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Abstract

This paper presents an algorithm that com-

bines traditional EBL techniques and recent

developments in inductive logic programming

to learn e�ective clause selection rules for

Prolog programs. When these control rules

are incorporated into the original program,

signi�cant speed-up may be achieved. The

algorithm produces not only EBL-like speed

up of problem solvers, but is capable of auto-

matically transforming some intractable al-

gorithms into ones that run in polynomial

time.

1 INTRODUCTION

Explanation-based learning (EBL) research in logic

programming has generally focussed on learning

macros (compiled rules)

[

Mitchell et al., 1986; De-

Jong and Mooney, 1986; Prieditis and Mostow, 1987

]

,

while EBL work in planning and production systems

has tended to focus on learning search-control rules

[

Mitchell et al., 1983; Minton, 1989; Laird et al., 1986

]

.

Recently, Cohen

[

Cohen, 1990

]

has argued the advan-

tages of learning search control rules to solve the clause

selection problem in logic programming. Standard

EBL methods can be applied to clause selection; how-

ever, they tend to produce control rules that are accu-

rate but highly complex. The complexity of the rules

makes them costly to use and can often degrade overall

performance rather than improving it

[

Minton, 1988

]

.

Cohen's system, AxA-EBL, deals with this problem

by using induction to learn a small set of \approxi-

mate" control rules with reduced match cost. AxA-

EBL \explains" correct uses of a clause by compiling

out a generalized macro for the subgoal to which the

clause was applied. A pool of candidate control rules is

formed by considering all k-bounded approximations of

these macros. A k-bounded approximation is formed

by dropping all but j conditions from the macro for

some j < k. AxA-EBL then searches this pool for

a small set of rules which maximizes coverage of posi-

tive examples and minimizes the coverage of negatives.

AxA-EBL was shown to out-perform standard EBL

control rules in a number of problem solving domains.

Although quite successful, AxA-EBL su�ers from a

number of weaknesses. First, only very small values of

k can be used since the number of k-bounded approx-

imations grows exponentially in k. A second problem

is that explanantions for subgoals are created with-

out considering the context of the surrounding proof.

Often the conditions which cause the application of a

clause to eventually fail lie outside of the proof of the

speci�c subgoal to which the clause was applied.

Our system Dolphin (Dynamic Optimization of

Logic Programs through Heuristics INduction) can be

viewed as an extension of the AxA-EBL approach that

attempts to solve these two problems. We apply a

more powerful induction algorithm, Quinlan's FOIL

[

Quinlan, 1990

]

, to the problem of constructing ap-

proximate control rules in the context of the surround-

ing proof structure. We present empirical results in

three domains showing that this approach produces

approximate control rules of high utility and gener-

ally outperforms competing approaches. In particular,

we show that, unlike existing methods, Dolphin can

transform an O(n!) generate-and-test sorting program

into an O(n

2

) insertion sort after solving only a single

problem.

2 THE DOLPHIN ALGORITHM

TheDolphin algorithm attempts to optimize a Prolog

program by learning clause selection heuristics. The

input to the learning system is a Prolog program, a

speci�cation of which predicate consitutes the \top-

level" goal and a set of training problems. Dolphin

uses the examples to induce a set of control heuristics

which are then incorporated into the original program

to produce a modi�ed program as output. The al-

gorithm proceeds in three phases: example analysis,

control rule induction, and program specialization.



naivesort(X,Y) :-

permutation(X,Y),

ordered(Y).

permutation([],[]).

permutation([X|Xs],Ys) :-

permutation(Xs,Ys1),

select(X,Ys,Ys1).

select(X,[X|Xs],Xs).

select(X,[Y|Ys],[Y|Ys1]) :-

select(X,Ys,Ys1).

ordered([_X]).

ordered([X,Y|Ys]) :-

X =< Y,

ordered([Y|Ys]).

