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Abstract

Text mining is a relatively new research area at the intersection of data mining, natural-
language processing, machine learning, and information retrieval. The goal of text mining is
to discover knowledge in unstructured text. The related task of Information Extraction (IE)
concerns locating specific items of data in natural-language documents, thereby transforming
unstructured text into a structured database. Although handmade IE systems have existed
for a while, automatic construction of information extraction systems using machine learning
is more recent. This proposal presents a new framework for text mining, called DiscOTEX
(Discovery from Text EXtraction), which uses a learned information extraction system to
transform text into more structured data which is then mined for interesting relationships.

DiscoOTEX combines IE and standard data mining methods to perform text mining as
well as improve the performance of the underlying IE system. It discovers prediction rules
from natural-language corpora, and these rules are used to predict additional information
to extract from future documents, thereby improving the recall of IE. The initial version of
DiscoTEX integrates an IE module acquired by the RAPIER learning system, and a standard
rule induction module such as C4.5RULES or RIPPER. Encouraging initial results are presented
on applying these techniques to a corpus of computer job announcements posted on an Internet
newsgroup. However, this approach has problems when the same extracted entity or feature
is represented by similar but not identical strings in different documents. Consequently, we
are also developing an alternate rule induction system for DisCOTEX called, TEXTRISE, that
allows for partial matching of string-valued features. We also present initial results applying
the TEXTRISE rule learner to corpora of book descriptions and patent documents retrieved
from the World Wide Web (WWW). Future research will involve thorough testing on several
domains, further development of this approach, and extensions of the proposed framework
(currently limited to prediction rule discovery) to additional text mining tasks.



1 Introduction

The problem of text mining, i.e. discovering useful knowledge from unstructured text, is attracting
increasing attention (Hearst, 1999; Feldman, 1999; Mladeni¢, 2000). This proposal suggests a new
framework for text mining based on the integration of Information Eztraction (IE) and traditional
Knowledge Discovery from Databases (KDD), a.k.a. data mining. Information Extraction is a
form of shallow text understanding that locates specific pieces of data from a corpora of natural-
language texts. KDD considers the application of statistical and machine-learning methods to
discover novel relationships in large relational databases. However, there has been little if any
research exploring the interaction between these two important techniques to perform text mining
tasks.

Traditional data mining assumes that the information to be “mined” is already in the form of
a relational database. Unfortunately, for many applications, electronic information is only avail-
able in the form of unstructured natural-language documents rather than structured databases.
Information Extraction, a task that has been a focus since the start of the Message Understanding
Conferences (MUCs) (DARPA, 1998), addresses the problem of transforming a corpus of textual
documents into a more structured database. This suggests an obvious role that IE can play in
text mining when combined with standard KDD methods, as illustrated in Figure 1. In this
IE-based text mining framework, called DiISCOTEX (Discovery from Text EXtraction), the IE
module captures specific pieces of data in raw text, and the resulting database is provided to the
KDD module for further mining of knowledge.

Although constructing an IE system is a difficult task, there has been significant recent progress
in using machine learning methods to help automate the construction of IE systems (Cardie, 1997,
Califf, 1999). By manually annotating a small number of documents with the information to be
extracted, a fairly accurate IE system can be induced from this labeled corpus and then applied
to a large body of raw text to construct a large database for mining. In this way, a small
amount of labeled training data for an IE learning system can be automatically transformed into
a large database of structured information ready to be mined with traditional KDD methods. For
example, the IE learning system RAPIER (Califf & Mooney, 1999) has been used to induce an IE
system that transforms newsgroup job postings into a relational database. By applying standard
rule induction methods to a database of 5,000 jobs automatically extracted from the newsgroup
austin. jobs, we have discovered interesting relationships such as “If a computer-related job
requires knowledge of Java and graphics then it also requires knowledge of PhotoShop.” or
“Computer jobs related to e-commerce and database usually require knowledge of SQL Server
and Oracle.”

However, the accuracy of current IE systems, whether built manually or induced from la-
beled data, is limited despite the recent advancement of information extraction. Therefore, an
automatically extracted database will inevitably contain significant numbers of errors. An im-
portant question is whether the knowledge discovered from this “noisy” database is significantly
less reliable than knowledge discovered from a cleaner traditional database. In this proposal we
present experiments showing that knowledge discovered from an automatically extracted database
is close in accuracy to that discovered from a manually constructed database, demonstrating that
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Figure 1: Overview of IE-based text mining framework

combining IE and KDD is a viable approach to text mining.

A less obvious interaction is the benefit that KDD can in turn provide to IE. This proposal also
explores the mutual benefit that the integration of IE and KDD can provide, by showing that rules
mined by KDD can be used to improve IE performance. The predictive relationships between
different slot fillers discovered by KDD can provide additional clues about what information
should be extracted from a document. For example, if Java € programming-languages and
the graphics € areas have been extracted from a job posting, then an IE system might also
consider extracting PhotoShop € applications as an additional slot filler. Since typically the
recall (percentage of correct slot fillers extracted) of an IE system is significantly lower than its
precision (percentage of extracted slot fillers which are correct) (DARPA, 1993, 1995, 1998), such
predictive relationships might be productively used to improve recall by suggesting additional
information to extract. In this proposal, we report experiments in the computer-related job-
posting domain demonstrating that predictive rules acquired by applying KDD to an extracted
database can be used to improve the recall of information extraction.

One of the assumptions behind the text-mining system described so far is that standard
data mining methodologies are suitable for the rule induction component of our “IE + KDD =
Text Mining” framework. However, text strings in traditional databases often contain typos, mis-
spellings, and non-standardized variations. This is another important aspect that traditional data
mining techniques have not been adequately addressed. The heterogeneity of textual databases
causes a problem when we apply existing data mining techniques to text: the same or similar
objects are often referred to using different (but similar) textual strings. This issue becomes
clear when we consider the World Wide Web (WWW), a vast and dynamic warehouse of text
documents, as a potential target for text mining. Since the Web has no centralized moderator, it
is highly heterogeneous, making it difficult to apply strict operators on text extracted from web.
In order to cope with this problem, we propose a method, TEXTRISE for learning soft-matching
rules from text using a modification of the RISE algorithm (Domingos, 1996), a hybrid of rule-
based and instance-based (nearest-neighbor) learning methods. Such a hybrid is good match
for text mining since rule induction provides simple, interpretable rules, while nearest-neighbor
provides soft matching based on a specified similarity metric.

In this proposal, we present preliminary experimental results with an initial version of Di1sco-
TEX and TEXTRISE on a corpus of Internet documents such as computer-related job postings
on the newsgroup, book descriptions collected from an online bookstore, and patent documents



available on the Web. We believe encouraging results from the experiments indicate that the use-
fulness of information extraction in text mining. We plan to do full evaluations with our system,
to enhance it several directions, and to expand it for other multiple tasks of text mining.

The remainder of this proposal is organized as follows. Section 2 presents background material
on text data mining and information extraction. Section 3 describes an implementation of the
DiscoTEX framework, that simply combines IE and traditional KDD technologies to discover
prediction rules from text. We will also show that DiISCOTEX improves performance of IE by
exploiting prediction rules. Experimental results obtained on a corpus of job postings from the
newsgroup austin. jobs are presented and discussed. Section 4 presents and analyzes preliminary
results obtained with TEXTRISE, another implementation of the proposed text mining framework
with partial matching rules incorporated in the prediction rule-learning algorithm. Experiments
with TEXTRISE are performed on a corpus of book descriptions from Amazon.com and publicly
available patent documents. In Section 5, we outline our future research plan, including extensive
testing in multiple domains, several enhancements of the current system, and plans for applying
the proposed framework to other text mining tasks. Section 6 discusses related work and the final
section summarizes and presents our conclusions.

2 Background

This section provides background information on our research by reviewing the goal of text mining
and various techniques used for building text-mining systems. The task of Information Extraction
(IE) is also discussed in Section 2.2 along with a brief overview of state-of-the-art IE systems.

2.1 Text Mining
2.1.1 What is Text Mining?

Text mining is defined as “the process of finding useful or interesting patterns, models, directions,
trends, or rules from unstructured text”. Text mining has been viewed as a natural extension of
data mining (Hearst, 1999), or sometimes considered as a task of applying the same data mining
techniques to the domain of textual information (Dorre, Gerstl, & Seiffert, 1999). This reflects
the fact that the advent of text mining relies on the burgeoning field of data mining in a great
degree. Traditionally, texts have been mainly analyzed by natural language processing techniques
or Information Retrieval (IR) methods. The popularity of the Web and the huge amount of text
documents available in electronic media also boosted “the search for the hidden knowledge in
collections of text documents”.

One of the important goals of text mining is to extract patterns that can be incorporated
in other intelligent applications. Such applications include categorization, routing, filtering, seg-
mentation, retrieval, ranking, summarization, clustering, organization and navigation tools for
text documents. Many of these tasks often overlap each other. Text categorization (Yang, 1999),
or text classification, is the most extensively explored field for applying text-mining techniques
because many of the other applications can be cast into the task of text categorization. Text



categorization systems conduct a supervised learning task of assigning predefined categories to
new text documents based on a classification function learned from a set of labeled documents.

Besides these traditional applications, discovering knowledge from unstructured text is an
exiting new area for text mining. For example, Knowledge Discovery in Textual databases (KDT)
(Feldman & Dagan, 1995) discovers interesting patterns from text, by establishing a hierarchy
of meaningful concepts and looking for mutual connections in between the concept nodes. KDT
has evolved into the FACT system (Feldman & Hirsh, 1996) with an aid of a well-known data
mining technique, association rule mining, and DOCUMENT EXPLORER (Feldman, Fresko, Hirsh,
Aumann, Liphstat, Schler, & Rajman, 1998) accompanied with an interactive exploration tool.
These approaches are applied to Reuters news articles to find out interesting relationships between
concept items, e.g. natural resources of Latin American countries.

Web mining is a specialized extension for text mining to the semi-structured texts available on
the Internet (Etzioni, 1996). Finding relevant information, e.g. web search engines, has been the
main focus of web mining for years, but recent research topics on web mining are diversified to
using the Web as a knowledge base in computer-understandable format for further tasks (Cohen,
1999; Craven, DiPasquo, Freitag, McCallum, Mitchell, Nigam, & Slattery, 2000), personalization
of the Web based on interests of individual users (Pazzani, Muramatsu, & Billsus, 1996; Joachims,
Freitag, & Mitchell, 1997), locating specific information from hypertext documents (Brin, 1998;
Soderland, 1999) or summarization/compression of web documents (Berger & Mittal, 2000). “Web
mining” is generally categorized to “web content mining”, “web structure mining”, and “web usage
mining” (Kosala & Blockeel, 2000), but “web mining” in this proposal is used as a narrow sense
of “web content mining” because web documents can be viewed simply as a special kind of text
documents.

2.1.2 Techniques for Text Mining

Several techniques including conceptual structure, association rule mining, episode rule mining,
decision trees, and rule induction methods have been proposed for various text mining tasks.

e Conceptual Structure

KDT brings up an issue of building a hierarchical structure of concepts so that data mining
techniques can be applied indirectly to extracted items from unstructured text (Feldman &
Dagan, 1995). The concept hierarchy in KDT is a directed acyclic graph of concepts that are
interesting to the user. In this hierarchy, nodes for more general concepts have specific ones
as their children. For instance, the relationship between programming-languages and Java
is represented as a parent-child nodes to show that the concept for programming-languages
is more general than that of Java. An example tree for computer-science skills for job
postings domain is shown in Figure 2. The concept hierarchy is used to label documents,
finding the relevant concept for that document and implicitly tagging all of the ancestors of
that concept. KDT then statistically analyzes the content of the set of concepts generated
for each text document to identify interesting distributions, e.g. highly skewed or highly
deviated.



Computer—Science Skill

\\

Programmlng Languages Appllcatlons
\ coBoOL /
Java o I
racle
VBSCRIPT Access
QA Partner
FORTRAN

Figure 2: A subtree of the concept hierarchy for computer-science skills

e Association Rule Mining

FACT (Feldman & Hirsh, 1996) and DOCUMENT EXPLORER (Feldman et al., 1998) combine
the conceptual approach with a standard data mining technique, association rule mining
(Agrawal & Srikant, 1994). Particularly, DOCUMENT EXPLORER incorporates an associa-
tion rule mining module to other text-mining subsystems such as information retrieval and
information filtering to build a knowledge management system.

