
Appears in Proceedings of the 1992 AAAI Spring Symposium on Knowledge Assimilation,
Standford, CA, March, 1992

Batch versus Incremental Theory Re�nement

�

Raymond J. Mooney

Department of Computer Sciences

University of Texas

Austin, TX 78712

mooney@cs.utexas.edu

Abstract

Most existing theory re�nement systems are not

incremental. However, any theory re�nement sys-

tem whose input and output theories are compat-

ible can be used to incrementally assimilate data

into an evolving theory. This is done by contin-

ually feeding its revised theory back in as its in-

put theory. An incremental batch approach, in

which the system assimilates a batch of examples

at each step, seems most appropriate for existing

theory revision systems. Experimental results with

the Either theory re�nement system demonstrate

that this approach frequently increases e�ciency

without signi�cantly decreasing the accuracy or the

simplicity of the resulting theory. However, if the

system produces bad initial changes to the theory

based on only small amount of data, these bad re-

visions can \snowball" and result in an overall de-

crease in performance.

Introduction

Recently, a number of machine learning systems have

been developed that use examples to revise an ap-

proximate (incomplete and/or incorrect) domain theory

[

Ginsberg, 1990; Ourston andMooney, 1990; Towell and

Shavlik, 1991; Danyluk, 1991; Whitehall et al., 1991;

Matwin and Plante, 1991

]

. However, these systems

are \batch" learners, which process all of the train-

ing instances at once. Knowledge assimilation re-

quires the ability to incrementally revise a domain

theory as new data is encountered. Incremental pro-

cessing allows for continual responsiveness to the en-

vironment and the potential for improved e�ciency

and the ability to deal with concept drift

[

Schlimmer

and Granger, 1986

]

. Consequently, there has been a

growing body of work on incremental empirical learn-

�

This research was supported by the NASA Ames Re-

search Center under grant NCC 2-629 and by the National

Science Foundation under grant IRI-9102926. Equipment

used was donated by the Texas Instruments Corporation.

ing systems

[

Schlimmer and Fisher, 1986; Utgo�, 1989;

Reinke and Michalski, 1988

]

.

Unlike a purely empirical system, a theory revision

system takes an initial domain theory as well a set of

training examples and produces a revised theory rep-

resented in the same language. Consequently, a gen-

eral theory revision system is \input-output compat-

ible," so it is a trivial matter to make it incremen-

tal by continually feeding its output from processing

one or more examples back into the input for process-

ing additional examples. It is important to notice that

theory revision systems that assume a strictly overly-

speci�c (incomplete) initial theory

[

Wilkins, 1988;

Danyluk, 1991; Whitehall et al., 1991

]

or a strictly

overly-general (promiscuous) initial theory

[

Flann and

Dietterich, 1989; Mooney and Ourston, 1989; Cohen,

1990

]

are not \input-output compatible" since the out-

put theory may not meet the required restrictions on

the input theory. However, systems that can han-

dle arbitrarily incorrect initial theories

[

Ginsberg, 1990;

Ourston and Mooney, 1990; Towell and Shavlik, 1991

]

can easily be made incremental.

This paper presents empirical results on an incre-

mental batch

[

Clearwater et al., 1989

]

version of Ei-

ther, a revision system for re�ning arbitrarily incor-

rect propositional Horn-clause theories

[

Ourston and

Mooney, 1990;Mooney and Ourston, 1991b

]

. After pro-

cessing a small batch of training examples, the resulting

revised theory is fed back as the input theory for pro-

cessing the next batch. In the limit, the system can be

made completely incremental by setting the batch size

to one. Using a theory revision system in incremen-

tal batch mode can be done in several ways depending

on the extent to which previous training examples are

retained. In particular, one can take a full-memory ap-

proach in which the examples from all previous batches

are input to the processing of a given batch, or a no-

memory approach in which only the current batch of

examples is given to the system. This paper presents re-

sults on three versions of Either: Batch, Full-Mem,

and No-Mem. Generally, as the system is made more

incremental (i.e. moving from Batch to Full-Mem

to No-Mem), training time is decreased at the cost of

slightly decreasing accuracy and increasing theory com-

plexity. However, the exact trade-o�s involved depend

on the details of the domain and the initial theory.