Figure 1: Naive Sorting Program

2.1 EXAMPLE ANALYSIS

In the example analysis phase, training examples are

solved using the existing program. The structure of

each proof is recorded, and the proofs are used to ex-

tract examples of correct and incorrect clause selec-

tion decisions in a manner similar to

[

Cohen, 1990;

Mitchell et al., 1983

]

. A selection decision for a clause

is a partially instantiated subgoal to which the clause

was applied. A correct decision is one that occurs in

a successful proof tree, while an incorrect decision is

an application that was tried and subsequently back-

tracked over. Any given example may produce numer-

ous positive and negative examples of clause selection

decisions.

Once the examples have been solved, standard EBG

techniques

[

DeJong and Mooney, 1986; Mitchell et al.,

1986

]

are used to generalize the resulting proof trees.

The goal of this generalization is to remove those el-

ements of the proof that are dependent on the spe-

ci�c facts of the example while maintaining the overall

structure of the proof. In Dolphin, this is done by

\retracing" the proof steps on a top-level goal which

has uninstantiated input arguments.

As an example, consider the naive sorting program in

Figure 1 which sorts a list by generating permutations

until it �nds one that is ordered. Permutations are

generated by permuting the tail of the input list and

inserting the head somewhere in the permuted tail.

The predicate, select(Item, List1, List2), holds

when Item is a member of List1, and List2 is List1

with an occurrence of Item removed. In naivesort,

select/3 is actually called with its �rst and third ar-

guments instantiated to insert items into the permu-

tation, which is returned in the second argument.

Notice that the only nondeterminism in this program

naivesort([A,B,C,D,E], [B,D,E,C,A])

permutation([A,B,C,D,E], [B,D,E,C,A])

permutation([B,C,D,E], [B,D,E,C]

permutation([C,D,E], [D,E,C])

permutation([D,E], [D,E])

permutation([E], [E])

permutation([],[])

*1* select(E, [E], [])

select(D, [D,E], [E])

select(C, [D,E,C], [D,E])

select(C, [E,C], [E])

select(C, [C], [])

*2* select(B, [B,D,E,C], [D,E,C])

select(A, [B,D,E,C,A], [B,D,E,C])

select(A, [D,E,C,A], [D,E,C])

select(A, [E,C,A], [E,C])

select(A, [C,A], [C])

select(A, [A], [])

ordered([B,D,E,C,A])

*3* B =< D

ordered([D,E,C,A])

D =< E

ordered([E,C,A])

E =< C

ordered([C,A]

C =< A

ordered([A])

Figure 2: Generalized Proof of naivesort([9,1,5,3,4], X)

comes in the de�nition of the predicate, select/3.

This nondeterminism could be eliminated by learn-

ing a control rule for the �rst clause which accu-

rately predicts when the item should be placed at

the front of the list. Given the top-level exam-

ple, naivesort([9,1,5,3,4],X), the example anal-

ysis phase discovers 5 examples of correct uses of the

clause and 6 failed attempts. These selection decision

examples, shown in Table 1, represent positive and

negative examples of the concept, useful select 1.

The generalized proof extracted from the trace of this

example is shown in Figure 2. The proof provides a

context which \explains" the success of correct deci-

sions. Generalized proofs are used along with the se-

lection decision examples to do control rule induction.

Table 1: Examples of useful select 1

Positives Negatives

select(9,A,[]) select(9,A,[5])

select(1,A,[3,4,5]) select(9,A,[4,5])

select(5,A,[]) select(9,A,[3,4,5])

select(3,A,[4]) select(9,A,[1,3,4,5])

select(4,A,[]) select(5,A,[4])

select(5,A,[3,4])



2.2 CONTROL RULE INDUCTION

The goal of the control rule induction phase is to pro-

duce an operational de�nition for when it is useful to

apply each clause of the original program. Given a

program clause, C, we desire a de�nition of the con-

cept \subgoals for which C is useful." Thus, control

rule learning in this context can be viewed as relational

concept learning in a logic programming framework. A

number of recent systems

[

Quinlan, 1990; Muggleton

and Feng, 1990

]

have tackled this problem. Dolphin

employs a modi�cation of Quinlan's Foil algorithm to

perform control rule induction.

