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ABSTRACT
Text mining and Information Extraction (IE) are both topics
of signi�cant recent interest. Text mining concerns apply-
ing data mining, a.k.a. knowledge discovery from databases
(KDD) techniques to unstructured text. Information extrac-
tion (IE) is a form of shallow text understanding that locates
speci�c pieces of data in natural language documents, trans-
forming unstructured text into a structured database. This
paper describes a system called DiscoTEX, that combines
IE and KDD methods to perform a text mining task, dis-
covering prediction rules from natural-language corpora. An
initial version of DiscoTEX is constructed by integrating
an IE module based on Rapier and a rule-learning module,
Ripper. We present encouraging results on applying these
techniques to a corpus of computer job postings from an
Internet newsgroup.

1. INTRODUCTION
The problem of text mining, i.e. discovering useful knowl-
edge from unstructured text, is attracting increasing atten-
tion [14, 18]. This paper suggests a new framework for text
mining based on the integration of Information Extraction
(IE) and traditional Knowledge Discovery from Databases
(KDD). Traditional data mining assumes that the infor-
mation to be \mined" is already in the form of a rela-
tional database. Unfortunately, for many applications, elec-
tronic information is only available in the form of unstruc-
tured natural-language documents rather than structured
databases. Information Extraction, a task that has attracted
increasing attention since the start of the Message Under-
standing Conferences (MUCs) [11, 12], addresses the prob-
lem of transforming a corpus of textual documents into a
more structured database. This suggests an obvious role
that IE can play in text mining when combined with stan-
dard KDD methods, as illustrated in Figure 1. The IE
module locates speci�c pieces of data in raw text, and the
resulting database is provided to the KDD module for min-
ing.
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Figure 1: Overview of IE-based Text Mining Frame-

work

Although constructing an IE system is a diÆcult task, there
has been signi�cant recent progress in using machine learn-
ing methods to help automate the construction of IE systems
[5, 3]. By manually annotating a small number of documents
with the information to be extracted, a fairly accurate IE
system can be induced from this labeled corpus and then
applied to a large body of raw text to construct a large
database for mining. In this way, a small amount of labeled
training data for an IE learning system can be automatically
transformed into a large database of structured information
ready to be mined with traditional KDD methods. For ex-
ample, the IE learning system Rapier [4] has been used to
induce an IE system that transforms newsgroup job post-
ings into a relational database. By applying standard rule
induction methods to a database of 5,000 jobs automatically
extracted from the newsgroup, we have discovered interest-
ing relationships such as \If a computer-related job requires
knowledge of Java and graphics then it also requires knowl-
edge of PhotoShop."

However, the accuracy of current IE systems, whether built
manually or induced from data, is limited. Therefore, an au-
tomatically extracted database will inevitably contain signif-
icant numbers of errors. An important question is whether
the knowledge discovered from this \noisy" database is sig-
ni�cantly less reliable than knowledge discovered from a
cleaner traditional database. In this paper we present ex-
periments demonstrating that knowledge discovered from an
automatically extracted database is close in accuracy to that
discovered from a manually constructed database, demon-
strating that combining IE and KDD is a viable approach
to text mining.

The remainder of the paper is organized as follows. Sec-
tion 2 describes a system called DiscoTEX (DISCOvery



Sample Job Posting

Leading Internet Provider using cutting edge web tech-
nology in Austin is accepting applications for a Senior
Software Developer. The candidate must have 5 years of
software development, which includes coding in C/C++
and experience with databases (Oracle, Sybase, Informix,
etc.). A BS degree or higher in Computer Science or related
�eld are required. PERL and JAVASCRIPT programming
experience will be a de�nite plus! This position will require
developing applications under Windows95/98 and NT,
meeting with customers to de�ne requirements, and the
design, development and implementation of e-commerce,
internet/intranet applications with emphasis on back-end
web site development using C++, Java and RDBMS.
Salary: $70-85K plus outstanding bene�ts(Medical, Dental,
Vision, Stock Options); Location: Austin(South); Type of
Position: Full Time

Filled Job Template

title: Senior Software Developer
salary: $70-85K
city: Austin
language: Perl, C, Javascript, Java, C++
platform: NT, Windows
application: Oracle, Informix, Sybase
area: RDBMS, Internet, Intranet, E-commerce
required years of experience: 5
required degree: BS

Figure 2: Sample Text and Filled Template

from Text EXtraction) that combines IE and KDD tech-
nologies to discover prediction rules. Section 3 presents and
discusses experimental results obtained on a corpus of job
postings from the newsgroup austin.jobs. Section 4 re-
views some related work, section 5 discusses directions for
future research, and section 6 presents our conclusions.

