
Appears in Proceedings of the Thirteenth International Joint Conference on Artificial Intellige
(IJCAI-93), pp.1106-1111, Chambery, France, 1993

Combining FOIL and EBG to Speed-up Logic Programs

John M. Zelle and Raymond J. Mooney
Department of Computer Sciences

University of Texas

Austin, TX 78712

zelle@cs.utexas.edu, mooney@cs.utexas.edu

Abstract

This paper presents an algorithm that com-
bines traditional EBL techniques and recent de-
velopments in inductive logic programming to
learn e�ective clause selection rules for Prolog
programs. When these control rules are incor-
porated into the original program, signi�cant
speed-up may be achieved. The algorithm is
shown to be an improvement over competing
EBL approaches in several domains. Addition-
ally, the algorithm is capable of automatically
transforming some intractable algorithms into
ones that run in polynomial time.

1 Introduction

Explanation-based learning (EBL) research in logic pro-
gramming has generally focussed on learning macros
(compiled rules) [Mitchell et al., 1986; DeJong and
Mooney, 1986; Prieditis and Mostow, 1987], while EBL
work in planning and production systems has tended
to focus on learning search-control rules [Minton, 1988;
Laird et al., 1986]. Recently, Cohen [Cohen, 1990] has
argued the advantages of learning search control rules
for the clause selection problem in logic programming.
Clause selection is the process of deciding which of sev-
eral applicable clauses to use in reducing a particular
subgoal in the course of a proof. Incorporating a set of
accurate control rules for clause selection into a Prolog
program has the potential to reduce or eliminate back-
tracking thereby producing signi�cant speed-up.
Standard EBL methods can be applied to clause se-

lection; however, they tend to produce control rules that
are accurate but highly complex. The complexity of the
rules makes them costly to use and can often degrade
overall performance rather than improving it [Minton,
1988]. Cohen's system, AxA-EBL, handles this problem
by combining EBL with induction to learn a small set
of \approximate" control rules with reduced match cost.
AxA-EBL was shown to out-perform standard EBL con-
trol rules across a number of problem solving domains.
Our system, Dolphin, (Dynamic Optimization of

Logic Programs through Heuristics INduction) can be
viewed as an extension of the AxA-EBL approach.
Dolphin improves on AxA-EBL in two signi�cant

ways. First, we employ a more powerful induction al-
gorithm, namely Quinlan's Foil [Quinlan, 1990]. Sec-
ond, whereas AxA-EBL \explains" clause selection de-
cisions for subgoals without considering the structure of
the surrounding proof, Dolphin explicitly considers the
surrounding proof during induction. This is bene�cial
since conditions that cause the application of a clause to
eventually fail may lie outside of the proof of the speci�c
subgoal to which the clause is applied.
Empirical results in �ve problem domains show that

our approach produces approximate control rules of
high utility and consistently outperforms competing ap-
proaches. In particular, we show that, unlike existing
methods, Dolphin can transform an O(n!) generate-
and-test sorting program into an O(n2) insertion sort
by learning from a single problem.

2 The Dolphin Algorithm

The Dolphin algorithm attempts to optimize a Prolog
program by learning clause selection heuristics. The in-
put to the learning system is a Prolog program, a spec-
i�cation of which predicate constitutes the \top-level"
goal and a set of training problems. The output is a
modi�ed program that incorporates learned clause selec-
tion heuristics. The algorithm proceeds in three phases:
example analysis, control rule induction, and program
specialization. The algorithm is explained in depth and
illustrated by way of a simple example in the following
subsections.

2.1 Example Analysis

In the example analysis phase, the training problems
are solved using the existing program, and traces of the
proofs are analyzed to produce two outputs: a set of
correct and incorrect clause selection decisions for each
clause of the program, and a generalized proof of each
training example.
A selection decision for a clause is a partially instan-

tiated subgoal to which the clause was applied at some
point in the proof process of a training problem. A cor-
rect decision is one that appears in a successful proof. A
correct decision for a given clause is an incorrect deci-
sion for any prior program clause whose head also uni�es
with it; since we are considering only the �rst proof of
each training problem, the prior clause must have been

naivesort(X,Y) :- permutation(X,Y), ordered(Y).

permutation([],[]).
permutation([X|Xs],Ys) :- permutation(Xs,Ys0),

insert(X,Ys0,Ys).

insert(X,Xs,[X|Xs]).
insert(X,[Y|Ys],[Y|Ys1]) :- insert(X,Ys,Ys1).

ordered([X]).
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Figure 1: Naive Sorting Program

tried unsuccessfully by the top-down, left-to-right Prolog
prover.

