
Creating Diversity In Ensembles Using

Artificial Data

Prem Melville and Raymond J. Mooney

Department of Computer Sciences

University of Texas

1 University Station, C0500

Austin, TX 78712

melville@cs.utexas.edu, mooney@cs.utexas.edu

Abstract

The diversity of an ensemble of classifiers is known to be an important factor in

determining its generalization error. We present a new method for generating en-

sembles, Decorate (Diverse Ensemble Creation by Oppositional Relabeling of Ar-

tificial Training Examples), that directly constructs diverse hypotheses using addi-

tional artificially-constructed training examples. The technique is a simple, general

meta-learner that can use any strong learner as a base classifier to build diverse com-

mittees. Experimental results using decision-tree induction as a base learner demon-

strate that this approach consistently achieves higher predictive accuracy than the

base classifier, Bagging and Random Forests. Decorate also obtains higher accu-

racy than Boosting on small training sets, and achieves comparable performance on

larger training sets.

Key words: artificial data, decision trees, bagging, boosting, random forests

1 Introduction

One of the major advances in inductive learning in the past decade was the

development of ensemble or committee approaches that learn and retain mul-

tiple hypotheses and combine their decisions during classification (Dietterich,

2000a). For example, Boosting (Freund and Schapire, 1996) is an ensemble

Preprint submitted to Elsevier Science 13 March 2004

method that learns a series of “weak” classifiers each one focusing on correct-

ing the errors made by the previous one; and it is currently one of the best

generic inductive classification methods (Hastie et al., 2001).

Constructing a diverse committee in which each hypothesis is as different as

possible, while still maintaining consistency with the training data, is known to

be a theoretically important property of a good ensemble method (Krogh and

Vedelsby, 1995). Although all successful ensemble methods encourage diversity

to some extent, few have focused directly on the goal of maximizing diversity.

Existing methods that focus on achieving diversity (Opitz and Shavlik, 1996;

Rosen, 1996; Liu and Yao, 1999) are fairly complex and are not general meta-

learners like Bagging (Breiman, 1996) and Boosting which can be applied to

any base learner to produce an effective committee (Witten and Frank, 1999).

We present a new meta-learner Decorate (Diverse Ensemble Creation by

Oppositional Relabeling of Artificial Training Examples) (Melville and Mooney,

2003), that uses an existing “strong” learner (one that provides high accuracy

on the training data) to build an effective diverse committee in a simple,

straightforward manner. This is accomplished by adding different randomly

constructed examples to the training set when building new committee mem-

bers. These artificially constructed examples are given category labels that

disagree with the current decision of the committee, thereby easily and di-

rectly increasing diversity when a new classifier is trained on the augmented

data and added to the committee.

Methods such as Boosting, Bagging and Random Forests (Breiman, 2001) pro-

vide diversity by sub-sampling or re-weighting the existing training examples.

If the training set is small, this limits the amount of ensemble diversity that

these methods can obtain. Decorate ensures diversity on an arbitrarily large

set of additional artificial examples. Therefore, one hypothesis is that it will

result in higher generalization accuracy when the training set is small. This pa-

per presents experimental results on a wide range of UCI data sets comparing

Boosting, Bagging, Random Forests and Decorate, using J48 decision-tree

induction as a base learner. J48 is a Java implementation of C4.5 (Quinlan,

1993) introduced in (Witten and Frank, 1999). Cross-validated learning curves

support the hypothesis that “Decorated trees” generally result in greater

classification accuracy for small training sets. In fact, even given large training

2

sets, Decorate outperforms Bagging and Random Forests, and is competi-

tive with AdaBoost.

We claim that Decorate’s success is due to its explicit focus on diversity

while constructing ensembles. We support this claim with additional exper-

iments that show a strong correlation between the diversity of Decorate

ensembles and error reduction.

2 Ensemble Diversity

It is well known that the combination of the output of several classifiers is only

useful if they disagree on some inputs (Hansen and Salamon, 1990; Tumer

and Ghosh, 1996). We refer to the measure of disagreement as the diver-

sity/ambiguity of the ensemble. For regression problems, mean squared error

is generally used to measure accuracy, and variance is used to measure diver-

sity. In this setting, Krogh and Vedelsby (1995) show that the generalization

error, E, of the ensemble can be expressed as E = Ē − D̄; where Ē and D̄

are the mean error and diversity of the ensemble respectively. This result im-

plies that increasing ensemble diversity while maintaining the average error

of ensemble members, should lead to a decrease in ensemble error. Unlike re-

gression, for the classification task the above simple linear relationship does

not hold between E, Ē and D̄. But there is still strong reason to believe that

increasing diversity should decrease ensemble error (Zenobi and Cunningham,

2001).

There have been several measures of diversity for classifier ensembles proposed

in the literature. In a recent study, Kuncheva and Whitaker (2003) compared

ten different measures of diversity. They found that most of these measures

are highly correlated. However, to the best of our knowledge, there has not

been a conclusive study showing which measure of diversity is the best to use

for constructing and evaluating ensembles.

3

2.1 Our Diversity Measure

For our work, we use the disagreement of an ensemble member with the en-

semble’s prediction as a measure of diversity. More precisely, if Ci(x) is the

prediction of the i-th classifier (in an ensemble) for the label of x; C∗(x) is

the prediction of the entire ensemble, then the diversity of the i-th classifier

on example x is given by

di(x) =



















0 : if Ci(x) = C∗(x)

1 : otherwise

(1)

To compute the diversity of an ensemble of size n, on a training set of size m,

we average the above term:

1

nm

n
∑

i=1

m
∑

j=1

di(xj) (2)

This measure estimates the probability that a classifier in an ensemble will

disagree with the prediction of the ensemble as a whole. Our approach is to

build ensembles that are consistent with the training data and that attempt

to maximize this diversity term.

3 Bagging, Boosting and Random Forests

There have been many ensemble methods studied in the literature. In this

paper, we compared our approach to the most popular methods — Bag-

ging (Breiman, 1996), AdaBoost (Freund and Schapire, 1996) and Random

Forests (Breiman, 2001). We discuss these methods in more detail below.

3.1 Bagging

In a Bagging ensemble, each classifier is trained on a set of m training exam-

ples, drawn randomly with replacement from the original training set of size

4

m. Such a training set is called a bootstrap replicate of the original set. Each

bootstrap replicate contains, on average, 63.2% of the original training set,

with many examples appearing multiple times. Predictions on new examples

are made by taking the majority vote of the ensemble.

Bagging is typically applied to learning algorithms that are unstable, i.e., a

small change in the training set leads to a noticeable change in the model

produced. Since each ensemble member is not exposed to the same set of

examples, they are different from each other. By voting the predictions of

each of these classifiers, Bagging seeks to reduce the error due to variance of

the base classifier. Bagging of stable learners, such as Naive Bayes, does not

reduce error.

