Appears in Proceedings of the Eighth International Machine Learning Workshop,

pp. 178-182, Evanston, IL, June 1991.

Constructive Induction in Theory Refinement

Raymond J. Mooney
Department of Computer Sciences
University of Texas

Austin, TX 78712
mooney@cs.utexas.edu

Abstract

This paper presents constructive induction
techniques recently added to the EITHER
theory refinement system. These additions
allow EITHER to handle arbitrary gaps at
the “top,” “middle,” and/or “bottom” of an
incomplete domain theory. Intermediate con-
cept utilization employs existing rules in the
theory to derive higher-level features for use
in induction. Intermediate concept creation
employs inverse resolution to introduce new
intermediate concepts in order to fill gaps in a
theory that span multiple levels. These revi-
sions allow EITHER to make use of imperfect
domain theories in the ways typical of previ-
ous work in both constructive induction and
theory refinement. As a result, EITHER is
able to handle a wider range of theory imper-
fections than does any other existing theory
refinement system.

1 Introduction

Constructive induction and theory refinement are both
attempts to improve the use of domain knowledge in
inductive learning. Typical research in constructive
induction uses domain rules to form higher-level fea-
tures from the observable features in the data [Drastal
et al., 1989]. Typical research in theory refinement
uses induction to fill a gap between existing interme-
diate concepts in an incomplete domain theory and
the observable features in the data [Danyluk, 1989;
Ourston and Mooney, 1990]. Both of these processes
are important aspects of employing domain theories in
inductive learning.

This paper discusses constructive induction techniques
recently added to the EITHER theory refinement sys-

Dirk Ourston
Department of Computer Sciences
University of Texas
Austin, TX 78712
dirk@cs.utexas.edu

(cup) <« (stable) (liftable) (open-vessel)
(stable) < (has-bottom) (flat-bottom)
(liftable) <+ (graspable) (weight ?w) (< 7w 1)
(graspable) <« (has-handle)
(graspable) < (width small) (insulating)
(open-vessel) <+ (has-concavity) (upward-concavity)

Figure 1: Sample Domain Theory

tem [Ourston and Mooney, 1990]. Constructive induc-
tion in EITHER makes existing intermediate concepts
in an imperfect domain theory usable as additional fea-
tures during induction. EITHER also adds new inter-
mediate concepts to an incomplete domain theory us-
ing inverse resolution. These revisions allow EITHER
to use domain theories in ways typical of work both
in constructive induction and theory refinement. As a
result, EITHER can respond to a wide range of imper-
fect domain theories. This paper presents an overview
of constructive induction in EITHER and a number of
examples that illustrate its advantages.

2 Types of Theory Gaps

In this paper we will restrict ourselves to Horn-
clause theories expressed in a propositional logic whose
atomic formulae include feature value pairs and nu-
merical thresholds as well as binary propositions. Fig-
ure 1 shows a variation of the standard domain theory
for the concept cup that will be used as an example
throughout the paper. Leading question marks denote
variables, which are used to define thresholds or in-
tervals for numerically-valued features. Propositions
that correspond to facts used to describe the examples
(e.g. has-handle) are called observables. Propositions
representing classification goals for which explicit ex-



Figure 2: Types of Theory Gaps

amples (and possibly counter-examples) are available
(e.g. cup) are called categories. Propositions in the
theory that are neither observables nor categories (e.g.
liftable) are called intermediate concepts.

Research in constructive induction frequently assumes
that the existing domain theory consists of a number
of rules that define a set of intermediate concepts (de-
rived features) in terms of observables. The rules con-
necting these intermediate concepts to the categories
are assumed to be missing and must be learned using
induction. The theory is used to derive truth values for
all of the intermediate concepts and these are used as
additional input features for induction of the category
rules. This is the first situation illustrated in Figure 2
where there is a gap at the “top” of the theory. An
example would be if the rule for concluding cup was
missing from the theory in Figure 1.