The choice of a Foil-like framework was motivated

by a number of factors. First, Foil is relatively easy

to implement and has proven e�cient in a number of

domains. Second, the general Foil algorithm has a

\most general" bias which tends to produce simple

de�nitions. This is important in creating classi�ca-

tion rules with low match cost. Third, it is relatively

easy to bias Foil with prior knowledge

[

Pazzani and

Kibler, Forthcoming

]

. In our case, we can take advan-

tage of the information provided by the generalized

proofs produced in the example analysis phase.

2.2.1 Basic Foil Algorithm

positives-to-cover = {positive examples}.

While positives-to-cover is not empty

Find a clause, C, that covers some

examples in positives to cover, but

covers no negative examples.

Add C to the developing definition.

Remove examples covered by C

from positives-to-cover.

Figure 3: Foil Covering Algorithm

Foil attempts to learn a de�nition of a concept in

terms of some given background predicates. The de�-

nition comprises a set of function-free de�nite clauses

that cover all of the positive examples of the concept,

and none of the negative examples.

Foil may be viewed as a simple covering algorithm

which has the basic form shown in Figure 3. The

\�nd a clause" step is implemented by a general-to-

speci�c hill-climbing search. Foil adds antecedents to

the developing clause one at a time. At each step Foil

evaluates all possible literals that might be added and

selects the one which maximizes an information-based

gain heuristic.

Since Foil learns clauses which are function-free, the

generation of candidate literals to add to the devel-

oping clause essentially consists of trying each back-

ground predicate with all possible combinations of

variables currently in the clause and new variables.

Any function symbols in the theory must be intro-

duced by the background predicates. This means,

for instance, that programs operating on lists need a

background predicate like components(List, Head,

Tail) that can decompose a list structure.

While the function-free limitation makes the search for

literals in Foil relatively e�cient, it presents numer-

ous di�culties in using Foil to learn control heuristics

for Prolog programs including:

� Prolog programs often have functions which are

not introduced into the program with primitive

\constructor" predicates.

� Introducing constructors tends to create de�ni-

tions with greater match cost, since discrimina-

tions that could be made immediately via uni-

�cation are pushed into calls to more primitive

antecedents. This is particularly wasteful when

an antecedent shares a variable with the head of

a clause, and delaying uni�cation may a�ect how

the clause is indexed by the Prolog system.

� Forcing de�nitions to be function-free may exac-

erbate the incompleteness of hill-climbing. Pat-

tern matching in uni�cation can be used to test a

value in a deeply nested structure. Decomposing

the structure via constructor antecedents may re-

quire the addition of arbitrarily many antecedents

which do not individually help discriminate be-

tween positive and negative examples. An exten-

sion to Foil, determinate literals, has been pro-

posed to partially address this problem

[

Quinlan,

1991

]

at the cost of complicating the simple Foil

algorithm.

Dolphin uses the generalized proofs of examples to

suggest which literals might be added to the current

clause. Our approach has the twin bene�ts of focus-

ing the Foil search and learning clauses which may

include functions.

2.2.2 Using Proofs to Specialize Clauses

The generalized proofs of top-level examples can be

seen as giving the context for the appropriate applica-

tion of clauses used within the proof. The operational

nodes of the proof represent all of the primitive condi-

tions that had to be satis�ed for the proof to succeed.

Dolphin employs induction in an attempt to iden-

tify a small set of simple tests that provide signi�cant

guidance in determining whether the application of a

given clause is likely to be part of a complete proof. It

is important to note that the conditions being sought

may not necessarily lie in the proof of the speci�c sub-

goal to which the clause is applied. A decision to use

a clause may turn out to be wrong not because the

clause itself could not succeed, but rather, because it

did succeed and produced bindings which could not

be used in completing the surrounding proof. This is

especially common in programs such as the naivesort



which implement a generate-and-test paradigm.