3.2 Boosting

There are several variations of Boosting that appear in the literature. When

we talk about Boosting or AdaBoost, we refer to the AdaBoost.M1 al-

gorithm described in (Freund and Schapire, 1996) (see Algorithm 1). This

algorithm assumes that the base learner can handle weighted examples. If

the learner cannot directly handle weighted examples, then the training set

can be sampled according to a weight distribution to produce a new training

set to be used by the learner. AdaBoost maintains a set of weights over

the training examples; and in each iteration i, the classifier Ci is trained to

minimize the weighted error on the training set. The weighted error of Ci is

computed and used to update the distribution of weights on the training ex-

amples. The weights of misclassified examples are increased and the weights

on correctly classified examples are decreased. The next classifier is trained on

the examples with this updated distribution and the process is repeated.

After training, the ensemble’s predictions are made using a weighted vote

of the individual classifiers:
∑

i wiCi(x). The weight of each classifier, wi, is

computed according to its accuracy on the weighted example set it was trained

on.

AdaBoost is a very effective ensemble method that has been tested exten-

sively by many researchers (Bauer and Kohavi, 1999; Dietterich, 2000b; Quin-

5

Algorithm 1 The AdaBoost.M1 algorithm

Input:

BaseLearn - base learning algorithm
T - set of m training examples < (x1, y1), ..., (xm, ym) > with labels yj ∈ Y
I - number of Boosting iterations
Initialize Distribution of weights on examples, D1(xj) = 1/m for all xj ∈ T
(1) For i = 1 to I
(2) Train base learner given the distribution Di, Ci = BaseLearn(T,Di)
(3) Calculate error of Ci, εi =

∑

xj∈T,

Ci(xj)6=yj

Di(xj)

(4) If εi > 1/2 or then set I = i − 1 and abort loop
(5) Set βi = εi/(1 − εi)

(6) Update weights, Di+1(xj) = Di(xj) ×











βt : if Ci(xj) = yj

1 : otherwise

(7) Normalize weights, Di+1(xj) =
Di+1(xj)

∑

xj∈T

Di+1(xj)

Output: The final hypothesis, C∗(x) = arg max
y∈Y

∑

i:Ci(x)=y

log
1

βi

lan, 1996; Maclin and Opitz, 1997). Applying AdaBoost to decision trees

has been particularly successful, and is considered one of the best off-the-shelf

classification methods (Hastie et al., 2001). The success of AdaBoost has

lead to its use in a host of different applications, including text categorization

(Schapire and Singer, 2000), recommender systems (Freund et al., 1998), and

named-entity extraction (Collins, 2002).

Despite its popularity, Boosting does suffer from some drawbacks. In particu-

lar, Boosting can fail to perform well given insufficient data (Schapire, 1999).

This observation is consistent with the Boosting theory. Boosting also does not

perform well when there is a large amount of classification noise (i.e. train-

ing examples with incorrect class labels) (Dietterich, 2000b; Melville et al.,

2004b).

3.3 Random Forests

Breiman (2001) introduces Random Forests, where he combines Bagging with

random feature selection for decision trees. In this method, each member of the

6

ensemble is trained on a bootstrap replicate as in Bagging. Decision trees are

then grown by selecting the feature to split on at each node from F randomly

selected features. As in (Breiman, 2001), we set F to blog2(k + 1)c, where k

is the total number of features. And we also do not perform any pruning on

the random trees.

Dietterich (2002) recommends Random Forests as the method of choice for

decision trees, as it compares favorably to AdaBoost and works well even

with noise in the training data. The focus of our work has been the devel-

opment of ensemble methods that are meta-learners. Random Forests do not

fall in this class, as they can only be applied to decision trees. However, as we

applied our methods to tree induction we chose to also compare our results

with Random Forests.

4 DECORATE: Algorithm Definition

In Decorate (see Algorithm 2), an ensemble is generated iteratively, first

learning a classifier and then adding it to the current ensemble. We initialize

the ensemble to contain the classifier trained on the given training data. The

classifiers in each successive iteration are trained on the original training data

combined with some artificial data. In each iteration, artificial training exam-

ples are generated from the data distribution; where the number of examples

to be generated is specified as a fraction, Rsize, of the training set size. The la-

bels for these artificially generated training examples are chosen so as to differ

maximally from the current ensemble’s predictions. The construction of the

artificial data is explained in greater detail in the following section. We refer

to the labeled artificially generated training set as the diversity data. We train

a new classifier on the union of the original training data and the diversity

data, thereby forcing it to differ from the current ensemble. Therefore adding

this classifier to the ensemble should increase its diversity. While forcing di-

versity we still want to maintain training accuracy. We do this by rejecting a

new classifier if adding it to the existing ensemble decreases its accuracy. This

process is repeated until we reach the desired committee size or exceed the

maximum number of iterations.

7

Algorithm 2 The DECORATE algorithm

Input:

BaseLearn - base learning algorithm
T - set of m training examples < (x1, y1), ..., (xm, ym) > with labels yj ∈ Y
Csize - desired ensemble size
Imax - maximum number of iterations to build an ensemble
Rsize - factor that determines number of artificial examples to generate
(1) i = 1
(2) trials = 1
(3) Ci = BaseLearn(T)
(4) Initialize ensemble, C∗ = {Ci}

(5) Compute ensemble error, ε =

∑

xj∈T,C∗(xj)6=yj
1

m

(6) While i < Csize and trials < Imax

(7) Generate Rsize × |T | training examples, R,
based on distribution of training data

(8) Label examples in R with probability of class labels
inversely proportional to predictions of C∗

(9) T = T
⋃

R
(10) C ′ = BaseLearn(T)
(11) C∗ = C∗ ⋃

{C ′}
(12) T = T − R, remove the artificial data
(13) Compute training error, ε′, of C∗ as in step 5
(14) If ε′ ≤ ε
(15) i = i + 1
(16) ε = ε′

(17) otherwise,
(18) C∗ = C∗ − {C ′}
(19) trials = trials + 1

To classify an unlabeled example, x, we employ the following method. Each

base classifier, Ci, in the ensemble C∗ provides probabilities for the class mem-

bership of x. If P̂Ci,y(x) is the estimated probability of example x belonging to

class y according to the classifier Ci, then we compute the class membership

probabilities for the entire ensemble as:

P̂y(x) =

∑

Ci∈C∗

P̂Ci,y(x)

|C∗|

where P̂y(x) is the probability of x belonging to class y. We then select the

most probable class as the label for x, i.e. C∗(x) = arg max
y∈Y

P̂y(x)

8

4.1 Construction of Artificial Data

We generate artificial training data by randomly picking data points from an

approximation of the training-data distribution. For a numeric attribute, we

compute the mean and standard deviation from the training set and gener-

ate values from the Gaussian distribution defined by these. For a nominal

attribute, we compute the probability of occurrence of each distinct value in

its domain and generate values based on this distribution. We use Laplace

smoothing so that nominal attribute values not represented in the training

set still have a non-zero probability of occurrence. In constructing artificial

data points, we make the simplifying assumption that the attributes are in-

dependent. It is possible to more accurately estimate the joint probability

distribution of the attributes; but this would be time consuming and require

a lot of data. Furthermore, the results seem to indicate that we can achieve

good performance even with the crude approximation we use.

In each iteration, the artificially generated examples are labeled based on

the current ensemble. Given an example, we first find the class membership

probabilities predicted by the ensemble. We replace zero probabilities with a

small non-zero value and normalize the probabilities to make it a distribution.