Overview of Either

Problem De�nition

Either solves the following theory re�nement problem

for classi�cation tasks:

Given: An imperfect domain theory for a set

of categories and a set of classi�ed examples each

described by a set of observable features.

Find: A minimally revised version of the do-

main theory that correctly classi�es all of the ex-

amples.

Either is restricted to Horn-clause theories expressed

in an extended propositional logic that allows numerical

and multi-valued features as well as binary attributes.

In addition, domain theories are required to be acyclic

and therefore a theory de�nes a directed acyclic graph

(DAG). For the purpose of theory re�nement, Either

makes a closed-world assumption. If the theory does

not prove that an example is a member of a category,

then it is assumed to be a negative example of that cat-

egory. Propositions that are used to describe the exam-

ples (e.g. (color black)) are called observables. To avoid

problems with negation as failure, only observables can

appear as negated antecedents in rules. Propositions

that represent the �nal concepts in which examples are

to be classi�ed are called categories. Either assumes

the categories are mutually disjoint. Propositions in the

theory that are neither observables nor categories are

called intermediate concepts.

It is di�cult to precisely de�ne the adjective \mini-

mal" used to characterize the revision to be produced.

Since it is assumed that the original theory is \approx-

imately correct" the goal is to change it as little as

possible. Syntactic measures such as the total number

of literals added or deleted are reasonable criteria. Ei-

ther uses various heuristic methods to help insure that

its revisions are minimal in this sense. However, �nding

a revision that is guaranteed to be syntactically mini-

mal is clearly computationally intractable. When the

initial theory is empty, the problem reduces to that of

�nding a minimal theory for a set of examples.

Figure 1 shows a sample domain theory for animals.

This theory is an extended version of a set of rules given

in

[

Winston and Horn, 1989, pages 388-390

]

. Leading

question marks denote variables, which are only used to

de�ne thresholds on numerically-valued features. Given

a set of randomly generated training examples, and a

buggy version of this theory, Either can regenerate

the correct theory. The initial theory usually used to

test Either in this domain includes the bugs shown

in Figure 2. Items shown in small-caps were added to

the theory whereas items shown in italics were deleted.

(mammal) (body-covering hair)

(mammal) (feed-young milk)

(mammal) (birth live)

(bird) (body-covering feathers)

(bird) (birth egg) (
y)

(ungulate) (mammal) (foot-type hoof)

(ungulate) (mammal) (ruminate)

(carnivore) (eat-meat)

(carnivore) (teeth pointed) (foot-type clawed)

(gira�e) (ungulate) (neck-length ?n) (� ?n 5)

(� ?n 6) (color tawny)

(pattern spots) (pattern-color black)

(zebra) (ungulate) (color white)

(pattern stripes)(pattern-color black)

(cheetah) (mammal)(carnivore)(color tawny)

(pattern spots)(pattern-color black)

(tiger) (mammal) (carnivore) (color tawny)

(pattern stripes)(pattern-color black)

(dolphin) (mammal) (fore-appendage �n)

(color gray)(body-covering moist-skin)

(body-length ?b) (� ?b 4) (� ?b 6)

(whale) (mammal) (fore-appendage �n)

(color gray) (body-covering moist-skin)

(body-length ?b) (� ?b 10) (� ?b 60)

(bat) (mammal) (color black) (pattern none)

(pattern-color none) (
y)

(platypus) (mammal) (birth egg)

(foot-type webbed)

(ostrich) (bird) (neck-length ?n) (� ?n 3)

(� ?n 4) (color white) (pattern patch)

(pattern-color black) (not (
y))

(penguin) (bird) (color white)

(pattern patch) (pattern-color black)

(foot-type webbed) (not (
y))

(duck) (bird) (foot-type webbed) (
y)

(grackle) (bird) (color black) (pattern none)

(pattern-color none) (
y)

Observable Features: feed-young, body-covering, birth,

eat-meat,
y, teeth, fore-appendage, foot-type, neck-length,

body-length, color, pattern, pattern-color, ruminate.