Standard EBG techniques [DeJong and Mooney, 1986;
Mitchell et al., 1986] are used to generalize the proof
trees of the training problems. The goal of this gen-
eralization is to remove those elements of the proof
that are dependent on the speci�c facts of the example
while maintaining the overall structure of the proof. In
Dolphin this is done by \retracing" the proof steps on a
top-level goal that has uninstantiated input arguments.

As an example, consider the naive sorting program in
Figure 1, which sorts a list by generating permutations
until it �nds one that is ordered. Permutations are gener-
ated by permuting the tail of the input list and inserting
the head somewhere in the permuted tail.

Table 1: Examples of useful insert 1

Positives Negatives
insert(9,[],A) insert(9,[5],A)
insert(1,[3,4,5],A) insert(9,[4,5],A)
insert(5,[],A) insert(9,[3,4,5],A)
insert(3,[4],A) insert(9,[1,3,4,5],A)
insert(4,[],A) insert(5,[4],A)

insert(5,[3,4],A)

The only nondeterminism in this program comes in
the de�nition of the predicate, insert/3. This nonde-
terminism could be eliminated by learning a control rule
for the �rst clause that accurately predicts when the item
should be placed at the front of the list. Given the top-
level example, naivesort([9,1,5,3,4],X), the exam-
ple analysis phase discovers �ve examples of correct uses
of the clause and six failed attempts. These selection
decision examples, shown in Table 1, represent positive
and negative examples of the concept, useful insert 1
(i.e., subgoals to which it is useful to apply the �rst rule
of insert/3).

The generalized proof extracted from the trace of this
problem is shown in Figure 2 (the numbered lines are
discussed in a later section). The proof provides a con-
text that \explains" the success of the correct decisions.
Generalized proofs are used along with the selection de-
cision examples to do control rule induction.

naivesort([A,B,C,D,E], [B,D,E,C,A])
permutation([A,B,C,D,E], [B,D,E,C,A])

permutation([B,C,D,E], [B,D,E,C])
permutation([C,D,E], [D,E,C])

permutation([D,E], [D,E])
permutation([E], [E])

permutation([],[])
1 insert(E, [], [E])

insert(D, [E], [D,E])
insert(C, [D,E], [D,E,C])

insert(C, [E], [E,C])
insert(C, [], [C])

2 insert(B, [D,E,C], [B,D,E,C])
insert(A, [B,D,E,C], [B,D,E,C,A])

insert(A, [D,E,C], [D,E,C,A])
insert(A, [E,C], [E,C,A])

insert(A, [C], [C,A])
insert(A, [], [A])

ordered([B,D,E,C,A])
3 B =< D

ordered([D,E,C,A])
D =< E
ordered([E,C,A])

E =< C
ordered([C,A]

C =< A
ordered([A])

Figure 2: Generalized Proof of naivesort([9,1,5,3,4], X)

2.2 Control Rule Induction

Control rule learning in Dolphin amounts to �nding an
operational de�nition for the class of subgoals to which a
given clause should be applied. A number of recent sys-
tems have addressed the issue of relational concept learn-
ing in a logic programming framework [Quinlan, 1990].
The choice of a Foil-like framework was motivated by

a number of factors. First, Foil is relatively simple and
has proven e�cient in a number of domains. Second, the
general Foil algorithm has a \most general" bias which
tends to produce simple de�nitions. This is important in
creating classi�cation rules with low match cost. Third,
it is easy to bias Foil with prior knowledge [Pazzani and
Kibler, 1992]; we use the generalized proofs produced in
the example analysis phase to guide the induction.