2. THE DISCOTEX SYSTEM
2.1 Information Extraction
The goal of an IE system is to locate speci�c data in natural-
language text. The data to be extracted is typically given by
a template which speci�es a list of slots to be �lled with sub-
strings taken from the document. IE is useful for a variety
of applications, particularly given the recent proliferation of
Internet and web documents. Recent applications include
course homepages [17], apartment rental ads [26], and job
announcements [7, 4].

In this paper, we consider the task of extracting a database
from postings to the USENET newsgroup, austin.jobs.
Figure 2 shows a sample message from the newsgroup and
the �lled computer-science job template where several slots
may have multiple �llers. For example, slots such as lan-
guages, platforms, applications, and areas usually have more
than one �ller, while slots related to the job's title or loca-
tion have only one �ller.

Since austin.jobs is not a moderated newsgroup, not all
posted documents are relevant to our task. Some of them
are resumes posted by job-seekers, advertisements, or non-
computer-science job postings. Therefore, before construct-

ing a database using an IE system, we �ltered out irrelevant
documents from the newsgroup using a trained text catego-
rizer. First, 1,000 postings were collected and classi�ed by
a human expert as relevant or irrelevant. Next, a bag-of-
words Naive-Bayes text categorizer [21, 19] was trained on
this data to identify relevant documents (using the Rainbow
package [20]). The resulting categorizer has an accuracy of
over 99% and is used to �lter irrelevant documents from the
original postings.

Rapier [4], a machine-learning system for inducing rules
for extracting information from natural-language texts, is
used to construct an IE module for DiscoTEX. Rapier is a
bottom-up relational rule learner for acquiring IE rules from
a corpus of labeled training examples. It learns patterns
describing constraints on slot �llers and their surrounding
context using a speci�c-to-general search. Constraints in
patterns can specify the speci�c words, part-of-speech, or
semantic classes of tokens. It has been demonstrated that
Rapier performs fairly well on realistic applications such as
USENET job postings and seminar announcements [2, 4].

In the experiments in this paper, Rapier was trained on
only 60 labeled documents, at which point its accuracy at
extracting information is somewhat limited; extraction pre-
cision (percentage of extracted slot �llers that are correct) is
about 91.9% and extraction recall (percentage of all of the
correct �llers extracted) is about 52.4% . We purposely
trained Rapier on a relatively small corpus in order to
demonstrate that labeling only a relatively small number
of documents can result in a learned extractor capable of
building a database from which accurate knowledge can be
discovered.

2.2 Rule Induction
After constructing an IE system that extracts the desired
set of slots for a given application, a database is constructed
from a corpus of texts by applying the extractor to each
document to create a collection of structured records. Stan-
dard KDD techniques can then be applied to the resulting
database to discover interesting relationships. Speci�cally,
we induce rules for predicting each piece of information in
each database �eld given all other information in a record.
Standard classi�cation rule-learning methods can be em-
ployed for this task.

In order to discover prediction rules, we treat each slot-value
pair in the extracted database as a distinct binary feature,
such as graphics2area, and learn rules for predicting each
feature from all other features. Similar slot �llers are �rst
collapsed into a pre-determined standard term. For exam-
ple, \Windows 95" is a popular �ller for the platform slot,
but it often appears as \Win 95", \Win95", `MS Win 95",
and so on, and \DBA" in the title slot is an abbreviation
for \DataBase Administrator". These terms are collapsed
to unique slot values before prediction rules are mined from
the data. A small domain-dependent synonym dictionary
is used to identify such similar terms. Trivial cases such as
\Databases"! \Database" and \Client/Server"! \Client-
Server" are handled by manually contrived synonym-checking
rules.

We have applied C4.5rules [24] to induce rules from the



� Oracle2application ^ QA Partner2application !

SQL2language

� C++2language ^ C2language ^ CORBA2application
! Windows2platform

� HTML2language ^ WindowsNT2platform ^ Active
Server Pages2application ! Database2area

� :(UNIX2platform) ^ :(Windows2platform) ^

Games2area ! 3D2area

� Java2language ^ ActiveX2area ^ Graphics2area !
Web2area

� Visual Basic2language ^ OLE2area !