Intermediate Concepts: mammal, bird, ungulate, carni-

vore.

Categories: gira�e, zebra, cheetah, tiger, dolphin, whale,

bat, platypus, penguin, ostrich, duck, grackle.

Figure 1: Animal Theory

(mammal) (body-covering hair)

(fore-appendage leg)

(mammal) (feed-young milk)

(fore-appendage leg)

(mammal) (birth live) (fore-appendage leg)

(bird) (body-covering feathers)

(bird) (birth egg) (
y)

(ostrich) : : : (not (
y))

(penguin) : : : (not (
y))

(duck) (bird) (foot-type webbed) (
y)

Figure 2: Standard Animal Theory Bugs

The faults introduced include missing rules, additional

antecedents, and missing antecedents. In most trials,

one hundred random training examples are su�cient to

produce a fully corrected animal theory.

Re�nement Algorithm

Either's theory re�nement algorithm is presented in

various levels of detail in

[

Ourston and Mooney, 1990;

Mooney and Ourston, 1991b; Ourston, 1991

]

. It was de-

signed to correct theories that are either overly-general

or overly-speci�c or both. An overly-general theory is

one that causes an example (called a failing negative) to

be classi�ed in categories other than its own. Either

specializes existing antecedents, adds new antecedents,

and retracts rules to �x these problems. An overly spe-

ci�c theory causes an example (called a failing positive)

not to be classi�ed in its own category. Either re-

tracts and generalizes existing antecedents and learns

new rules to �x these problems. Unlike other theory

revision systems that perform hill-climbing (and there-

fore subject to local maxima), Either is guaranteed to

�x any arbitrarily incorrect propositional Horn-clause

theory

[

Ourston, 1991

]

.

During theory generalization, Either uses a greedy

covering algorithm to �nd a near-minimum set of leaf-

rule

1

antecedent retractions that correct all of the fail-

ing positive examples. At each iteration of the covering

algorithm, the system calculates a bene�t-to-cost ratio

for each set of antecedent retractions that would com-

plete a proof for a failing positive, and the set with

the most examples covered per antecedent retracted

is added to the cover. This continues until all of the

failing positives have been covered. If retracting an-

tecedents from a given rule over-generalizes by creat-

ing additional failing negatives, Either uses the failing

positive examples for the rule, and the negative exam-

ples that become provable when the consequent of the

rule is assumed true, to inductively

2

form a new rule

1

A leaf rule is a rule whose antecedents include an observ-

able or an intermediate concept that is not the consequent

of any existing rule.

2

Either currently uses a version of Id3

[

Quinlan, 1986

]

as its inductive component.

that correctly classi�es these examples.

During theory specialization, Either uses a greedy

covering algorithm to identify a near-minimum set of

leaf-rule retractions that �xes all of the failing nega-

tives. At each iteration of the covering algorithm, the

system determines the number of faulty proofs in which

each rule participates and the rule retraction that re-

moves the most proofs is added to the cover. This

continues until all faulty proofs for all failing negatives

are removed. If a given rule retraction over-specializes

by causing additional failing positives, additional an-

tecedents are inductively learned that discriminate be-

tween the positive examples for the category and the

erroneously proven negative examples.

Although the current version of Either is e�cient

enough to run on several real-world problems, com-

puting all possible abductive proofs of failing positives

and all deductive proofs of failing negatives makes the

worst-case time and space complexities exponential.

Consequently, we are continuing to develop techniques

for improving the e�ciency of the algorithm.