2.2.1 Basic Foil Algorithm

Foil attempts to learn a de�nition of a concept in
terms of some given background predicates. The de�ni-
tion comprises a set of function-free de�nite clauses that
cover all of the positive examples of the concept, and
none of the negative examples.
Foil may be viewed as a basic covering algorithm.

Foil attempts to �nd a clause which covers some of the
positive examples, but none of the negative. The pos-
itive examples covered by the clause are removed from
consideration, and the process repeats to �nd additional
clauses until all of the positive examples are covered.
Each successive clause is constructed by a general-to-
speci�c hill-climbing search. Foil adds antecedents to
the developing clause one at a time. At each step Foil

evaluates all possible literals that might be added and se-
lects the one that maximizes an information-based gain
heuristic. Since Foil learns clauses that are function-
free, the generation of candidate literals to add to the
developing clause essentially consists of trying each back-

ground predicate with all possible combinations of vari-
ables currently in the clause and new variables.
The informed Foil algorithm employed by Dolphin

is more focused and e�cient because it replaces the expo-
nential search through all variablizations of each pred-
icate with a search through literals in the generalized
proofs produced in the example analysis phase. It has
the additional advantage of being able to learn de�ni-
tions containing function symbols, which are necessary
in control rules for arbitrary Prolog programs.

2.2.2 Using the Results of EBG to Guide Foil

The generalized proofs of top-level examples can be
seen as giving the context for the appropriate applica-
tion of clauses used within the proof. The operational
nodes of the proof represent all of the primitive condi-
tions that had to be satis�ed for the proof to succeed.
Dolphin employs induction in an attempt to identify a
small set of simple tests that provide signi�cant guidance
in determining whether the application of a given clause
is likely to be part of a complete proof. It is important
to note that the conditions being sought may not neces-
sarily lie in the proof of the speci�c subgoal to which the
clause is applied. A decision to use a clause may turn
out to be wrong not because the clause itself could not
succeed, but rather, because it did succeed and produced
bindings that could not be used in completing the sur-
rounding proof. This is especially common in programs
that implement a generate-and-test paradigm.
Dolphin employs the same general covering algorithm

as Foil but modi�es the clause construction step. Suc-
cessive specializations of a clause are generated by con-
sidering the successful uses of the program clause for
which the heuristic is being learned. Suppose we are
learning a de�nition of the concept \subgoals for which
the clause, A B, is useful." The most general clause cov-
ering the examples is simply useful(A0) true, where
A0 is a \copy" of A having uninstantiated arguments; call
this clause, C. C can be specialized by (partially) instan-
tiating some of its variables, or by adding antecedents
to its body. The former is achieved by unifying A0 with
some (generalized) subgoal that was solved by the origi-
nal clause, A B. The latter is done by unifying A0 with a
subgoal and adding an operational literal from the proof
that shares some variables with that subgoal. The clause
specialization search algorithm is detailed in Figure 3.
SPEC-PAIRS is a list of specializations analogous to

all literals that would be considered by Foil for ex-
tending a clause. Each pair consists of a \template"
to instantiate variables in the head of the clause, and
a literal to add to the clause body. A pair with the
literal, true, represents specializing by variable instanti-
ation only. The generalize(<SUBGOAL,LITERAL>) call
on the line labeled ** is included so that specializations
adding an operational literal only instantiate variables
to the extent required; sub-terms appearing in SUBGOAL
that are not in LITERAL are generalized to unique (unin-
stantiated) variables. The algorithm repeatedly selects
the best specialization and applies it to the developing
clause. Specialization terminates when no further im-
provement is found in the information-gain metric. The

Let PC be the original program clause
Let PROOFS be the set of generalized proofs
Let C be (control rule) clause to specialize
SPEC-PAIRS := fg
for each PROOF in PROOFS

SUBGOALS := subgoals in PROOF solved by PC
for each SUBGOAL in SUBGOALS

add <SUBGOAL,true> to SPEC-PAIRS
for each LITERAL in PROOF

if operational(LITERAL) and share vars(LITERAL, SUBGOAL)
* add generalize(<SUBGOAL,LITERAL>) to SPEC-PAIRS
repeat

SPECIALIZATIONS := fg
for each <SUBGOAL,ANTE> in SPEC-PAIRS

add to SPECIALIZATIONS the clause created by unifying C's
argument with SUBGOAL and appending ANTE to C's body

C := clause with best info-gain in SPECIALIZATIONS
until no specialization has positive information-gain

Figure 3: Clause Specialization Algorithm

clause may still cover negative instances, permitting the
learning of approximate de�nitions.