An association rule was invented to find interesting correlations between items from large
databases. For example, the association between Java and C++ is revealed when it is known
to us that “In 65% of the cases when required skill of a job announcement includes Java, it
also includes C++.” This association is represented as

Java = CH+ [65%]
where 65% means the confidence of this association rule. However, a rule like

COBOL = FORTRAN [80%]

may not be worth consideration in case the number of job announcements requiring COBOL
and FORTRAN together is very small. Therefore an association rule often specifies the support
of the rule, defined as the number of times items occur together, as follows.

Java = CH+ [65%, 81]
COBOL = FORTRAN  [80%,4]

Even if the confidence of the second rule is very high (80%), the low support of this rule
compared to that of the first one makes it uninteresting since it is known that COBOL and
FORTRAN rarely occur together (only 4 times in this case). Usually users are asked to specify
a minimum support for an association rule mining algorithm to collect meaningful rules
only.



Association can be between more than two items. From a corpus of Reuters news articles,
FACT (Feldman & Hirsh, 1996) discovered association rules such as “Saudi Arabia, Iraq,
and Kuwait = Iran [100%,5)”, “Qatar and Iraq = Saudi Arabia [88%,7]”, “Iraq = Iran
[76%, 63]”, and “Kuwait and Bahrain = Saudi Arabia [75%, 6]”.

e Episode Rule Mining

Ahonen, Heinonen, Klemettinen, and Verkamo (1998) and Ahonen-Myka, Heinonen, Klemet-
tinen, and Verkamo (1999) applied existing data mining techniques to a text corpora for
discovery of episode rules. Episode is a data mining terminology for temporal values as-
signed to a sequence of data. Ahonen et al. (1998) showed that the general data mining
technique, episode rule mining, is applicable to text analysis task of descriptive phrase ex-
traction. Ahonen-Myka et al. (1999) used similar techniques to find co-occurring multi-term
phrases in a collection of documents.

An episode rule discovered from a collection of Finnish legal documents is shown below.
chemicals, processing = storage [2—3] (69%, 18,19)

This episode rule tells that in 69% of the cases, where the two words “chemicals” and
“processing” occurred within 2 consequent words, also the word “storage” occurred within
3 words. In other words, the size of the window in which “chemicals” and “processing” occur
together is 3. The support of the entire episode rule and the support for the left-hand side
of the rule are also reported. In this example, “chemicals” and “processing” occur together
in 19 times and “storage” followed those two words in 18 times. Episode rule mining is
used for language analysis because it preserves the sequential structure of terms in a text
document.

e Decision Trees and Rule Learners

Decision tree methods such as C5.0 (an extension of C4.5 (Quinlan, 1993)) and rule learners
such as FOIL (Quinlan, 1990) were applied to text mining tasks (Ghani, Jones, Mladeni¢,
Nigam, & Slattery, 2000). Using C5.0, Ghani et al. (2000) discovered interesting patterns,
e.g. “Aerospace/defense companies are located in Florida”, from the Hoovers.com online
resource about companies. A rule learner, FOIL was used to learn function-free Horn clauses.
For example,

arthur_andersen(X) :- headquarter_city(X, madrid), profit(X,?,7)

was learned for classifying auditors of each company. In English, this rule states that
“Companies that have headquarters in Madrid and listed historical finanical information
about their profits use Arthur Andersen as their auditor”.

In addition to the above techniques, natural language processing and symbolic learning algo-
rithms have been used for Information Extraction task as will be shown in Section 2.2. Also,



Artificial Neural Networks (e.g. WEBSOM (Honkela, Kaski, Lagus, & Kohonen, 1997)) were
found to be useful for text clustering (Merkl, 1998). For tasks such as document matching, rank-
ing, and clustering, Information Retrieval (IR) techniques have been widely used (Baeza-Yates
& Ribeiro-Neto, 1999) because a form of soft matching that utilizes word-frequency information
typically gives superior results for most text processing problems (Salton, 1989; Cohen, 1998;
Yang, 1999).

2.2 Information Extraction

The proposed DISCOTEX framework considers information extraction (IE) as a key component
for text mining. In this subsection, we will introduce the information extraction task and list
some of recently developed IE systems.

The goal of an information extraction system is to find specific data in natural-language
text. DARPA’s Message Understanding Conferences (MUC) has concentrated on IE by rigorously
evaluating the performance of participating IE systems based on blind test sets of text documents
(DARPA, 1993, 1995, 1998). The various MUC’s have focused on tasks such as Latin American
terrorism, aircraft crashes, joint ventures, micro-electronics, and company management changes.
The data to be extracted is typically given by a template which specifies a list of slots to be filled
with substrings taken from the document.

Figures 3 and 4 show paired documents and templates from information extraction tasks in two
different domains. These templates include only slots that are filled by strings taken directly from
the document. Several slots may have multiple fillers for job postings domain as in Figure 3. For
example, slots such as programming-languages, platforms, applications, and areas usually
have more than one filler, while slots related to the job’s title or location (city and state) have
only one filler for each.

IE is useful for a variety of applications, particularly given the recent proliferation of Inter-
net and web documents. Recent applications for IE include medical patient records (Soderland,
Fisher, Aseltine, & Lehnert, 1995), weather reports (Soderland, 1997), seminar announcements
(Freitag, 1997), course homepages (Freitag, 1998a), apartment rental ads (Soderland, 1999), and
job announcements (Califf & Mooney, 1999). In particular, Califf (1998) suggested extracting
information from text documents in order to create easily searchable databases from the infor-
mation, thus making the online text more easily accessible. For instance, information extracted
from job postings in USENET newsgroup misc. jobs.offered can be used to build a searchable
database of jobs. DiISCOTEX is concerned with this aspect of IE, transforming unstructured texts
to structured databases.

Information extraction systems are generally very domain-specific, and have complex struc-
tures with several modules. They usually include syntactic parsers, specialized lexicons, and
discourse processing modules to handle issues such as coreference. Most information extraction
systems have been built entirely by hand until recently. In order to reduce human efforts to
build an information extraction systems, automatic construction of complex IE systems began
to be considered lately by many researchers. Recent attempts to automate the otherwise time-
consuming construction of IE systems include AuToSLoG (Riloff, 1993) (and AuTOSLOG-TS
(Riloff, 1996Db)), Liep (Huffman, 1996), CRYSTAL (Soderland et al., 1995), WHISK (Soderland,



Document

Leading Internet Provider using cutting edge Web technology in Austin
is accepting applications for a Senior Software Developer. The candidate
must have 5 years of software development, which includes coding in
C/C++ and experience with databases (Oracle, Sybase, Informix, etc.).

A BS degree or higher in Computer Science or related field are required.
PERL and JAVASCRIPT programming experience will be a definite plus!

This position will require developing applications under Windows95/98
and NT, meeting with customers to define requirements, and the design,
development and implementation of e-commerce, internet/intranet appli-
cations with emphasis on back-end Web site development using C++, Java
and RDBMS. Salary: $70-85K plus outstanding benefits(Medical, Dental,
Vision, Stock Options); Location: Austin(South), TX; Type of Position:
Full Time

Filled Template

title: Senior Software Developer
company:

salary: $70-85K

city: Austin

state: TX

language: Perl, C, Javascript, Java, C++
platform: NT, Windows

application: Oracle, Informix, Sybase
area: RDBMS, Internet, Intranet, E-commerce
required years of experience: 5

desired years of experience:

required degree: BS

desired years of degree:

Figure 3: Sample message and filled template for job postings

1999), SRV (Freitag, 1998a), SOFTMEALY (Hsu, 1999), and RAPIER (Califf & Mooney, 1999).
AUTOSLOG is one of the earliest attempts to automate the construction of an information
extraction system. Although AUTOSLOG creates a dictionary of extraction patterns using machine
learning techniques, it is not a fully automated system because human expert has to intervene in
the loop to validate extraction patterns. LIEP can be viewed as another version of AUTOSLOG with
capabilities for learning patterns for multiple slots. CRYSTAL learns more expressive extraction
patterns with both semantic and exact word constraints, and was proposed to be combined with
a preprocessing engine called WEBFOOT (Soderland, 1997) for page segmentation based on page
layout cues. WHISK focused on learning information extraction patterns for online information
that can be either structured, semi-structured, or in free format. SRV also applied its ability
for learning extraction patterns written in first-order logic expressions on several attributes and
relational structure of the documents, to online web documents. RAPIER learns extraction rules



Document

Event: Data Mining Colloquium Series
Speaker: Professor Ray Mooney
Department of Computer Sciences
University of Texas at Austin
Date: October 27, 2000
Time: 11 AM
Place: ACES Auditorium (2.302)
Coffee: 10:30 AM (same room)
Abstract: Professor Ray Mooney, University of Texas at Austin, will
present a seminar entitled "Text Mining with Information Extraction,"
on Friday, October 27th from 11-12 in ACES 2.302.

Filled Template

speaker: Professor Ray Mooney
location: ACES Auditorium (2.302)
start-time: 11AM or 11

end-time: 12

Figure 4: Sample message and filled template for seminar announcements

describing constraints on slot fillers and their surrounding context using a specific-to-general
search. Since we adopted RAPIER to fill in the IE part of DISCOTEX framework for building
a text-mining system, the rule representation scheme and the learning algorithm of RAPIER are
described in more details in Section 3.1.

Besides these symbolic rule-learning approaches, finite-state automata (FSA) are used to de-
scribe patterns for information extraction in SOFTMEALY (Hsu, 1999), while a hidden Markov
model (HMM), a probabilistic generalization of non-deterministic FSA, is taken by Freitag and
McCallum (1999). A Naive-Bayesian approach usually used for document classification is also
tested by Freitag (1998b). Recent prolification of research on information extraction implies the
possibility of using a successfully-built IE component for a larger text-mining system.

3 DiscoTEX: Integrating Data Mining and Information Extrac-
tion

In this section, we discuss the details of the proposed text mining framework. We consider the

task of constructing a database with RAPIER from job announcement postings to the USENET

newsgroup in order to show the usefulness of DiISCOTEX. An implementation of DiSCOTEX,
based on RAPIER and standard rule-learning methods is presented and evaluated.

10



Pre-filler Pattern Filler Pattern Post-filler Pattern

Rule 1) word: [senior, junior]  list: max length: 2 [end-of-sentence]
syntactic:[normal-noun,
plural-noun)

Rule 2) [empty] word: [programmer, analyst] word: [needed, for, with]

Figure 5: Sample extraction rules of RAPIER for title of jobs

3.1 Information Extraction with RAPIER

RAPIER (Robust Automated Production of Information Extraction Rules) is a relational rule
learner for acquiring information extraction rules from a corpus of labeled training examples.
Inspired by several inductive logic programming systems, RAPIER learns information extraction
rules in a bottom-up fashion from a corpus of labeled training examples. Patterns are learned
by RAPIER using a specific-to-general search. Constraints on patterns for slot fillers and their
context can specify the specific words, part-of-speech (POS), or semantic classes of tokens. The
hypernym links in WordNet (Fellbaum, 1998) provide semantic class information, and documents
are annotated with part-of-speech information using the tagger of Brill (1994). In this proposal,
we use the simpler version of RAPIER that employs only word and POS constraints since WordNet
classes provide no additional advantage in this domain (Califf & Mooney, 1999).

RAPIER’s rule representation uses Eliza-like patterns (Weizenbaum, 1966) that make use of
limited syntactic and semantic information. The extraction rules are indexed by template name
and slot name and consist of three parts: 1) a pre-filler pattern that matches text immediately
preceding the filler, 2) a filler pattern that must match the actual slot filler, and 3) a post-filler
pattern that must match the text immediately following the filler. Each pattern is a sequence
(possibly of length zero in the case of pre- and post-filler patterns) of pattern items or pattern
lists. A pattern item matches exactly one word or symbol from the document that meets the
item’s constraints. A pattern list specifies a maximum length N and matches 0 to N words or
symbols from the document that each must match the list’s constraints. Figure 5 presents a
typical example of extraction patterns learned by RAPIER.