Labels are then selected, such that the probability of selection is inversely

proportional to the current ensemble’s predictions. So if the current ensemble

predicts the class membership probabilities P̂y(x), then a new label is selected

based on the new distribution P̂ ′, where:

P̂ ′
y(x) =

1/P̂y(x)
∑

y 1/P̂y(x)

5 Why Decorate Should Work

Ensembles of classifiers are often more accurate than their component classi-

fiers if errors made by the ensemble members are uncorrelated (Hansen and

Salamon, 1990). By training classifiers on oppositely labeled artificial exam-

ples, Decorate reduces the correlation between ensemble members. Further-

more, the algorithm ensures that the training error of the ensemble is always

9

less than or equal to the error of the base classifier; which usually results in a

reduction of generalization error. This leads us to our first hypothesis:

Hypothesis 1: On average, using the predictions of a Decorate ensemble

will improve on the accuracy of the base classifier.

We believe that diversity is the key to constructing good ensembles, and is

thus the basis of our approach. Other ensemble methods also encourage diver-

sity, but in different ways. Bagging implicitly creates ensemble diversity, by

training classifiers on different subsets of the data. Boosting fosters diversity,

by explicitly modifying the distributions of the training data given to subse-

quent classifiers. Random Forests produce diversity by training on different

subsets of the data and feature sets. However, all these methods rely solely on

the training data for encouraging diversity. So when the size of the training

set is small, they are limited in the amount of diversity they can produce.

On the other hand, Decorate ensures diversity on an arbitrarily large set of

additional artificial examples, while still exploiting all the available training

data. This leads us to our next hypothesis:

Hypothesis 2: Decorate will outperform Bagging, AdaBoost and Ran-

dom Forests low on the learning curve i.e. when training sets are small.

6 Experimental Evaluation

6.1 Methodology

To evaluate the performance of Decorate we ran experiments on 15 rep-

resentative data sets from the UCI repository (Blake and Merz, 1998) that

were used in similar studies (Webb, 2000; Quinlan, 1996). The data sets are

summarized in Table 1. Note that the datasets vary in the numbers of training

examples, classes, numeric and nominal attributes; thus providing a diverse

testbed.

We compared the performance of Decorate to that of AdaBoost, Bag-

ging, Random Forests and J48, using J48 as the base learner for the ensemble

methods and using the Weka implementations of these methods (Witten and

10

Table 1
Summary of Data Sets

Name Cases Classes Attributes

Numeric Nominal

anneal 898 6 9 29

audio 226 6 – 69

autos 205 6 15 10

breast-w 699 2 9 –

credit-a 690 2 6 9

glass 214 6 9 –

heart-c 303 2 8 5

hepatitis 155 2 6 13

colic 368 2 10 12

iris 150 3 4 –

labor 57 2 8 8

lymph 148 4 – 18

segment 2310 7 19 –

soybean 683 19 – 35

splice 3190 3 – 62

Frank, 1999). For the ensemble methods, we set the ensemble size to 15. Note

that in the case of Decorate we can only specify a desired ensemble size; the

algorithm terminates if the number of iterations exceeds the maximum limit

set even if the desired ensemble size is not reached. For our experiments, we set

the maximum number of iterations in Decorate to 50. We ran experiments

varying the amount of artificially generated data, Rsize; and found that the

results do not vary much for the range 0.5 to 1. However, Rsize values lower

than 0.5 do adversely affect Decorate, because there is insufficient artificial

data to give rise to high diversity. The results we report are for Rsize set to 1,

i.e. the number of artificially generated examples is equal to the training set

size.

The performance of each learning algorithm was evaluated using 10 complete

runs of 10-fold cross-validation. In each 10-fold cross-validation, each data set

11

is randomly split into 10 equal-size segments and results are averaged over 10

trials. For each trial, one segment is set aside for testing, while the remain-

ing data is available for training. To test performance on varying amounts

of training data, learning curves were generated by testing the system after

training on increasing subsets of the overall training data. Since we would like

to summarize results over several data sets of different sizes, we select different

percentages of the total training-set size as the points on the learning curve.

To compare two learning algorithms across all domains we employ the statis-

tics used in (Webb, 2000), namely the win/draw/loss record and the geometric

mean error ratio. The win/draw/loss record presents three values, the num-

ber of data sets for which algorithm A obtained better, equal, or worse per-

formance than algorithm B with respect to classification accuracy. We also

report the statistically significant win/draw/loss record; where a win or loss is

only counted if the difference in values is determined to be significant at the

0.05 level by a paired t-test.

The geometric mean error ratio is defined as n

√

∏n
i=1

EA

EB
, where EA and EB are

the mean errors of algorithm A and B on the same domain. If the geometric

mean error ratio is less than one it implies that algorithm A performs better

than B, and vice versa. We compute error ratios to capture the degree to

which algorithms out-perform each other in win or loss outcomes.

6.2 Results

Our results are summarized in Tables 3-6. Each cell in the tables presents the

accuracy of Decorate versus another algorithm. If the difference is statisti-

cally significant, then the larger of the two is shown in bold. We varied the

training set sizes from 1-100% of the total available data, with more points

lower on the learning curve since this is where we expect to see the most

difference between algorithms. The bottom of the tables provide summary

statistics, as discussed above, for each of the points on the learning curve.

The results in Table 3 confirm our hypothesis that combining the predictions

of Decorate ensembles will, on average, improve the accuracy of the base

classifier. Decorate almost always does better than J48, producing consid-

12

erable reduction in error throughout the learning curve.

Decorate has more significant wins to losses over Bagging for all points along

the learning curve (see Table 4). Decorate also outperforms Bagging on the

geometric mean error ratio. This suggests that even in cases where Bagging

beats Decorate the improvement is less than Decorate’s improvement on

Bagging on the rest of the cases.

Similar results are observed in the comparison of Decorate with Random

Forests (see Table 5). Decorate exhibits superior performance through out

the learning curve on both wins/loss records as well as error ratios. The poor

performance of Random Forests maybe because we are using only 15 trees.

Random Forests may benefit from using larger ensembles; more so than other

methods. However, to do a fair comparison we use the same ensemble size for

all methods.

Decorate outperforms AdaBoost early on the learning curve both on sig-

nificant wins/draw/loss record and geometric mean ratio; however, the trend

is reversed when given 75% or more of the data. Note that even with large

amounts of training data, Decorate’s performance is quite competitive with

AdaBoost- given 100% of the training data, Decorate produces higher

accuracies on 6 out of 15 data sets. It has been observed in previous studies

(Webb, 2000; Bauer and Kohavi, 1999) that while AdaBoost usually signif-

icantly reduces the error of the base learner, it occasionally increases it, often

to a large extent. Decorate does not have this problem as is clear from

Table 3.

On many data sets, Decorate achieves the same or higher accuracy as Bag-

ging, AdaBoost or Random Forests with far fewer training examples. Fig-

ures 1 and 2 show learning curves that clearly demonstrate this point. Hence,

in domains where little data is available or acquiring labels is expensive, Dec-

orate has a significant advantage over other ensemble methods.