2.2.3 Control Rules for Naivesort

Control rule induction for the naivesort problem is
straight-forward. Initially the set of clauses for the con-
cept, useful insert 1, is empty, and the covering algo-
rithm attempts to �nd a clause that covers some of the
positive examples from Table 1. The initial clause,

useful insert 1(insert(A,B,C)) true

covers all of the positive and negative examples.
Dolphin will attempt to specialize it.
In performing specialization, SPEC-PAIRSwill contain,

among others, the pairs:

<insert(E,[],[E]),true>
<insert(B,[DjX],[B,DjX]), B =< D>

The �rst is created by uni�cation with the subgoal la-
beled *1* in the generalized proof (Figure 2). The second
is created from the subgoal labeled *2* and the opera-
tional literal labeled *3*. The sub-term [E,C] from *2*
has been generalized to a new variable, X, since [E,C]
does not appear in the operational literal and is there-
fore unnecessary for connecting it to the subgoal.
Applying these two pairs to produce specializations

yields the clauses:

useful insert 1(insert(A,[],[A])) true
useful insert 1(insert(A,[BjC],[A,BjC]) A =< B

These along with other possible specializations, will be
evaluated on the examples in Table 1 to determine which
produces the most gain. In this case, the �rst clause cov-
ers more positive examples and is preferred. Since the
clause covers no negative examples, no further specializa-
tion is needed. This clause is picked as the �rst clause of
the concept de�nition. The positive examples covered by
the clause are removed and the process repeats. On the
second iteration, the winning specialization is the second
clause shown above. At this point, all of the positive ex-
amples are covered, and we have found a de�nition for
when it is useful to apply the �rst clause of insert/3.

insert(A, B, [A|B]) :- useful_insert_1(A,B,[A|B]),!.
insert(A, [B|C], [B|D]) :- !, insert(A, C, D).

useful_insert_1(A, [], [A]) :- !.
useful_insert_1(A, [B|C], [A,B|C]) :- A =< B, !.

Figure 4: Improved Insert Predicate

2.3 Program Specialization Phase

Once clause selection rules have been learned, they are
passed to the program specialization phase which \folds"
this control information into the original program. The
basic approach is to guard the body of each clause
with the selection information, forcing the clause to fail
quickly on subgoals to which it should not be applied.
For non-disjunctive (single clause) control rules, the

learned conditions are simply placed into the original
program clause preceding the original conditions, and
the clause head is uni�ed with the argument of the con-
trol rule. For disjunctive control rules, a single new lit-
eral is added at the front of the program clause. This new
literal has the same arguments as the clause head. The
de�nition of the new literal comprises the set of learned
control rules with the heads modi�ed so that what were
originally arguments of the subgoal are made direct ar-
guments of the predicate. A cut (\!") is appended to
the body of each clause of this de�nition since there is
no reason to consider multiple proofs of the usefulness of
the original program clause.
A decision is also made as to whether the control in-

formation has made the program clause deterministic.
If the learned control rules cover no incorrect decisions
in the training data, then it is assumed that the modi-
�ed clause is deterministic and a cut is placed after the
added condition(s). This has the e�ect of committing to
the program clause once it has been selected as useful.
Returning to the sorting example, folding the clause

selection rules back into the program as described pro-
duces a new de�nition of insert/3 shown in Figure 4. In
e�ect, permutation/2 has been modi�ed to produce or-
dered permutations. Careful inspection shows that this
is a version of the insertion sort algorithm, and we have
actually made an O(n!) sort into an O(n2) version by
learning from a single top-level example. By inserting
conditions from the testing portion of a generate-and-
test program into the generating portion, Dolphin is
performing test incorporation [Dietterich, 1986] which,
as illustrated here, can sometimes dramatically enhance
the e�ciency of an algorithm.