To learn extraction patterns from a set of labeled examples, RAPIER first creates most-specific
patterns for each slot in each example specifying the complete word and tag information for the
filler and its full context, the context being the entire document. New rules are are created by
generalizing pairs of existing rules using a beam search. When the best rule does not produce
incorrect extractions, RAPIER adds it to the rule base and removes existing rules that it subsumes.
Rules are ordered by an information-theoretic heuristic (Quinlan, 1990) weighted by the rule size.

By training on a corpus of documents annotated with their filled templates, RAPIER acquires a
knowledge base of extraction rules that can be tested on novel documents. Califf (1998) and Califf
and Mooney (1999) provide more information and results demonstrating that RAPIER performs
well on realistic applications such as USENET job postings and seminar announcements.

11



AIX € platform and DB2 € application — Lotus Notes € application

Visual Basic € language and OLE € area — UNIX ¢ platform
Oracle € application and QA Partner € application — SQL € language
3D € area and Games € area and E-Commerce ¢ area — SQL ¢ language
Java € language and ActiveX € area and Graphics € area — Web € area

CH++ € language and C € language and CORBA € application — Windows € plat form
UNIX ¢ plat form and Windows ¢ plat form and Games € area — 3 D € area
HTML € language and NT € platform and ASP € application — Database € area

Figure 6: Sample rules of DISCOTEX for computer-science job postings

3.2 Rule Induction

Interesting rules can be discovered from a database created by an IE system. For instance, from a
collection of the job announcment postings on a USENET newsgroup, we discovered a rule, “If a
computer-science job requires AIX for platform and DB2 for applications, it also requires IMS
for applications.” This reveals a previously unknown fact to someone who does not know all of
AIX, DB2, and IMS are products of IBM and both DB2 and IMS are database-related software.
In this subsection, we will detail our work to induce prediction rules from the IE templates filled
by RAPIER.

After constructing an IE system that extracts the desired set of slots for a given application,
a database can be constructed from a corpus of texts by applying the IE extraction patterns to
each document to create a collection of structured records. Standard KDD techniques can then
be applied to the resulting database to discover interesting relationships. Specifically, we induce
rules for predicting each piece of information in each database field given all other information in
a record. Standard methods for learning classification rules can be employed for this task.

In order to discover prediction rules, we treat each slot-value pair in the extracted database
as a distinct binary feature, such as graphics € area, and learn rules for predicting each feature
from all other features. Similar slot fillers are first collapsed into a pre-determined standard term.
For example, “Windows 95” is a popular filler for the platform slot, but it often appears as
“Win 95”7, “Win95”, “MS Win 95”, and so on, and “DBA” in the title slot is an abbreviation
for “DataBase Administrator”. These terms are collapsed to unique slot values before prediction
rules are mined from the data. A small domain-dependent synonym dictionary is used to identify
such similar terms. Trivial cases such as “Databases” — “Database” and “Client/Server” —
“Client-Server” are handled by manually contrived synonym-checking rules.

We have applied RIPPER (Cohen, 1995) to induce rules from the resulting binary data. RIPPER
is a learning method that forms simple rules in a fairly effective manner. C4.5RULES (Quinlan,
1993) was also applied to learn prediction rules. RIPPER runs significantly faster than C4.5RULES
since it has an ability to handle set-valued features (Cohen, 1996b) to avoid the step of explicitly
translating slot fillers into a large number of binary features.

Discovered knowledge describing the relationships between slot values is written in a form of
production rules. If there is a tendency for Web to appear in the area slot when ShockWave appears
in the applications slot, this is represented by the production rule, “ShockWave € application

12
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Figure 7: The DiSCOTEX system architecture

— Webe&area”. Rules can also predict the absence of a filler in a slot. Sample rules mined from a
database of 600 jobs extracted from the USENET newsgroup austin. jobs are shown in Figure 6.

3.3 System Architecture

The overall architecture of DiISCOTEX is shown in Figure 7. First, documents annotated by
the user are provided to RAPIER as training data. IE rules induced from this training set are
stored in the IE rule base and subsequently used by the extraction module. The learned IE
system then takes unlabeled texts and transforms them into a database of slot-values, which is
provided to the KDD component (i.e. RIPPER or C4.5RULES) as a training set for constructing
a knowledge base of prediction rules. The training data for KDD can include the user-labeled
documents used for training IE, as well as a larger IE-labeled set automatically extracted from
raw text. D1ISCOTEX also includes a capability for improving the recall of the learned IE system
by proposing additional slot fillers based on learned prediction rules. More details on this aspect
of the system are described in Section 3.5

In order to test the accuracy of the discovered rules, they are used to predict the information
in a disjoint database of user-labeled examples. For each test document, each possible slot-value
is predicted to be present or absent given information on all of its other slot-values. Average
performance across all features and all test examples is then computed. The rules produced by
RiIPPER and C4.5RULES were found to be of similar accuracy, and the experiments in this proposal
employ RIPPER except those in Section 3.6. The computational time and space complexity for
RIPPER is significantly less than those of C4.5RULES.
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3.4 Experimental Results
3.4.1 Experimental Methodology

Discovered knowledge is only useful and informative if it is accurate. Discovering fluke correlations
in data is not productive, and therefore it is important to measure the accuracy of discovered
knowledge on independent test data. The primary question we address in the experiments of
this section is whether knowledge discovered from automatically extracted data (which may be
quite noisy) is relatively reliable compared to knowledge discovered from a manually constructed
database.

To test the overall system, 600 computer-science job postings to the newsgroup austin. jobs
were collected and manually annotated with correct extraction templates. Ten-fold cross valida-
tion was used to generate training and test sets. Rules were induced for predicting the fillers of
the programming-languages, platforms, applications, and areas slots, since these are usually
filled with multiple discrete-valued fillers and have obvious potential relationships between their
values. The total number of slot-values used in the experiment is 476; 48 slot-values are for the
programming-languages slot, 59 for platforms, 159 for applications, and 210 for areas.

The classification accuracy for predicting absence or presence of slot fillers is not a particularly
informative performance metric since high accuracy can be achieved by simply assuming every
slot filler is absent. For instance, with 60 user-labeled examples, DiISCOTEX gives a classification
accuracy of 92.7% while the all-absent strategy has an accuracy of 92.5%. This is because the set
of potential slot fillers is very large and not fixed in advance, and only a small fraction of possible
fillers is present in any given example. Therefore, we evaluate the performance of DisCOTEX
using the IE performance metrics of precision, recall, and F-measure with regard to predicting
slot fillers. These metrics are defined as follows:

NumberO f PresentSlotV aluesCorrectlyPredicted
NumberO f SlotValues PredictedToBePresent

(1)

precision =

NumberO f PresentSlotValuesCorrectly Predicted

2
NumberO f PresentSlotValues @)

recall =

F-measure is the harmonic mean of precision and recall and is computed as follows (when the
same weight is given to precision and recall):

7 B 2 x Precision x Recall (3)
measure = Precision + Recall

In order to obtain non-trivial bounds on precision and recall, a simple random guessing method
is used as a benchmark. This approach guesses a slot-value based on its frequency of occurrence
in the training data. For instance, if Java occurs as a programming-language in 29% of jobs
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| [ Present | Absent |

Predicted To Be Present mXxp (n—m)xp
Predicted To Be Absent | m x (1 —p) | (n —m) x (1 —p)

Table 1: The expected outcome for random guessing

in the training data, then this method guesses that it occurs 29% of the time for the test data.
Instead of simulating this method, we analytically calculated its expected precision and recall for
each slot-value. The expected outcome for this strategy for a given slot-value is summarized in
Table 1, where p is the percentage of times the slot-value appears the training examples, n is the
total number of the test examples and m is the number of times the slot-value occurs in the test
data.

Using the information in the table, the precision and the recall for random-guessing are de-
termined as follows:

m X p
(m x p) + ((n —m) x p)

precision = =m/n (4)

mXp
(m x p) +(m x (1-p))

recall = =p (5)

Therefore, the benchmark precision for a slot-value is its probability of occurrence as estimated
from the test data and the recall is its probability of occurrence as estimated from the training
data. The only difference between the two is due to sampling error.

3.4.2 Results

Since austin. jobs is not a moderated newsgroup, not all posted documents are relevant to our
task. Some of them are resumes posted by job-seekers, advertisements, or non-computer-science
job postings. Therefore, before constructing a database using an IE system, we filtered out
irrelevant documents from the newsgroup using a trained text categorizer. First, 1,000 postings
were collected and classified by a human expert as relevant or irrelevant. Next, a bag-of-words
Naive-Bayes text categorizer (McCallum & Nigam, 1998) was trained on this data to identify
relevant documents (using the RAINBOW package (McCallum, 1996)). The resulting categorizer
has an accuracy of over 99% and is used to filter irrelevant documents from the original postings.

In the experiments in this section, RAPIER was trained on only 60 labeled documents, at which
point its accuracy at extracting information is somewhat limited; extraction precision (percentage
of extracted slot fillers that are correct) is about 91.9% and extraction recall (percentage of all of
the correct fillers extracted) is about 52.4% . We purposely trained RAPIER on a relatively small
corpus in order to demonstrate that labeling only a relatively small number of documents can
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result in a good set of extraction rules that is capable of building a database from which accurate
knowledge can be discovered.

Because of the two different training phases used in DISCOTEX, there is a question of whether
or not the training set for IE should also be used to train the rule-miner. In realistic situations,
there is no reason not to use the IE training data for mining since the human effort has already been
expended to correctly extract the data in this text. However, to clearly illustrate the difference
between mining human-labeled and IE-labeled data, we first show a comparison with a disjoint IE
training set. In this experiment, the IE training data are thrown away once they have been used
to train RAPIER, since the extractor is unlikely to make the normal number of extraction errors on
this data. Ten-fold cross-validation is performed on the remaining 540 examples for evaluation of
the data mining part. In order to clearly illustrate the impact of mining automatically extracted
data, the same set of training examples was provided to both KDD systems. The only difference
between them is that the training data for the rule-miner of DISCOTEX is automatically extracted
by RAPIER after being trained on a disjoint set of 60 user-labeled examples. Both systems are
tested on user-labeled data to identify the quality of the rules produced. Figure 8 shows the
learning curves for precision, recall, and F-measure, respectively.

Even with a small amount of user-labeled data, the results indicate that DISCOTEX achieves
a performance fairly comparable to the rule-miner trained on a manually constructed database,
while random-guessing does quite poorly. The recall curves in Figure 8 indicates that DiIscOTEX
does relatively worse with the first 60 training examples, but quickly improves with 60 additional
examples. The results also show that the precision of DISCOTEX seems to start leveling off a bit
sooner, this is presumably due to the fact that extraction errors put a somewhat lower ceiling on
the performance it can eventually achieve.

Figure 9 presents F-measures for DISCOTEX’s performance on individual slots. Not surpris-
ingly, the programming-languages slot with the least number of possible values shows the best
performance, and the area slot with as many as 210 values does poorly. More interesting is the
fact that different slots show quite different learning rates.

Figure 10 shows the learning curves for precision, recall, and F-measure under the “more
natural” scenario in which the training set provided to RAPIER, consisting of 60 user-labeled
examples, is also provided to the rule-miner as a part of its training set. In this case, both
approaches start with the same 60 user-labeled examples, which have already been used to train
the IE part of DisSCOTEX. However, as DISCOTEX proceeds to discover knowledge from data it
automatically extracts from raw text, it fairly closely tracks the performance of a system trained
on additional data laboriously extracted by a human expert. Since in this case DISCOTEX has
the advantage of a small set of relatively noise-free data to start with, its performance is even
somewhat closer to that achieved by mining a hand-built database.

All of the results presented above employed 60 labeled examples to train the IE system. In a
followup experiment, we examined the effect of increasing the number of IE training examples to
obtain a more accurate extraction module. We varied the number of training examples given to
RAPIER (trying 60, 120, 180, 240, and 300 examples), always using 240 examples in the database to
be mined by RIPPER. The size of the test set is 60 as in the previous experiment. Figure 11 shows
the performance results. Increasing the number of IE training examples improves the accuracy of
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Figure 9: F-measure for DISCOTEX by slots

the mined rules a bit, further approaching the accuracy of RIPPER trained on user-labeled data.
However, accuracy improves slowly with additional IE training data. This result indicates that if
the training set for data mining to be automatically labeled by an IE module is large enough (240
in this experiment), D1ISCOTEX is able to achieve a fairly good performance with only a small
amount of effort devoted to labeling IE training examples.