Dolphin employs the same general covering algorithm

as Foil but modi�es the clause construction step. Suc-

cessive specializations of a clause are generated by con-

sidering the uses of the program clause for which the

heuristic is being learned. Suppose we are learning a

de�nition of the concept \subgoals for which clause,

A  B, is useful." The most general clause covering

the examples is simply useful(A

0

) true, where A

0

is a \copy" of A having uninstantiated arguments; call

this clause, C. C can be specialized by (partially)

instantiating some of its variables, or by adding an-

tecedents to its body. The former is achieved by uni-

fying A

0

with a (generalized) subgoal which was solved

by the original clause, A  B. The latter is done by

unifying A

0

with a subgoal and adding an operational

literal from the proof which shares some variables with

that subgoal. The clause specialization search algo-

rithm is detailed in Figure 4.

Let PC be the original program clause

Let PROOFS be the set of generalized proofs

Let C = be the clause to be specialized

SPEC-PAIRS = {}

for each PROOF in PROOFS

SUBGOALS = subgoals in PROOF solved by PC

for each SUBGOAL in SUBGOALS

add (SUBGOAL,true) to SPEC-PAIRS

for each LITERAL in PROOF

if operational(LITERAL) and

share_vars(LITERAL,SUBGOAL)

** add generalize((SUBGOAL,LITERAL))

to SPEC-PAIRS

REPEAT

SPECIALIZATIONS = {}

for each (SUBGOAL,ANTE) in SPEC-PAIRS

add to SPECIALIZATIONS the clause

created by unifying C's argument

with SUBGOAL and appending ANTE

to C's body

C = simplest clause among those tied for

maximal information-gain in

SPECIALIZATIONS

UNTIL no specialization has

positive information-gain

Figure 4: Clause Specialization Algorithm

The generalize((SUBGOAL,LITERAL)) call on the

line labelled ** is included so that specializations cre-

ated by adding a literal only instantiate variables to

the extent dictated by the literal. Sub-terms appearing

in SUBGOAL which are not in LITERAL are gener-

alized to unique (uninstantiated) variables. Thus, in-

stantiating head variables (via uni�cation with a sub-

goal) and adding a literal are independent specializa-

tions.

A couple of things are worth noting about the algo-

rithm. Variables in a newly added antecedent are con-

nected with the existing clause by uni�cation of the

predicate's argument with a subgoal sharing variables

with the antecedent. Thus, the current version of the

algorithm only adds literals which directly share some

variables with the head of the clause under construc-

tion. This restriction is not strictly necessary. It may

be that arbitrary chains of literals from a proof are use-

ful in the developing de�nition; new literals could be

added by matching a chain in a proof with antecedents

already included in the clause being constructed. En-

forcing the \no-chaining" restriction makes the al-

gorithm easier to implement, improves the e�ciency

of the induction (since fewer possible specializations

are considered) and lowers the match-cost of learned

heuristics by avoiding extended chains of literals which

must be evaluated.

It should be noted that the no-chaining restriction may

prevent the learning of an accurate control rule. Spe-

cialization terminates when no further improvement is

found in the information-gain metric. This means it

is possible to produce clauses in the concept de�nition

which still cover some negative instances, permitting

the learning of approximate de�nitions.

2.2.3 Control Rules for Naivesort

Control rule induction for the naivesort problem is

straight-forward. Initially the set of control rules is

empty, and the covering algorithm attempts to �nd a

clause which covers some of the positive examples from

Figure 1. The initial clause,

useful select 1(select(A,B,C)) true

covers all of the positive and negative examples.

Dolphin will attempt to specialize it.

