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Abstract 

Ourston, D. and R.J. Mooney, Theory refinement combining analytical and empirical 
methods, Artificial Intelligence 66 (1994) 273-309. 

This article describes a comprehensive system for automatic theory (knowledge base) 
refinement. The system applies to classification tasks employing a propositional Horn- 
clause domain theory. Given an imperfect domain theory and a set of training examples, 
the approach uses partial and incorrect proofs to identify potentially faulty rules. For 
each faulty rule, subsets of examples are used to inductively generate a correction. 
Because the system starts with an approximate domain theory, fewer training examples 
are generally required to attain a given level of classification accuracy compared to a 
purely empirical learning system. The system has been tested in two previously explored 
application domains: recognizing important classes of DNA sequences and diagnosing 
diseased soybean plants. 

1. Introduction 

One of the most difficult problems in the development of intelligent 
systems is the construction of the underlying knowledge base. As a result, 
the rate of progress in developing intelligent systems is directly related to the 
speed with which knowledge bases can be assembled. Research in machine 
learning attempts to solve the knowledge acquisition problem by developing 
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systems that automatically acquire the requisite knowledge from experience. 
However, empirical learning systems [29,41,46] do not take significant 
advantage of existing domain knowledge and explanation-based learning 
systems [9,30] require a complete and correct domain theory. Consequently, 
a number of recent research projects have focused on integrating these two 
basic approaches to machine learning [4,47]. 

Normal knowledge acquisition can be divided into two phases: an initial 
phase in which a knowledge engineer extracts a rough set of  rules from 
an expert, and knowledge base refinement, in which the initial knowledge 
base is refined to produce a high-performance system [18]. 1 The initial 
knowledge base is acquired as whole rules, or sets of  rules, that are used 
to represent various concepts in the domain. In contrast, during knowledge 
base refinement, components of the existing rules are modified, in addition 
to adding and deleting rules, in an effort to improve the empirical adequacy 
of the knowledge base, that is, its ability to reach correct conclusions in its 
domain. 

This article presents a method for automating knowledge base refinement 
for classification systems employing a propositional Horn-clause theory. 
The method assumes that an approximately correct initial knowledge base 
(domain theory) is obtained from a textbook or an expert. The method 
attempts to make small syntactic changes to a domain theory to make it 
consistent with a provided set of  training examples. The advantage of a 
refinement approach to knowledge acquisition as opposed to a purely em- 
pirical learning approach is two-fold. First, by starting with an approx- 
imately correct theory, a refinement system should be able to achieve 
high performance with significantly fewer training examples. Therefore, 
in domains in which training examples are scarce or in which a rough 
theory is easily available, the refinement approach has a distinct advan- 
tage. Second, theory refinement results in a structured knowledge base that 
maintains the intermediate terms and explanatory structure of the origi- 
nal theory. Empirical learning, on the other hand, results in a decision 
tree or disjunctive normal form expression with no intermediate terms or 
explanatory structure. Therefore, a knowledge base formed by theory re- 
finement is much more suitable for supplying meaningful explanations for 
its conclusions, an important aspect of  the usefulness of an expert sys- 
tem. 

The theory refinement system we have developed, EITHER (Explanation- 
based and Inductive THeory Extension and Revision), is modular and 
contains independent subsystems for deduction, abduction, and induction. 

1Bareiss, Porter and Murray [ 1 ] divide the knowledge base refinement phase into two stages: 
the first establishes the correctness of the knowledge base, and second improves efficiency. This 
paper is only concerned with correctness. 
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Each of these reasoning components make important contributions to the 
overall goal of the system. EITHER attempts to integrate analytical methods 
(deduction and abduction) and empirical methods (induction) in order to 
combine their individual strengths. The analytical part of the system is used 
to identify the failing parts of the theory, and to constrain the examples 
used for induction. The empirical part of the system determines the specific 
corrections to failing rules that make them consistent with the training 
examples. 

EITHER has successfully refined two real-world rule bases, one in molec- 
ular biology and one in plant pathology. The empirical results confirm the 
hypotheses that theory refinement improves the classification accuracy of 
the original knowledge base and produces a more accurate classifier than 
simple induction over the examples. That is, combining theory and data is 
better than using either one alone. In addition, unlike other existing theory 
refinement systems, EITHER is guaranteed to produce a theory that is con- 
sistent with the training data. Given a theory with arbitrary errors and a 
consistent set of training examples, the system will return a revised version 
that classifies all of the examples correctly. 

The body of the paper is organized as follows. Section 2 defines the 
specific problem that EITHER addresses and presents an overview of the 
system. Section 3 details the basic theory revision algorithm. Section 4 ad- 
dresses special problems that arise with multiple category theories. Section 5 
describes the methods used to determine the place in the theory requiring 
correction. Section 6 presents a complexity analysis of the EITHER algorithm. 
Section 7 presents experimental results on revising two actual expert rule 
bases. Section 8 discuss the relation between EITHER and other recent de- 
velopments in knowledge-based learning and theory refinement. Section 9 
discusses future research issues revealed by the EITHER project. Section 10 
summarizes the current results and draws some conclusions. 

2. Overview 

First, we define the specific problem addressed by EITHER and give a 
simple example that will be used throughout the paper. Next, we present a 
taxonomy of errors that is useful in isolating and correcting problems with a 
propositional Horn-clause theory. Finally, we review how EITHER combines 
deductive, abductive, and inductive reasoning to solve the theory refinement 
problem. 

2.1. Problem definition 

Stated succinctly, the problem addressed by EITHER is: 
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Given: An imperfect domain theory for a set of categories and a 
set of  classified examples each described by a set of  observable 
features. 

Find: An approximately minimal syntactic revision of  the domain 
theory that correctly classifies all of  the examples. 

Horn-clause logic was chosen as the representational formalism. This pro- 
vides a relatively simple and useful language for exploring the problems 
associated with theory revision. Theories currently are restricted to an ex- 
tended propositional logic that contains feature-value pairs and thresholds 
on real-valued (linear) features as well as binary propositions. In addition, 
domain theories are required to be acyclic and therefore define a directed 
acyclic graph (DAG). For the purpose of  theory refinement, EITHER makes 
a closed-world assumption. If  the theory cannot prove that an example is a 
member of  a category, then it is assumed to be a negative example of  that 
category. The domain theories upon which EITHER has been tested have all 
corresponded to classification tasks--assigning examples to one of  a finite 
set of  predefined categories. 

Propositions that are used to describe the examples (e.g. (color black)) 
are called observables. To avoid problems with negation as failure, only 
observables can appear as negated antecedents. Propositions that represent 
the final concepts in which examples are to be classified are called categories. 
It is currently assumed that all categories are disjoint. The set of  categories 
may include negative, which is the default category for an example that 
is not provable as a member of  any other category. In a normal domain 
theory, all of  the sources (leaves) of  the DAG are observables and all of  the 
sinks (roots) are categories; however, gaps in the original theory may cause 
these constraints to be violated. Propositions in the theory that are neither 
observables nor categories are called intermediate concepts. 

It is difficult to precisely define the notion of  a "minimally revised" theory. 
Since it is assumed that the original theory is "approximately correct" the 
goal is to change it as little as possible. Syntactic measures such as the total 
number of  symbols added or deleted are reasonable criteria. EITHER uses 
various heuristic methods to help insure that its revisions are minimal in 
this sense. However, finding a revision that is guaranteed to be syntactically 
minimal is computationally intractable. When the initial theory is empty, 
the problem reduces to that of  finding a minimal Horn-clause theory for a 
set of  examples. 2 

A sample theory suitable for EITHER is a version of  the cup theory [55] 

2Related problems like finding a min imum DNF formula are known to be NP-complete 
[ 16 ]; however, we were unable to find a reference to an NP-completeness result for the specific 
problem of finding a min imum Horn-clause theory. Nevertheless, there are certainly no known 
polynomial algorithms for solving this sort of optimization problem. 
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1. (cup) 
2. (stable) 
3. (liftable) *-- 
4. (graspable) * -  
5. (graspable) * -  
6. (graspable) *-  
7. (open-vessel) , -  

(stable) A (liftable) A (open-vessel) 
(has-bottom) A (flat-bottom) 
(graspable) A (lightweight) 
(has-handle) 
(width small) A (styrofoam) 
(width small) A (ceramic) 
(has-concavity) A (upward-pointing-concavity) 

Fig. 1. The cup theory. 

shown in Fig. l. This theory will be used extensively throughout the re- 
mainder of the article for illustrative purposes. Figure 2 shows six examples 
that are consistent with this theory, three positive examples of cup and 
three negative examples. Each example is described in terms of twelve 
observable features. There are eight binary features: has-concavity, upward- 
pointing-concavity, has-bottom,'flat-bottom, lightweight, has-handle, styrofoam, 
and ceramic; three discrete features: color, width, and shape; and a single lin- 
ear feature: volume. Given various imperfect versions of the cup theory and 

1. + X X X X X X red sm 

2. + X X X X X X X blue red 

3. + X X X X X X X !an med 

4 . -  X X X X X =}ray sm 

5 . -  X X X X X X 'ed med 

6. -  X X X X X X )lue rned 

8 1era 

16 1era 

8 :yl 

8 ;yl 

8 l em  

16 lern 

O 
g 

Fig. 2. Cup examples. 

these six examples, EITHER can regenerate the correct theory. For example, 
if rule 4 is missing from the theory, examples 2 and 3 are no longer provable 
as cups. If the antecedent (width small) is missing from rule 5, then negative 
example 5 becomes provable as a cup. EITHER can correct either or both of 
these errors using the examples in Fig. 2. 