3.5 Using Mined Rules to Improve IE

After mining knowledge from extracted data, DISCOTEX is able to use the discovered rules
to predict missing information during subsequent extraction. In this subsection, we present an
algorithm to use mined rules for the purpose of improving the underlying IE system.

Tests of IE systems usually consider two performance measures again, precision and recall.
For extraction they are defined as:

NumberO fCorrectFillersExtracted
NumberOf FillersExtracted

precision =

(6)

NumberO fCorrectFillersExtracted

ll=
reca NumberO f FillersInCorrectTemplates

(7)

F-measure is also computed to combine precision and recall by Equation 3. These performance
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Figure 11: Performances with varied sizes of IE training set

metrics are more informative than the accuracy of predicting the presence/absence across all
slot-value pairs due to the large size of the potential slot filler set and its sparsity.

Many IE systems provide relatively high precision, but recall is typically much lower. Previous
experiments in the job postings domain showed RAPIER’s precision (e.g. low 90%’s) is higher
than its recall (e.g. mid 60%’s) (Califf, 1998). Currently, RAPIER’s search focuses on finding
high-precision rules and does not include a method for trading-off precision and recall. Although
several methods have been developed for allowing a rule learner to trade-off precision and recall
(Cohen, 1996a), this typically leaves the overall F-measure unchanged.

Pseudocode for the rule mining phase is shown in Figure 12. A final step shown in the figure
is filtering the discovered rules on both the training data and (optionally) a disjoint set of labeled
validation data in order to retain only the most accurate of the induced rules. Currently, rules
that make any incorrect predictions on either the training or validation extracted templates are
discarded.

By using additional knowledge in the form of prediction rules mined from a larger set of data
automatically extracted from additional unannotated text, it may be possible to improve recall
without unduly sacrificing precision. For example, suppose we discovered a rule:

e SQL € programming-languages — database € area

If the IE system extracted SQL in the programming-languages slot but failed to extract database
in area slot, we may want to assume there was an extraction error and add database to the
area slot, potentially improving recall. Therefore, after applying extraction rules to a document,
DiscOTEX applies its mined rules to the resulting initial data to predict additional potential
extractions. The final decision whether or not to extract a predicted filler is based on whether
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Input: D is the training set.
Procedure DiscoTEX-Mining (D)

Determine T, a threshold value for rule validation
/* Information extraction */
Create a database of labeled examples
(by applying IE to the document corpus)
/* Conversion to binary features for data mining to be applied */
For each labeled example D do
S := Set of slot fillers of D
Convert S to binary features, namely S’
/* Data mining */
Build a prediction rule base, RB
(by applying RIPPER or C4.5RULES to S')
/* Rule Validation */
For each prediction rule R € RB do
Verify R on training data and validation data
If the accuracy of R is lower than T
Then delete R from RB

Figure 12: Algorithm specification for DISCOTEX: rule mining phase

Input: D is the set of unlabeled examples.
Procedure DiscoTEX-Extraction (D)

For each example D do
Extract fillers from D using extraction rules
For each rule R in the prediction rule base RB do
/* Using mined rules */
If R fires on the current extracted fillers
If the predicted filler is a substring of D
/* Information extraction */
Then Extract the predicted filler

Figure 13: Algorithm specification for DiIscOTEX: IE Phase
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the filler (or any of its synonyms) occurs in the document as a substring. If the filler is found
in the text, the extractor considers its prediction confirmed and extracts the filler. Mined rules
that predict the absence of a filler are not used to remove extracted information since there
is no analogous confirmation step for improving precision. This overall extraction algorithm is
summarized in Figure 13.

One final issue is the order in which prediction rules are applied. When there are inter-
acting rules, such as HTML € programming-languages — WWW € area and WWW ¢ area — C++ €
programming-languages, different rule-application orderings can produce different results. With-
out the first rule, a document with HTML € programming-language but without WWW € area in its
initial filled template will make the second rule fire and predict CH+ € programming-languages.
However, if the first rule is executed first and its prediction is confirmed, then WWW will be ex-
tracted and the second rule can no longer fire. In DiSCOTEX, all rules with negations in their
antecedent conditions are applied first. This ordering strategy attempts to maximally increase
recall by making as many confirmable predictions as possible.

The training and testing phase of the final system are shown separately in two Figures 14
and 15. Documents annotated by user with extracted information, as well as unsupervised data
which has been processed by the initial IE system (which RAPIER has learned from the supervised
data) are all used to create a database. The rule mining module then processes this database to
construct a knowledge base of rules for predicting slot values. These prediction rules are then used
during testing to improve the recall of the existing IE system by proposing additional slot fillers
whose presence in the document are confirmed before adding them to final extraction template.
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3.6 Evaluation of Improving IE
3.6.1 Experimental Methodology

600 user-annotated computer-science job postings from the newsgroup austin. jobs, collected for
the experiments in Section 3.4 were used to test the overall system. Ten-fold cross validation was
used to generate training and test sets. In addition, 4,000 unannotated documents were collected
as additional optional input to the data mining module. Rules were induced for predicting the
fillers of four slots, programming-languages, platforms, applications, and areas slots as in
Section 3.4. The title slot is also used in this experiment, but only as a possible antecedent
condition of a production rule, not as a consequent. Title has many possible values and is difficult
to predict; however, may be useful as a predictor since fillers such as “Database Administrator”
can help determine other values. C4.5RULES (Quinlan, 1993) is used instead of RIPPER for
prediction rule learning in this experiment. C4.5RULES induces rules by learning decision trees
and translating them into pruned rules.

3.6.2 Results

Figure 16 shows the learning curves for recall and and F-measure. Unlabeled examples are not
employed in these results. In order to clearly illustrate the impact of the amount of training data
for both extraction and prediction rule learning, the same set of annotated data was provided
to both RAPIER and C4.5RULES. Figure 16 shows a comparison between the performance of
RAPIER alone, DisCOTEX without filtering rules on independent data, and DisCOTEX with
fully filtered rules. As previously stated, there are two ways of filtering rules before they are
added to the prediction rule base; simply training and testing induced rules on the entire training
set, or holding out part of the original training set as a disjoint validation set. The results were
statistically evaluated by a two-tailed, paired t¢-test. For each training set size, the performances
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Figure 16: Recall and F-Measure on job postings

of RAPIER and DI1SCOTEX (either with or without rule filtering) were compared to determine if
their differences were statistically significant (p < 0.05).

Di1scoTEX using fully filtered rules performs the best, although DisCOTEX without filtering
on disjoint data does almost as well. As hypothesized, DiISCOTEX provides higher recall, and
although it does decrease precision somewhat, overall F-measure is moderately increased. One
interesting aspect is that DISCOTEX retains a fixed recall advantage over RAPIER as the size of
the training set increases. This is probably due to the fact that the increased amount of data
provided to the text miner also continues to improve the quality of the acquired prediction rules.
Overall, these results demonstrate the role of data mining in improving the performance of IE.

Table 2 shows results on precision, recall and F-measure when additional unlabeled documents
are used to construct a larger database prior to mining for prediction rules (which are then filtered
on a validation set). The 540 labeled examples used to train the extractor were always provided
to the rule miner, while the number of additional unsupervised examples were varied from 0 to
4,000. The results show that the more unsupervised data supplied for building the prediction rule
base, the higher the recall and the overall F-measure. Although precision does suffer, the decrease
is not as large as the increase in recall.

Although adding information extracted from unlabeled documents to the database may result
in a larger database and therefore more good prediction rules, it may also result in noise in the
database due to extraction errors and consequently cause some inaccurate prediction rules to be
discovered as well. The average F-measure without prediction rules is 86.4%, but it goes up to
88.1% when DI1SCOTEX is provided with 540 labeled examples and 4,000 unlabeled examples.
Unlabeled examples do not show as much power as labeled examples in producing good predic-
tion rules, because only 540 labeled examples boost recall rate and F-measure more than 4,000
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Number of Examples | Precision | Recall | F-measure
for Rule Mining

0 97.4 77.6 86.4
540(Labeled) 95.8 80.2 87.3
540+1000(Unlabeled) 94.8 81.5 87.6
540+2000(Unlabeled) 94.5 81.8 87.7
540+3000(Unlabeled) 94.2 82.4 87.9
540+4000(Unlabeled) 93.5 83.3 88.1
Matching Fillers 59.4 94.9 73.1

Table 2: Performance results of DiISCOTEX with unlabeled examples

unlabeled examples. However, unlabeled examples are still helpful since recall and F-measure do
slowly increase as more unlabeled examples are provided.

As a benchmark, in the last row of the Table 2, we also show the performance of a simple
method for increasing recall by always extracting substrings that are known fillers for a particular
slot. This version remembers all strings that appear at least once in each slot in the database.
Whenever a known filler string, e.g. Java, is contained in a test document, it is extracted as a
filler for the corresponding slot, e.g. programming-language. This is equivalent to replacing the
mined rules in DISCOTEX with trivial rules of the form “True — <slot-value> € <slot>” for
every known slot value. The reason why this works poorly is that a filler string contained in a
job posting is not necessarily the correct filler for the corresponding slot. For instance, database
or Web can appear in a newsgroup posting, not in the list of required skills of that particular job
announcement, but in the general description for the company. The fact that the precision and
F-measure of this strawman are much worse than DISCOTEX’s demonstrates the additional value
of rule mining for improving extraction performance.

4 TextRISE: Mining Soft-Matching Rules from Textual Data

As discussed in Section 3.2, one step in DISCOTEX that is performed manually is collapsing
similar slot-fillers in the extracted data into a canonical form. For example, “NT,” “Windows
NT,” and “Microsoft Windows NT” are typically extracted fillers for the platform slot in the
USENET job announcement domain. All of those are mapped to a unique term by a synonym-
checking dictionary before the rule mining step and treated as the same attribute afterwards. Such
collapsing could be automated by clustering slot fillers using a distance metric based on textual
similarity, such as character edit distance used by CORA research paper search engine (McCallum,
Nigam, Rennie, & Seymore, 2000), or semantic similarity as determined by context-based word
clustering (Pereira, Tishby, & Lee, 1993). An alternative approach we adopted in this proposal
is to allow partial matching of slot-fillers during the discovery process, instead of requiring or
creating canonical slot-fillers that must match exactly.

The need for soft matching of text strings in discovered rules is an aspect of text mining
that requires changes to existing rule induction methods. In this section, we explore the discov-
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ery of rules that allow soft matching of slot-fillers by adapting the RISE algorithm of unifying
rule-based and instance-based learning methods (Domingos, 1996). Like WHIRL (Cohen, 1998),
our approach uses a TFIDF text-similarity metric from information retrieval (Baeza-Yates &
Ribeiro-Neto, 1999) to find examples that are close but not exact matches to the conditions of
a rule. In Section 4.4, we presents results on applying a preliminary version of the TEXTRISE
system to two text databases, one of book information extracted from Amazon.com and another
of patent applications from Getthepatent.com. We evaluate the quality of the discovered rules
on independent data by measuring the similarity of predicted text and actual text. By comparing
results to the predictions made by nearest-neighbor and mined association rules, we demonstrate
the advantage of mining soft-matching rules.

4.1 The RISE Algorithm

The RISE (Rule Induction from a Set of Exemplars) algorithm was proposed to overcome the well-
known small disjuncts problem and splintering problem of the rule induction, and mitigating the
instance-based learning’s vulnerability to noise and irrelevant features at the same time. Unlike
other combined model approaches, RISE is a unified single algorithm which is able to behave
both as an instance-based classifier and a rule induction system. In extensive experiments, RISE
was fairly consistently more accurate than alternative methods, including standard rule-based
and instance-based algorithms (Domingos, 1996).

Instead of requiring rules to match exactly in order to make a prediction, RISE makes pre-
dictions by selecting the closest matching rule according to a standard distance metric typically
used in nearest-neighbor methods (a modified Euclidian distance). By generating generalized
rules instead of remembering specific instances and by using a similarity metric rather than ex-
act matching to make predictions, it elegantly combines the properties of rule induction and
instance-based learning.