In performing specialization, SPEC-PAIRS will contain,

among others, the pairs:

(select(E,[E],[]),true))

(select(B, [B,DjX],[DjX]), B =< D)

The �rst is created by uni�cation with the subgoal

labeled *1* in the generalized proof (Figure 2). The

second is created from the subgoal labeled *2* and the

operational literal labeled *3*. The sub-term [E,C]

from *2* has been generalized to a new variable, X,

since [E,C] does not appear in the operational literal

and is therefore unnecessary for connecting it to the

subgoal.

Applying these two pairs to produce specializations

produces the clauses:

useful select 1(select(A,[A],[])) true

useful select 1(select(A, [A,BjC],[BjC]) A =< B



These along with other possible specializations, will

be evaluated on the examples in Table 1 to determine

which produces the most gain (loosely, greatest ac-

curacy). The �rst clause covers three positive exam-

ples and no negatives, the second covers two positives

and no negatives, so the former is preferred. Since

the clause covers no negative examples, no further im-

provement is possible via specialization. This clause

is picked as the �rst clause of the control rule de�ni-

tion. The examples covered by the clause are removed

from positives-to-cover and the process repeats. On

the second iteration, the winning specialization is the

second clause shown above. At this point, all of the

positive examples are covered, and we have found a

de�nition for when it is useful to apply the �rst clause

of select/3.

2.3 PROGRAM SPECIALIZATION PHASE

Once clause selection rules have been learned, they

are passed to the program specialization phase which

\folds" this control information into the original pro-

gram. The basic approach is to guard the body of each

clause with the selection information. This forces the

clause to fail quickly on subgoals to which it should

not be applied.

For non-disjunctive (single clause) selection rules, the

learned conditions are simply placed into the origi-

nal program clause preceding the conditions already

present on the clause, and the clause head is uni�ed

with the argument of the selection rule. For disjunc-

tive selections, a single new literal is added at the front

of the program clause. This new literal has the same

arguments as the clause head. The de�nition of the

new literal comprises the clauses of the selection rule

with the heads modi�ed so that what were originally

arguments of the subgoal are made direct arguments

of the predicate. A cut (\!") is appended to the body

of each clause of this de�nition since there is no rea-

son to consider multiple proofs of the usefulness of the

original program clause.

A decision is also made as to whether the selection in-

formation has made the program clause deterministic.

If the learned selection rules cover no incorrect deci-

sions in the training data, then it is assumed that the

modi�ed clause is deterministic and a cut is placed

after the added condition(s). This has the e�ect of

commiting us to the program clause once it has been

selected as useful.

Returning to the sorting example, folding the clause

selection rules back into the theory as described pro-

duces a new de�nition of select/3 shown in Figure 5.

In e�ect, permutation/2 has been modi�ed to pro-

duce ordered permutations. Careful inspection shows

that this is a version of the insertion sort algorithm,

and we have actually made an O(N !) sort into an

O(N

2

) version by learning from a single top-level ex-

select(A, [A|B], B) :-

useful_select_1(A, [A|B], B), !.

select(A, [B|C], [B|D]) :-

!, select(A, C, D).

useful_select_1(A, [A], []) :- !.

useful_select_1(A, [A,B|C], [B|C]) :-

A =< B, !.

Figure 5: Improved Select Predicate

ample. By inserting conditions from the testing por-

tion of a generate-and-test program into the generat-

ing portion, Dolphin is performing test incorporation

[

Dietterich, 1986

]

which, as illustrated here, can some-

times dramatically enhance the e�ciency of an algo-

rithm.

2.4 IMPLEMENTATION

Dolphin is implemented in Quintus Prolog on a

SPARCstation 2. Little attempt has been made to

optimize the code, but the design choices discussed

above have yielded a relatively e�cient system. The

construction of optimized programs for all of the ex-

amples discussed in this paper were accomplished in

less than a minute of system run-time.