EITHER operates in batch mode, processing a complete set of training 
examples at once. The training examples normally contain both correctly 
and incorrectly classified examples. The incorrectly classified examples, or 
failing examples, are used to identify errors and to control the correction. 
The correctly classified examples are used to focus the correction and to 
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INCORRECT THEORY 

OVERLY ~~Z~ OVERLY 

ADDITIONAL MISSING EXTRA MISSING 
ANTECEDENT RULE R U L E  ANTECEDENT 

Fig, 3. Theory error taxonomy. 

limit its extent. An important property of EITHER is  that it is guaranteed to 
produce a revised theory that correctly classifies all of the training examples, 
provided they are consistent. A set of training examples is consistent if any 
two examples described by the same set of features are assigned to the same 
category. 

2.2. Types of theory errors 

Figure 3 shows a taxonomy for theory errors in propositional Horn-clause 
theories. At the top level, theories can be incorrect because they are either 
overly general or overly specific. An overly general theory entails category 
membership for examples which are not members of the category. This 
will result in negative examples of a concept being proven as positive. One 
way a theory can be overly general is when rules lack required antecedents, 
providing proofs for examples which should have been excluded. Another 
way in which examples can be erroneously included is by having additional 
rules in the category definition which are not correct. The additional rules 
provide proofs of category membership for examples which do not properly 
belong in the category. By contrast, an overly specific theory fails to entail 
category membership for members of a concept. This can occur because 
the theory is missing a rule which is required in the proof of concept 
membership, or because the existing rules have additional antecedents which 
exclude concept members. 

The following terminology is used in the remainder of the paper. "The 
example is provable", is used to mean "the example is provable as a member 
of its own category". A failing positive refers to an example that is not 
provable as a member of its own category. A failing negative refers to an 
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Initial Theory~ ExTples 

DEDUCE 
Unprovable 
Positive 

ABDUCE ~ F 

Deleted 
Rules 

Minimal Cover 
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alizable 
Rules 

Generalized 
Rules 

Proofs of 
Negative 

• Examples 

Minimal Cover 
and 

Rule Retractor 
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I Ru es 

=[ INDUCE 

New Specialized 
Rules Rules 

Fig. 4. EITHER architecture. 

example that is provable as a member  of a category other than its own. 
Notice that a single example can be both a failing negative and a failing 
positive. 

2.3. EITHER components 

As shown in Fig. 4, EITHER uses a combination of methods to revise a 
theory. It first attempts to fix failing positives by removing or generalizing 
antecedents and to fix failing negatives by removing rules or specializing 
antecedents since these are simpler and less powerful operations. Only if 
these operations fail does the system resort to the more powerful technique 
of using induction to learn new rules to fix failing positives and to add 
antecedents to existing rules to fix failing negatives. 

Horn-clause deduction is the basic inference engine used to classify ex- 
amples. EITHER initially uses deduction to identify failing positives and 
negatives among the training examples. It uses the proofs generated by de- 
duction to find a near-minimum set of  rule retractions that would correct all 
of the failing negatives. During the course of the correction, deduction is also 
used to assess proposed changes to the theory as part of the generalization 
and specialization processes. 

EITHER uses abduction to initially find the incorrect part of an overly 
specific theory. Abduction identifies sets of assumptions which would al- 
low a failing positive to become provable. These assumptions identify rule 
antecedents (called conflicting antecedents) that, if deleted, would properly 
generalize the theory and correct the failing positive. EITHER uses the output  
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of abduction to find a near-minimum set of conflicting antecedents whose 
removal would correct all of  the failing positives. 

Induction is used to learn new rules or to determine which additional 
antecedents to add to an existing rule. In both cases, EITHER uses the 
output of  abduction and deduction to determine an appropriately labeled 
subset of  the training examples to pass to induction in order to form a 
consistent correction. EITHER currently uses a version of ID3 [41] as its 
inductive component. The decision trees returned by ID3 are translated into 
equivalent Horn-clause rules [42]. The remaining components of the EITHER 

system constitute generalization and specialization control algorithms, which 
identify and specify the types of corrections to be made to the theory. 

One of the main advantages of the EITHER architecture is its modularity. 
Because the control and processing components are separated from the 
deductive, inductive, and abductive components, these latter components 
can be modified or replaced as the need arises. For example, the time 
complexity of EITHER'S abduction algorithm is exponential in the size of the 
theory. However, this algorithm could be exchanged for one using an ATMS 

(Assumption-based Truth Maintenance System) and beam search [36] to 
improve efficiency, without noticeably affecting the remainder of the system. 

3. The basic theory revision algorithm 

This section details EITHER'S method for modifying leaf rules, which are 
rules whose antecedents include an observable or an intermediate concept 
that is not the consequent of  any existing rule. The discussion is based on 
single-category theories such as the cup theory in Fig. 1. Sections 4 and 5 
discuss enhancements for dealing with multiple categories and higher-level 
rules, respectively. Section 4.2 discusses the reasons for initially focusing on 
leaf rules. 

Figure 5 illustrates EITHER'S response to an incorrect theory. First, de- 
duction is used to classify all of  the training examples according to the 
initial theory. EITHER employs a standard backward-chaining Horn-clause 
theorem prover, like PROLOG. Failing positives signal the need for theory 
generalization, which is discussed in Section 3.2. Failing negatives signal the 
need for theory specialization, the subject of  Section 3.3. The corrections 
made by these algorithms are independent: a theory may be generalized, 
specialized, or both, as dictated by the failing examples. In each case, the 
corrections made to the theory are non-interfering, that is, the prescribed 
theory generalizations are guaranteed not to introduce new specialization 
problems (failing negatives) and the theory specializations are guaranteed 
not to introduce new generalization problems (failing positives). 
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FINDTHEORY 

GENERAUZE GENERAUZIE SPECIAUZED SP UZE O LETE 
ANTECEDENTS RULE RULES ANTECEDENTS RULE 

- Generalization "l" Specialization 

Fig. 5. EITHER system response to theory errors. 

DedUction 

Abduction 

Deduction 

Induction 

3. I. Finding the m in imum covers 

The input to both theory generalization and specialization is a cover, a 
complete set of  leaf rules requiring correction. 3 There are two types of  covers 
used by EITHER: the antecedent cover and the rule cover. The antecedent cover 
is used by the generalization procedure to fix all failing positives. The rule 
cover is used by the specialization procedure to fix all failing negatives. 
There is an essential property that holds for both types of cover: 

If  all of  the elements of  the cover are removed from the theory, 
the examples associated with the cover will be correctly classified. 

Specifically, if all of  the antecedents in the antecedent cover are removed, 
the theory is generalized so that all of  the failing positives are fixed and if 
all of  the rules in the rule cover are removed, the theory is specialized so 
that all of  the failing negatives are fixed. In each case, EITHER attempts to 
find a m i n i m u m  cover in order to minimize change to the initial theory. 

Since EITHER finds a complete cover for both classes of  examples, and 
since the corrections to the theory are non-interfering, the rule updates 
made by EITHER are guaranteed to be consistent with the training examples. 
Consistency of  the rule updates with the training examples leads ultimately 
to a guarantee of  the eventual convergence of  the EITHER algorithm to a 
PAC (Probably Approximately Correct) concept [ 20,37 ]. 