The most recent version of Either also includes var-

ious additional techniques for modifying higher-level

rules and dealing with multiple categories

[

Ourston and

Mooney, 1991

]

, using constructive induction to learn in-

termediate rules and create new intermediate concepts

[

Mooney and Ourston, 1991a

]

, and handling noisy data

[

Mooney and Ourston, 1991c

]

.

Incremental Batch Theory Revision

Either was originally intended to operate in batch

mode, processing all of the training examples at once.

However, as previously discussed, it is trivial to run

a comprehensive theory revision system incrementally.

Assume the function either(theory, examples) runs

the original batch algorithm and returns the revised

theory. Below is a description of a batch and two in-

cremental batch versions of Either, where batch(i)

refers to the ith batch of training examples and

batches(1..i) refers to the union of the �rst i batches.

batch(theory, examples)

for i = 1 to n

let current-theory =

either(theory, batches(1...i))

full-mem(theory, examples)

let current-theory = theory

for i = 1 to n

let current-theory =

either(current-theory, batches(1...i))

no-mem(theory, examples)

let current-theory = theory

for i = 1 to n

let current-theory =

either(current-theory, batch(i))

What might one predict about the relative perfor-

mance of Batch, Full-Mem, and No-Mem? First,

it is important to realize that the fewer errors there

are in the input theory, the faster Either runs be-

cause it encounters fewer failing examples, meaning it

needs to generate a smaller cover of �xes. Since Full-

Mem and No-Mem start processing later batches with

a (hopefully) improved theory generated from previous

batches, one might expect them to run faster. Since,

after the �rst batch, No-Mem gives Either a smaller

set of training examples, one would obviously expect it

to run faster than Full-Mem.

Since Either attempts to minimally re�ne its input

theory, one might expect that if earlier batches result

in incorrect changes to the theory, that these changes

would tend to persist in Full-Mem's and No-Mems's

revised theories. In other words, the incremental sys-

tems may exhibit a form of \inertia" which may prevent

them from �nding the minimal change to the original

theory. Consequently, they may produce more compli-

cated theories that do not generalize as well to novel

test examples. Since No-Mem does not even guaran-

tee consistency with the whole training set, we would

expect it to be even less accurate than Full-Mem. In

general, one might expect that making the system more

incremental is trading o� accuracy and minimality of

change for an increase in speed.

Experimental Results

This section presents an empirical comparison of the

e�ciency, accuracy, and theory complexity of Batch,

Full-Mem, and No-Mem in three separate domains.

The �rst two domains are arti�cially created ones in-

volving the classi�cation of animals and computers.

The third domain involves a real theory and data set

for the DNA promoter problem introduced by

[

Towell

et al., 1990

]

.

Arti�cial data was automatically generated for the

animal theory in Figure 1 and a similar theory for classi-

fying computers based on their appearance (categories:

pc, mac, macII, sun, hp, explorer, symbolics; interme-

diate concepts: workstation, micro, lisp-machine, unix-

workstation, macintosh). Thirty examples of each cate-

gory were generated by �rst forming \core" examples,

which contain just the observables needed to complete

a proof. For numerically-valued features, a value is cho-

sen randomly from the range required for a proof. Next,

random values for the remaining observable features

were added to the core examples to create full exam-

ples. However, adding random values can sometimes

make an example provable in another category as well.

Consequently, each example was checked to make sure

it was provable in only one category before adding it

to the �nal data set. A total of 360 examples of an-

imals and 210 examples of computers were created in

this manner. The initial animal theory included the

faults shown in Figure 2 and a similar set of faults was

used for the initial computer theory.

Learning curves were generated by giving each ver-

sion of the system the same training examples and, after

each batch of training examples, recording the training

time, the complexity of the revised theory (in terms of

the total number of literals), and classi�cation accu-

racy on the same disjoint test set (all of the remaining

examples not used for training). Figure 3 shows the re-

sults for the animal domain. These results are averaged

over 15 separate trials with di�erent randomly selected

training and test sets. Each point plotted on the curves

shows the results for processing a single batch of exam-

ples including all of the examples since the last plotted

point. The plotted points were taken from original tests

in this domain and do not always represent equal size

batches.