Flexible matching rules are acquired using a specific-to-general (bottom-up) induction algo-
rithm that starts with maximally specific rules for every example and then repeatedly minimally
generalizes each rule to cover the nearest example it does not already cover, unless this results
in a decrease in the performance of the overall rule base. Performance of a rule base is mea-
sured by conducting leave-one-out testing on the training data using the closest-matching rule
for making predictions. This process repeats until any additional generalization does not increase
performance. When classifying test examples, the nearest rule to each example is found, and the
rule’s class is assigned to the example. The RISE algorithm for learning rules is summarized in
Figure 17.

For a walk-though example, consider the following training set for voting records.

1)y y n n y --> republican
2) n y y n n --> republican
3)n n n y n --> republican
4)y nnnon --> democrat
5) n n y y n --> democrat
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Input: ES is the training set.
Output: RS is the rule set.

Function RISE (ES)

RS := ES.
Compute Accuracy(RS).
Repeat
For each rule R € RS,
Find the nearest example E to R (not covered, but of the same class)
R' := Most_Specific_Generalization(R, E)
RS’ := RS with R replaced by R’
If Accuracy(RS',ES) > Accuracy(RS, ES)
Then RS := RS’
Delete R' from RS if it is a duplicate.
Until no increase in Accuracy(RS, ES) is obtained.
Return RS.

Figure 17: The RISE rule-learning algorithm

These input/output pairs associate patterns of voting decision with party allegiance. The
output variable shows whether the politician that cast the votes was Republican or Democrat.
Within the input, a ‘y’ indicates a vote in favor while a ‘n’ indicates a vote against.

We assume that the Manhattan distance is used to find the closest rule. The initial rule set
for the RISE algorithm is the same as the training set since RISE starts with maximally specific
rules. The initial accuracy of the rule set is 0 because no example is correctly classified by this rule
set with the leave-one out method. For instance, example 1) is incorrectly classified as democrat
since the closest rule for this example is rule 5) and its class is democrat.

After calculating the initial accuracy, we locate the most similar example with the first rule in
the current rule base (among those that have the same class). Example 1) is not considered as a
candidate because it is already covered by this rule. The closest example in the training examples
is 2), that is to be generalized with rule 1) in the current rule set. The generalized rule between
these two is

1°) 2 y 2 n 7 --> republican

By replacing rule 1) with 1)’, the rule set to be compared with the original one is updated as
follows.

1°) 2 y ? n ? --> republican
2) n 'y y n n --> republican
3) ) n nn y n --> republican
4) y n n n n --> democrat
5) n n y y n --> democrat
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We calculate the global accuracy of the updated rule set in order to determine if the old
rule should be replaced with the generalized one. Every example in the training set is matched
successively to rules in those rule sets. Since the generalized rule increases the accuracy by
classifying the second example (which used to be classified incorrectly as democrat by the old
rule set) correctly, we accept this updated rule base and repeat this process to all the remaining
rules. As a result, we get the second-stage rule set like following (after eliminating duplicated
rules).

1) ? y ? n ? --> republican
2) n ? ? ? n --> republican
3) 7 n ? ? n --> democrat

The algorithm is terminated at this point because no rules can be generalized with any exam-
ples in the training set to increase the overall accuracy. Generalizations of rule 1) or rule 2) with
the closest training example,

? ? ? ? ? --> republican

cause false predictions (classifying demoract as republican), resulting in a decrease in the global
accuracy.
If we are now presented with the following test case,

y Yy vyy —

the output value is republican because the closest rule to this test example is rule 1) in the final
rule base and its class is republican.

Domingos (1996) empirically shows that the RISE algorithm can create synergistic effects
between the rule induction method and instance-based learning scheme. Results indicate that
the classifier generated by RISE is better than those produced by its parent algorithms, rule
induction and nearest-neighbor. Compared to nearest-neighbor which is sensitive to irrelevant
features, RISE has a superior ability to choose relevant features for different regions of the
instance space. RISE has two major advantages over rule induction. First, RISE is better
at dealing with exceptions while rule induction suffers from small disjuncts problem. Second,
it mitigates the splintering problem of having dwindling number of available examples during
the induction process, by evaluating each rule set with respect to the accuracy on the entire
training set. Training is reasonably computationally efficient, requiring time O(e?, a2) where e is
the number of examples, and a the number of attributes.

4.2 The TEXTRISE algorithm

RISE is not directly applicable to mining rules from extracted text because: 1) its similarity metric
is not text-based and 2) it learns rules for classification rather than text prediction. TEXTRISE
addresses both of these issues. A standard vector-space metric from information retrieval (IR)
(Baeza-Yates & Ribeiro-Neto, 1999) is currently used to provide an appropriate similarity metric
for TEXTRISE. Classification accuracy as a measure of performance is replaced with the average
similarity of the text predicted to fill a slot and the actual filler.
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Book Description

Title: Harry Potter and the Goblet of Fire (Book 4)
Author: Joanna K. Rowling
Comments: This book was the best book I have ever read.
If you are in for excitement this book is the one you want to read.
Subject: Fiction, Mystery, Magic, Children, School,
Juvenile Fiction, Fantasy, Wizards

Representation

Author = {*%joanna”, “rowling”}

Title = {“harry”, “potter”, “goblet”, “fire”, “book”}
Comments = {“book”, “book”, “read”, “excitement”, “read”}
Subject = {“fiction”, “mystery”, “magic”, “children”, “school”,

“juvenile”, “fiction”, “fantasy”, “wizards”}

Figure 18: An example of representation for a book document

4.2.1 Representation

We represent an IE-processed document as a list of bags of words (BOWs), one bag for each slot
filler. We currently eliminate 524 commonly-occurring stop-words (e.g. “the”, “is”, and “you”)
but do not perform stemming. Figure 18 shows an example for a book description and its BOW
representation. Standard set-operations are extended to bags in the obvious way (Peterson, 1976).
The definition of “bag” and several operators for bags are given in Appendix A. A learned rule
is represented as an antecedent that is a conjunction of BOWSs for some subset of slots and a
conclusion that is a predicted BOW for another slot.

The standard cosine measure between two vectors is adopted for the similarity metric, while
edit distance metric could be used for cases in which the extracted slot-fillers contain short strings
rather than a series of words. The similarity of two slot-fillers is calculated by the wvector space
model for text. In this model, a text is represented as a vector of real numbers, where each
component corresponds to a word that appears in the set of all documents and the value is its
frequency in the document. The similarity of two documents x and y is the cosine of the angle
between two vectors & and ¥ representing x and y respectively, and calculated by the following
formula:

P
Similarity(z,y) = _,73/_, (8)
| 2| x |7
where | # | and | ¥ | are the norms of each document vector.
The TFIDF (Term Frequency times Inverse Document Frequency) weighting scheme (Salton,

1989) has been used to assign higher weights to distinguished terms in the given document. TFIDF
maintains two assumptions about the importance of a term. First, the more a term appears in
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Inputs: R = (41, 4, ..., A, CR) is a rule
E = (Ey, Es, ..., E,,Cg) is an example.
A;, E;, Cgr, and Cg are bags-of-words, possibly empty.
Output: R’ is the generalized rule.
Function Most_Specific_Generalization (R, E)
For i:=1ton do

Ail = A;NE;
R := (AllaAiZIa "'7An170R N CE)
Return R'.

Figure 19: Generalization of a rule to cover an example

the document, the more important it is (term frequency or tf factor). The other assumption is
that the more it appears through the entire collection of documents, the less important it is since
it does not characterize the particular document well (inverse document frequency or idf factor).
In the TFIDF framework, the weight for term ¢; in a document d;, w;; is defined as follows.

N
w;j = tfij x logy o 9)

where tf;; is the frequency of term ¢; in document d;, N the total number of documents in
collection, n the number of documents where term ¢; occurs at least once, and log, % corresponds
to the inverse frequency measure.

The standard TFIDF-weighted cosine metric is used to compute the similarity of two BOWs.
The similarity of two examples (i.e. extracted documents) or rules is the average similarity of the
BOWs in their corresponding slots.

4.2.2 Algorithm

Bag intersection is used to compute the minimal generalization of two BOWSs. For instance, the
generalization of the title slot in Figure 18 and that of “Harry Potter and the Prisoner of Azkaban
(Book 3)”(Title = {“harry”, “potter”, “prisoner”, “azkaban”, “book”}) is a simple intersection
of those two, which is Title = {“harry”, “potter”, “book”}. The minimal generalization of two
examples or rules is the minimal generalization of the BOWSs in each of their corresponding slots.

RISE finds the nearest example to generalize a given rule, satisfying two requirements: that
the example should not be already covered by that rule, and the class assigned to the example is
the one predicted by that rule. Since TEXTRISE does not learn simple categorization rules, the
second requirement must be changed: the similarities between the slot-filler of an example and
the consequent of the rule should be maximized. To combine this requirement with the goal of
the original task which is to find the nearest example of a given rule, we calculate the similarity
between each examples and the given rule to find an example with minimal distance to the rule.

A rule is said to cover an example if all of its antecedents are subbags of the example’s
corresponding BOWs. To extend the algorithm from classification to text prediction, we define
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Input: ES is the training set.
Output: RS is the rule set.
Function TextRISE (ES)
RS := ES.
Compute TextAccuracy(RS, ES).
Repeat
For each rule R € RS,
E := argmaz Similarity(E, R)
EcES’
where ES' = {E': E' € ES and
E’ is not covered by R}
R’ := Most_Specific_Generalization(R, E)
RS' := RS with R replaced by R’
If TextAccuracy(RS', ES) > TextAccuracy(RS, ES)
Then RS := RS’
If R' is identical to another rule in RS,
Then delete R' from RS.
Until no increase in TextAccuracy(RS, ES) is obtained.
Return RS.

Figure 20: The TEXTRISE rule-learning algorithm

a new measure for the accuracy of a rule set on an example set: TextAccuracy(RS, ES) is the
average cosine similarity of the predicted fillers for the examples in ES to the corresponding
fillers predicted by a rule set RS. The algorithms for generalizing a rule to cover an example
and for learning rules are described in Figure 19 and Figure 20 respectively. The algorithm is a
straightforward modification of RISE using the new similarity and predictive-accuracy metrics,
and is used to induce soft-matching rules for predicting the filler of each slot given the values of
all other slots.

4.2.3 Finding Intra-slot Relationships

Although all the rules shown so far are for prediction of one slot from all other slots, the learning
algorithm of TEXTRISE is not restricted to this fixed form. Rules predicting two slots from
all the other slots, e.g. “Organism in the book title implies life in synopses and biology
in subjects.”, can be mined without fundamental modifications to the algorithm by slightly
changing the representation for rules. This raises the issue of finding intra-slot relationships in
addition to the inter-slot relationships we have been exploring. Why not learn a rule with intra-slot
specifications such as “Shakespeare in subject implies classics and literature in subject.”?

We can learn such rules by modifying the representation of examples and rules in TEXTRISE.
Specifically, the difinitions for a rule R and an example E are modified as following:

R = (Al,A2, ,An) — (Al,A2, ,An)
E = (Er,Es,...,E,, Ey,Es, ..., Ey)
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where A; and E; are BOWs for each slot, possibly empty. With this representation, all slots are
predicted from all slots while only one slot is predicted from all the other slots in the original
version. In this version of TEXTRISE, a rule covers an example if all of its slots are more general
than the example’s corresponding slots (A4; C E; for each 7).

Rules produced by this algorithm specify relationships between terms implicitly. For instance,
a rule of “subject = {“shakespeare”, “classics”, “literature”}” can be interepreted as ““Shake-
speare”, “classics”, and “literature” frequently occur together in the subject slot”. This version
of TEXTRISE works like clustering algorithms because the resultings rules are generalizations
of rules that are close to each other. Each rule produced by this algorithm can be viewed as a
centroid of a cluster consisting of all examples closer to that rule than any other rules.

4.3 Interestingness Measures

The output of TEXTRISE is an unordered set of soft matching rules. Ranking rules based on
an interestingness metric can help a human user focus attention on the most promising relation-
ships. Several metrics for evaluating the “interestingness” or “goodness” of mined rules, such as
confidence and support, have been proposed (Bayardo Jr. & Agrawal, 1999).