3Minimum covering methods have historically been used in machine learning for the induc- 
tion of DNF formulae [26]. Here we have adapted them for use in theory refinement. 
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3.1.1. The minimum antecedent cover 
Abduction [6,23] is used to find antecedents whose removal would help 

fix failing positives. The normal logical definition of  abduction is: 

Given: A domain theory, T, and an observed fact, O. 
Find: All minimal sets of  atoms, A, called assumptions, such that 

A U T is logically consistent and A U T ~ O. 

The assumptions A are said to explain the observation. Legal assumptions 
are frequently restricted, such as allowing only instances of certain predicates 
(predicate specific abduction) or requiring that assumptions not be provable 
from more basic assumptions (most-specific abduction) [49]. 

In order to focus on leaf rules, EITHER'S abductive component backchains 
as far as possible before making an assumption (most-specific abduction). 
The consistency constraint is removed in order to allow assumptions to 
be viewed as antecedent retractions. Since an observation states that an 
example is a member of a category (E ~ CE, where E is the conjunction of 
observable features of the example and CE is its category), abduction finds 
all minimal sets of  most-specific atoms, A, such that: 

A u E U T ~ C E ,  (1) 

where minimal means that no assumption set is a subset of  another. The 
proof supported by each such set is called a partial proof EITHER currently 
uses an abductive component that employs exhaustive search to find all 
partial proofs of each failing positive example [35]. Partial proofs are 
used to indicate conflicting antecedents that, if retracted, would allow the 
example to become provable. The above definition guarantees that, if all of  
the assumptions in a set are removed from the antecedents of the rules in 
their corresponding partial proof, the example will become provable. This 
is because not requiring a fact for a proof has the same generalizing effect 
as assuming it. 

As a concrete example, assume that rule 4 about handles is missing from 
the cup theory as presented in Fig. 1. This will cause example 2 from 
Fig. 2 to become a failing positive. Abduction finds two minimal sets of  
conflicting antecedents: { (width small)6} and { (width small)s (styrofoam)s}. 
The subscripts indicate the number of the rule to which the antecedent 
belongs, since each antecedent of  each rule must be treated distinctly. Notice 
that removing the consistency constraint is critical to the interpretation of 
assumptions as antecedent retractions. Assuming (width small) is inconsistent 
when (width medium) is known; however, retracting (width small) as antecedent 
from one of the graspable rules is still a legitimate way to help make this 
example provable. 

In a complex problem, there will be many partial proofs for each failing 
positive. In order to minimize change to the initial theory, EITHER attempts 
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to find the minimum number of antecedent retractions required to fix all 
of the failing positives. In other words, we want to make the following 
expression true: 

E 1 A E 2 A ' " A E n ,  (2) 

where E; represents the statement that the ith failing positive has at least 
one completed partial proof, that is, 

Ei = Pil V Pi2 V . . .  V Pim, (3) 

where Pij represent the statement that the j th  partial proof of the ith failing 
positive is completed, that is, 

Pij =- Aij l  A Ai j  2 A . . .  A Aijp, (4) 

where the Aijk means that the antecedent represented by the kth assumption 
used in the j th  partial proof of the ith example is removed from the theory. 
In order to determine a minimum change to the theory, we need to find 
the minimum set of antecedent retractions (A's) that satisfy this expression. 
Pursuing the example of the cup theory that is missing the rule for handles, 
both failing positives (examples 2 and 3) have the same partial proofs, 
resulting in the expressions: 

E2 -- (width small)6 V (width small)5 A (styrofoam)a, 

E3 - (width small)6 V (width small)5 A (styrofoam)5. 

In this case, the minimum antecedent cover is trivial and consists of retract- 
ing the single antecedent (width small )6. 

Since the general minimum set covering problem is NP-hard [ 16 ], EITHER 
uses a version of the greedy covering algorithm to find the antecedent cover. 
The greedy algorithm does not guarantee to find the minimum cover, but will 
come within a logarithmic factor of it and runs in polynomial time [22]. The 
algorithm iteratively updates a partial cover, as follows. At each iteration, 
the algorithm chooses a partial proof and adds its antecedent retractions 
to the evolving cover. The chosen partial proof is the one that maximizes 
benefit-to-cost, defined as the ratio of the additional examples covered when 
its antecedents are included, divided by the number of antecedents added. 
The set of examples that have the selected partial proof as one of their 
partial proofs are removed from the examples remaining to be covered. The 
process terminates when all failing positives are covered. 

3.1.2. The minimum rule cover 
The proofs of failing negatives generated by the deductive component are 

used to determine the minimum rule cover. In order to minimize change 
to the initial theory, EITHER attempts to find the minimum number of leaf 
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rule retractions required to fix all of the failing negatives. In analogy with 
the previous section, we would like to make the following expression true: 

-~E1 A -~E2 A . . . A ~En,  (5 )  

where Ei represents the statement that the ith failing negative has a complete 
proof, that is, 

~Ei --- -~Pil A "~ei2 A . "  A -~Pim, (6) 

where Pij represent the statement that the j th  proof of the ith failing negative 
is complete, that is, 

~Pij -~ ~Rij l  V ~Ri j  2 V . . .  V -~Rijp, (7) 

where -~Rijk represents the statement that the kth leaf rule used in the 
j th  proof of the ith failing negative is removed, i.e. a proof is no longer 
complete if at least one of  the rules used in the proof is removed. 

As with the antecedent cover, EITHER attempts to find a minimum cover 
of  rule retractions using greedy covering. In this case, the object is to remove 
all proofs of  every failing negative. Note that in picking a retraction, EITHER 

avoids rules that do not have any disjuncts in their proof path to the goal 
since these rules are needed to prove any  example. At each step in the 
covering algorithm, the eligible rule that participates in the most faulty 
proofs is added to the evolving cover until all the faulty proofs are covered. 

As an example, consider the cup theory in which the (width small) an- 
tecedent is missing from rule 5. In this case, example 5 becomes a failing 
negative. The minimum rule cover is the overly general version of rule 5: 

(graspable) , -  (styrofoam) 

since it is the only rule used in the faulty proof with alternative disjuncts 
(rules 4 and 6). 

3.2. Theory  general i za t ion  

The left side of Fig. 5 illustrates the generalization process. EITHER first 
forms the minimum antecedent cover, as discussed in the previous section. 
The conflicting antecedents in the cover are associated with their corre- 
sponding rules, with one or more conflicting antecedents per rule. Each such 
rule has associated with it the failing positive examples that use the rule in 
a chosen partial proof. Each rule in the cover is sequentially generalized so 
that it fixes its failing positives without creating additional failing negatives. 

There are three operators EITHER can use to generalize a rule. They are: 

• antecedent retraction, 
• antecedent generalization, 
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• inductive rule addition. 

The operators are tried in the order given in an attempt to minimize change 
to the initial theory. 

3.2. I. Antecedent retraction 
For each rule in the cover, the first step is to remove its conflicting 

antecedents. If removing the antecedents does not over-generalize the theory 
by causing new failing negatives, 4 the antecedents are permanently deleted. 

An exception to this policy occurs when all of a rule's antecedents are 
conflicting. In this case, EITHER removes the consequent of the rule as 
an antecedent from those parent rules 5 that are used in the partial proof 
of one of its failing positives. This limits the correction to just those rules 
associated with the failing positive examples. If the original rule had all of  its 
antecedents removed, all of  its parent rules would, in effect, be generalized. 
This generalization is unnecessary when the parent rule was not actually 
used in any of the partial proofs represented in the cover. 

3.2.2. Antecedent generalization 
If removing antecedents is an over-generalization, EITHER attempts to 

generalize the conflicting antecedents just enough to cover the rule's failing 
positive examples. Since antecedent generalization uses the existing features 
in the rule, it is preferred to inductive rule addition which, in general, will 
use entirely new features. 

How an antecedent is generalized depends on whether its feature is bi- 
nary, discrete, or linear. For linear antecedents, the interval in the rule is 
extended just enough to cover its failing positive examples. For discrete 
antecedents, disjuncts are added for the values present in the failing positive 
examples. If  all of  the values are required to account for the failing positive 
examples, a discrete antecedent is simply removed. For binary antecedents, 
the antecedent is removed. For example, if the initial rule is 6 

(graspable) *- (has-handle) A (color red) A (volume ?x) A (~< ?x 3) 

and it has a single failing positive with the features (not (has-handle)), 
(color blue), (volume 4), it will be generalized to the rules: 

(graspable) ~- (color red) A (volume ?x) A (~< ?x 4), 
(graspable) ~-- (color blue) A (volume ?x) A (~  ?x 4). 