13

50

55

60

65

70

75

80

85

90

0 5 10 15 20 25 30 35 40 45 50 55

A
cc

ur
ac

y

Number of Training Examples

Decorate
AdaBoost

Bagging
RandomForests

Labor

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700

A
cc

ur
ac

y

Number of Training Examples

Decorate
AdaBoost

Bagging
RandomForests

Breast-W

Fig. 1. Decorate compared to AdaBoost, Bagging and Random Forests

6.3 Decorate with Large Training Sets

The learning curve evaluation clearly shows Decorate’s advantage when

training sets are small. The results also indicate that Decorate begins to

lose out to AdaBoost with larger training sets. However, we claim that the

14

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

A
cc

ur
ac

y

Number of Training Examples

Decorate
AdaBoost

Bagging
RandomForests

Iris

45

50

55

60

65

70

75

80

0 50 100 150 200 250 300

A
cc

ur
ac

y

Number of Training Examples

Decorate
AdaBoost

Bagging
RandomForests

Heart-C

Fig. 2. Decorate compared to AdaBoost, Bagging and Random Forests

performance of both systems on large training sets is comparable. To support

this we ran additional experiments comparing Decorate with AdaBoost

on a larger collection of 33 UCI datasets. We ran 10 fold cross-validation us-

ing all the available training examples for each of the datasets. The results

of this study are summarized in Table 2. We observe that on 25 of the 33

datasets there was no statistically significant difference between the two sys-

15

tems. And Decorate significantly outperforms AdaBoost on four of the

eight remaining datasets. We conjecture that when the training set is large

enough the classifiers produced may be reaching the Bayes-optimal perfor-

mance, which makes improvements impossible. Such a ceiling effect has been

observed in other empirical comparisons of ensemble methods (Bauer and Ko-

havi, 1999). However, by looking at performance on varying training set sizes

we can get a better understanding of the relative effectiveness of two learners.

Therefore we strongly believe that generating learning curves is crucial for

making a good comparison between systems.

6.4 Diversity versus Error Reduction

Our approach is based on the claim that ensemble diversity is critical to er-

ror reduction. We attempt to validate this claim by measuring the correlation

between diversity and error reduction. We ran Decorate at 10 different set-

tings of Rsize ranging from 0.1 to 1.0, thus varying the diversity of ensembles

produced. We then compared the diversity of ensembles with the reduction

in generalization error, by computing Spearman’s rank correlation between

the two. Diversity of an ensemble is computed as the mean diversity of the

ensemble members (as given by Eq. 2). We compared ensemble diversity with

the ensemble error reduction, i.e. the difference between the average error of

the ensemble members and the error of the entire ensemble (as in (Cunning-

ham and Carney, 2000)). We found that the correlation coefficient between

diversity and ensemble error reduction is 0.6602 (p ¿ 10−50), which is fairly

strong. 1 Furthermore, we compared diversity with the base error reduction,

i.e. the difference between the error of the base classifier and the ensemble

error. The base error reduction gives a better indication of the improvement

in performance of an ensemble over the base classifier. The correlation of di-

versity versus the base error reduction is 0.1607 (p ¿ 10−50). We note that

even though this correlation is weak, it is still a statistically significant pos-

itive correlation. These results reinforce our belief that increasing ensemble

diversity is a good approach to reducing generalization error.

1 The p-value is the probability of getting a correlation as large as the observed
value by random chance, when the true correlation is zero (Spatz and Johnston,
1984).

16

6.5 Influence of Ensemble Size

To determine how the performance of Decorate changes with ensemble size,

we ran experiments with increasing sizes. We compared results for training on

20% of available data since the advantage of Decorate is most noticeable low

on the learning curve. The results were produced using 10-fold cross-validation.

We present graphs of accuracy versus ensemble size for five representative

datasets (see Figure 3). The performance on other datasets is similar. We

note, in general, that the accuracy of Decorate increases with ensemble

size; though on most datasets, the performance levels out with an ensemble

size of 10 to 25.

70

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

Ensemble Size

breast-w
labor
colic

iris
credit-a

Fig. 3. Decorate at different ensemble sizes

In our main results in Section 6.2 we used committees of size 15 for all meth-

ods. However, different ensemble methods may be affected to varying extents

by committee size. To verify that the other ensemble methods are not being

disadvantaged by smaller ensembles, we ran additional experiments with en-

semble size set to 100. Learning curves were generated as in Section 6.1 on

the four datasets presented in Figures 1 and 2. For these experiments, we set

the maximum number of iterations in Decorate to 300. The results of test-

ing with larger ensembles is presented in Figures 4 and 5. Apart from slight

improvements in accuracies for all methods, the trends of the results are the

same as with ensembles of size 15.

17

50

55

60

65

70

75

80

85

90

95

0 5 10 15 20 25 30 35 40 45 50 55

A
cc

ur
ac

y

Number of training examples

Decorate
AdaBoost

Bagging
RandomForests

Labor

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700

A
cc

ur
ac

y

Number of training examples

Decorate
AdaBoost

Bagging
RandomForests

Breast-W

Fig. 4. Ensembles of size 100. Decorate compared to AdaBoost, Bagging and
Random Forests

7 Related Work

7.1 Explicit Diversity-Based Approaches

Decorate differs from ensemble methods, such as Bagging, in that it explic-

18

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

A
cc

ur
ac

y

Number of training examples

Decorate
AdaBoost

Bagging
RandomForests

Iris

45

50

55

60

65

70

75

80

85

0 50 100 150 200 250 300

A
cc

ur
ac

y

Number of training examples

Decorate
AdaBoost

Bagging
RandomForests

Heart-C

Fig. 5. Ensembles of size 100. Decorate compared to AdaBoost, Bagging and
Random Forests

itly tries to foster ensemble diversity. There have been other approaches to

using diversity to guide ensemble creation. We list some of them below.

Liu and Yao (1999) and Rosen (1996) simultaneously train neural networks in

an ensemble using a correlation penalty term in their error functions. McKay

19

and Abbass (2001) use a similar method with a different penalty function.

Brown and Wyatt (2003) provide a good theoretical analysis of these meth-

ods, commonly referred to as Negative Correlation Learning. Opitz and Shav-

lik (1996) and Opitz (1999) use a genetic algorithm to search for a good

ensemble of networks. To guide the search they use an objective function that

incorporates both an accuracy and diversity term.

Tumer and Ghosh (1996) reduce the correlation between classifiers in an en-

semble by exposing them to different feature subsets. They train m classifiers,

one corresponding to each class in a m-class problem. For each class, a subset

of features that have a low correlation to that class is eliminated. The degree

of correlation between classifiers can be controlled by the amount of features

that are eliminated. This method, called input decimation, has been further

explored in (Tumer and Oza, 1999).

Zenobi and Cunningham (2001) also build ensembles based on different fea-

ture subsets. In their approach, feature selection is done using a hill-climbing

strategy based on classifier error and diversity. A classifier is rejected if the

improvement of one of the metrics leads to a “substantial” deterioration of

the other; where “substantial” is defined by a pre-set threshold.