3 Experimental Results

3.1 Experimental Design

TheDolphin system has been evaluated on �ve problem
domains: Two generate-and-test programs, naivesort
and N-queens, and three \standard" EBL problems
�LEX, RW, and BW borrowed from [Cohen, 1990]. The
N-queens problem is adapted from a Prolog program
given in [Bratko, 1990]. The problem is to �nd a place-
ment of N queens on an NxN chessboard such that no

queen is attacking another. The program implements a
generate and test strategy where a con�guration is rep-
resented by a permutation of the list, [1..N].
�LEX is a simpli�ed symbolic integration solver using

state-space search with iterative deepening. The actual
Prolog code for the solver is the same as that used in [Co-
hen, 1990]. RW and BW are planning domains utilizing
means-ends analysis planners, which were automatically
generated from operator de�nitions. RW is based on the
STRIPS robot world. BW is generated from the blocks
world operators. Control rules were learned for a single
recursive predicate having seven arguments and averag-
ing about 5 conjuncts per clause. This predicate con-
sisted of 18 and 12 clauses in RW and BW respectively.
Since problems in these domains can be quite di�cult,
the planner provides for bounds on both plan length and
CPU time.
In each domain, a set of testing problems was chosen

as a benchmark. Dolphin was then run on indepen-
dently derived training sets of various sizes to produce
\optimized" versions of the programs. These programs
were then run on the examples in the testing set to eval-
uate their performance. For each training set size, 10
trials were run and the results averaged.
In order to guarantee the completeness of the �nal pro-

gram, we adopt the strategy used by [Cohen, 1990] and
retain the original clauses. In testing, we �rst attempt to
solve the problem using the optimized program. If this
fails, the original program is then used to �nd a solution
to the problem.
The examples for the naivesort problem were drawn

from randomly generated lists of size three to eight. The
testing set contained 100 such lists. The data for the
N-queens domain consisted of the nine problems corre-
sponding to the 4-queens through 12-queens problems.
The four largest problems were used as the test set, and
training was done on successively larger subsets of the
smaller problems. The �LEX training and testing prob-
lems are from [Keller, 1987]. In the planning domains,
problems were generated by taking a random walk of
bounded length in the state space of the planner in a
manner identical to [Cohen, 1990].

3.2 Results

In all domains tested, Dolphin was able to signi�cantly
improve the performance of the initial program. Figure 5
shows an average learning curve for the naivesort. It is
not surprising that Dolphin produces programs for the
sorting problem that are signi�cantly faster. We have
already shown how the O(n!) sort can be \optimized"
into a polynomial version. What is, perhaps, surprising
is how few examples are necessary on average to learn the
enhanced program. The points on the graph represent
averages over ten trials, and the intermediate averages
reect the proportion of those trials for which insertion-
sort was successfully learned. The graph shows that two
examples are usually su�cient to learn insertion-sort,
and four examples virtually guarantee success.
In the N-queens problem, there is no local condition

that can simply be moved into the permutation portion
of the program to render it deterministic. In this case

No Learning

DOLPHIN

Run Time

Training Examples

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

0.00 1.00 2.00 3.00 4.00 5.00

Figure 5: Naivesort Results

Dolphin learned rules that were more heuristic. Nev-
ertheless, the results were similar to those for naivesort
with training on the 4-8 queens problems yielding more
than six-fold speedup for solving the larger problems in
the testing set.

In the EBL domains, Dolphin was compared to
three alternative learning strategies: EBL-macro, EBL-
control, and AxA-EBL. EBL-macro used the EBG mech-
anism from Dolphin to learn macro-rules for the top-
level goal. The learning mechanism �rst tried to prove
an example using it's learned rules. If no learned rule
applied, the problem was solved using the normal solver
and the subsequent proof was generalized to produce a
new macro, which was added to the end of the list of
learned rules. During testing, each problem was �rst
attempted using only the learned macros; if no macro
matched the problem, it was solved using the original
solver without the macros. The results for AxA-EBL
and EBL-Control were taken from [Cohen, 1990]. AxA-
EBL is Cohen's integration of induction and explanation
discussed earlier. EBL-control is a \rational reconstruc-
tion" of standard EBL control rule learning applied to
the clause selection problem.