4For multi-category theories, an existing failing negative that becomes provable in additional 
incorrect categories also counts as an over-generalization error. 

5Rule A is a parent of rule B iff the consequent of B is an antecedent of A. 
6A leading question mark denotes a variable. Variables can only be used to specify ranges 

on linear features. 
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Like retraction, antecedent generalization is successful if it does not intro- 
duce any new failing negatives. Consequently, antecedent generalization is 
a one-sided generalization [20]: only the positive examples are considered 
for the generalization, the negative examples are used simply to determine 
if the generalization was successful. 

3.2.3. Inductive rule addition 
If both antecedent retraction and generalization result in over-generaliza- 

tion, the inductive component is used to learn entirely new rules for the 
consequent of the given rule. The set of positive and negative examples 
for the inductive rule formation is determined as follows. The positive 
examples are simply the failing positives for the rule. The negative examples 
are obtained by removing all of the antecedents from the rule and collecting 
any new failing negatives that are created. This is necessary because if our 
only goal was to make the positive examples provable, removing all of the 
antecedents would suffice. Therefore, antecedents are added to the new rule 
to ensure that no additional failing negatives are created while still covering 
the failing positives. It can also be viewed as a proof by contradiction: we 
assume that the consequent of the rule is true and obtain the contradiction 
that a negative example is provable, implying that the consequent is not 
true for the negative example. 

As an illustration of this process, consider the running example of the cup 
theory missing the rule for handles. EITHER initially focuses on generalizing 
one of the remaining rules for graspable. The failing positive examples with 
the incorrect theory are examples 2 and 3 from Fig. 2, both of which are 
covered by the conflicting antecedent (width small)6. However, removing 
(width small) from rule 6 results in example 6 becoming a failing negative. 
Generalizing the conflicting antecedent to include (width medium) also causes 
example 6 to fail. As a result, EITHER uses induction to form a new rule for 
graspable. In this case, the positive examples for the induction are examples 2 
and 3, that is, the original failing positive examples. The negative examples 
are examples 4, 5 and 6, which become provable when graspable is assumed 
to be true. Since has-handle is the only single feature that distinguishes 
examples 2 and 3 from examples 4, 5 and 6, the inductive system (ID3) 
generates the required rule: 

(graspable) * -  (has-handle). 

3.3. Theory specialization 

The right side of Fig. 5 illustrates the specialization process. EITHER first 
forms the minimum rule cover, as discussed in Section 3.1.2. Next, each 
rule in the cover is sequentially specialized so that it excludes its failing 
negatives without creating additional failing positives. 
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EITHER USeS the following operators to specialize a rule: 

• rule retraction, 
• antecedent specialization, 
• inductive antecedent addition. 

As with generalization, these operators are tried successively in the order 
given. 

3.3. I. Rule retraction 
The first step in the specialization process is to determine the effect of 

removing the rule from the theory. If no new failing positive examples 
result from retracting the rule, EITHER checks to see if a sufficient number 
of positive examples have been seen or if specializing a linear antecedent 
represents a superior correction. If only a few positive examples have been 
seen, the fact that retracting the rule caused no failures may simply be due 
to the insufficient number of examples. Hence, the relatively large semantic 
change to the theory caused by rule retraction is probably not warranted. 

The superiority of an antecedent specialization is indicated by the min- 
imum exclusion factor for the rule. For a given linear antecedent, the first 
step in determining the exclusion factor is to find the range of values for 
the corresponding feature among the negative examples for the rule. 7 This 
range is then divided by the size of the interval specified in the rule to deter- 
mine the exclusion factor. A small exclusion factor indicates that antecedent 
specialization is desirable since it means that the interval specified in the 
rule would only have to be changed by a small amount in order to exclude 
the failing negative examples. For example, suppose that the rule contains 
antecedents for the constraint 0 ~ a ~ 1000. Assume rule negative examples 
have been seen with values for a of 999 and 1000. Then these examples 
could be excluded from the coverage of the rule by changing the interval 
to: 0 ~< a < 999, a relatively small change to both the definition of the rule 
and its coverage (the exclusion factor is 1/1000). If the rule has several 
linear antecedents, the minimum exclusion factor is chosen since only one 
antecedent needs to be specialized to exclude the negative examples. 

The choice between rule retraction and antecedent specialization is deter- 
mined as follows: 

if (n > s/e) 
then retract rule 
else specialize antecedents 

7For each negative example, the feature value will always be within the interval for the rule, 
since otherwise the rule could not have been used in a proof for the negative example. 
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where n is the number of positive examples that have been seen, s is the 
number of symbols in the rule to be retracted, and e is the exclusion factor 
for the rule (if there are no linear antecedents in the rule, the exclusion 
factor is set to ~ ) .  The number of symbols in the rule is included in this 
formula since this represents the amount of syntactic change to the theory 
when the rule is retracted. 

3.3.2. Antecedent specialization 
If either rule retraction fails or antecedent specialization is determined 

to be superior, EITHER tries to specialize the antecedents of the rule just 
enough to exclude the failing negatives. This is a one-sided specialization 
which attempts to specialize the rule away from the provable negative ex- 
amples without considering the positive examples (if any). If doing so does 
not introduce additional failing positive examples, then the specialization 
is successful. Attempting antecedent specialization prior to inductive an- 
tecedent addition is justified because it restricts the changes to the rule's 
existing features. 

Unlike antecedent generalization, only linear antecedents can be special- 
ized. If a rule references multiple linear features, the minimum exclusion 
factor, defined in the previous section, is used to select the best linear 
antecedent to specialize. As illustrated by the example in the previous sub- 
section, the linear interval is minimally reduced so that no negative examples 
are covered. 

3.3.3. Inductive antecedent addition 
If the previous specialization attempts over-specialize by creating addi- 

tional failing positives, EITHER uses the inductive component to add new 
antecedents to the rule. The system associates positive and negative exam- 
ples with the overly general rule and uses the inductive component to find 
a small set of  additional antecedents to add to the rule to fix the failing 
negatives without creating any additional failing positives. 

The negative examples for induction are the failing negatives that use the 
rule in an erroneous proof, since these are the examples that need to be 
filtered out by the new antecedents. The positive examples are those that 
become failing positives when the rule is removed from the theory, since 
these are the examples that are relying on the current rule for their correct 
categorization. This selection of examples is essentially the dual of  that used 
for inductive rule addition as described in Section 3.2. 

For example, again consider the case of missing the antecedent (width 
small) from rule 5. Based on the rule cover, EITHER first removes the overly 
general rule 5: 

(graspable) , -  (styrofoam) 
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and tests for additional failing positives. Since example 1 becomes unprov- 
able in this case and since the binary antecedent (styrofoam) cannot be 
specialized, EITHER decides to add additional antecedents. Example 1 (the 
failing positive created by retraction) is used as a positive example and 
example 5 (the original failing negative) is used as a negative example. 
Since width is the only feature that distinguishes these two examples, ID3 
learns the rule 

(positive) , -  (width small). 

This is combined with the original rule to obtain the correct replacement 
rule: 

(graspable) , -  (width small) A (styrofoam). 

4. Multiple category theories: the correctability problem 

For the most part, the procedure described in the previous section applies 
directly to multiple-category theories. However, in certain situations it is 
impossible to correct a multiple-category theory by modifying only leaf 
rules. Therefore, EITHER must choose rules to revise that are correctable, 
where a correctable rule can be modified to properly discriminate between 
its positive and negative examples. In the case of a rule which is not 
correctable and requires specialization, any specialization which eliminates 
failing negative examples will also create failing positives. Similarly, for 
an incorrectable rule requiring generalization, any generalization that fixes 
failing positive examples will also create failing negatives. This section 
defines the correctability problem and describes how EITHER determines a 
correctable set of  rules from the initial covers. 

4. I. The reasons for the correctability problem 

As discussed in Section 3, the generalization and specialization processes 
start with a cover of leaf rules, the antecedent cover and the rule cover, 
respectively. In certain cases, a leaf rule in the initial cover will not be 
correctable. For example, consider the simple theory 

Ct~ -R  
C2 ~-- R 
R * - a A b  

where C~ and C2 are categories and a and b are observables. This is a 
pathological theory in which any example will be provable in both categories 
or neither, and the same remark applies when any change is made to the leaf 
rule for R. As a result, the "R" rule is not correctable. In general, the problem 
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is detecting that such a condition exists and finding a set of corrections that 
will classify the examples correctly. 