All these approaches attempt to simultaneously optimize diversity and error

of individual ensemble members. On the other hand, Decorate focuses on

reducing the error of the entire ensemble by increasing diversity. At no point

does the training accuracy of the ensemble go below that of the base classi-

fier; however, this is a possibility with previous methods. Furthermore, to the

best of our knowledge, apart from (Opitz, 1999), none of the previous studies

compared their methods with standard ensemble approaches such as Boosting

and Bagging.

Compared to boosting, which requires a “weak” base learner that does not

completely fit the training data (boosting terminates once it constructs a

hypothesis with zero training error), Decorate requires a strong learner,

otherwise the artificial diversity training data may prevent it from adequately

fitting the real data. When applying boosting to strong base learners, they

must first be appropriately weakened in order to benefit from boosting, e.g.,

boosting pruned trees outperforms unpruned trees (which completely fit the

20

training data).

7.2 Use of Artificial Examples

One ensemble approach that also utilizes artificial training data is the active

learning method introduced in (Cohn et al., 1994). Rather than to improve

accuracy, the goal of the committee here is to select good new training exam-

ples using the existing training data. The labels of the artificial examples are

selected to produce hypotheses that more faithfully represent the entire ver-

sion space rather than to produce diversity. Cohn’s approach labels artificial

data either all positive or all negative to encourage, respectively, the learning

of more general or more specific hypotheses.

Another application of artificial examples for ensembles is Combined Multi-

ple Models (CMMs) (Domingos, 1997). The aim of CMMs is to improve the

comprehensibility of an ensemble of classifiers, by approximating it by a single

classifier. Artificial examples are generated and labeled by a voted ensemble.

They are then added to the original training set. The base learner is trained

on this augmented training set to produce an approximation of the ensemble.

The role of artificial examples here is to create less complex models, not to

improve classification accuracy.

Craven and Shavlik (1995) use artificial examples to learn decision trees from

trained neural networks. As in CMMs, the goal here is to create more compre-

hensible models from existing classifiers. The artificial examples created are

labeled by a given neural network, and then used in constructing an equivalent

decision tree.

To prevent overfitting in neural networks often noise is added to the inputs

during training. This is generally done by adding a random vector to the fea-

ture vector of each training example. These perturbed or jittered examples

may also be considered as artificial examples. Quite often training with noise

improves network generalization (Bishop, 1995; Raviv and Intrator, 1996).

Adding noise to training examples differs from our method of constructing

examples from the data distribution. Furthermore, unlike adding noise, Dec-

orate systematically labels artificial examples to improve generalization.

21

8 Future Work

Our current study has focused on building ensembles of decision trees. How-

ever, Decorate being a meta-learner, can be applied to any learning al-

gorithm. We plan to experiment with other base learners. In particular, we

would like to apply Decorate to neural networks and see how its diversity

search compares with that of Negative Correlation Learning (Liu and Yao,

1999).

Recent studies have analyzed how different ensemble methods affect the con-

tribution of bias and variance to generalization error (Bauer and Kohavi, 1999;

Webb, 2000). We are currently analyzing the bias-variance decomposition of

Decorate ensembles to get a better understanding of their effectiveness.

AdaBoost and Decorate both perform very well on large training sets.

However, studies have shown that AdaBoost is very susceptible to noise in

the training data (Opitz and Maclin, 1999; Dietterich, 2000b). In recent work,

we have shown that Decorate is more robust to noise than AdaBoost

(Melville et al., 2004b). In the same work, we show that compared to Bagging

and AdaBoost, Decorate is also more resilient to missing features in the

data.

Our current implementation of Decorate attempts to increase ensemble di-

versity as defined by Eq. 2. However, there are several other definitions of

diversity that have been explored in the literature. It is possible to generate

and label artificial examples in Decorate so as to maximize different mea-

sures of diversity. Comparing different definitions of diversity in Decorate

should provide us with more insight into which measure is the most beneficial

in guiding the search for better ensembles.

The empirical success of Decorate raises the issue of developing a sound the-

oretical understanding of its effectiveness. It would be particularly beneficial

to prove that the Decorate algorithm does indeed improve the bound on

generalization error. Another area of future work is exploring how Decorate

relates to methods that attempt to maximize the margins on the training

sample, such as AdaBoost.

22

In addition to improving classification accuracy in a traditional supervised

setting, recent work has shown that Decorate can be very effective for active

learning (Melville and Mooney, 2004). Decorate has also been successfully

used for the task of active feature acquisition for classifier induction (i.e., given

a feature acquisition budget, identify the instances with missing values for

which acquiring complete feature information will result in the most accurate

model) (Melville et al., 2004a).

9 Conclusion

Decorate is a simple yet effective method that uses diversity to guide en-

semble construction. By manipulating artificial training examples, Decorate

is able to use a strong base learner to produce an accurate and diverse set

of classifiers. Experimental results demonstrate that our approach produces

highly accurate ensembles that outperform Bagging, AdaBoost and Random

Forests low on the learning curve. Moreover, given large training sets, Dec-

orate outperforms Bagging and Random Forests, and is competitive with

AdaBoost. In general, the idea of using artificial examples to foster diver-

sity in the construction of ensembles seems to be a promising approach worthy

of further study.

Acknowledgments

We thank the anonymous reviewers for their helpful comments on the initial

draft of this paper. This research was supported by DARPA grant HR0011-

04-1-007.

References

Bauer, E., Kohavi, R., 1999. An empirical comparison of voting classification

algorithms: Bagging, boosting and variants. Machine Learning 36 (1-2), 105–

139.

23

Bishop, C. M., 1995. Neural Networks for Pattern Recogntion. Oxford Uni-

versity Press.

Blake, C. L., Merz, C. J., 1998. UCI repository of machine learning databases,

http://www.ics.uci.edu/˜mlearn/MLRepository.html.

Breiman, L., 1996. Bagging predictors. Machine Learning 24 (2), 123–140.

Breiman, L., 2001. Random forests. Machine Learning 45 (1), 5–32.

Brown, G., Wyatt, J. L., August 2003. The Use of the Ambiguity Decom-

position in Neural Network Ensemble Learning Methods. In: Fawcett, T.,

Mishra, N. (Eds.), 20th International Conference on Machine Learning

(ICML’03). Washington DC, USA, pp. 67–74.

Cohn, D., Atlas, L., Ladner, R., 1994. Improving generalization with active

learning. Machine Learning 15 (2), 201–221.

Collins, M., 2002. Ranking algorithms for named-entity extraction: Boosting

and the voted perceptron. In: Proceedings of the Annual Meeting of the

Association for Computational Linguistics (ACL-02).

Craven, M. W., Shavlik, J. W., 1995. Extracting tree-structured representa-

tions of trained networks. In: Touretzky, D. S., Mozer, M. C., Hasselmo,

M. E. (Eds.), Advances in Neural Information Processing Systems. Vol. 8.

The MIT Press, pp. 24–30.

Cunningham, P., Carney, J., 2000. Diversity versus quality in classification

ensembles based on feature selection. In: 11th European Conference on Ma-

chine Learning. pp. 109–116.