While the relative e�ectiveness of the three alterna-
tives varied across domains, Dolphin always produced
speedup as good or better than the best of the com-
peting approaches and reached maximum speedup with
fewer training examples. The average learning curve for
the RW domain, shown in Figure 6, is representative. Al-
though one must be cautious when making comparisons
across implementations, the consistency of the results in
these domains supports the conclusion that Dolphin

produces better speed-up than any of the competing
approaches and converges to an e�cient program more
rapidly.

It is also worth noting that EBL-macro, AxA-EBL and
EBL-control all fail on the naivesort and N-queens prob-

No learning

EBL−Control

AxA−EBL

DOLPHIN

EBL−Macro

Run Time

Training Examples

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00

Figure 6: RW Results

lems, although the reasons di�er. EBL-macro su�ers
from the recursive, unbounded nature of the problems.
This strategy is forced to acquire generalized proofs of
all permutations of various sized lists with little hope of
achieving signi�cant coverage on novel examples. AxA-
EBL fails to learn any control rules for these programs at
all. AxA-EBL only considers explanations of the imme-
diate subgoal to which a clause was applied. The proof
of the subgoal in this case is just true, because the �rst
clause of insert/3 has no antecedents. Hence, the only
learnable condition is true, which is not a useful heuris-
tic. These two problems nicely illustrate the advantage
of considering the surrounding proof context when ex-
plaining a successful clause application. Finally, EBL-
control shares the shortcomings of both EBL-macro and
AxA-EBL.

4 Related Work

Early research in learning control rules [Mitchell et al.,
1986; Langley, 1985] did not focus on the utility problem,
approximation, or application to logic programming.
LEX-2 combined induction and EBL by inducing over
complete explanation-based generalizations. Dolphin

on the other hand, uses induction to select the most
useful pieces of EBL generalizations. Also, Dolphin
takes advantage of recent progress in relational learning,
namely, Foil.
The �rst use of approximations in learning control

rules was probably MetaLEX [Keller, 1987]. However,
it used a fairly simple method of simplifying learned
rules by removing conditions. Approximating control
rules was also investigated in [Chase et al., 1989]; how-
ever, their system, ULS, does not employ induction and
is therefore limited to conservative approximations, pro-
ducing relatively modest improvements in e�ciency.
The most closely related work is AxA-EBL [Cohen,

1990] mentioned above. AxA-EBL \explains" correct

uses of a clause by compiling out a generalized macro
for the subgoal to which the clause was applied. AxA-
EBL searches a pool of approximations of these macros
to �nd a small set of rules that maximizes coverage of
positive examples and minimizes the coverage of nega-
tives. Dolphin improves on AxA-EBL by using a more
powerful inductive learning mechanism (Foil) and con-
sidering the entire top-level proof as the explanation for
the successful application of a clause to a subgoal.
Researchers in knowledge compilation and logic pro-

gramming have examined test incorporation as an
optimization technique [Braudaway and Tong, 1989;
Bruynooghe et al., 1989]. Research has concentrated
on analytically identifying sound program transforma-
tions. The test incorporation necessary to optimize the
particular programs presented in this paper is either un-
sound (N-queens) or would require information exter-
nal to the program (transitivity of � in naivesort) to
demonstrate soundness. Dolphin which relies on em-
pirical techniques, performs a wider range of optimiza-
tions automatically and can \tune" the performance of
a program to the distribution of examples.

5 Future Research

Experiments with Dolphin have raised a number of is-
sues that require further investigation. One shortcom-
ing of the current approach is its critical dependence on
the form of the program that is being optimized. Using
an alternative de�nition of permutation/2 which selects
an item to be the head of the permutation and then re-
cursively computes a permutation to be the tail would
prevent Dolphin from learning the insertion-sort heuris-
tic. In order to achieve signi�cant performance enhance-
ment on this program, the system would have to learn
to choose the minimum element from a list. Inventing
a recursive control-rule of this sort requires augmenting
Dolphin with constructive induction techniques.
Other changes to the inductive mechanism might also

prove useful. While the simplicity of the control rules
learned by Dolphin tends to increase their utility, there
is no explicit use of match-cost or operationality. An in-
teresting avenue of investigation would be to incorporate
notions of operationality into the hill-climbing mecha-
nism to bias the search toward more e�cient heuristics.
Finally, programs often use a single predicate in di�er-

ent ways. It these cases it might be useful to specialize
the di�erent uses of a predicate independently.