However, the traditional definitions for confidence and support assume exact matches for
conditions. For instance, the support of a rule “C€languages — WindowsNT €platform” is defined
as the number of examples in the database in which C € languages and WindowsNT € platform
occur together. By this definition, an example with C € languages and WinNT € platform is not
counted when support and confidence are computed even though WindowsNT and WinNT could be
treated as a unique term based on high similarity of those terms. Consequently, we modify two
common metrics, confidence and support, for judging the goodness of the soft matching rules.

A rule consists of two conditions called antecedent and consequent, and is denoted as A — C
where A is equal to A; A Ay A ... A A;. The similarity-support of an antecedent A, denoted as
simsup(A) is the number of examples in the data set, that is to be soft-matched by A. In other
words, simsup(A) is the number of examples to which A is the closest rule in the rule base.
The similarity-support of rule A — C, denoted as simsup(A — C), is defined as the sum of
similarities between C and the consequents of the examples soft-matched by A in the data set.
In these definitions, we replace the traditional hard-matching constraints for a rule with weaker
constraints determined relative to all the other rules in the rule base. Similarity-confidence of a
rule A — C, denoted by simconf(A — C), is computed as below.

simconf(A — C) = %W
These measures are used to rank the rules generated by TEXTRISE to show users more
interesting rules first. Users can specify the minimum value of similarity support(confidence) for
rules to be displayed in order to filter out rules with limited coverages(accuracies) by setting a
cutoff level, although a rule pruning mechanism based on minimum confidence or support is not
incorporated in the rule learning algorithm of TEXTRISE as in association rule mining.
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4.4 Experimental Results

To conduct preliminary experiments on text, we implemented TEXTRISE using the Bow library
(McCallum, 1996) for the bag-of-words text processing.

4.4.1 The Domains

Two domains are employed in our evaluation of TEXTRISE: book data from Amazon.com and
patent data downloaded from the publicly available US patent database, Getthepatent.com.

The book data-set is composed of 6 subsets, science fiction, literary fictions, mystery, romance,
science, and children’s books. 1,500 titles were randomly selected for each genre to make the total
size of the book data-set to be 9,000. From the web pages downloaded for these titles, a simple
hand-built pattern-based information extraction system or “wrapper” extracts 6 slots, titles,
authors, subject terms, synopses, published reviews, and customer comments. This data-set
was originally constructed for LIBRA, a content-based book recommending system (Mooney &
Roy, 2000). Other slots such as related titles, related authors, publisher, date, ISBN, price are
also extracted, but these are not used by TEXTRISE.

3,000 Al-related patent data are collected from dynamically generated web pages returned
by a keyword search (“artificial intelligence”). Four slots of titles, abstracts, claims, and
descriptions are identified in the collection of patent data. Patent documents also have slots
for application numbers and names of assignee, attorney, and examiner, but they are discarded
in our experiments.

The text extracted for each slot is then processed into a BOW after removal of stop-words and
remaining HTML commands. Documents represented as vectors of BOWs for each slot constitute
a set of training examples for TEXTRISE.

4.4.2 Results

With initial experiments with TEXTRISE, we discovered rules such as “If the title of a science-
book has a substring of “gender”, then “men”, “women”, and “differences” are found in the
review for that book.” and “If the title and the synopses of a book contains “Confucius”,
then the subjects of that book includes “philosophy”.” More sample rules discovered in this
domain are given in Figure 21. The number associated to each word denotes the number of
occurrences in the bag. The similarity-confidence and similarity-support values for each rule are
also given.

Figure 22 shows prediction rules for the title and the abstracts slot for patent data. For
patent documents, the claims and the description slots generally contain much longer text
than the title and the abstracts slot.

Sample rules produced from the modified version of TEXTRISE (Section 4.2.3) are presented
in Figure 23. These rules are learned from 1,000 documents for children’s books. For example,
the first rule does not only say “american” in the title slot implies “native”, “american” and
“present” in synopses, but it also means “children”, “native” and “american” in the subject
slot often appear with “north”, “america”, and “indians”.
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title nancy(1), drew(1)

synopses  nancy(1)

subject children(2), fiction(2), mystery(3), detective(3), [49.71%,1.99]
juvenile(1), espionage(1)

_).

author keene(1), carolyn(1)

synopses  role(1), protein(1), absorption(1), metabolism(4),
vitamins(1), minerals(1)

reviews health(1) [27.87%, 0.56]

subject science(1), human(1), physiology(1)

_)

title nutrition(1)

author beatrice(1), gormley(1)

synopses  witness(1), ufo(1), landing(1)

subject science(1), fiction(2) [13.79%, 0.34]

—

reviews aliens(1), ufo(1), book(2)

title charlotte(1), perkins(1), gilman(1)

synopses  work(1l), utopias(1), herland(1), ourland(1)

reviews gilman(1), author(1)

subject literature(2), criticism(2), classics(1), women(1),  [36.46%,0.73]
literary(1)

%

comments utopia(l), feminist(1)

title dance(1)

- [31.68%, 0.98]

subject romance(2), fiction(2)

Figure 21: Sample rules from 2,500 book descriptions

As stated in Section 4.2.3, this version of TEXTRISE works like a clustering algorithm and
the resulting rules represent centroids of clusters found. It becomes clear when we apply it to a
collection of book descriptions documents with all the genres. Many of the rules learned from 6,000
book descriptions, 1,000 for each genre, put constraints only on the subject slot, e.g. “subject =

{“children”, “juvenile”, “fiction” }”, “subject = {“literature”, “classics”, “criticism”}”, “subject

= {“fiction”, “mystery”, “detective”}”, or “subject = { “engineering”, “science” }”. The subject
slot fillers can be viewed as pre-assigned labels for each cluster in the collection, and the output

of this version resembles the one obtained from a clustering algorithm.

4.4.3 Evaluation

Unlike a standard rule learner that predicts the presence or absence of a specific slot value,
TEXTRISE predicts a BOW for each slot. Therefore, we evaluate the performance of TEXTRISE
by measuring the average cosine similarity of the predicted slot values to the actual fillers for each
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abstract device(2), images(1)

claims invention(4), system(5)

description information(5), data(2), control(2), stored(2),
point(1), user(3), application(2), flow(1), [9.44%, 0.54]
objects(1), operation(1), software(1), storage(1)

ﬁ

title video(1)

title automated(1)

claims device(4), based(1), determining(3), comprising(4),
input(3), plurality(2), [7.25%,0.42]
comprises(5), claim(7)

_>

abstract apparatus(1)

Figure 22: Sample rules from 3,000 patent documents

author title synopses review comments subject
children(1)
native(1) native(1)
american(l) american(1) american(1)
present(1) north(1)
america(1)
indians(1)
space(1) children(1)
space(1) shuttle(1) space(1) science(1)
camp(1) astronauts(l) nasa(l) technology(1)
program(1) nonfiction(1)
juvenile(1)
parents(1)
lynne(1) life(1) living (1) children(2)
reid(1) life(1) family(1) indian(1) fiction(1)
banks(1) family(1) dramatic(1) reading(1) juvenile(1)
wonderful(1)
children(1)

Figure 23: Sample rules from 1,000 book description
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Figure 24: Average similarities for book data (title)

slot. We compare the system to a standard nearest-neighbor method to show that TEXTRISE’s
compressed rule base is superior at predicting slot-values. In both methods, prediction is made
by selecting the closest rule/example using only the text in the antecedent slots. We also tested
nearest-neighbor without using information extraction to show the benefit of IE-based text mining.
To clearly show IE’s role, the only change made to nearest-neighbor was to treat the set of BOW’s
for the antecedent slots as a single, larger BOW.

The experiments were performed on the 9,000 book descriptions using ten-fold cross validation.
Learning curves for predicting the title slot are shown in Figure 24. The graph shows 95%
confidence intervals for each point. All the results on average similarities, precisions, and F-
measures were statistically evaluated by a one-tailed, paired t-test. For each training set size,
two pairs of systems (TEXTRISE versus nearest-neighbor and nearest-neighbor versus nearest-
neighbor without information extraction) were compared to determine if their differences were
statistically significant (p < 0.05).

The results indicate that TEXTRISE does best, while nearest-neighbor without IE does worst.
This shows TEXTRISE successfully summarizes the input data in the form of prediction rules. The
rule-compression rate of TEXTRISE is about 80%, which means the number of rules TEXTRISE
produces is 80% of the number of examples originally stored in the initial rule base. We conducted
the same experiments for other slots, and found similar results except for predicting the author
slot. In predicting the author slot, neither information extraction nor TEXTRISE improves
performance over simple nearest-neighbor.

In addition to the textual similarity metric, we developed analogs for precision and recall.
Precision and recall were defined as follows, where C' is the correct BOW and P is the predicted
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Figure 25: Precisions for book data (title)

one.
Precision = Similarity(C N P, P) (10)

Recall = Similarity(C N P,C) (11)

F-measure is defined as the harmonic mean for precision and recall by Equation 3.

Learning curves for precision and F-measure are presented in Figure 25 and Figure 26. TEX-
TRISE provides higher precision, since the conclusions of many of its rules are smaller generalized
BOWSs, and overall F-measure is moderately increased.

To compare TEXTRISE with traditional rule mining methods, we generated association rules
using the APRIORI algorithm (Agrawal & Srikant, 1994) and a publicly available implementation
(Borgelt, 2000). We treated each word in each slot as a separate item and generated associations
between them. Among all the generated rules, those with words for the slot to be predicted are
selected. For each test example, a prediction is made by building a BOW using the conclusions of
all matching association rules. With the default parameter setting (minimum support of 10% and
minimum confidence of 80%), the average similarity of predictions is almost 0%. We lowered the
minimum support and the confidence until memory problems occurred on a SUN Ultra Sparc 1
(120MB). With the lowest minimum setting for support (3%) and confidence (30%), the average
similarity remains very low: 0.0005% for 900 training examples and 0.0014% for 8,100 training
examples. These results strongly suggest the usefulness of soft-matching rules in prediction tasks
for textual data.
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5 Future Research

We plan to address a number of issues in future research. These fall into three primary areas.
First we plan to do more extensive evaluations of our system on additional domains. There are
also several enhancements which we plan to make to the current system. Finally, we intend to
explore the applicability of our text mining framework with information extraction to other text
mining tasks. The first two of these areas are more definite future works we plan to examine soon,
while the last one is the longer-term issue. Each of the three areas of future research is discussed
in some detail below.

5.1 Full Evaluation

Currently, TEXTRISE is applied on two domains, book descriptions and patent documents for
preliminary experimentations. We plan to evaluate TEXTRISE on additional domains in com-
parison with other methods such as standard rule induction algorithm.

5.1.1 Additional Domains

Although our preliminary results with two domains are encouraging, a fuller evaluation will apply
our system to larger corpora and to other realistic domains in order to demonstrate that our text
mining framework is sufficiently general and easy to be applied to multiple domains. First, we
plan to download more patent documents and construct a larger data-set to test our system on.
Currently we have only 3,000 patent documents about Artificial Intelligence.
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For other domains, business-related documents, medical records, and research texts are con-
sidered. For instance, we plan to use the DISCOTEX framework to discover knowledge from a
database extracted from business news articles. Mining a database constructed from doctors’ En-
glish notes or records about medical patients is another promising application area. We are also
considering e-mail exchanges related to product orders, abstracts of National Science Foundation
(NSF) grant proposals, and a collection of more than 50,000 computer science research papers
gathered by CORA search interface (www.cora.justresearch.com) (McCallum et al., 2000) or
ResearchIndex (citeseer.nj.nec.com), for additional domains.

5.1.2 Comparison with Other Methods

We intend to further enhance our system as will be discussed in Section 5.2 and compare its
performance to other methods such as standard rule induction algorithm (C4.5RULES (Quinlan,
1993) or RIPPER (Cohen, 1995)) and probabilistic classifier (Naive-Bayes (Mitchell, 1997)). As
TEXTRISE predicts a BOW from a set of BOWSs, we must apply these classification-driven
techniques to all terms that appear in the conclusion part of the TEXTRISE rules. To make
the rule induction process computationally feasible, terms might need to be selected based on
frequencies from the dictionary of all terms seen in the training examples.