Some research in refinement of incomplete theories
with missing rules [Danyluk, 1989] assumes that the
domain theory has correct rules for inferring categories
from intermediate concepts but is instead missing rules
connecting observables to intermediate concepts. Par-
tial explanations (incomplete proofs) are used to iso-
late intermediate concepts that should be provable for
some examples but are not. Induction is then used
to learn rules for inferring these intermediate concepts
from observables. This is the second situation illus-
trated in Figure 2 where there is a gap at the “bot-
tom” of the theory. An example would be if one of the
rules for graspable was missing from the cup theory.

A third case is illustrated in the final situation in Fig-
ure 2, where there is a gap is in the “middle” of the
theory. An example would be if the rule for inferring
liftable was missing from the cup theory. None of the
previous research seems to directly address this issue.

An ideal system should be able to deal with multiple
gaps occurring at arbitrary levels in the domain theory.
It should also be able to introduce new intermediate
concepts in order to handle the situation in which the
gap in the theory spans multiple levels. For example,
imagine that all rules for inferring both [liftable and

graspable were missing from the theory in Figure 1.
In this case, the intermediate concept graspable is not
even present in the theory and must be created.

The latest version of EITHER combines a number of
previous techniques from theory refinement and con-
structive induction in order to deal with this general
problem. In particular, intermediate concept utiliza-
tion allows existing intermediate concepts in the the-
ory to be used as antecedents of learned rules. Inter-
mediate concept creation employs inverse resolution to
introduce new intermediate concepts in order to fill a
gap in the theory than spans multiple levels. We will
first review the basic EITHER algorithm and then dis-
cuss these recent additions.

3 Overview of EITHER

EITHER’s original theory refinement algorithm is pre-
sented in [Ourston and Mooney, 1990]. It was designed
to correct theories that are either overly general or
overly specific or both. An overly general theory is
one that causes an example (called a failing negative)
to be classified in categories other than its own. EI-
THER specializes existing antecedents, adds new an-
tecedents, and retracts rules to fix these problems. An
overly specific theory causes an example (called a fail-
ing positive) not to be classified in its own category.
EITHER retracts and generalizes existing antecedents
and learns new rules to fix these problems.

During theory generalization, EITHER uses a greedy
covering algorithm to find a near-minimum set of an-
tecedent retractions that correct all of the failing pos-
itive examples. At each iteration of the covering al-
gorithm, the system calculates a benefit-to-cost ratio
for each set of antecedent retractions that would com-
plete a proof for a failing positive, and the set with
the most examples covered per antecedent retracted
is added to the cover. This continues until all of the
failing positives have been covered. If retracting an-
tecedents from a given rule over-generalizes by creating
additional failing negatives, EITHER uses the failing
positive examples for the rule, and the negative exam-
ples that become provable when the consequent of the
rule is assumed true, to inductively! form a new rule
that correctly classifies these examples.

During theory specialization, EITHER uses a greedy
covering algorithm to identify a near-minimum set of
leaf-level rule retractions that fixes all of the failing
negatives. At each iteration of the covering algorithm,
the system determines the number of faulty proofs in

!EITHER currently uses a version of ID3 [Quinlan,
1986)] as its inductive component.



which each rule participates and the rule retraction
that removes the most proofs is added to the cover.
This continues until all faulty proofs for all failing neg-
atives are removed. If a given rule retraction over-
specializes by causing additional failing positives, ad-
ditional antecedents are inductively learned that dis-
criminate between the positive examples for the cate-
gory and the erroneously proven negative examples.

The initial EITHER procedure focuses on rules at the
“bottom” of the theory where changes generally have
fewer ramifications. Therefore, the basic procedure
easily handles the middle case in Figure 2 where there
are rules missing at the bottom of the theory. When
the second rule for graspable was deleted from the the-
ory in Figure 1, EITHER was able to learn it given 50
random examples composed of 50% positive examples
of cup and 50% near-miss negative examples.

4 Intermediate Concept Utilization

Intermediate concept utilization identifies existing in-
termediate concepts in the theory that can be used
as antecedents in learned rules. First, forward chain-
ing is used to identify truth values of all intermediate
concepts for each of the failing examples. These inter-
mediate concepts are then fed to the inductive learner
as additional features. In this way, if an intermediate
concept is highly correlated with the class of the fail-
ing examples, then this concept is returned as an an-
tecedent in the rules formed by the inductive learner.
This approach allows the system to learn rules that fill
gaps in either the “middle” or the “top” of the theory.