6 Conclusions

Dolphin is the �rst system to combine recent develop-
ments in inductive logic programmingwith EBG in order
to improve the e�ciency of logic programs. By using the
Foil algorithm to select the most useful portions of gen-
eralized explanations, Dolphin can learn approximate
control rules of high utility. In particular, by examin-
ing the entire proof when generating control rules for
any subgoal, Dolphin can perform a kind of test incor-
poration on logic programs. Test incorporation allows
Dolphin to transform some intractable algorithms into
ones that run in polynomial time.

Acknowledgments

This research was supported by the National Science Foundation un-

der grant IRI-9102926, the NASA Ames Research Center under grant

NCC 2-629, and the Texas Advanced Research Program under grant

003658114. We wish to thank William Cohen who provided code for

the planning domains and helpful comments on an earlier version of

this paper. Thanks also to Je-Nien Ernst who provided some of the

data on EBL-macro.

References

[Bratko, 1990] I. Bratko. Prolog Programming for Arti�cial

Intelligence. Addison Wesley, Reading:MA, 1990.

[Braudaway and Tong, 1989] Wesley Braudaway and Chris
Tong. Automatic synthesis of constrained generators. In
Proceedings of the Eleventh International Joint conference

on Arti�cial intelligence, Detroit, MI, 1989.

[Bruynooghe et al., 1989] Maurice Bruynooghe, Danny De
Schreye, and Bruno Krekels. Compiling control. Journal

of Logic Programming, 6:135{243, 1989.

[Chase et al., 1989] M. Chase, M. Zweban, R. Piazza,
J. Burger, P. Maglio, and H. Hirsh. Approximating learned
search control knowledge. In Proceedings of the Sixth In-
ternational Workshop on Machine Learning, pages 40{42,
Ithaca, NY, June 1989.

[Cohen, 1990] W. W. Cohen. Learning approximate control
rules of high utility. In Proceedings of the Seventh Inter-
national Conference on Machine Learning, pages 268{276,
Austin, TX, June 1990.

[DeJong and Mooney, 1986] G. F. DeJong and R. J. Mooney.
Explanation-based learning: An alternative view. Machine

Learning, 1(2):145{176, 1986.

[Dietterich, 1986] T. Dietterich. Learning at the knowledge
level. Machine Learning, 1:287{316, 1986.

[Keller, 1987] R. Keller. The Role of Explicit Contextual

Knowledge in Learning Concepts to Improve Performance.
PhD thesis, Rutgers University, New Brunswick, N, 1987.
Also appears as tech. report ML-TR-7.

[Laird et al., 1986] J. Laird, P. Rosenbloom, and A. Newell.
Chunking in soar: The anatomy of a general learning
mechanism. Machine Learning, 1(1), 1986.

[Langley, 1985] P. Langley. Learning to search: From weak
methods to domain speci�c heuristics. Cognitive Science,
9(2):217{260, 1985.

[Minton, 1988] S. Minton. Quantitative results concerning
the utility of explanation-based learning. In Proceedings of
the Seventh National Conference on Arti�cial Intelligence,
pages 564{569, St. Paul, MN, August 1988.

[Mitchell et al., 1986] Tom M. Mitchell, Richard M. Keller,
and Smadar T. Kedar-Cabelli. Explanation-based gener-
alization: A unifying view. Machine Learning, 1(1):47{80,
1986.

[Pazzani and Kibler, 1992] M. Pazzani and D. Kibler. The
utility of background knowledge in inductive learning. Ma-

chine Learning, 9:57{94, 1992.

[Prieditis and Mostow, 1987] A. Prieditis and J. Mostow.
Prolearn: Towards a prolog interpreter that learns. In
Proceedings of the Sixth National Conference on Arti�cial
Intelligence, Seattle, WA, Jul 1987.

[Quinlan, 1990] J.R. Quinlan. Learning logical de�nitions
from relations. Machine Learning, 5(3):239{266, 1990.