3

Testing with various �xed batch sizes is an

obvious area for future experimentation; however, run-

ning Batch with a small batch size is computationally

expensive since it must reprocess all of the examples for

each batch.

The results in the animal domain are basically as ex-

pected. Accuracy decreases slightly going from Batch,

to Full-Mem, to No-Mem; however, training time

is substantially reduced. No-Mem processes the last

batch 2.5 times faster than Batch. However, the-

ory complexity increases somewhat with speed because

some early incorrect modi�cations are retained or com-

plicate later revisions. Therefore, the hypothesis that

incremental processing trades o� accuracy and mini-

mality of change for an increase in speed is supported

in this domain.

Figure 4 shows the results for the computer domain

averaged over 25 trials. In this domain, the incremen-

tal systems do not perform as well. With only a few

examples, Either makes some bad initial revisions to

the theory which, in Full-Mem andNo-Mem, get car-

ried into subsequent batches and greatly complicate re-

vision. Initial bad revisions have a tendency to \snow-

ball" in the incremental systems and lead to highly non-

optimal �nal solutions. As a result, No-Mem's theory

after the �nal batch is almost twice as complicated as

Batch's. Notice that Batch increases the complexity

of the theory after the �rst batch due to some badly

chosen revisions; however, since these initial revisions

to not get carried into subsequent batches, it eventually

recovers and produces the correct theory. The resulting

theory complexity for the incremental systems not only

decreases accuracy but actually increases their run-time

slightly above Batch's.

As an example of \snowballing", consider an abstract

version of a typical scenario in this domain. Assume a

rule A B ^ C is missing the antecedent C. Based

on only a few examples in the �rst batch, an incor-

rect inductive specialization is made in which the an-

3

Originally, the distance between data points was in-

creased as the number of examples increased since further

out on the learning curve, accuracy changes more gradually.

tecedent D is added to the overly-general rule: A

B. When processing the second batch, A B ^ D is

found to be overly-speci�c; however, removing D is an

over-generalization since then the negatives that D suc-

cessfully removed from the �rst batch become provable

again. Consequently , the system decides it needs to

learn a new rule for A. Since this rule is totally un-

necessary, it is unlikely to be correct and will need to

be complicated in subsequent batches. Although each

batch results in only a small change, the theory can

become quite complicated after several such batches.

Batch, on the other hand, always starts with the initial

rule A B, and once the training set is large enough,

it adds the correct antecedent, C, directly to this rule.

Figure 5 shows the results for the DNA domain av-

eraged over 25 trials. The original theory is described

in

[

Towell et al., 1990

]

, it contains 11 rules with a total

of 76 literals. The purpose of the theory is to recognize

promoters in strings of nucleotides (one of A, G, T, or

C). A promoter is a genetic region which initiates the

�rst step in the expression of an adjacent gene by RNA

polymerase. The data consists of 53 positive and 53

negative examples described by 57 sequential DNA nu-

cleotides and assembled from the biological literature.

The initial theory classi�es none of the positive exam-

ples and all of the negative examples correctly, thus the

initial theory is entirely overly speci�c.

The incremental systems perform very well in this

domain. Full-Mem and No-Mem's accuracies are

comparable to Batch's while their training time is sig-

ni�cantly less. No-Mem's accuracy is actually better

than Batch's after 40 examples and it processes the

last batch in less than 1/10th the time. Finally, the

revised theories produced by the incremental systems

are actually less complex than Batch's. The reason

for these results seems to be that the promoter the-

ory needs to be substantially generalized, primarily by

deleting antecedents in various ways. Antecedent dele-

tions performed during the initial batches are likely to

be correct and, since the deletions are minimal and the

theory needs signi�cant generalization, Either rarely

over-generalizes, even when given relatively few nega-

tive examples. Consequently, due to more deletions, the

incremental systems produce simpler theories that are

quite accurate and therefore process subsequent batches

signi�cantly faster. Batch's stricter adherence to min-

imal change may actually be hurting it in this domain.