3 EXPERIMENTAL RESULTS

3.1 EXPERIMENTAL DESIGN

The Dolphin system has been developed and tested

on three problems: naivesort, n-queens, and �LEX.

For each of these problems, experiments were run to

determine the e�ectiveness of Dolphin in optimizing

ine�cient programs.

The n-queens problem is adapted from a Prolog pro-

gram given in

[

Bratko, 1990

]

. The problem is to

�nd a placement of N queens on an NxN chessboard

such that no queen is attacking another. The pro-

gram implements a generate and test strategy where

a con�guration is represented by a permutation of the

list, [1..N]. This makes the program very similar to

naivesort which also permutes a list and tests.

�LEX is a simpli�ed symbolic integration solver us-

ing state-space search with iterative deepening. The

actual Prolog code for the solver is the same as that

used in

[

Cohen, 1990

]

.

In each domain, a set of testing problems was chosen

as a benchmark. Dolphin was then run on indepen-

dently derived training sets of various sizes to produce

\optimized" versions of the programs. These programs

were then run on the examples in the testing set to

evaluate their performance. For each training set size,



10 trials were run. The results presented here repre-

sent an average over the 10 trials.

The examples for the naivesort problem were drawn

from randomly generated lists of size 3 to 8. The test-

ing set contained 100 such lists. The data for the N-

queens domain consisted of the 9 problems correspond-

ing to the 4-queens through 12-queens problems. The 4

largest problems were used as the test set, and training

was done on successively larger subsets of the smaller

problems. The �LEX training and testing problems

are from

[

Keller, 1987

]

.

Since Dolphin only specializes clauses of the original

program, the optimized program is guaranteed to be

sound with respect to the computations performed by

the original program. That is, any solution found by

the optimized program must also have been a solution

of the original. Unfortunately, the optimized program

may not be complete. There may be problems which

the original program can solve, but whose solutions

have been pruned from the search space of the opti-

mized version. In order to guarantee the completeness

of the �nal program, we adopt the strategy used by

[

Cohen, 1990

]

and retain the original clauses. In test-

ing, we �rst attempt to solve the problem using the

optimized program. If this fails, the original program

is then used to �nd a solution to the problem.

It is clear that the speed-up achieved in this two-tiered

approach is critically dependent not only on the e�-

ciency of evaluating the learned rules, but also on the

extent to which the optimized program covers novel

examples. For each of the three problems we evaluate

the e�ect of training set size on both the run-time and

the coverage achieved by the optimized program.

3.2 RESULTS

The results of the experiments on these three prob-

lems are graphically summarized in Figure 6 and Fig-

ure 7. In all three, Dolphin was able to signi�cantly

improve the performance of the initial program. The

times shown in the timing graphs represent the num-

ber of seconds required to solve the problems in the

training set. All times are for compiled Quintus Pro-

log programs running on a SPARCstation 2.

It is not surprising that Dolphin produces programs

for the sorting problem that are signi�cantly faster

than the original permutation-based sorting algorithm.

We have already shown how the O(N !) sort can be \op-

timized" into a polynomial version. What is, perhaps,

surprising is how few examples are necessary on aver-

age to learn the enhanced program. As can be seen

from the coverage graph, 2 examples is ususally su�-

cient to learn insertion-sort, and 4 examples virtually

guarantee success.

In the n-queens problem, there is no local condition

(known to the authors) which allows for a fundamen-

tal improvement in the order of the algorithm. In this

case Dolphin learned rules which were more \heuris-

tic". Still, the rules learned by Dolphin were very

e�ective in pruning the search space of the larger prob-

lems. The coverage curve for this problem is not very

interesting as there were only four problems in the test

set, and all four were covered by all training sets which

included the 4 and 5-queen examples. It is interesting

to note that the performance of the optimized pro-

grams continues to improve even after coverage has

stopped improving. This is possible because the pres-

ence of more examples guides the inductive component

to construct rules with greater utility.

