69 72.73/74.69 72.77/76.06
heart-c 58.66/49.57 65.11/58.65 73.55/70.71 75.05/72.5 77.66/76.65 78.34/78.26 79.09/78.96 79.46/79.55 78.74/79.06 78.48/79.22
hepatitis 52.33/52.33 72.14/65.93 76.8/73.01 79.48/76.95 80.7/79.44 81.81/79.22 81.65/81.27 83.19/82.63 82.99/83.24 82.62/82.71
colic 58.37/52.85 66.58/67.18 75.85/72.85 79.54/77.17 81.33/79.36 82.47/79.24 83.02/79.51 83.1/80.22 84.02/80.59 84.69/81.93
iris 33.33/33.33 50.27/33.33 80.67/66.2 91.53/84.53 93.2/90.73 94.2/93 94.73/93.33 94.4/93.53 94.53/94.2 94.67/94.2
labor 54.27/54.27 54.27/54.27 67.63/58.93 70.23/65.1 79.77/73.2 83/76.9 84.17/79.57 83.43/80.1 89.73/84.07 89.73/86.37
lymph 48.39/48.39 53.62/46.64 65.06/60.54 71.2/69.57 76.74/74.16 78.84/78.62 78.17/80.35 78.99/79.88 79.14/80.96 79.08/81.75
segment 67.03/60.22 81.16/77.38 89.61/88.5 92.83/92.71 94.88/95.01 95.94/96.03 96.47/96.9 96.93/97.23 97.58/98 98.03/98.34
soybean 19.51/14.26 32.4/23.36 55.36/49.37 73.06/69.49 85.14/85.01 88.27/88.37 90.22/90.04 91.4/90.89 92.75/92.5793.89/92.88
splice 62.77/65.11 67.8/73.9 77.37/82.22 82.55/86.13 88.24/88.27 90.47/89.82 91.84/90.8 92.41/90.78 93.44/92.63 93.92/93.59
Win/Draw/Loss 14/0/1 11/0/4 13/0/2 12/0/3 10/0/5 10/0/5 10/0/5 9/0/6 6/0/9 6/0/9
Sig. W/D/L 7/7/1 8/6/1 11/2/2 10/3/2 7/6/2 4/9/2 5/5/5 5/6/4 3/6/6 3/6/6
GM error ratio 0.8812 0.8937 0.8829 0.9104 0.9407 0.9598 0.9908 0.9957 1.0377 1.0964

eral, the idea of using artificial or unlabeled examples to aid
the construction of effective ensembles seems to be a promis-
ing approach worthy of further study.
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