Dietterich, T., 2000a. Ensemble methods in machine learning. In: Kittler, J.,

Roli, F. (Eds.), First International Workshop on Multiple Classifier Systems,

Lecture Notes in Computer Science. Springer-Verlag, pp. 1–15.

Dietterich, T., 2002. The Handbook of Brain Theory and Neural Networks.

The MIT Press, Ch. Ensemble Learning, pp. 405–408.

Dietterich, T. G., 2000b. An experimental comparison of three methods for

constructing ensembles of decision trees: Bagging, boosting, and random-

ization. Machine Learning 40 (2), 139–157.

Domingos, P., 1997. Knowledge acquisition from examples via multiple mod-

els. In: Proceedings of the Fourteenth International Conference on Machine

Learning. Morgan Kaufmann, Nashville, TN, pp. 98–106.

Freund, Y., Iyer, R., Schapire, R. E., Singer, Y., 1998. An efficient boosting

algorithm for combining preferences. In: Shavlik, J. W. (Ed.), Proceedings

of ICML-98, 15th International Conference on Machine Learning. Morgan

24

Kaufmann Publishers, San Francisco, US, Madison, US, pp. 170–178.

Freund, Y., Schapire, R. E., Jul. 1996. Experiments with a new boosting al-

gorithm. In: Saitta, L. (Ed.), Proceedings of the Thirteenth International

Conference on Machine Learning (ICML-96). Morgan Kaufmann, pp. 148–

156.

Hansen, L. K., Salamon, P., 1990. Neural network ensembles. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 12 (10), 993–1001.

Hastie, T., Tibshirani, R., Friedman, J., Aug. 2001. The Elements of Statistical

Learning. Springer Verlag, New York.

Krogh, A., Vedelsby, J., 1995. Neural network ensembles, cross validation and

active learning. In: Advances in Neural Information Processing Systems 7.

pp. 231–238.

Kuncheva, L., Whitaker, C., 2003. Measures of diversity in classifier ensembles

and their relationship with ensemble accuracy. Machine Learning 51 (2),

181–207.

Liu, Y., Yao, X., 1999. Ensemble learning via negative correlation. Neural

Networks 12.

Maclin, R., Opitz, D., 1997. An empirical evaluation of bagging and boost-

ing. In: Proceedings of the Fourteenth National Conference on Artificial

Intelligence. AAAI Press, Providence, RI, pp. 546–551.

McKay, R., Abbass, H., 2001. Analyzing anticorrelation in ensemble learn-

ing. In: Proceedings of 2001 Conference on Artificial Neural Networks and

Expert Systems. Otago, New Zealand, pp. 22–27.

Melville, P., Mooney, R., August 2003. Constructing diverse classifier ensem-

bles using artificial training examples. In: Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence. Acapulco, Mexico,

pp. 505–510.

Melville, P., Mooney, R. J., 2004. Diverse ensembles for active learning. Tech.

Rep. UT-AI-TR-04-312, University of Texas at Austin.

Melville, P., Saar-Tsechansky, M., Provost, F., Mooney, R., 2004a. Active

feature acquisition for classifier induction. Tech. Rep. UT-AI-TR-04-311,

University of Texas at Austin.

Melville, P., Shah, N., Mihalkova, L., Mooney, R. J., 2004b. Experiments on

ensembles with missing and noisy data. In: Proceedings of the Workshop on

Multi Classifier Systems.

Opitz, D., 1999. Feature selection for ensembles. In: Proceedings of 16th Na-

25

tional Conference on Artificial Intelligence (AAAI). pp. 379–384.

Opitz, D., Maclin, R., 1999. Popular ensemble methods: An empirical study.

Journal of Artificial Intelligence Research 11, 169–198.

Opitz, D., Shavlik, J., 1996. Actively searching for an effective neural-network

ensemble. Connection Science 8.

Quinlan, J. R., 1993. C4.5: Programs for Machine Learning. Morgan Kauf-

mann, San Mateo,CA.

Quinlan, J. R., Aug. 1996. Bagging, boosting, and C4.5. In: Proceedings of

the Thirteenth National Conference on Artificial Intelligence (AAAI-96).

Portland, OR, pp. 725–730.

Raviv, Y., Intrator, N., 1996. Bootstrapping with noise: An effective regular-

ization technique. Connection Science 8 (3-4), 356–372.

Rosen, B., 1996. Ensemble learning using decorrelated neural networks. Con-

nection Science 8, 373–384.

Schapire, R. E., 1999. Theoretical views of boosting and applications. In: Pro-

ceedings of the Tenth International Conference on Algorithmic Learning

Theory. pp. 13–25.

Schapire, R. E., Singer, Y., 2000. Boostexter: A boosting-based system for

text categorization. Machine Learning 39 (2/3), 135–168.

Spatz, C., Johnston, J., 1984. Basic Statistics, 3rd Edition. Brooks/Cole Pub-

lishing Company, Ch. 9, pp. 201–202.

Tumer, K., Ghosh, J., 1996. Error correlation and error reduction in ensemble

classifiers. Connection Science 8 (3-4), 385–403.

Tumer, K., Oza, N., 1999. Decimated input ensembles for improved general-

ization. In: International Joint Conference on Neural Networks.

Webb, G., 2000. Multiboosting: A technique for combining boosting and wag-

ging. Machine Learning 40 (2), 159–196.

Witten, I. H., Frank, E., 1999. Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. Morgan Kaufmann, San Fran-

cisco.

Zenobi, G., Cunningham, P., 2001. Using diversity in preparing ensembles

of classifiers based on different feature subsets to minimize generalization

error. In: Proceedings of the European Conference on Machine Learning.

pp. 576–587.

26

Dataset AdaBoost Decorate

audio 84.45 83.6

anneal 99.55 98.66

colic 83.13 85.58

balance-scale 78.56 80.98

credit-g 72.40 73.6

pima-diabetes 72.52 75.52

glass 76.58 72.34

heart-c 81.15 77.51

heart-h 78.56 79.98

credit-a 85.94 87.39

autos 86.33 85.79

kr-vs-kp 99.56 99.41

labor 88.33 83.00

lymph 82.43 78.29

mushroom 100.00 100.00

sonar 80.29 82.21

soybean 92.82 94.58

splice 93.17 93.89

vehicle 76.48 75.42

vote 95.17 95.18

vowel 93.94 96.87

breast-y 67.88 68.21

breast-w 96.42 96.85

heart-statlog 81.11 81.85

hepatitis 85.17 81.17

hypothyroid 99.66 98.6

ionosphere 93.75 92.6

iris 92.67 93.33

primary-tumor 40.09 44.53

segment 98.57 97.97

sick 99.23 98.49

waveform 81.58 80.92

zoo 96.18 94.18
Table 2
Decorate versus AdaBoost with large training sets

27

Table 3. Decorate vs J48
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/72.49 78.14/75.31 85.24/82.08 92.26/89.28 96.48/95.57 97.36/96.47 97.73/97.3 98.16/97.93 98.39/98.35 98.71/98.55

audio 16.66/16.66 23.73/23.07 41.72/41.17 55.42/51.67 64.09/60.59 67.62/64.84 70.46/68.11 72.82/70.77 77.8/75.15 82.1/77.22

autos 24.33/24.33 29.6/29.01 36.73/34.37 42.89/41.22 52.2/50.53 59.86/53.92 64.77/59.68 68.6/65.24 78/73.15 83.64/81.72

breast-w 92.38/74.73 94.12/87.34 95.06/89.42 95.64/92.21 95.55/93.09 95.91/93.36 96.2/93.85 96.01/94.24 96.28/94.65 96.31/95.01

credit-a 71.78/69.54 74.83/77.46 80.61/81.57 83.09/82.35 84.38/84.29 84.68/84.59 85.22/84.41 85.57/84.78 85.61/85.43 85.93/85.57