On the �LEX domain which is a more \standard" EBL

problem, Dolphin compared favorably with other ap-

proaches to learning in the logic programming frame-

work. The plot labelled EBL-macro re
ects the result

of applying the EBG mechanism used in Dolphin to

learn macro-rules for the top-level goal. The learning

mechanism in EBL-macro �rst tried to prove an exam-

ple using it's learned rules. If no learned rule applied,

the problem was proved using the normal solver and

the subsequent proof was generalized to produce a new

macro. The new macro was then added to the end of

the list of learned rules. The lack of utility for the

macro approach on �LEX is probably due to the rela-

tive simplicity of the problems in the testing set. The

match cost of the macros was not signi�cantly lower

than the cost of proving the example from scratch.

The curve labeled \AxA-EBL & EBL-Control" in Fig-

ure 7 is taken from

[

Cohen, 1990

]

and represents only

a rough comparison. The times reported there range

from over 26 seconds to under 2 seconds. The val-

ues shown here were interpolated o� a graph and

scaled appropriately. AxA-EBL is Cohen's integration

of induction and explanation discussed earlier. EBL-

control is a \rational reconstruction" of standard EBL

control rule learning applied to the clause selection

problem. Cohen found that these two performed es-

sentially identically on the �LEX problem.

Although one must be cautious when making com-

parisons across systems, the curves seem to suggest

that Dolphin converges to an e�cient program more

quickly than AxA-EBL or EBL-control. For �LEX,

this di�erence is probably not due to the induction

mechanism, but rather to the di�ering strategies used

in folding the learned rules back into the program.

Dolphin is conservative in committing to a rule choice

and only inserts a cut after the learned control condi-

tions if the conditions did not cover any negative train-

ing examples. AxA-EBL (and EBL-control) always in-

sert the cut. This enhances the relative coverage of the

Dolphin-optimized program allowing it to backtrack

from mistakes and continue solving in the more e�-

cient program rather than immediately defaulting to

the less e�cient solver whenever a selected clause fails

It is also worth noting that EBL-macro, AxA-EBL
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Figure 6: Performance and Coverage Curves for Naivesort and N-Queens
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Figure 7: Performance and Coverage Curves for �LEX

and EBL-control would all fare very poorly on the

naivesort and n-queens problems, although the rea-

sons would di�er. EBL-macro would su�er from the

recursive, unbounded nature of the problems. This

strategy would be forced to acquire generalized proofs

of all permutations of various sized lists with little

hope of achieving signi�cant coverage on novel exam-

ples. Techniques such as \generalizing to N"

[

Shav-

lik, 1990

]

would not help signi�cantly since there is no

regular recursive structure in the correct explanations.

Each ordering of the input list produces a di�erent se-

quence of applications of the �rst and second clauses

of select/3.

AxA-EBL would fail to learn any control rules for

these programs at all. AxA-EBL only considers ex-

planations of the immediate subgoal to which a clause

was applied. The proof of the subgoal in this case is

just true, because the �rst clause of select/3 has no

antecedents. Hence, the only learnable condition is

true, which is not a useful heuristic. These two prob-

lems are perfect illustrations of the need to consider

the larger context of the surrounding proof in explain-

ing the success of a clause application. Finally, EBL-

control shares the shortcomings of both EBL-macro

and AxA-EBL.

4 RELATED WORK

Early research in learning control rules

[

Mitchell et al.,

1983; Langley, 1985

]

did not focus on the utility prob-

lem, approximation, or application to logic program-

ming. LEX-2 combined induction and EBL by induc-

ing over complete explanation-based generalizations.

Dolphin on the other hand, uses induction to select

the most useful pieces of EBL generalizations. Also,

Dolphin takes advantage of recent progress in rela-

tional learning, namely, Foil.