To illustrate the impact of this problem, suppose we have a C1 example 
and that this example is provable as C1 using the initial theory. Therefore, 
the example also will be provable in category C2, meaning the theory is 
overly general. Removing the "R" rule (the first attempted step in the 
specialization process) will cause the example to fail in category C2, but 
will also cause it to fail in its own category. What this means is that the 
same example is both a positive example (requires the "R" rule in a proof 
of C~ ), and negative example (the example is provable in C2 using the 
"R" rule) for the specialization to the "R" rule. If the theory was overly 
specific, then the example would fail in C1, but would become provable in C2 
when the conflicting antecedents of the rule were removed. Again, the same 
example would be both a positive and negative example for the required 
generalization to the rule. Examples that show such behavior are called 
overlapping. That is, overlapping examples are both positive and negative 
examples for a rule. 

4.2. The response to the correctability problem 

Fortunately, there is a simple solution to the correctability problem. In 
the worst case, a cover can be selected consisting entirely of category rules 
(rules whose consequents are categories). Since these rules imply a single 
category, updates to them cannot affect membership in other categories. 
For example, if a given example is erroneously provable as a member of a 
particular category, then specializing the antecedents of the corresponding 
category rule will cause the example not to be provable in the category 
without affecting membership in other categories. 

However, we would prefer not to make the corrections at the root of 
the theory. This is because strengthening lower-level rules allows them to 
participate in more than one category, thereby strengthening the theory 
as a whole, rather than just a single category. Intermediate concepts that 
participate in more than one category are called shared concepts. Consider 
the example of missing the handle rule from an enlarged version of the cup 
theory that includes categories for pots, pans, buckets, etc. Clearly, a new 
category rule for cup could be learned that includes any handled cups and 
excludes all non-cups. However, this rule would be more complicated than 
the has-handle rule and all of the other categories that use the shared concept 
for graspable would not have the benefit of the correction. 

Preferring to modify lower-level rules also allows EITHER tO exhibit cross- 
category transfer. This refers to the interesting effect that revising rules for 
shared concepts frequently can improve performance on test data that is 
drawn from a completely different population than the training data. For 
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Fig• 6. Different types of gaps in incomplete theories. Dashed lines indicate gaps to be filled 
by induction. 

example, if the system is trained only on cups the system can improve its 
classification performance on pots and pans by modifying its shared sub- 
theory for graspable .  Empirical results on cross-category transfer in EITHER 
are reported in [38]. 

Because of these considerations, EITHER initially starts with leaf rules and 
only modifies higher-level rules if necessary, a If the rules in the initial cover 
have no overlapping examples, then no changcs to higher-level rules are 
required. If, however, there are rules with overlapping examples, EITHER 

replaces each such rule with its parent rules, and tests the parents for 
overlapping examples. This process continues until a set of rules is obtained 
that introduces no overlapping examples• In the limit, the cover will consist 
entirely of category rules, which are always correctable. Once a correctable 
cover is found, generalization and specialization proceed as in the previous 
section. 

5. Revising higher-level rules 

Although EITHER'S initial bias is to revise leaf rules, it is also capable 
of identifying and correcting errors at higher levels in the theory. Figure 6 
illustrates how a theory can have gaps at various levels. Previous research 
has focused on handling gaps at a particular level in a theory. For example, 
some research in constructive induction [12,27] assumes that the existing 
domain theory defines a set of intermediate concepts (derived features) 
in terms of observables. The rules connecting these intermediate concepts 
to the categories are assumed to be missing and must bc lcamcd using 
induction• The theory is used to derive values for all of the intermediate 
concepts and these are used as additional input features for induction of the 
category rules. This is the first situation illustrated in Fig. 6 where there is 
a gap at the "top" of the theory. For example, imagine the category rule for 
concluding cup was missing from the cup theory. 

SOr if higher-level corrections are syntactically simpler (see Section 5). 
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Other research in the refinement of incomplete theories with missing rules 
[8] assumes that the domain theory has correct rules for inferring categories 
from intermediate concepts but is instead missing rules connecting observ- 
ables to intermediate concepts. Partial explanations (incomplete proofs) 
are used to isolate intermediate concepts that should be provable for some 
examples but are not. Induction is then used to learn rules for inferring 
these intermediate concepts from observables. This is the second situation 
illustrated in Fig. 6 where there is a gap at the "bottom" of the theory. For 
example, imagine one of the rules for inferring grasoable is missing from the 
cup theory. 

A third case is illustrated in the final situation in Fig. 6 where there is 
a gap is in the "middle" of the theory. For example, imagine the rule for 
inferring liftable was missing from the cup theory. None of the previous 
research seems to directly address this issue. 

An ideal system should be able to deal with multiple gaps occurring at 
arbitrary levels in the domain theory. It should also be able to introduce 
new intermediate concepts in order to handle the situation in which the gap 
in the theory spans multiple levels. For example, imagine that all rules for 
inferring both liftable and graspable were missing from the cup theory. In this 
case, the intermediate concept graspable is not even present in the theory 
and must be created. 

EITHER combines a number of previous techniques from theory refinement 
and constructive induction in order to deal with this general problem. 
Consequent identification (Section 5.1 ) identifies the level in the theory that 
needs correcting. Concept utilization (Section 5.2) employs existing rules 
in the theory to derive high-level features from the data. Concept creation 
(Section 5.3) employs inverse resolution operators [33] to introduce new 
intermediate concepts in order to fill a gap in the theory spanning multiple 
levels. 

5.1. Consequent identification 

The basic EITHER procedure focuses on rules at the "bottom" of the theory, 
where changes generally have fewer ramifications and can improve multiple 
categories. Therefore, the basic procedure easily handles the middle case 
in Fig. 6 where there are missing or buggy leaf rules, as illustrated by the 
examples in Section 3 involving modifying the rules for graspable. 

Since altering higher-level concepts is sometimes preferable, EITHER uses 
a simple hill-climbing algorithm to determine which level in the existing 
theory to modify. After forming a correction to the leaf rules identified 
in the minimum cover, it determines alternative corrections to each rule's 
parent that would fix the same problems. If the correction to the parent 
rule is more complex, then EITHER uses the lower-level correction. If the 
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parent rule correction is less complex, EITHER continues up the theory and 
examines the corrections required for the parent of the parent rule. This 
iterative procedure terminates when the correction at the next-higher level in 
the theory is more complex than the correction at the current level or when 
the top-level category rule is reached. As an example of this process, assume 
that the cup theory has been incorrectly specialized by adding the antecedent 
manipulatable to the liftable rule, and an additional rule for manipulatable: 

(liftable) +- (graspable) A (lightweight) A (manipulatable), 
(manipulatable) +-(has-handle) A (volume ?x) 

A (>I ?x 8) A (~< ?x 12). 

In correcting this theory, EITHER first proposes changes to the manipulatable 
rule based on antecedent generalization, resulting in the following rule: 

(manipulatable) +-- (volume ?x) A (/> ?x 8) A (~  ?x 16). 

EITHER next considers changes to the parent of the manipulatable rule, 
the liftable rule. In this case, the proposed correction, obtained through 
antecedent retraction, is the (correct) rule: 

(liftable) +-- (graspable) A (lightweight). 

Since this correction is syntactically simpler than the correction to the 
manipulatable rule, the process continues. EITHER next checks the correction 
to the parent of the liftable rule, the cup rule. The proposed correction is to 
introduce a new rule for cup, obtained through induction, 

(cup) +-- (lightweight) A (stable) A (graspable). 

Since this is a larger syntactic change to the theory than that proposed for 
the liftable rule, the liftable correction is adopted. 

5.2. Concept utilization 

Concept utilization identifies intermediate concepts in the theory that 
can be used as antecedents during inductive rule and antecedent addition. 
First, forward chaining from the observables identifies the truth values of  all 
intermediate concepts for each of the failing examples. These intermediate 
concepts are then fed to the inductive learner as additional features. In this 
way, if an intermediate concept is highly correlated with the class of  the 
failing examples, then this concept is returned as an antecedent in the rules 
formed by the inductive learner. This approach allows the system to learn 
rules that fill gaps in either the "middle" or the "top" of the theory. 