Glass 31.69/31.69 35.86/32.96 44.5/38.34 55.4/46.62 61.77/54.16 66.01/60.63 68.07/61.38 68.85/63.69 72.73/67.53 72.77/67.77

heart-c 58.66/49.57 65.11/58.03 73.55/67.71 75.05/70.15 77.66/73.44 78.34/74.61 79.09/74.78 79.46/75.62 78.74/76.7 78.48/77.17

hepatitis 52.33/52.33 72.14/65.93 76.8/72.75 79.48/78.25 80.7/78.61 81.81/78.63 81.65/79.35 83.19/79.57 82.99/79.04 82.62/79.22

colic 58.37/52.85 66.58/65.31 75.85/74.37 79.54/79.94 81.33/82.71 82.47/83.41 83.02/83.55 83.1/84.66 84.02/85.18 84.69/85.16

iris 33.33/33.33 50.27/33.33 80.67/59.33 91.53/84.33 93.2/91.33 94.2/92.73 94.73/93 94.4/93.33 94.53/94.07 94.67/94.73

labor 54.27/54.27 54.27/54.27 67.63/58.93 70.23/64.77 79.77/70.07 83/73.7 84.17/75.17 83.43/75.8 89.73/77.4 89.73/78.8

lymph 48.39/48.39 53.62/46.64 65.06/60.39 71.2/68.21 76.74/70.79 78.84/73.58 78.17/74.53 78.99/73.34 79.14/75.63 79.08/76.06

segment 67.03/52.43 81.16/73.26 89.61/85.41 92.83/89.34 94.88/92.22 95.94/93.37 96.47/94.34 96.93/94.77 97.58/95.94 98.03/96.79

soybean 19.51/13.69 32.4/22.32 55.36/42.94 73.06/59.04 85.14/74.49 88.27/81.59 90.22/84.78 91.4/86.89 92.75/89.44 93.89/91.76

splice 62.77/59.92 67.8/68.69 77.37/77.49 82.55/82.58 88.24/87.98 90.47/90.44 91.84/91.77 92.41/92.4 93.44/93.47 93.92/94.03

Win/Draw/Loss 15/0/0 13/0/2 13/0/2 13/0/2 14/0/1 14/0/1 14/0/1 14/0/1 13/0/2 12/0/3

Sig. W/D/L 7/8/0 9/5/1 11/4/0 10/5/0 12/2/1 12/2/1 13/2/0 13/1/1 10/4/1 10/4/1

GM error ratio 0.8627 0.8661 0.8099 0.8104 0.8172 0.8056 0.8081 0.8251 0.8173 0.8303

28

Table 4. Decorate vs Bagging
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/74.57 78.14/76.42 85.24/82.88 92.26/89.87 96.48/95.67 97.36/96.89 97.73/97.34 98.16/97.78 98.39/98.53 98.71/98.83

audio 16.66/12.98 23.73/23.68 41.72/38.55 55.42/51.34 64.09/61.76 67.62/66.9 70.46/70.29 72.82/73.07 77.8/77.32 82.1/80.71

autos 24.33/22.16 29.6/28 36.73/35.88 42.89/44.65 52.2/54.32 59.86/59.67 64.77/65.6 68.6/69.88 78/77.97 83.64/83.12

breast-w 92.38/76.74 94.12/88.07 95.06/90.88 95.64/93.41 95.55/94.42 95.91/94.95 96.2/94.95 96.01/95.55 96.28/96.07 96.31/96.3

credit-a 71.78/69.54 74.83/77.99 80.61/82.58 83.09/83.9 84.38/85.13 84.68/85.78 85.22/85.59 85.57/85.64 85.61/86.12 85.93/85.96

Glass 31.69/24.85 35.86/31.47 44.5/40.87 55.4/49.6 61.77/58.9 66.01/64.35 68.07/66.3 68.85/68.44 72.73/72 72.77/74.67

heart-c 58.66/50.56 65.11/55.67 73.55/68.77 75.05/73.17 77.66/76.12 78.34/77.9 79.09/78.44 79.46/79.11 78.74/79.05 78.48/78.68

hepatitis 52.33/52.33 72.14/63.18 76.8/75.2 79.48/78.64 80.7/80.42 81.81/81.07 81.65/81.22 83.19/81.06 82.99/80.87 82.62/81.34

colic 58.37/53.14 66.58/63.83 75.85/76.44 79.54/80.06 81.33/83.04 82.47/83.58 83.02/83.98 83.1/84.47 84.02/85.4 84.69/85.34

iris 33.33/33.33 50.27/33.33 80.67/60.47 91.53/81.4 93.2/90.67 94.2/92.33 94.73/92.87 94.4/93.6 94.53/94.47 94.67/94.73

labor 54.27/54.27 54.27/54.27 67.63/56.27 70.23/65.9 79.77/74.97 83/75.67 84.17/76.27 83.43/78.6 89.73/80.83 89.73/85.87

lymph 48.39/48.39 53.62/47.11 65.06/60.12 71.2/69.68 76.74/73.6 78.84/76.58 78.17/77.68 78.99/76.98 79.14/76.8 79.08/77.97

segment 67.03/55.88 81.16/76.36 89.61/87.42 92.83/91.01 94.88/93.4 95.94/94.65 96.47/95.26 96.93/95.82 97.58/96.78 98.03/97.41

soybean 19.51/14.56 32.4/24.58 55.36/47.46 73.06/65.45 85.14/79.29 88.27/85.05 90.22/87.89 91.4/89.22 92.75/91.56 93.89/92.71

splice 62.77/62.52 67.8/72.36 77.37/80.5 82.55/85.44 88.24/89.5 90.47/91.44 91.84/92.4 92.41/93.07 93.44/94.06 93.92/94.53

Win/Draw/Loss 15/0/0 13/0/2 12/0/3 11/0/4 11/0/4 12/0/3 11/0/4 10/0/5 10/0/5 8/0/7

Sig. W/D/L 8/7/0 10/3/2 10/3/2 9/5/1 10/2/3 8/4/3 6/7/2 8/5/2 5/7/3 4/9/2

GM error ratio 0.8727 0.8785 0.8552 0.8655 0.8995 0.9036 0.8979 0.9214 0.9312 0.9570