For the first step of comparing the accuracy of TEXTRISE rules with that of RIPPER rules, a
dictionary of the entire terms seen in the predicted slots of TEXTRISE rules are constructed. For
each term in the dictionary, we learn a set of classification rules for predicting the presence or the
absence of the corresponding term from the same training set. Since we believe the best evaluation
metric is similarity of actual and predicted text, we cast the problem of simple prediction of
presence/absence of each terms in slots to measuring similarity so that an experiment comparing
TEXTRISE and other rule induction methods can be conducted.

5.2 Enhancing the Current Algorithm

The version of DISCOTEX and TEXTRISE described thus far are preliminary implementations,
and we plan several enhancements on them.

5.2.1 Alternative Generalization Schemes

A potential extension of TEXTRISE is to replace the current generalization scheme, taking the
intersection of two BOWSs. First, we could generalize to a k-nearest-neighbor method that uses
the k closest rules or examples rather than just the single nearest one. The predictions of these k
rules could be combined by taking the average of the BOW vectors in their consequents. Likewise
during learning, rules could be generalized to the k nearest uncovered examples using a similar
averaging technique, possibly rounding values to maintain integer counts and simplify the resulting
rules.

Another option is to use the WordNet (Fellbaum, 1998) hierarchy of hypernyms to generate
generalizations that takes semantics into account. For example, the two rules:
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e thermodynamics € subject — heat, modern, theory, waves € synopses

e optics € subject — electromagnetics, laser, waves € synopses
might be minimally generalized to the rule
e physics € subject — waves € synopses

if a semantic lexicon provided by WordNet is utilized. “Thermodynamics” and “optics” have the
common parent, “physics”, in the hypernym tree. The current implementation of TEXTRISE
generates an empty filler slot for the subject slot in this case because it is not able to recognize
the semantic relationships between the two slot fillers. This change requires a redefinition of
distance between words in terms of the WordNet hierarchy.

5.2.2 Alternative Similarity Metrics

Alternative metrics for measuring textual similarity will also be explored. For short extracted
strings, string edit distance (Wagner & Fisher, 1974) might be a more useful measure of textual
similarity than the cosine measure. String edit distance can be calculated by dynamic program-
ming using different costs associated with various transformation rules (McCallum et al., 2000).

5.2.3 Ranking Rules based on Interestingness

Even though we currently rank rules before presenting them to users, this task bears further in-
vestigation. The interestingness measures we used currently, confidence and support, are common
measures in the KDD community. However, the quality or goodness of rules specific for textual
databases could be defined in different ways. For instance, trivial rules such as “If the title of
a book contains “physics”, both the synopses and the subject have “physics”, too.” are very
often found in the rule set generated by TEXTRISE. This kind of rules can be left out via simple
identity checking filters.

Another idea is to use a semantic network like WordNet (Fellbaum, 1998) to measure the
semantic distance between the words in the antecedent and the consequent of a rule, preferring
more “surprising” rules where this distance is larger. For example, this would allow ranking the
rule “beer — diapers” above “beer — pretzels” since beer and pretzels are both food products and
therefore closer in WordNet. Although WordNet provides rich information for a given word such
as synonyms, antonyms, hypernyms, and meronyms, the interestingness measure might mostly
concern synonyms and hypernyms. We could define the semantic distance between two words as
the length of the path between those in the WordNet hierarchy.

The interestingness of rules are sometimes very subjective. For instance, a discovered rule,
“isaac and asimov in the author slot often implies science and fiction in the subject slot.”, is
intriguing to someone who does not know the fact “Isaac Asimov wrote many science fictions”,
but not to others. To measure this subjective interestingness, we could evaluate rules based
on rankings made by human judges. These human ratings could then be compared to various
interestingness metrics.
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5.2.4 Feature Selection Prior to Learning

Domain-specific dictionaries constructed in the process of building word vectors for document
collections can be used to eliminate uninteresting terms before learning. For instance, in the
synopses slot of book data, many examples contain “table”, and “contents”, since a “table of
contents” is usually included in the synopses of a book. The rules learned by TEXTRISE therefore
contain both “table” and “contents” in their synopses slots in many cases, although they are
neither informative nor interesting. “Copyright” in the reviews slot or any words related to books
such as “book” or “read” are another typical examples for this problem. They do not provide any
clue to the specific book they describe. Although we already used the TFIDF weighting scheme to
prefer words that are dominant in particular document, eliminating such domain-specific frequent
words spread through a collection of documents could help finding more interesting rules.

5.2.5 Beyond Words

Instead of taking individual words, n-grams could be used as additional terms for the vector
representation. When applying TEXTRISE to book data, we found that it recognizes “Juvenile
Fiction” and “Science Fiction” in the subject slot as a BOW with “juvenile(1)”, “science(1)”
and “fiction(2)”, thus missing useful information which could have been maintained if they are
treated as a single term. For example, we could construct a bag-of-uni/bigrams with “juvenile(1)”,
“science(1)”, “fiction(2)”, “juvenile-fiction(1)”, and “science-fiction(1)” from the same slot-filler.

A related issue is to combine words for a named entity, such as an author’s name or a company
name. “Stephen” or “King” by themselves in “Stephen King” might not be very useful for mining
interesting rules about this author, but “stephen-king” as a whole makes more sense to users
looking at this domain. Named entity recognition task, introduced in the MUC-6 (DARPA,
1995), was found to be a relatively easy task because the best system submitted to the competition
scored 96.4% in F-measure (business news domain). Automatic extraction of named entities with
RAPIER or other machine learning techniques such as (Bikel, Schwartz, & Weischedel, 1999) could
be considered for a preprocessing step of building a training set with bags-of-terms.

5.2.6 Automated Slot Selection

The procedure for selecting slots to be used in rule mining will be automated. In the current
experiments in Section 3 and 4, we manually chose slots from the templates of computer-science
job, books, and patent data. For example, the title slot for job postings is not used in the
experiments of Section 3.4 because it has many possible values and is difficult to predict. In
Section 4, some of the extracted slots such as ISBN or publishing date of a book are not included
in rule mining for the same reason.

By computing the correlations between slot values, this decision could be automated. Prior
information on the correlations between slot values can be also used for weighting the antecedents
slots in TEXTRISE. For instance, if the reviews slot turns out not to be useful for predicting
the author of a book while title is very informative, different weights can be put to each slot in
analogy of weighting words by their frequencies. One possibility is to apply the mining algorithm

41



<book>
<title>The Complete Works of William Shakespeare</title>
<author>William Shakespeare</author>
<reviews>
<review> <reviewer> <name>John Doe</name>
<email>johndoe@email . com</email>
</reviewer>
<rating>3/5</ranking>
<review_txt>There are pros and cons to buying this.</review_txt>
</review>
<review> <reviewer> <name>Jane Doe</name>
<email>janedoe@email . com</email>

</reviewer>
<rating>5/5</rating>
<review_txt>His writing is one that can’t be compared.</review_txt>
</review>
</reviews>
</book>

Figure 27: An example of the XML document for book description

to a small subset of the training examples, and evaluate the resulting rule base to determine if
the predicted slot is viable for further mining or not. In this strategy, some parameters must be
empirically tuned, e.g. how many of the training examples are to be used in the pre-mining step
and how to set a threshold for slot selection.

5.2.7 Extension of TEXTRISE for Semi-Structured Documents

There is a growing need to handle semi-structured documents written in mark-up languages. The
current version of TEXTRISE does not have any special ability to cope with web pages written
in HTML or XML (EXtensible Markup Language) (Bray, Paoli, Sperberg-McQueen, & Maler,
2000). Automatically generated web pages in Amazon and Getthepatent contain HTML tags,
but they are simply removed before documents are processed by an IE module. Structural hints
given by such tags could be utilized in mining web documents.

One option for this task is to take the XML document structure tree generated by an XML
parser as the representation for a document. A shortened example for XML documents for book
description is shown in Figure 27. This type of document is easy to convert to a tree structure
where the leaf nodes contain BOWSs. In that case, the generalization of two set of bags in the
current system is replaced by the generalization of two trees of bags. The similarity measures
should be also redefined appropriately for this representation.
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5.3 Extension to Other Text Mining Tasks

We also believe that additional text mining tasks can be found for which our framework may prove
useful. Since IE can be useful for many kinds of text processing, using extracted information for
other text mining tasks might be an interesting issue. However, little research has been done
in this field. We present here possible extensions of our framework to four other text mining
tasks, document clustering, soft association mining, relationship mining, and topic detection and
tracking.

5.3.1 Document Clustering

The use of TEXTRISE and its representation for document clustering task is a natural extension
to TEXTRISE. As mentioned in Section 4.2, the rule-learning algorithm of TEXTRISE shows a
clustering-like behavior.

Clustering algorithms partition a set of objects into k groups (Manning & Schiitze, 1999).
The goal of clustering algorithms is to put similar objects together in the same group and to place
dissimilar objects in different groups. Clustering is often called unsupervised learning because the
partition of objects is not known unlike the classification problem. Hierarchical clustering with
bottom-up generalization is called agglomerative clustering. Agglomerative clustering begins with
the separate clusters for all the objects, and continues to merge similar clusters until it reaches
to k clusters. Clustering for text documents or web pages can be useful for many applications
such as thesaurus construction and browsing by providing an overview of the content of a large
document collection.

Except that TEXTRISE learns rules with associated conclusions, the agglomerative clustering
is essentially similar to the learning algorithm of TEXTRISE. An alternative view of TEXTRISE
as a clustering algorithm could be examined.

5.3.2 Soft Association Mining

Since the idea of finding association such as “A customer who buys bread will also buy milk
with probability 80%.”originated in the analysis of market-basket data, association rule mining
has been a popular mining method. In this proposal, we proposed a text-mining system for
prediction rules by applying both standard rule-learning methodologies (Section 3) and a hybrid
one (Section 4). However, an association-rule mining algorithm can also discover frequent item
sets from a collection of documents. Despite the fact that the problem of finding frequent item sets
is known to be NP-complete, researchers have developed algorithms for this problem that work
well in practice. However, existing association-rule mining algorithms are not tailored to non-
standardized textual databases since they assume a “clean” databases. The use of hard-matching
association rule discovery methods such as APRIORI (Agrawal & Srikant, 1994) could be further
investigated and the soft matching mechanism used in TEXTRISE could be incorporated to the
existing association rule mining algorithms. Specifically, we believe the join step of the APRIORI
algorithm can be replaced with a “soft join” step based on similarity operators such as the one
used in WHIRL (Cohen, 1998).
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5.3.3 Relationship Mining

Locating more complicated relations between entities is another possible extension. Currently our
systems only find simple relationships, e.g. frequency of co-occurrence. One option for mining
other types of relationship is to discover causal relationships among items. Instead of merely
saying that the presence of A implies the presence of B, causal relationships determine whether
the existence of A causes the existence of B, vice versa, or the other item C causes both to occur
together.

There is ongoing research in Bayesian analysis for causality detection. Silverstein, Brin, Mot-
wani, and Ullman (2000) applied constraint-based causal discovery techniques (Cooper, 1997) to
market-based data with boolean features. Using the same Bayesian learning framework, we might
be able to extend our system to discover not only associations but also causal relationships from
text documents. Even though Silverstein et al. (2000) analyzed news articles to find causal rela-
tionships between words, they simply treated each article as an entry (or a basket in market-based
data mining terminology) in a database, and each word as an item. Since the size of Bayesian
structure to be searched for determining the presence or absence of causality relations is huge, we
believe our IE-based compression of textual information could be useful for practical discovery of
causality in a large corpora of text.

5.3.4 Topic Detection and Tracking

Another appropriate application for the DiISCOTEX framework might be Topic Detection and
Tracking (TDT). TDT, or novelty detection, is a variant of traditional document classification
that allows new classes over a time-series text corpora. Unlike query-based retrieval task or simple
categorization task, users do not know in advance what they want to retrieve or what categories
there are. Information retrieval and machine learning techniques have been used to identify new
events from streams of articles, concentrating on news stories (Yang, Carbonell, Brown, Pierce,
Archibald, & Liu, 1999).