For example, assume that the cup theory is missing the rule for Jiftable. 
Forward chaining on the failing positives (in this case, all of the positive 
examples) will always add the feature graspable, since it is true for all positive 
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examples. On the other hand, no negative example will deduce both graspable 
and lightweight, since no negative example is liftable. Remember the negative 
examples for rule addition are those that become failing negatives when 
liftable is assumed true. Therefore, given enough examples, the inductive 
learner will select the intermediate concept graspable as an antecedent in the 
new rule for liftable. The observable lightweight is also chosen because of the 
same effect. Consequently, with the liftable rule removed from the theory, 
EITHER relearned the correct rule given 20 random training examples. 

Intermediate concept utilization also allows EITHER tO handle gaps at the 
very top of the theory as in normal constructive induction. For example, 
when the rule for cup is deleted, EITHER easily relearns it given 30 random 
examples. 

5.3. Concept creation 

The goal of concept creation is to simplify the inductively generated rules 
by making explicit the structure inherent in the revised rules. This process 
serves the twin purposes of compressing the rule base and identifying new 
intermediate concepts. The concept creation algorithm used by EITHER is 

based on the inverse resolution technique of Muggleton and Buntine [34]. 
In particular, EITHER uses the intra-construction, inter-construction, and 
absorption operators for compacting the revised rules. 

5.3.1. The inverse resolution operators 
In  DUCE [33], sets of  rules are compared in order to identify common 

patterns, and then combined and compressed using one of  the inverse 
resolution operators. The inter-construction and intra-construction operators 
introduce new concepts in the process. The basic procedure is an iterative 
one in which operators are applied repeatedly until no further reduction of 
the theory is possible. 

In the inter-construction technique, a single rule is formed to extract the 
common pattern associated with the input rules. For example, rules such as 
x ~- w A y A z and x ~- u A y A z are combined to form the rules x ~ w A v, 
x ~ u A v, and v ~ y/x z, where v is a new intermediate concept. 

In intra-construction, new rules are formed representing the differences 
between the input rules. For example, the same rules as above would be 
combined as x ,-- v A y A z where v ~ w and v ,--- u where v is again a new 
intermediate concept. Note that unlike inter-construction, intra-construction 
requires that both input rules have the same consequent. The choice of 
whether to use inter-construction or intra-construction is dependent on the 
syntactic simplicity of  the resultant update. 

Absorption occurs when all of the antecedents for one rule (e.g. x ,-- 
a A b) are contained in the antecedents of another (e.g. y ~- a A b A c). 
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The consequent for the smaller rule is inserted into the antecedents for the 
larger rule, in place of the antecedents which the two rules have in common 
(e.g. y , -  x A c). In the general case, absorption could happen even if there 
were many rules implying the consequent for the smaller rule, and the 
combination would represent a generalization to the larger rule. Since the 
basic revision algorithm guarantees consistency with the training set, EITHER 
only allows absorption when there is a single version of the absorbed rule 
(i.e. a single rule with the given consequent) so that the semantics of the 
rules are unchanged. 

After EITHER produces a revised theory that is consistent with the training 
examples, the above operators are used to compress any rules that were 
modified or created during the revision. In the process, new intermediate 
concepts are created. The EITHER procedure is slightly different from the 
original one in DUCE in that it does not employ an oracle, does not actually 
generalize the input rules, and employs hill-climbing rather than best-first 
search in order to find a good operator to apply. 

Let the original set of  rules under consideration for rule reduction be 
given by 

Xi~ -AANi  (1~< i.%< n), 

where A represents the set of  antecedents which are in common among all 
of  the rules, and Ni represents the remaining antecedents for each rule. The 
objective in choosing A is to produce the greatest syntactic reduction. The 
computation of A uses a greedy algorithm and is done separately for inter- 
and intra-construction, since a different set of  rules may be involved in each 
case. At each iteration, a new literal is chosen to add to A which causes the 
largest reduction in the input rules. If  the reduction with the literal added 
is less than the previous reduction, the process halts. Once A has been 
computed for each case, the reduction operator that produces the greatest 
syntactic reduction is chosen. In case of ties, intra-construction is chosen 
since it focuses the reduction on rules having the same consequent. The 
overall process of applying operators continues until no further reduction is 
possible. 

5.3.2. A concept creation example 
As an example of  intermediate concept creation, consider the case in 

which all of  the rules for both liftable and graspable are deleted from cup 
theory. Given 50 random examples composed of 50% positive examples of 
cups and 50% near-miss negatives, EITHER initially learns the rules: 9 

9In order to make the formation of a concept for graspable cause a reduction in the number 
of literals in the theory, the feature lightweight was changed to a linear feature weight and the 
correct rule for liftable was changed to (liftable) *- (graspable) A (weight ?w) A (< ?w 1). 
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(liftable) +-(has-handle) A (weight ?G0009) A 
(< ?G0009 1.1257166), 

(liftable) ~--(insulating) A (width small) A (not (has-handle)) A 
(weight ?G0009) A (< ?G0009 1.1257166). 

These rules are then reduced to: 

(liftable) *-- (intra-0010) A (weight ?G0009) A (< ?G0009 1.1257166), 
(intra-0010) *- (has-handle), 
(intra-0010) *- (insulating) A (width small) A (not (has-handle)). 

The intermediate concept intra-0010 formed using intra-construction is EI- 

THER'S new concept for graspable. The extra (not (has-handle)) antecedent on 
the second rule is a side-effect of translating ID3 decision trees into rules. It 
does not affect the semantics of the new concept and could be deleted using 
the sort of rule simplification methods discussed in [42]. 

6. Computational complexity 

Table 1 summarizes the results of the complexity analysis from [37]. 
In the table, n refers to the number of input examples, s refers to the 
size of the input theory, and b refers to the average number of rules for 
a concept (disjunctive branching factor). Clearly, the bottlenecks are the 
calculation of the partial proofs and possible proofs. In the case of the partial 
proofs, abduction is the primary reason for the complexity result, since it is 
exponential in the size of the theory [48]. However, heuristic methods are 
available for improving the efficiency of abduction by using beam search 
to explore only the k partial proofs with the fewest assumptions [36]. In 
addition, reducing the number of partial proofs would directly impact the 
minimum antecedent cover calculations at the potential cost of increasing 
the size of the eventual cover. 

Table 1 
Complexity results. 

partial proofs antecedent cover rule generalization rule compression 

0 (sb s ) 0 (sb s log s ) 0 (ns log s) O (s log s) 

possible proofs rule cover rule specialization rule compression 
O(sb s) O(sb s log s) O(ns logs) O(s logs) 

Computing all possible proofs remains an exponential problem. However, 
it has not proven to be a significant bottleneck in practice. Because the 
theory is nearly correct, in most cases there will not be many proofs of 
negative examples. Not only does this reduce the computation of producing 
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all possible proofs, it also reduces any processing downstream, notably the 
computation of the minimum rule cover. 

These considerations indicate that converting the abduction algorithm to 
a method that provides a reduced set of partial proofs would be particularly 
useful. Another approach to improving efficiency is to only partially fit 
the theory to the training data. Existing experiments with a version of 
EITHER that computes only partial covers of the failing positive and failing 
negative examples have demonstrated that this technique can significantly 
increase efficiency without significantly affecting accuracy [32]. l0 It should 
also be noted that while propositional Horn-clause theorem proving can 
be performed in linear time [10], the algorithm implemented in EITHER 
does not use the more efficient methods, making the deductive component 
another prime target for future improvement. 

7. Experimental results 

EITHER was tested on two domain theories to determine its ability to revise 
real expert rule bases using real data. The first of these, a domain theory 
for recognizing promoters in DNA sequences, constitutes a single-category 
theory as discussed in Section 3. The second, a theory for the diagnosis 
of soybean diseases, represents a multiple-category theory as discussed in 
Section 4. The results from both of these domains is discussed in the 
remainder of this section. Further information on these tests, including the 
actual initial and revised theories, is given in [37]. 

7.1. DNA promoter recognition results 

EITHER was first tested on a theory for recognizing biological concepts in 
DNA sequences. The original theory is described in [52], it contains 11 
rules with a total of 76 propositional symbols. The purpose of the theory 
is to recognize promoters in strings of nucleotides. A promoter is a genetic 
region which initiates the first step in the expression of an adjacent gene 
(transcription). The input features are 57 sequential DNA nucleotides. The 
examples used in the tests consisted of 53 positive and 53 negative examples 
assembled from the biological literature. The initial theory classified none 
of the positive examples and all of the negative examples correctly, thus 
indicating that the initial theory was entirely overly specific. 