29

Table 5. Decorate vs Random Forests
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/72.07 78.14/76.69 85.24/84.21 92.26/90.89 96.48/95.71 97.36/97.54 97.73/98.16 98.16/98.64 98.39/99.01 98.71/99.23

audio 16.66/12.98 23.73/20.47 41.72/26.61 55.42/30.73 64.09/41.93 67.62/51.14 70.46/57.05 72.82/60.69 77.8/69.43 82.1/73.47

autos 24.33/22.16 29.6/31.65 36.73/36.76 42.89/44.76 52.2/57.04 59.86/63.53 64.77/69.43 68.6/73.81 78/79.95 83.64/85.24

breast-w 92.38/81.52 94.12/88.7 95.06/92.07 95.64/93.49 95.55/94.37 95.91/94.94 96.2/95.41 96.01/95.77 96.28/95.84 96.31/95.85

credit-a 71.78/60.61 74.83/64.65 80.61/70.38 83.09/72.87 84.38/76.55 84.68/78.36 85.22/79.54 85.57/81.13 85.61/82.35 85.93/83.25

Glass 31.69/24.85 35.86/31.79 44.5/42.19 55.4/52.84 61.77/59.96 66.01/63.4 68.07/67.06 68.85/69.14 72.73/73.55 72.77/76.4

heart-c 58.66/50.06 65.11/54.78 73.55/66.86 75.05/72.61 77.66/76.14 78.34/76.52 79.09/77.63 79.46/78.58 78.74/79.28 78.48/79.92

hepatitis 52.33/52.33 72.14/70.36 76.8/74.51 79.48/77.26 80.7/80.37 81.81/81.7 81.65/81 83.19/81.72 82.99/83.05 82.62/82.9

colic 58.37/52.73 66.58/56.62 75.85/64.52 79.54/68.03 81.33/74.6 82.47/77.15 83.02/79.54 83.1/81 84.02/83.36 84.69/84.34

iris 33.33/33.33 50.27/47 80.67/67.07 91.53/83.33 93.2/91.13 94.2/94 94.73/94.47 94.4/94.33 94.53/94.4 94.67/94.2

labor 54.27/54.27 54.27/54.27 67.63/65.3 70.23/69.57 79.77/75.23 83/79.6 84.17/80.03 83.43/81.6 89.73/82.83 89.73/88.1

lymph 48.39/48.39 53.62/52.06 65.06/60.55 71.2/65.48 76.74/68.18 78.84/71.37 78.17/73.55 78.99/76.34 79.14/77.51 79.08/79.28

segment 67.03/59.46 81.16/74.16 89.61/86.45 92.83/91.25 94.88/94.16 95.94/95.42 96.47/95.99 96.93/96.39 97.58/97.18 98.03/97.59

soybean 19.51/25.82 32.4/38.3 55.36/54.57 73.06/66.52 85.14/78.4 88.27/83.94 90.22/87 91.4/88.54 92.75/90.73 93.89/91.38

splice 62.77/49.37 67.8/51.34 77.37/51.92 82.55/51.97 88.24/52.03 90.47/52.11 91.84/52.17 92.41/52.23 93.44/52.42 93.92/52.59

Win/Draw/Loss 14/0/1 13/0/2 14/0/1 14/0/1 14/0/1 13/0/2 13/0/2 12/0/3 10/0/5 9/0/6

Sig. W/D/L 10/4/1 8/6/1 10/5/0 13/2/0 11/3/1 10/4/1 10/3/2 7/6/2 7/6/2 6/5/4

GM error ratio 0.8603 0.8495 0.7814 0.7433 0.7486 0.7763 0.7915 0.8203 0.8171 0.8364

30

Table 6. Decorate vs AdaBoost
Dataset 1% 2% 5% 10% 20% 30% 40% 50% 75% 100%

anneal 75.29/73.02 78.14/77.12 85.24/87.51 92.26/94.16 96.48/97.13 97.36/97.95 97.73/98.54 98.16/98.8 98.39/99.23 98.71/99.68

audio 16.66/16.66 23.73/23.41 41.72/40.24 55.42/52.7 64.09/64.15 67.62/68.91 70.46/73.07 72.82/75.92 77.8/81.74 82.1/84.52

autos 24.33/24.33 29.6/29.71 36.73/34.2 42.89/43.28 52.2/56.13 59.86/62.2 64.77/69.14 68.6/72.03 78/80.28 83.64/85.28

breast-w 92.38/74.73 94.12/87.84 95.06/91.15 95.64/93.75 95.55/94.85 95.91/95.72 96.2/95.84 96.01/95.87 96.28/96.3 96.31/96.47

credit-a 71.78/68.8 74.83/75.3 80.61/79.68 83.09/81.14 84.38/83.04 84.68/84.22 85.22/84.13 85.57/84.58 85.61/84.93 85.93/85.42

Glass 31.69/31.69 35.86/32.93 44.5/40.71 55.4/49.78 61.77/58.03 66.01/64.33 68.07/66.93 68.85/68.69 72.73/74.69 72.77/76.06

heart-c 58.66/49.57 65.11/58.65 73.55/70.71 75.05/72.5 77.66/76.65 78.34/78.26 79.09/78.96 79.46/79.55 78.74/79.06 78.48/79.22

hepatitis 52.33/52.33 72.14/65.93 76.8/73.01 79.48/76.95 80.7/79.44 81.81/79.22 81.65/81.27 83.19/82.63 82.99/83.24 82.62/82.71

colic 58.37/52.85 66.58/67.18 75.85/72.85 79.54/77.17 81.33/79.36 82.47/79.24 83.02/79.51 83.1/80.22 84.02/80.59 84.69/81.93

iris 33.33/33.33 50.27/33.33 80.67/66.2 91.53/84.53 93.2/90.73 94.2/93 94.73/93.33 94.4/93.53 94.53/94.2 94.67/94.2

labor 54.27/54.27 54.27/54.27 67.63/58.93 70.23/65.1 79.77/73.2 83/76.9 84.17/79.57 83.43/80.1 89.73/84.07 89.73/86.37

lymph 48.39/48.39 53.62/46.64 65.06/60.54 71.2/69.57 76.74/74.16 78.84/78.62 78.17/80.35 78.99/79.88 79.14/80.96 79.08/81.75

segment 67.03/60.22 81.16/77.38 89.61/88.5 92.83/92.71 94.88/95.01 95.94/96.03 96.47/96.9 96.93/97.23 97.58/98 98.03/98.34

soybean 19.51/14.26 32.4/23.36 55.36/49.37 73.06/69.49 85.14/85.01 88.27/88.37 90.22/90.04 91.4/90.89 92.75/92.57 93.89/92.88

splice 62.77/65.11 67.8/73.9 77.37/82.22 82.55/86.13 88.24/88.27 90.47/89.82 91.84/90.8 92.41/90.78 93.44/92.63 93.92/93.59

Win/Draw/Loss 14/0/1 11/0/4 13/0/2 12/0/3 10/0/5 10/0/5 10/0/5 9/0/6 6/0/9 6/0/9

Sig. W/D/L 7/7/1 8/6/1 11/2/2 10/3/2 7/6/2 4/9/2 5/5/5 5/6/4 3/6/6 3/6/6

GM error ratio 0.8812 0.8937 0.8829 0.9104 0.9407 0.9598 0.9908 0.9957 1.0377 1.0964

31