As in TorCAT (Clifton & Cooley, 1999), we consider a TDT task in a data mining context:
preprocessing a collection of articles for identifying key concepts in individual document, and
applying data mining techniques such as frequent item set generation and clustering. Frequent
item sets, defined as all item sets that often occur together, identify correlated topics while
clustering tracks natural boundaries for neighboring topic periods to detect changes of topic items
over time. TOPCAT uses a named entity recognizer which is limited to extracting information
related to “who?” and “where?” questions (e.g. location, organization, and person). We
could tag news articles, which is a typical kind of time-series text corpora, using information
extraction, and to apply TEXTRISE to the textual databases constructed by IE. An example of
an entry for such databases is shown in Figure 28. This example is from a CNN article of November
2000 and the title of it is “Bush maintains slim lead over Gore as Florida count continues”.
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Subject Politics
Presidential Election

Keyword Ballot

Recount
Date November 10, 2000
Location Tallahassee, Florida

Related-Location | Austin, Texas
Palm Beach County
Person Al Gore

George W. Bush
Katherine Harris
Pat Buchanan
Warren Christopher
James Baker

Title Vice President
Texas Governor
Florida Gov.
Secretary of State

Figure 28: An example for set of topics identified by IE: from a CNN article

6 Related Work

There has been relatively little research exploring the use of Information Extraction in text mining.
In this section, we will present earlier works devoted to using existing data mining techniques on
unstructured text and to mining knowledge from the Web, and explain our novelty in using
IE for the task of knowledge discovery from text. We briefly review the use of information
extraction in other natural language processing tasks such as text summarization, building a
translingual information access system, and question-answering. Soft matching used in the rule-
learning algorithm of TEXTRISE has barely been applied to text-mining systems either. WHIRL
(Cohen, 1998) with soft matching operators is described to show its similarities and differences
with TEXTRISE.

6.1 Using Data Mining Techniques on Text

The most relevant system to our approach might be KDT (Knowledge Discovery in Textual
Databases) (Feldman & Dagan, 1995). KDT alludes to the use of IE in text mining; however,
it uses texts manually tagged with a limited number of fixed category labels instead of actually
using automated text categorization or IE. Similarly, FACT (Feldman & Hirsh, 1996), which finds
associations amongst keywords from text documents, does not have an automated routine to label
the documents with keywords, which can be viewed as the basic level of information extraction.
DocuMENT EXPLORER extracts terms to label a document in a more automatic manner, but it is
still restricted to highlighting selective terms based on predetermined syntactic patterns such as
“noun-noun” or “adjective-noun” (Feldman et al., 1998). Recently Loh, Wives, and de Oliveira
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(2000) followed up KDT by suggesting a concept-based knowledge discovery from the Web. In
this research, concepts are identified through a text categorization algorithm for the purpose of
listing key-concepts and finding correlation between concepts. One of the limitations for these
approaches is that they require a substantial amount of background knowledge provided by a
domain expert in advance.

Text analysis tasks such as descriptive phrase extraction and co-occurring phrase extraction
have been conducted by applying existing data mining techniques to text (Ahonen et al., 1998;
Ahonen-Myka et al., 1999). In these works, frequent set of items (i.e. words) are located, but no
preprocessing of texts to be analyzed is employed except simple morphological tagging. Another
approach related to linguistic issues is a method used to discover semantic relationships between
terms in a collection of documents (Finkelstein-Landau & Morin, 1999). In their “term level text
mining”, a natural-language parser is used in place of information extraction since the extraction
process is followed by finding syntactic or semantic relations between the extracted terms. Learned
rules by these systems are hard matching rules unlike those produced by TEXTRISE.

6.2 Web Mining

Information Retrieval (IR) from the Web, e.g. building Web search engines, has been a hot
topic particularly given the growing number of web documents. However, more organized and
deeper understanding of the text documents such as discovery of prediction rules from text is not
a much studied area yet in the field of web mining. Web mining beyond search technology is
lately beginning to draw great attentions in the intersection of various research fields. Recent web
mining systems have been focusing on either information extraction itself (Soderland, 1997, 1999),
mining simple relationships such as acronyms or author-book pairs (Brin, 1998; Larkey, Ogilvie,
Price, & Tamilio, 2000) traditional text categorization tasks (Weiss, Apté, Damerau, Johnson,
Oles, Goetz, & Hampp, 1999), event detection/tracking (Yang et al., 1999) or trends discovery
(Lent, Agrawal, & Srikant, 1997). None of these works use explicit information extraction in a
general way for further utilization of the extracted concepts.

Etzioni (1996) discusses applying data mining techniques to web resources available on the
Internet. It identifies the significance of using information extraction in building a web mining
system with an emphasis on the scalability problem. However, information extraction systems sur-
veyed in this article are very application-oriented and domain-specific, e.g. extraction of answers
for frequently asked questions (FAQ) in FAQ-FINDER (Hammond, Burke, Martin, & Lytinen,
1995) or extraction of product information from web vendors for a shopping agent, SHOPBOT
(Doorenbos, Etzioni, & Weld, 1997). We proposed a more generalized framework incorporating
domain-independent information extraction and standard data mining methodologies.

Ghani et al. (2000) applied several data mining methodologies to a knowledge base constructed
from the Web as a part of the WEBKB project (Craven et al., 2000). Data mining techniques
used by this system include finding association rules (APRIORI), inducing decision trees (C5.0),
and learning rules with FOIL. Interesting regularities such as “Advertising agencies tend to be
located in New York” are discovered from a knowledge base about corporations; however, such
learned rules must exactly match extracted text.
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6.3 Use of IE for Another Natural Language Processing Tasks

Several natural language processing systems use information extraction. One of those earlier
efforts is found in (Riloff, 1996a). It uses a dictionary of extraction patterns, learned originally
for IE, to classify text documents. This can be viewed as an indirect use of IE, since it does not
employ a full IE system as a component for a larger system but utilizes by-products of an IE
learning process.

Information extraction has been considered as a front-end of text summarization or abstracting
system consisting of sentence extraction and summary generation modules. Radev and McKe-
own (1998) developed a text summarization system called SUMMONS by combining a message
understanding system which can be viewed as an IE component with a postprocessing module,
summary generator. It demonstrated that filled IE templates for terrorism domain can be helpful
for generating abstracts for news articles given successful postprocessing on them. More recently,
IE began to be used for applications such as machine translation (MT) or question-answering
(QA). White, Cardie, Han, Kim, Lavoie, Palmer, Rambow, and Yoon (2000) helps analysts per-
form information filtering tasks on foreign language documents, by making IE techniques based
on English transferable to other languages. AuTOSLOG (Riloff, 1993) is combined with a machine
translation system to develop an English information access gateway to newspapers published
electronically in foreign countries. QA is another complicated task consisting of understanding
questions, locating possible answer from databases (entire Web if view the Web as an immense
knowledge base possibly containing answers for every imaginable question), and presenting the
most reasonable answer. TEXTRACT (Srihari & Li, 1999), presented in the QA track of the TREC
(Text REtreival Conference)-8 test, answers for natural language questions such as “Who won
the 2000 Nobel Peace Prize?” by combining a named entity recognizer with other necessary
components for QA, e.g. question processors and answer search engines.

Although all of the above research works acknowledged the use of information extraction
as an essential component for doing other natural-language understanding tasks, none of these
concerned on an important aspect of IE, constructing structured textual databases from raw text,
for use in text mining.

6.4 Soft Retrieval

The TEXTRISE approach introduced in this proposal uses a flexible matching mechanism both
in its rule-learning algorithm and in its classification scheme. WHIRL is a logic that combined
traditional databases with retrieval methods from information retrieval, by introducing a “soft
join” operation (Cohen, 1998). In WHIRL, all information is assumed to be represented in a
relational model in which every element of every tuple contains free text.

As an example, Figure 29 shows two relational databases of free text, one containing book
listings, and the other containing book reviews. WHIRL is able to “soft join” these two relations
by:

book Listing (Bookl, Author, SalesRank)
A book Review (Book2, Review)
A Bookl ~ Book2
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| Book | Author | Sales Rank |

Machine Learning Tom Mitchell 58,454

Statistical Learning Theory | Vladimir Vapnik | 38,619

Reinforcement Learning Richard S. Sutton | 43,767

| Book | Review |

Neuro-Dynamic Programming, 1996 | Devoted to the theory that explores...
Reinforcement Learning: This is a ground breaking work, dealing with
An Introduction, 1998 a subject that you would have expected...
Bioinformatics, 1998 This book covers the field of Bioinformatics,...

Figure 29: Data representation in WHIRL

where ~ is a similarity operator. This query binds two given relations, in a preference to the bind-
ing with the most similar pair of Bookl and Book2. In this example, “Reinforcement Learning”
and “Reinforcement Learning, An Introduction, 1998” can be considered similar. As a result of
the join operation, separate information about this book (author and sales-rank in book Listing
and review in bookReview) are able to be combined together.

WHIRL and TEXTRISE share a focus on soft-matching rules for text processing; however, rules
in WHIRL must be written by the user while TEXTRISE tries to discover such rules automatically.

7 Conclusion

There is a growing interest in the general topic of knowledge discovery from text (Hearst, 1999;
Feldman, 1999; Mladenié, 2000); however, there are few working systems or detailed experimental
evaluations. By utilizing existing Information Extraction (IE) and KDD (Knowledge Discovery
from Databases) technology, text-mining systems can be developed relatively rapidly and evalu-
ated on existing IE corpora.

In this proposal, we presented an approach to using an automatically learned IE system to
extract a structured databases from a text corpus, and then mining this database with traditional
KDD tools. Our preliminary experimental results demonstrate that the knowledge discovered
from such an automatically extracted database is close in accuracy to the knowledge discovered
from a manually constructed database. In addition to showing our system performs quite well
with a relatively small amount of human-labeled data, we also demonstrated the integration of
information extraction and data mining can be mutually beneficial for both tasks. IE enables the
application of KDD to unstructured text corpora and KDD can discover predictive rules useful
for improving IE performance.

Existing text-mining systems discover rules that require exactly matching substrings; however,
due to variability and diversity in natural-language data, some form of soft matching based on
textual similarity is needed. We have also presented a system called TEXTRISE that uses a
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hybrid of rule-based and instance-based learning methods to discover soft-matching rules from
textual databases automatically constructed from document corpora via information extraction.
With encouraging results of preliminary experiments, we showed how this approach can induce
accurate predictive rules despite the heterogeneity of automatically extracted textual databases.

Text mining is a relatively new research area at the cross road of databases, natural-language
processing, machine learning, and information retrieval. By appropriately integrating techniques
from each of these disciplines, useful new methods for discovering knowledge from large text
corpora can be developed. In particular, we believe that the growing interaction between compu-
tational linguistics and machine learning (Cardie & Mooney, 1999) is critical to the development
of effective text-mining systems.

A A Brief Theory of Bags

Bag theory is a natural extension of set theory. A bag is similar to a set in that it is defined as
a collection of elements over a domain. However, unlike a set, bags allow multiple occurrences
of elements. For an element x and a bag B, we denote the number of occurrences of x in B by
count(z, B).

An element z is a member of a bag B if count(x, B) > 0. This is denoted € B. Similarly,
if count(z, B) = 0, then z ¢ B. The empty bag, 0, has no members: For all z, count(z,0) = 0.
The cardinality |B| of a bag B is the total number of occurrences of elements in the bag:

|B| = Z count(z, B)
T

A bag A is a subbag of a bag B if every element of A is also an element of A at least as many
times:

A C B iff count(z, A) < count(z, B) for all

Two bags A and B are equal (A = B) if count(z, A) = count(z, B) for all z. Operations for sets
such as union, intersection, sum, and difference can be redefined for bags.

Union: count(xz, AU B) = max(count(x, A), count(z, B))
Intersection: count(z, A N B) = min(count(z, A), count(z, B))
Sum: count(z, A+ B) = count(z, A) + count(z, B)
Difference: count(z, A — B) = count(z, A) — count(x, AN B)

Let D = {a,b,c,d,e} be a domain. Then for the following bags,
A = {a,b}

B = {a,a,b,c,e}
C ={a,a,qa,c,c,e}
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we have

Al =2
|C|=6
ANB=/{a,a,b,c} =A
AUC ={a,a,a,b,c,c,e}
ANC ={a}
BNC ={a,a,ce}
A+ B ={a,a,a,b,b,c,e}
A-B=90
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