Figure 7 shows learning curves obtained when EITHER was used to refine 
this theory. In each test, classification accuracy was measured using twenty- 

l°Incomplete covering was originally developed to deal with noisy data as discussed in 
[32,37]. 
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six disjoint test examples. The number of training examples was varied from 
one to eighty, with the training and test examples drawn at random with 
no overlap. The results were averaged over 21 training/test divisions. ID3's 
performance is also shown in order to contrast theory refinement with pure 
induction. 

The accuracy of the initial promoter theory is shown in the graph as 
EITHER'S performance with 0 training examples and is no better than ran- 
dom chance (50%). With no examples, IDa picks a category at random and 
exhibits the same accuracy. However, as the number of training examples 
increases, EITHER'S use of  the existing theory results in a significant perfor- 
mance advantage compared to pure induction. A one-tailed Student t-test 
on paired differences showed that the superior performance of EITHER com- 
pared to ID3 is statistically significant (p < 0.05) for every non-zero point 
plotted on the learning curves. 11 Overall, from no training to training with 
80 examples, EITHER improves the accuracy of  the theory by 35 percentage 
points. EITHER is also fairly efficient at revising the promoter domain theory. 
Its training time averages about 5 minutes on a Texas Instruments Explorer 

l lHowever, since we are running several independent t-tests, we cannot claim with 95% 
confidence that EITHER is always better for any number of training examples. 
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II Lisp Machine when run with 80 training examples. 
An additional reason for including ID3 in the performance graphs is that 

it represents EITHER'S performance without an initial theory, since in this 
case every example is a failing positive and induction would be used to 
learn a set of rules from scratch. Therefore including ID3'S learning curve, 
provides a clear illustration of the advantage provided by theory-based 
learning. In fact, if a different inductive system were substituted for ID3, the 
absolute performance of both learning systems might change, but the relative 
advantage of EITHER compared to the purely inductive system should remain 
approximately the same. 

Another way of looking at the performance advantage provided by an 
initial theory is to consider the additional examples required by ID3 in order 
to achieve equal performance with EITHER. For example, at 75% accuracy, 
ID3 requires over 60 additional training examples to achieve equal perfor- 
mance with EITHER. Therefore, in some sense the information contained in 
the theory is equivalent to 60 examples. 

The revisions to the promoter theory primarily involved retracting an- 
tecedents (both for leaf rules and category rules) and generalizing an- 
tecedents. The results were compressed using both intra-construction and 
inter-construction, as discussed in section 5. In general, EITHER'S changes 
made sense to the expert. In particular, it removed the intermediate con- 
cept conformation from the rule for promoter. This correction was validated 
by the biologist who encoded the theory (M. Noordewier), who indicated 
that conformation was a weakly-justified constraint when it was originally 
introduced. 

EITHER'S corrections to the rules clustered about the nucleotide positions 
associated with the original rules (that is, the tenth nucleotide position in 
the case of the minus_10 rules and the thirty-fifth nucleotide position in 
the case of minus_35 rules). This indicates that the original concept that 
promoter sequences are indicated by particular nucleotide configurations 
within certain regions of the nucleotide chain was valid, although the original 
rules themselves were overly specific. 

This domain theory was also used to test the KBANN system [52], which 
translates the initial theory into an equivalent neural net, and then applies 
the backpropagation algorithm [46] to revise the network. KBANN performs 
somewhat better in this domain than EITHER (a test accuracy of 92% with 
105 training examples). The likely explanation for the performance advan- 
tage is that promoter recognition seems to involve concepts of the form M 
of these N features must be present. Experiments comparing backpropagation 
and ID3 report that backpropagation is better at learning M of N functions 
[ 14 ]. Some aspects of the promoter concept fit the M of N format where, 
for example, there are several potential sites where hydrogen bonds can 
form between the DNA and the protein; if enough of these bonds form, 
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promoter activity can occur. On the other hand, EITHER attempts to learn 
this concept by learning a separate rule for each potential configuration by 
deleting different combinations of antecedents from the initial rules, which 
makes this a comparatively difficult learning task for a system using Horn 
clauses. Finally, it should be noted that when KBANN translated its results 
into Horn clauses, the resulting theory was significantly more complicated 
than EITHER'S [ 51 ]. This is because EITHER'S goal is to produce a minimally 
revised Horn-clause theory and KBANN has no such bias. 

7.2. Soybean diagnosis results 

In order to demonstrate EITHER'S ability to revise multiple-category the- 
ories, EITHER was used to refine the expert rules given in [28]. This is a 
theory for diagnosing soybean diseases that distinguishes between nineteen 
possible soybean diseases using examples that are described with thirty-five 
features. The original experiments compared expert rules to induction from 
examples. By revising the expert rules to fit the examples, we hoped to show 
that one could produce better results than using just the examples or just 
the rules. 

The original expert rules associated probabilistic weights with certain 
disease symptoms. In addition, some groups of disease symptoms were 
regarded as significant while other groups were regarded as confirmatory. The 
rules were translated to propositional Horn-clause format by only including 
the significant symptoms and by deleting any symptom from the theory that 
had a weight less than 0.8. After translation, the theory contained 73 rules 
with 325 propositional symbols. 

Unfortunately, the classification performance of the Horn-clause version 
was seriously deficient compared to the original probabilistic rules. For ex- 
ample, the Horn-clause theory obtained a 12.3% classification performance 
compared to the accuracy of 73% reported in the original paper. To circum- 
vent the problem, a "flexible" tester was used to classify the test examples, 
based on the updated theory provided by EITHER. The flexible tester ac- 
counts for two possible classification problems with the EITHER-generated 
theory. The first problem occurs when a test example is provable as a mem- 
ber of more than one category (that is, the theory is overly general with 
respect to the example). The second problem occurs when a test example is 
not provable as a member of any category (indicating the theory is overly 
specific with respect to the example). 

With the standard EITHER tester, such examples are assigned to the most 
common category among the training examples. In contrast, the original 
soybean tests assigned a match score to each possible category and chose 
the category with the highest score. The flexible tester used by EITHER is a 
simple approximation to the original technique. If an example is assigned 
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Fig. 8. Results for soybean diagnosis. 

to multiple categories, the tester selects the most specific category that 
makes the most use of the example's features. This is done by choosing the 
category whose proof of category membership employs the greatest number 
of example features. If an example is not provable in any category, the 
flexible tester chooses the category that comes closest to being provable. 
This is done by choosing the category with a partial proof of category 
membership that has the least number of assumptions. 

Learning curves for the soybean experiments are shown in Fig. 8. In each 
test, accuracy was measured against 75 disjoint test examples. The number of 
training examples was varied from one to one hundred, with the training and 
test examples drawn at random from the entire example population, with no 
overlap. Each point on the curves was computed from a 22-sample average. 
Note that even with the flexible tester, the accuracy of the original rules was 
only 51%, as compared to 73% for the original results presented in [28]. 
Overall, the accuracy of the initial rules is increased by 26 percentage points 
when EITHER is trained on 100 examples. Compared to pure induction, 
EITHER maintains its initial performance advantage over the entire training 
interval. A one-tailed Student t-test on paired differences showed that the 
superior performance of EITHER is statistically significant (p < 0.05) for 
every point plotted on the learning curves. Therefore, employing both expert- 
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provided rules and training examples is better than using either one alone. 
The computational complexity of EITHER'S revision algorithm is beginning 

to show in this domain. It takes an average of about 90 minutes on an Texas 
Instruments Explorer II Lisp Machine to fit the theory to 100 training 
examples. The relatively large number of categories, rules, and features in 
this domain makes revision computationally demanding. 

Specialization and generalization were both required to correct the soybean 
theory. Typical modifications included removing antecedents at various 
levels in the theory, generalizing antecedents, inductively creating new rules, 
and inductively adding antecedents. The final rules were compressed using 
both inter-construction and intra-construction resulting in the formation of 
several meaningful new intermediate concepts representing the disjunction 
of several values of a particular feature or the conjunction of several related 
features. 

8. Related research 

Most previous systems for integrating explanation-based and empirical 
methods cannot refine arbitrarily imperfect theories. Some previous systems 
are only capable of generalizing an overly specific theory [8,50,53,54] while 
others are only capable of specializing an overly general theory [7,15,31 ]. 
Many systems do not revise the theory itself but instead revise the opera- 
tional definition of a concept [3,21,40]. Still other systems rely on active 
experimentation rather than a provided training set to detect and correct 
errors [44]. Work in the related area of belief revision [2,11] focuses on 
resolving contradictions by retracting beliefs; however, it does not deal with 
generalizing a theory or specializing existing rules. Finally, previous systems 
do not have EITHER'S modularity and therefore cannot easily take advantage 
of advances in the individual areas of deduction, abduction, and induction. 