For example, assume that the cup theory is missing
the rule for liftable. Liftable is identified as an unprov-
able antecedent of the cup rule, and EITHER attempts
to learn a new rule for liftable. Forward chaining on
the unprovable positive examples (in this case, all of
the positive examples) always adds the feature gras-
pable. On the other hand, none of the negative exam-
ples will be both graspable and lightweight, since none
of them is liftable (remember the negative examples
used are those that become provable when [iftable is
assumed true). Consequently, the inductive learner,
given enough examples, will select the intermediate
concept graspable as an antecedent for the new rule for
liftable. 'When given 20 random examples, EITHER
learns the rule:

(liftable) <+ (graspable) (weight 7G0009)
(< ?7G0009 2.2346835)

Intermediate concept utilization also allows EITHER
to handle gaps at the very top of the theory as in nor-

mal constructive induction. For example, when the
rule for cup is deleted from the theory in Figure 1, it
easily learns it given 30 random examples.

5 Intermediate Concept Creation

Intermediate concept creation serves the twin purposes
of compressing the rulebase and identifying new in-
termediate concepts. The concept creation algorithm
used by EITHER is based on inverse resolution [Mug-
gleton, 1987; Muggleton and Buntine, 1988]. In par-
ticular, EITHER uses the intra-construction, inter-
construction, and absorption operators to identify new
intermediate concepts in the rules produced or modi-
fied by the basic refinement procedure presented.

In DUCE [Muggleton, 1987], sets of rules are com-
pared in order to identify common patterns, and then
combined and compressed using one of the inverse res-
olution operators. The inter-construction and intra-
construction operators introduce new concepts in the
process. The basic procedure is an iterative one in
which operators are applied repeatedly until no fur-
ther reduction of the theory is possible.

In inter-construction, a single rule is formed to extract
the common pattern associated with the input rules.
For example, rules such as ¢ + w Ay Az and = +
u Ay A z are combined to form the rules: z + w A v
and z ¢« u Awv and v < y A z, where v is a new
intermediate concept.

In intra-construction, new rules are formed represent-
ing the differences between the input rules. For ex-
ample, the same rules as above would be combined as
z < vAyAz where v < w and v < u where v is again
a new intermediate concept. Note that unlike inter-
construction, intra-construction requires that both in-
put rules have the same consequent.

Absorption occurs when all of the antecedents for one
rule (e.g. z < a Ab) are contained in the antecedents
of another (e.g. y + a AbAc). The consequent for
the smaller rule is inserted into the antecedents for the
larger rule, in place of the antecedents which the two
rules have in common (e.g. y < z A ¢). In the general
case, absorption could happen even if there were many
rules implying the consequent for the smaller rule, and
the combination would represent a generalization to
the larger rule. Since the original EITHER algorithm
guarantees consistency with the example set, EITHER
only allows absorption when there is a single version
of the absorbed rule (i.e. a single rule with the given
consequent) so that the semantics of the rules are un-
changed.



Appears in Proceedings of the Eighth International Machine Learning Workshop,

pp. 178-182, Evanston, IL, June 1991.

After EITHER produces a revised theory that is con-
sistent with the training examples, the above operators
are used to compress any rules that were modified or
created during the revision. In the process, new inter-
mediate concepts are created. The EITHER procedure
is slightly different from the original one in DUCE in
that it does not employ an oracle, does not actually
generalize the input rules, and employs hill-climbing
rather than best-first search in order to find a good
operator to apply.