Overall, the results indicate that using a theory re-

vision system in incremental batch mode can greatly

increase e�ciency without producing a signi�cant loss

in accuracy or simplicity. However, if revisions based on

small amounts of data can be misleading, then the \in-

ertia" of incremental theory re�nement can prevent the

system from recovering and actually decrease accuracy,

simplicity, and e�ciency.

Future Research

As previously mentioned, the e�ect of batch size on the

performance of incremental batch theory revision needs

to be explored. If the batch size is too small, changes

will be based on very little evidence and will not be very

accurate. With the Full-Mem version of Either, set-

ting the batch size to one would mean that induction

would always be called with only one positive example

during rule learning and one negative example during

antecedent addition. With a no-memory approach, the

system may even make changes that render it incon-

sistent with a large number of previously encountered

training examples. With the No-Mem version of Ei-

ther, setting the batch size to one would always allow

the system to delete rules or antecedents to �x the ex-

ample if it is incorrectly classi�ed and induction would

never even be invoked. On the other hand, if the batch

size is too big, the e�ciency and responsiveness of in-

cremental learning will be completely lost.

Finding an appropriate compromise between full-

memory and no-memory is also an important problem.

One approach is to retain only a subset of the previ-

ously seen examples, such as those that were incorrectly

classi�ed or those from the last few batches. Another

approach is to retain statistics about previously seen

examples rather than the examples themselves

[

Schlim-

mer and Fisher, 1986

]

.

Perhaps the most important problem is preventing

bad initial changes from \snowballing," as in the com-

puter domain. Either treats all parts of the initial

theory equally when determining a minimal change.

Changes made to the theory during previous batches

(perhaps based on very little evidence) are no more sus-

pect than rules from the initial theory. An incremental

theory revision system needs ways of representing its

con�dence in various portions of the theory and then

weighting changes accordingly

[

Feldman et al., 1991

]

.

Either's results need to be compared to other the-

ory revision systems

[

Towell and Shavlik, 1991; Gins-

berg, 1990

]

used in incremental batch mode. The abil-

ity of incremental batch theory re�nement to track con-

cept drift also needs to be explored. Of course, since

a full-memory system maintains consistency with all of

the data, it is incapable of tracking concepts that actu-

ally change over time. Therefore, some form of partial-

memory is required for this task.

Finally, incremental theory revision needs to be inte-

grated with knowledge integration

[

Murray and Porter,

1989

]

, which is concerned with incrementally incorpo-

rating new pieces of abstract knowledge (rules) rather

than data. Many of the same issues, such as resolving

contradictions, arise in the context of integrating new

rules into a theory. A complete knowledge assimilation

system should be able to incrementally incorporate an

arbitrary mix of both rules and data.

Conclusions

Any comprehensive theory re�nement system whose in-

put and output theories are represented in the same

language can be used to incrementally assimilate data

into an evolving theory. This is done by continually

feeding its revised theory back in as its initial theory.

An incremental batch approach, in which a system in-

corporates a small batch of examples at each step, is

the probably the most e�ective for existing re�nement

systems.

Experimental results with the Either theory re�ne-

ment system demonstrate that this approach frequently

increases e�ciency without signi�cantly decreasing the

accuracy or the simplicity of the resulting theory. How-

ever, if the system produces bad initial changes to the

theory based on only small amount of data, these bad

revisions can \snowball" and result in an overall de-

crease in performance.

Acknowledgements

I would like to thank Dirk Ourston as the primary de-

veloper of Either and Michiel Noordewier and Jude

Shavlik for providing the DNA theory and data.

References

[

Clearwater et al., 1989

]

S. H. Clearwater, T. P. Cheng,

H. Hirsh, and B. G. Buchanan. Incremental batch

learning. In Proceedings of the Sixth International

Workshop on Machine Learning, pages 366{370,

Ithaca, NY, June 1989.