:(UNIX2platform)

� 3D2area ^ Games2area ^ :(E-Commerce2area) !
:(SQL2language)

Figure 3: Sample Mined Rules for Computer-

Science Job Postings

resulting binary data by learning decision trees and trans-
lating them into pruned rules. Ripper [8] was also applied to
learn prediction rules. Ripper runs signi�cantly faster since
it has an ability to handle set-valued features [9] to avoid the
step of explicitly translating slot �llers into a large number
of binary features.

Discovered knowledge describing the relationships between
slot values is written in a form of production rules. If
there is a tendency for Web to appear in the area slot when
ShockWave appears the in applications slot, this is repre-
sented by the production rule, ShockWave2application !

Web2area. Rules can also predict the absence of a �ller in
a slot. Sample rules mined from a database of 600 jobs
extracted from the USENET newsgroup austin.jobs are
shown in Figure 3.

2.3 System Architecture
The overall architecture of DiscoTEX is shown in Figure
4. First, documents annotated by the user are provided to
Rapier as training data. IE rules induced from this training
set are stored in the IE rule base and subsequently used by
the extraction module. The learned IE system then takes
unlabeled texts and transforms them into a database of slot-
values, which is provided to the KDD component (i.e. C4.5
or Ripper) as a training set for constructing a knowledge
base of prediction rules. The training data for KDD can
include the user-labeled documents used for training IE, as
well as a larger IE-labeled set automatically extracted from
raw text. DiscoTEX also includes a capability for improv-
ing the recall of the learned IE system by proposing addi-
tional slot �llers based on learned prediction rules. More
details on this aspect of the system can be found in [22].

In order to test the accuracy of the discovered rules, they
are used to predict the information in a disjoint database of
user-labeled examples. For each test job, each possible slot-
value is predicted to be present or absent given information
on all of its other slot-values. Average performance across all
features and all test examples is then computed. The rules
produced by Ripper and C4.5rules were found to be of
similar accuracy, and the experiments in this paper employ
Ripper since its computational time and space complexity
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Figure 4: The System Architecture

is signi�cantly less.

3. EXPERIMENTAL RESULTS

3.1 Experimental Methodology
Discovered knowledge is only useful and informative if it
is accurate. Discovering uke correlations in data is not
productive, and therefore it is important to measure the ac-
curacy of discovered knowledge on independent test data.
The primary question we address in the experiments in this
section is whether knowledge discovered from automatically
extracted data (which may be quite noisy) is relatively re-
liable compared to knowledge discovered from a manually
constructed database.

To test the overall system, 600 computer-science job post-
ings to the newsgroup austin.jobs were collected and man-
ually annotated with correct extraction templates. 10-fold
cross validation was used to generate training and test sets.
Rules were induced for predicting the �llers of the languages,
platforms, applications, and areas slots, since these are
usually �lled with multiple discrete-valued �llers and have
obvious potential relationships between their values. The
total number of slot-values used in the experiment is 476:
48 slot-values are for languages slot, 59 for platforms, 159
for applications, and 210 for areas.

The classi�cation accuracy for predicting absence or pres-
ence of slot �llers is not a particularly informative perfor-
mance metric since high accuracy can be achieved by sim-
ply assuming every slot �ller is absent. For instance, with
60 user-labeled examples, DiscoTEX gives a classi�cation
accuracy of 92.7% while the all-absent strategy has an ac-
curacy of 92.5%. This is because the set of potential slot
�llers is very large and not �xed in advance, and only a
small fraction of possible �llers is present in any given ex-
ample. Therefore, we evaluate the performance of Disco-
TEX using the IE performance metrics of precision, recall,
and F-measure with regard to predicting slot �llers. These



Present Absent
Predicted To Be Present m� p (n�m)� p
Predicted To Be Absent m� (1� p) (n�m)� (1 � p)

Table 1: The expected outcome for random guessing

metrics are de�ned as follows:

precision =
#ofPresentSlotV aluesCorrectlyPredicted

#ofSlotV aluesPredictedToBePresent
(1)

recall =
#ofPresentSlotV aluesCorrectlyPredicted

#ofPresentSlotV alues
(2)

F-measure is the harmonic mean of precision and recall and
is computed as follows (when the same weight is given to
precision and recall):