Let the original set of rules under consideration for
rule reduction be given by:

Where A represents the set of antecedents which are in
common among all of the rules, and N; represents the
remaining antecedents for each rule. The objective in
choosing A is to produce the greatest syntactic reduc-
tion. The computation of A uses a greedy algorithm
and is done separately for inter and intra construction,
since a different set of rules may be involved in each
case. At each iteration, a new literal is chosen to add
to A which causes the largest reduction in the input
rules. If the reduction with the literal added is less
than the previous reduction, the process halts. The
overall process is halted when no further reduction is
possible. Once A has been computed for each case,
the reduction operator which produces the greatest
syntactic reduction is chosen. In case of ties, intra-
construction is chosen since it focuses the reduction
on rules having a single consequent.

As an example of intermediate concept creation, con-
sider the case in which all of the rules for both liftable
and graspable are deleted from cup theory. Given 50
examples, EITHER initially learns the rules

(liftable) < (has-handle) (weight 7G0009)
(< 7G0009 1.1257166)

(liftable) + (insulating) (width small)
(not (has-handle)) (weight 7G0009)
(< 7G0009 1.1257166)

These rules are then reduced to:

(liftable) « (intra-0010) (weight 7G0009)
(< ?7G0009 1.1257166)
(intra-0010) + (has-handle)
(intra-0010) « (insulating) (width small)
(not (has-handle))

The intermediate concept intra-0010 formed using
intra-construction is EITHER’s new concept for gras-
pable. The extra (not (has-handle)) antecedent on the
second rule is a side-effect of translating ID3 decision
trees into rules. It does not effect the semantics of the
new concept and could be deleted using the sort of rule
simplification methods discussed in [Quinlan, 1987].

EITHER
S

40.00.

% Correct on Test Data
3
8

30.00.

10.00

0.00

0.00 20.00 40.00 60.00 80.00
Number of Training Examples

Figure 3: Learning Curves for Liftable Rule

6 Empirical Results on Learning Rate

In order to demonstrate that EITHER’s ability to re-
fine arbitrarily imperfect domain theories actually in-
creases it’s learning rate, this section presents learning
curves for the case of a gap in the middle of the theory.
Recall that none of the previous approaches addressed
this particular problem. Results for the other types of
incomplete theories are similar.

Artificial data was automatically generated for the
cup theory shown in Figure 1. Positive examples of
cups were generated by first forming “core” examples,
which contain just the observables needed to complete
a proof. For linear features, a value is chosen randomly
from the range required for a proof. Next, random val-
ues for the remaining observable features were added
to the core examples to create full examples. “Cores”
for near-miss negative examples were formed by ran-
domly changing one feature in a core-positive example
in order to make it unprovable. Again, random values
are added for the remaining observables to fill out the
examples. Adding random values can sometimes make
a core-negative example provable by allowing an alter-
nate proof to succeed. Consequently, each negative
example was checked to make sure it was not provable
before adding it to the final data set. A total of 50
positive and 50 near-miss negatives were generated in
this manner.

EITHER was given the theory in Figure 1 with the
rule for liftable removed. Learning curves were gen-
erated by performing batch training on increasingly
larger fractions of a set of training examples and re-
peatedly testing predictive accuracy on the same dis-



joint test set of 20 test examples. The final results were
averaged over 30 random selections of training and test
sets. EITHER was compared to ID3, which is the same
as EITHER without an initial theory since ID3 is EI-
THER'’s inductive learning component. The learning
curves in Figure 3 shows that the initial incomplete
theory provides a significant performance advantage.
A statistical t-test showed that the difference between
the two curves is significant for each non-zero point
plotted (p < .05). Similar results hold for all of the
other incomplete theories discussed in this paper.

7 Related Work

By integrating previous methods for constructive in-
duction and theory refinement, EITHER can employ
a wider range of imperfect theories than previous sys-
tems. Other systems using imperfect domain theories
to aid concept learning [Wilkins, 1988; Danyluk, 1989;
Pazzani, 1989; Flann and Dietterich, 1989; Drastal et
al., 1989] cannot deal with arbitrary gaps in a do-
main theory and cannot introduce new intermediate
concepts. KBANN [Towell et al., 1990] and RTLS
[Ginsberg, 1990] perhaps come the closest to handling
as many types of imperfections. However, unlike EI-
THER, neither of them can deal with actual gaps in
the theory (where there are no rules for proving a cat-
egory or intermediate concept) nor introduce new in-
termediate concepts. These issues could possibly be
addressed in KBANN (which translates a theory into a
neural-net, refines it using backpropagation, and then
retranslates the result back into rules) by adding ex-
tra hidden units and connections to the initial network;
however, this would require predetermining the num-
ber and type of intermediate concepts to be created.
In addition, unlike EITHER, KBANN is not guaran-
teed to produce a revised theory that is consistent with
the training data.