[

Cohen, 1990

]

William W. Cohen. Learning from text-

book knowledge: A case study. In Proceedings of the

Eighth National Conference on Arti�cial Intelligence,

pages 743{748, Boston, MA, July 1990.

[

Danyluk, 1991

]

A. D. Danyluk. Gemini: An integra-

tion of analytical and empirical learning. In Proceed-

ings of the International Workshop on Multistrat-

egy Learning, pages 191{206, Harper's Ferry, W.Va.,

Nov. 1991.

[

Feldman et al., 1991

]

R. Feldman, A. Segre, and

M. Koppel. Incremental re�nement of approximate

domain theories. In Proceedings of the Eighth In-

ternational Workshop on Machine Learning, pages

500{504, Evanston, IL, June 1991.

[

Flann and Dietterich, 1989

]

N. S. Flann and T. G. Di-

etterich. A study of explanation-based methods for

inductive learning. Machine Learning, 4(2):187{226,

1989.

[

Ginsberg, 1990

]

A. Ginsberg. Theory reduction, the-

ory revision, and retranslation. In Proceedings of the

Eighth National Conference on Arti�cial Intelligence,

pages 777{782, Detroit, MI, July 1990.

[

Matwin and Plante, 1991

]

S. Matwin and B. Plante.

A deductive-inductive method for theory revision. In

Proceedings of the International Workshop on Mul-

tistrategy Learning, pages 160{174, Harper's Ferry,

W.Va., Nov. 1991.

[

Mooney and Ourston, 1989

]

R. J. Mooney

and D. Ourston. Induction over the unexplained: In-

tegrated learning of concepts with both explainable

and conventional aspects. In Proceedings of the Sixth

International Workshop on Machine Learning, pages

5{7, Ithaca, NY, June 1989.

[

Mooney and Ourston, 1991a

]

R. Mooney and D. Ourston. Constructive induction

in theory re�nement. In Proceedings of the Eighth

International Workshop on Machine Learning, pages

178{182, Evanston, IL, June 1991.

[

Mooney and Ourston, 1991b

]

R. J. Mooney

and D. Ourston. A multistrategy approach to the-

ory re�nement. In Proceedings of the International

Workshop on Multistrategy Learning, pages 115{130,

Harper's Ferry, W.Va., Nov. 1991.

[

Mooney and Ourston, 1991c

]

R. J.

Mooney and D. Ourston. Theory re�nement with

noisy data. Technical Report AI91-153, Arti�cial In-

telligence Laboratory, University of Texas, Austin,

TX, March 1991.

[

Murray and Porter, 1989

]

K. S. Murray and B. W.

Porter. Controlling search for the consequences of

new information during knowledge integration. In

Proceedings of the Sixth International Workshop on

Machine Learning, pages 290{295, Ithaca, NY, June

1989.

[

Ourston and Mooney, 1990

]

D. Ourston and

R. Mooney. Changing the rules: a comprehensive

approach to theory re�nement. In Proceedings of the

Eighth National Conference on Arti�cial Intelligence,

pages 815{820, Detroit, MI, July 1990.

[

Ourston and Mooney, 1991

]

D. Ourston and

R. Mooney. Improving shared rules in multiple cat-

egory domain theories. In Proceedings of the Eighth

International Workshop on Machine Learning, pages

534{538, Evanston, IL, June 1991.

[

Ourston, 1991

]

D. Ourston. Using Explanation-Based

and Empirical Methods in Theory Revision. PhD the-

sis, University of Texas, Austin, TX, August 1991.

[

Quinlan, 1986

]

J. R. Quinlan. Induction of decision

trees. Machine Learning, 1(1):81{106, 1986.

[

Reinke and Michalski, 1988

]

R. E. Reinke and R. S.

Michalski. Incremental learning of concept descrip-

tions. In J. E. Hayes, D. Michie, and J. Richards,

editors, Machine Intelligence (Vol. 11). Oxford Uni-

versity Press, Oxford, England, 1988.