F�measure =
2 � Precision �Recall

P recision+Recall
(3)

In order to obtain non-trivial bounds on precision and recall,
a simple random guessing method is used as a benchmark.
This approach guesses a slot-value based on its frequency
of occurrence in the training data. For instance, if \Java"
occurs as a programming language in 29% of jobs in the
training data, then this approach guesses that it occurs 29%
of the time for the test data. Instead of simulating this
method, we analytically calculated its expected precision
and recall for each slot-value. The expected outcome for
this strategy for a given slot-value is summarized in Table 1,
where p is the percentage of times the slot-value appears the
training examples, n is the total number of the test examples
and m is the number of times the slot-value occurs in the
test data. Using the information in the table, the precision
and the recall for random-guessing is determined as follows:

precision =
m� p

(m� p) + ((n�m)� p)
= m=n (4)

recall =
m� p

(m� p) + (m� (1� p))
= p (5)

Therefore, the benchmark precision for a slot-value is its
probability of occurrence as estimated from the test data
and the recall is its probability of occurrence as estimated
from the training data. The only di�erence between the two
is due to sampling error.

3.2 Results
Because of the two di�erent training phases used in Dis-

coTEX, there is a question of whether or not the train-
ing set for IE should also be used to train the rule-miner.
In realistic situations, there is no reason not to use the IE
training data for mining since the human e�ort has already
been expended to correctly extract the data in this text.
However, to clearly illustrate the di�erence between mining
human-labeled and IE-labeled data, we �rst show a compar-
ison with a disjoint IE training set. In this experiment, the
IE training data are thrown away once they have been used
to train Rapier, since the extractor is unlikely to make the
normal number of extraction errors on this data. Ten-fold

cross-validation is performed on the remaining 540 examples
in order to evaluate data mining. In order to clearly illus-
trate the impact of mining automatically extracted data, the
same set of training examples was provided to both KDD
systems. The only di�erence between them is the training
data for the rule-miner of DiscoTEX is automatically ex-
tracted by Rapier after being trained on a disjoint set of
60 user-labeled examples. Both systems are tested on user-
labeled data to identify the quality of the rules produced.
Figures 5, 6 and 7 show the learning curves for precision,
recall, and F-measure, respectively.

Even with a small amount of user-labeled data, the results
indicate that DiscoTEX achieves a performance fairly com-
parable to the rule-miner trained on a manually constructed
database, while random-guessing does quite poorly. Figure
6 indicates that DiscoTEX does relatively worse with the
�rst 60 training examples, but quickly improves with 60 ad-
ditional examples. The results also show that the precision
of DiscoTEX seems to start leveling o� a bit sooner, this
is presumably due to the fact that extraction errors put a
somewhat lower ceiling on the performance it can eventually
achieve.

Figure 8 presents F-measures for DiscoTEX's performance
on individual slots. Not surprisingly, the Programming Lan-
guages slot with the least number of possible values shows
the best performance, and the Area slot with as many as
210 values does poorly. More interesting is that fact that
di�erent slots show quite di�erent learning rates.

Figures 9, 10 and 11 show the learning curves for precision,
recall, and F-measure under the \more natural" scenario in
which the training set provided to Rapier, consisting of 60
user-labeled examples, is also provided to the rule-miner as
a part of its training set. In this case, both approaches start
with the same 60 user-labeled examples, which have already
been used to train DiscoTEX's IE system. However, as
DiscoTEX proceeds to discover knowledge from data it au-
tomatically extracts from raw text, it fairly closely tracks the
performance of a system trained on additional data labori-
ously extracted by a human expert. Since in this case Dis-
coTEX has the advantage of a small set of relatively noise-
free data to start with, its performance is even somewhat
closer to that achieved by mining a hand-built database.

All of the results presented above employed 60 labeled ex-
amples to train the IE system. In a followup experiment, we
examined the e�ect of increasing the number of IE training
examples to obtain a more accurate extractor. We varied
the number of training examples given to Rapier (trying
60, 120, 180, 240, and 300 examples), always using 240 ex-
amples in the database to be mined by Ripper. The size of
the test set is 60 as in the previous experiment. Figure 12
shows the preformance results. Increasing the number of IE
training examples improves the accuracy of the mined rules
a bit, further approaching the accuracy of Ripper trained on
user-labeled data. However, accuracy improves slowly with
additional IE training data. This result indicates that if
the training set for data mining to be automatically labeled
by an IE module is large enough (240 in this experiment),
Discotex is able to achieve a fairly good performance with
only a small amount e�ort devoted to labeling IE training
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Figure 5: Precision with disjoint IE training set

examples.