8 Conclusions

In this paper, we have presented constructive induc-
tion techniques recently added to the EITHER theory
refinement system. Intermediate concept utilization
employs existing rules in the theory to derive higher-
level features for use in induction. Intermediate con-
cept creation employs inverse resolution to introduce
new intermediate concepts in order to fill gaps in a
theory than span multiple levels. These revisions allow
EITHER to make use of imperfect domain theories in
the ways typical of previous work in both constructive
induction and theory refinement. As aresult, EITHER
is able to handle a wider range of theory imperfections

than any other existing theory refinement system.

Acknowledgements

This research was supported by the NASA Ames Re-
search Center under grant NCC 2-629. Equipment was
donated by the Texas Instruments Corporation.

References

[Danyluk, 1989] A. P. Danyluk. Finding new rules for
incomplete theories: Explicit biases for induction
with contextual information. In Proceedings of the

Sizth International Workshop on Machine Learning,
pages 34-36, Ithaca, NY, June 1989.

[Drastal et al., 1989] G. Drastal, G. Czako, and
S. Raatz. Induction in an abstraction space: A
form of constructive induction. In Proceedings of
the FEleventh International Joint conference on Ar-
tificial intelligence, pages 708-712, Detroit, MI, Aug
1989.

[Flann and Dietterich, 1989] N. S. Flann and T. G.
Dietterich. A study of explanation-based methods
for inductive learning. Machine Learning, 4(2):187—
226, 1989.

[Ginsberg, 1990] A. Ginsberg. Theory reduction, the-
ory revision, and retranslation. In Proceedings of
the Eighth National Conference on Artificial Intel-
ligence, pages 777-782, Detroit, MI, July 1990.

[Muggleton and Buntine, 1988] S. Muggleton and
W. Buntine.  Machine invention of first-order
predicates by inverting resolution. In Proceedings
of the Fifth International Conference on Machine
Learning, pages 339-352, Ann Arbor, MI, June
1988.

[Muggleton, 1987] S. Muggleton. Duce, an oracle
based approach to constructive induction. In Pro-
ceedings of the Tenth International Joint confer-
ence on Artificial intelligence, pages 287-292, Mi-
lan, Italy, Aug 1987.

[Ourston and Mooney, 1990] D. Ourston and
R. Mooney. Changing the rules: a comprehensive
approach to theory refinement. In Proceedings
of the Eighth National Conference on Artificial
Intelligence, pages 815-820, Detroit, MI, July 1990.

[Pazzani, 1989] M. J. Pazzani. Detecting and correct-
ing errors of omission after explanation-based learn-
ing. In Proceedings of the Eleventh International
Joint conference on Artificial intelligence, pages
713-718, Detroit, MI, Aug 1989.



[Quinlan, 1986] J. R. Quinlan. Induction of decision
trees. Machine Learning, 1(1):81-106, 1986.

[Quinlan, 1987] J. R. Quinlan. Generating production
rules from decision trees. In Proceedings of the Tenth
International Joint conference on Artificial intelli-
gence, pages 304-307, Milan, Italy, Aug 1987.

[Towell et al., 1990] G. G. Towell, J. W. Shavlik, and
Michiel O. Noordewier. Refinement of approximate
domain theories by knowledge-based artificial neu-
ral networks. In Proceedings of the Fighth National
Conference on Artificial Intelligence, pages 861-866,
Boston, MA, July 1990.

[Wilkins, 1988] D. C. Wilkins. Knowlege base refine-
ment using apprenticeship learning techniques. In
Proceedings of the Seventh National Conference on
Artificial Intelligence, pages 646651, St. Paul, MN,
August 1988.