[

Schlimmer and Fisher, 1986

]

J. C. Schlimmer and

D. Fisher. A case study of incremental concept induc-

tion. In Proceedings of the Fifth National Conference

on Arti�cial Intelligence, pages 496{501, Philadel-

phia, PA, Aug 1986.

[

Schlimmer and Granger, 1986

]

J. C. Schlimmer and

R. H. Granger. Incremental learning from noisy data.

Machine Learning, 1(3):317{334, 1986.

[

Towell and Shavlik, 1991

]

G. Towell and J. Shavlik.

Re�ning symbolic knowledge using neural networks.

In Proceedings of the International Workshop on

Multistrategy Learning, pages 257{272, Harper's

Ferry, W.Va., Nov. 1991.

[

Towell et al., 1990

]

G. G. Towell, J. W. Shavlik, and

Michiel O. Noordewier. Re�nement of approximate

domain theories by knowledge-based arti�cial neu-

ral networks. In Proceedings of the Eighth National

Conference on Arti�cial Intelligence, pages 861{866,

Boston, MA, July 1990.

[

Utgo�, 1989

]

P. E. Utgo�. Incremental induction of

decision trees. Machine Learning, 4(2):161{186,

1989.

[

Whitehall et al., 1991

]

B. L. Whitehall, S. C. Lu, and

R. E. Stepp. Theory completion using knowledge-

based learning. In Proceedings of the International

Workshop on Multistrategy Learning, pages 144{159,

Harper's Ferry, W.Va., Nov. 1991.

[

Wilkins, 1988

]

D. C. Wilkins. Knowlege base re�ne-

ment using apprenticeship learning techniques. In

Proceedings of the Seventh National Conference on

Arti�cial Intelligence, pages 646{651, St. Paul, MN,

August 1988.

[

Winston and Horn, 1989

]

P. H. Winston and B. K. P.

Horn. Lisp. Addison-Wesley, Reading, MA, 1989.

Animal Test Accuracy

BATCH

FULL-MEM

NO-MEM

% Correct

Train Exs

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0.00 50.00 100.00 150.00 200.00 250.00

Animal Train Time

BATCH

FULL-MEM

NO-MEM

Seconds

Train Exs-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

380.00

400.00

420.00

440.00

0.00 50.00 100.00 150.00 200.00 250.00

Animal Theory Complexity

BATCH

FULL-MEM

NO-MEM

Literals

Train Exs
95.00

100.00

105.00

110.00

115.00

120.00

125.00

130.00

135.00

140.00

0.00 50.00 100.00 150.00 200.00 250.00

Computer Test Accuracy

BATCH

FULL-MEM

NO-MEM

% Correct

Train Exs
70.00

72.00

74.00

76.00

78.00

80.00

82.00

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

0.00 50.00 100.00 150.00

Computer Train Time

BATCH

FULL-MEM

NO-MEM

Seconds

Train Exs

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

0.00 50.00 100.00 150.00

Computer Theory Complexity

BATCH

FULL-MEM

NO-MEM

Literals

Train Exs

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

0.00 50.00 100.00 150.00

DNA Test Accuracy

BATCH

FULL-MEM

NO-MEM

% Correct

Train Exs
48.00

50.00

52.00

54.00

56.00

58.00

60.00

62.00

64.00

66.00

68.00

70.00

72.00

74.00

76.00

78.00

80.00

82.00

84.00

86.00

88.00

0.00 20.00 40.00 60.00 80.00

DNA Train Time

BATCH

FULL-MEM

NO-MEM

Seconds

Train Exs

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

0.00 20.00 40.00 60.00 80.00

DNA Theory Complexity

BATCH

FULL-MEM

NO-MEM

Literals

Train Exs

74.00

76.00

78.00

80.00

82.00

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

102.00

104.00

106.00

108.00

110.00

112.00

0.00 20.00 40.00 60.00 80.00