4. RELATED RESEARCH
There has been relatively little research exploring the in-
tegration of IE and KDD. KDT (Knowledge Discovery in
Textual Databases) alludes to the use of IE in text mining
[14]; however, it uses texts manually tagged with a limited
number of �xed category labels. KDT does not actually
use automated text categorization or IE. Similarly, FACT
[15], which discovers associations amongst keywords from
text documents, does not automatically label the documents
with keywords. Another approach similar to DiscoTEX is
a method used to discover semantic relationships between
terms in a collection of documents [16]. In this work, a
natural-language parser is used in place of information ex-
traction since the extraction process is one of �nding syn-
tactic or semantic relations between terms.

5. FUTURE WORK
Although our preliminary results with job postings are en-
couraging, a fuller evaluation will applyDiscoTEX to larger
job corpora and to other realistic domains. For instance,
we plan to use DiscoTEX to discover knowledge from a
database extracted from business news articles. Mining a
database extracted from doctors' English notes and records
about medical patients is another promising application area.

One step in DiscoTEX that is currently performed man-
ually is collapsing similar slot-�llers in the extracted data
into a canonical form, e.g. mapping \NT," \Windows NT,"
and \Microsoft Windows NT" all to a unique term. In many
cases, such collapsing could be automated by clustering slot
�llers using a distance metric based on textual similarity,
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Figure 10: Recall with reused IE training set
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such as character edit distance [25], or semantic similarity
as determined by context-based word clustering [23].

Instead of requiring or creating canonical slot-�llers that
must match exactly, an alternative approach is to allow par-
tial matching of slot-�llers during the discovery process. The
need for soft matching of text strings in discovered rules is
an important aspect of text mining that requires changes
to existing rule induction methods. Since text strings in
traditional databases also contain typos, misspellings, and
non-standardized variations, this is also an important as-
pect of traditional KDD that has not been adequately ad-
dressed. We are currently exploring the discovery of rules
that allow soft matching of slot-�llers by adapting the RISE
approach to unifying rule-based and instance-based learning
methods [13]. Like Whirl [10], our approach uses a TFIDF
text-similarity metric from information retrieval [1] to �nd
examples that are close but not exact matches to the condi-
tions of a rule. We have applied a preliminary version of this
system to a database of science-book descriptions extracted
from Amazon.com and discovered rules such as: \If a ti-
tle of a science-book has a substring of Gender, then Men,
Women, and Di�erences are found in the review for that
book." and \If a synopsis of a book contains History and
Life, then title of that book includes a substring, Origin."

Currently, we only consider discrete-valued slots. However,
real-valued slots, such as \required years of experience" or
\salary" could also be provided to the rule miner as addi-
tional input features when predicting other slots. Predicting
such continuous values using regression methods instead of
categorization techniques is another area for future research.

The procedure for selecting slots to be used in rule mining
also needs to be automated. In the current experiments,
we manually chose �ve slots from the computer-science job
template. For example, title slots for job postings is not
used because it has many possible values and is diÆcult
to predict. By identifying and quantifying the correlations
between slot values, this decision could be automated.

6. CONCLUSIONS
There is a growing interest in the general topic of text min-
ing [18]; however, there are few working systems or detailed
experimental evaluations. By utilizing existing IE and KDD
technology, text-mining systems can be developed relatively
rapidly and evaluated on existing IE corpora. In this paper,
we presented an approach to using an automatically learned
IE system to extract a structured databases from a text cor-
pus, and then mining this database with traditional KDD
tools. Our preliminary experimental results demonstrate
that the knowledge discovered from such an automatically
extracted database is close in accuracy to the knowledge
discovered from a manually constructed database.

Text mining is a relatively new research area at the intersec-
tion of data mining, natural-language processing, machine
learning, and information retrieval. By appropriately inte-
grating techniques from each of these disciplines, useful new
methods for discovering knowledge from large text corpora
can be developed. In particular, we believe that the growing
interaction between computational linguistics and machine
learning [6] is critical to the development of e�ective text-
mining systems.
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