RTLS [17], KBANN [52],  FOCL [40],  DUCTOR [5], and a recent system 
by Feldman et al. [ 13] are theory revision systems that come the closest to 
handling as many types of imperfections as EITHER. Each of these systems 
is discussed in more detail below. 

In the case of RTLS, a propositional Horn-clause theory is flattened into 
disjunctive normal form (DNF) prior to correction. Each category or inter- 
mediate concept in the theory has a label consisting of the terms in its DNF. 
The reduced theory is then modified to make it consistent with the training 
examples. Consequently, all corrections to the theory are done independently 
for each category. If there is an error in a shared intermediate concept, the 
error must be detected and corrected multiple times in the label for every 
category that uses the shared concept. EITHER, on the other hand, combines 
the evidence from all categories to revise a shared concept once and for all. 
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Once all of  the labels are revised, RTLS attempts to translate the changes 
back into the original Horn-clause version of the theory. Limitations in this 
process prevent it from revising shared rules (what Ginsberg refers to as 
non-eigen-terms). Also, RTLS cannot deal with actual gaps in the theory (if 
there are no rules for proving a category or intermediate concept it cannot 
be deduced) nor create new intermediate concepts. 

I~ANN (Knowledge-based Artificial Neural Networks) is an approach to 
theory refinement that uses the backpropagation algorithm for multi-layer 
neural networks [46] as a method for correcting a domain theory. The 
technique first translates the existing domain theory into an equivalent 
neural network, then refines the weights in the network to fit the training 
examples. It then re-translates the corrected network into an approximately 
equivalent set of  rules. 

KBANN cannot deal with arbitrary gaps in the theory (where there are no 
rules for proving a category or intermediate concept), nor can it introduce 
new intermediate concepts. These problems could possibly be addressed by 
adding extra hidden units and connections to the initial network; however, 
this would require predetermining the number and type of intermediate 
concepts to be created. In addition, KBANN does not guarantee that the 
revised theory will be consistent with the training examples due to con- 
vergence problems associated with backpropagation. Finally, as discussed 
in Section 7.1, KBANN is not focused on minimally changing the existing 
theory. 

FOCL (First-Order Combined Learner) is a hybrid system that uses FOIL 
[43] as its inductive component. It is capable of handling both incomplete 
and incorrect first-order Horn-clause theories. FOCL is based on the process 
of operationalization using a technique similar to that employed in MLSMART 
[3]. The system continually attempts to re-express higher-level concepts in 
the theory in terms of lower-level concepts until the goal concept is expressed 
in terms of observables. At each step, the system has a choice of using either 
the theory or induction to operationalize a concept, and it uses FOIL's 
information-theoretic measure to determine the best option. 

Although FOCL works well with many types of incorrect theories, it does 
not handle certain problems very well. In particular if an intermediate 
concept is missing a rule for one of its disjuncts (such as missing one of 
the graspable rules in the cup theory), FOCL must learn a complicated rule 
at the top level of  the theory instead of learning a simple rule directly for 
the intermediate concept. Also, the original FOCL system does not revise the 
underlying domain theory. KR-FOCL is a recent theory revision version [39]; 
however, it requires direct interaction with the user to determine which part 
of  the theory to modify instead of using the complexity of the required 
change. Finally, FOCL cannot guarantee consistency with the training data 
since it uses hiU-dimbing and may encounter local maxima. 
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The DUCTOR is a recent EITHER-inspired system that integrates deduction, 
abduction, and induction. However, it does not generate all proofs and 
partial proofs and does not attempt to find a minimum cover of theory 
changes. Consequently, it is less focused on finding a minimal revision to 
the initial theory. 

Feldman et al. [13] have recently developed a system for incrementally 
revising approximate domain theories. Their system also incorporates many 
ideas from EITHER; however, it focuses on revising theories in which rules 
and antecedents have been assigned numerical belief values representing how 
certain the user is in the various aspects of the theory. During revision, the 
system prefers to modify parts of the theory with lower belief values. This 
is a useful addition when such belief values are available; however, the user 
is frequently unable to provide such information. 

9. Future research 

Several promising areas for future research have been discovered during 
the development and testing of EITHER. Suggestions for improving EITHER'S 
efficiency were discussed in Section 6. In this section, we discuss some 
additional problems with the current system, many of which are the subject 
of on-going research. 

First, the current system cannot handle theories that employ negation 
as failure. Antecedents of the form not(P) complicate the revision process 
since generalizing or learning a rule that concludes P actually specializes 
the overall theory by preventing such an antecedent from being satisfied. 
Conversely, specializing or eliminating a rule for P may actually generalize 
the overall theory. Therefore, the system will have to consider standard 
generalization operators as specializers in certain contexts and vice versa. 

Second, the current system assumes all examples are instances of exactly 
one of the top-level categories. It cannot directly accept examples of inter- 
mediate concepts nor deal with overlapping categories. A truly robust theory 
revision system should be able to accept examples of any of its concepts 
and use them to revise the rules for that concept directly or to revise other 
concepts indirectly. 

A third obvious limitation is EITHER'S restriction to propositional Horn 
clauses. This prevents the system from applying to domains requiring struc- 
tural descriptions or relational predicates. Many ideas from EITHER are 
currently being incorporated in a new system, FORTE [45 ], which can revise 
theories expressed using first-order Horn clauses. FORTE also incorporates 
many ideas from the work on FOIL [43] and inverse resolution [34]. 

A fourth shortcoming in EITHER'S knowledge representation is an inabil- 
ity to revise probabilistic rules. Many existing expert rule bases employ 
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some form of probabilistic reasoning. A first step in in dealing with prob- 
abilistic theories was the incorporation of a flexible tester, described in 
Section 7.2. The general complication that probabilistic reasoning intro- 
duces is that, when a system is considering a rule update, it must decide 
whether to update the probability associated with the rule, the rule itself, 
or both. Some previous work has addressed the problem of refining the 
probabilities or certainty factors attached to rules [ 18,24]; however, such 
numerical adjustments have not been integrated with more symbolic re- 
visions such as learning new rules. We are currently developing a system 
that first "tweaks" certainty factors until no more improvement is possible 
and then resorts to learning new rules. The system cycles between "tweak- 
ing" and rule learning until it converges to 100% accuracy on the training 
data [25]. 

A final problem involves EITHER'S commitment to a single inductive 
learning strategy, namely ID3. A more general approach would be to provide 
a variety of inductive learners, where the selection of a particular algorithm 
is dictated by the current problem. For example, it has been shown that 
neural networks are particularly suitable for learning concepts involving 
M of  N functions [52]. In addition, case-based reasoning has been shown 
to be an effective adjunct to a rule-based system for exception processing 
[19]. Finally, when insufficient training data is available, some form of 
active knowledge acquisition, like experimentation, is required [44]. In 
each of these cases, using the basic EITHER algorithm to focus the knowledge 
acquisition should improve both ease of comprehension and accuracy of the 
knowledge base. The primary research issue is how to pick the appropriate 
inductive learner for a given problem. 

10. Conclusions 

A concise summary of the main results presented in this paper is: 

Using explanations to focus inductive corrections to a domain 
theory results in a knowledge base which is more comprehensible 
and accurate than that which is obtained with standard empirical 
learning. 

Superior ease of comprehension is a result of making small changes to an 
existing theory. Consequently, the final knowledge base contains interme- 
diate concepts that are already familiar to the domain experts. Empirical 
results on the DNA problem reported in Section 7.1 confirm that EITHER'S 
revisions are frequently meaningful and acceptable to a domain expert. 
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Superior classification accuracy is a result of combining information from 
both background theory and empirical data instead of relying on only one 
of these sources of knowledge. Support for this hypothesis was provided by 
empirical results on revising two real expert rule bases (see Section 7). As 
demonstrated by the results on the DNA promoter problem, the use of an 
initial theory can provide an advantage even in the case where the initial 
theory is not able to correctly classify a single positive example. In addition, 
an examination of the changes made by the system in these cases show 
that the revisions correct multiple faults, correct and discover intermediate 
concepts within the theory, and are capable of correcting both specialization 
and generalization errors. 

A worst-case complexity analysis shows that the EITHER algorithm is 
exponential in the size of the theory. Section 6 has shown that there are 
methods for reducing the complexity of the algorithm, provided that we 
are willing to relax the requirement for complete consistency between the 
revised theory and the training examples. 
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