The �rst use of approximations in learning control

rules was probably MetaLEX

[

Keller, 1987

]

. However,

it used a fairly simple method of simplifying learned

rules by removing conditions. Most other recent in-

vestigations in learning approximations

[

Ellman, 1988;

Tadepalli, 1989; Chien, 1989

]

have not focussed on

search-control heuristics. Approximating control rules

was investigated in

[

Chase et al., 1989

]

; however, their

system, ULS, does not employ induction and is there-

fore limited to conservative approximations. Reported

improvements in e�ciency for ULS were relatively

modest.

Recently, Yoo and Fisher

[

Yoo and Fisher, 1991

]

have

used induction over explanations

[

Flann and Diet-

terich, 1989

]

to improve performance in a problem

solving framework. They attempt to increase the util-

ity of EBL-macros by clustering them in a Cobweb-

style classi�cation tree that maintains explanantions

at various levels of detail. By contrast, Dolphin uses

supervised learning methods to acquire explicit search-

control rules.

Focl

[

Pazzani and Kibler, Forthcoming

]

also com-

bines EBG and Foil by integrating induction into the

operationalization process. Focl improves the accu-

racy of a theory rather than it's e�ciency. Conse-

quently, unlike Dolphin, it does not use integrated

learning to acquire control rules.

The most closely related work is AxA-EBL

[

Cohen,



1990

]

. As discussed above, Dolphin improves on

AxA-EBL by using a more-powerful inductive learn-

ing mechanism and considering the entire proof of a

top-level goal as the explanation for the successful ap-

plication of a clause to a particular subgoal.

5 FUTURE RESEARCH

Experiments with Dolphin have raised a number of

issues which require further investigation. One short-

coming of the current approach is it's critical de-

pendence on the form of the program which is be-

ing optimized. Using the alternative de�nition of

permutation/2 shown in Figure 8 would prevent

Dolphin from being able to learn the insertion-sort

heuristic. In order to achieve signi�cant performance

enhancement on this program, the system would have

to learn to choose the minimum element from a list

when performing a permutation. In this particular

case, we might be able to turn the naivesort into a

selection sort if the system is allowed to learn a \re-

cursive" control rule which uses the predicate for which

control is being learned. A more general solutionmight

be to use constructive induction to directly invent a

suitable test (in this case \minimum of list").

permutation([], []).

permutation(Xs, [H|T]) :-

select(H, Xs, Xs1),

permutation(Xs1, T).

Figure 8: Alternative De�nition, Permutation/2

Other changes to the inductive mechanism might also

prove useful. While the simplicity of the control rules

learned by the inductive component of Dolphin tends

to increase their utility, there is no explicit use of

match-cost or operationality. In fact, the Foil in-

formation metric actually tends to favor conditions

having multiple proofs, which seems harmful to utility

since many instantiations of a condition may have to

be tried before it fails completely. One interesting av-

enue of investigation would be to incorporate notions

of operationality into the hill-climbing mechanism to

bias the search toward more e�cient control heuristics.

Another problem is the need to deal with an even more

extended notion of proof context. Programs often use

a single predicate in di�erent ways. Suppose a pro-

gram used permutation/2 to sort some lists into as-

cending order and others into descending order. The

con
icting uses of the permutation predicate will be

re
ected as \noise" in the selection decision examples

over which Dolphin is attempting to do the induc-

tion. Resolving this problem requires that the selec-

tion decisions themselves be treated as proof-context

dependent.

6 CONCLUSIONS

Dolphin is the �rst system to combine recent devel-

opments in inductive logic programming with EBG in

order to improve the e�ciency of logic programs. By

using the Foil algorithm to select the most useful por-

tions of generalized explanations, Dolphin can learn

approximate control rules of high utility. In particular,

by examining the entire proof when generating control

rules for any subgoal, Dolphin can perform a form

of test incorporation on logic programs. Test incorpo-

ration allows Dolphin to transform some intractable

algorithms into ones that run in polynomial time.
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