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Constru
tive Indu
tion in Theory Re�nement
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ien
esUniversity of TexasAustin, TX 78712mooney�
s.utexas.edu Dirk OurstonDepartment of Computer S
ien
esUniversity of TexasAustin, TX 78712dirk�
s.utexas.eduAbstra
tThis paper presents 
onstru
tive indu
tionte
hniques re
ently added to the EITHERtheory re�nement system. These additionsallow EITHER to handle arbitrary gaps atthe \top," \middle," and/or \bottom" of anin
omplete domain theory. Intermediate 
on-
ept utilization employs existing rules in thetheory to derive higher-level features for usein indu
tion. Intermediate 
on
ept 
reationemploys inverse resolution to introdu
e newintermediate 
on
epts in order to �ll gaps in atheory that span multiple levels. These revi-sions allow EITHER to make use of imperfe
tdomain theories in the ways typi
al of previ-ous work in both 
onstru
tive indu
tion andtheory re�nement. As a result, EITHER isable to handle a wider range of theory imper-fe
tions than does any other existing theoryre�nement system.1 Introdu
tionConstru
tive indu
tion and theory re�nement are bothattempts to improve the use of domain knowledge inindu
tive learning. Typi
al resear
h in 
onstru
tiveindu
tion uses domain rules to form higher-level fea-tures from the observable features in the data [Drastalet al., 1989℄. Typi
al resear
h in theory re�nementuses indu
tion to �ll a gap between existing interme-diate 
on
epts in an in
omplete domain theory andthe observable features in the data [Danyluk, 1989;Ourston and Mooney, 1990℄. Both of these pro
essesare important aspe
ts of employing domain theories inindu
tive learning.This paper dis
usses 
onstru
tive indu
tion te
hniquesre
ently added to the EITHER theory re�nement sys-
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avity) (upward-
on
avity)Figure 1: Sample Domain Theorytem [Ourston and Mooney, 1990℄. Constru
tive indu
-tion in EITHER makes existing intermediate 
on
eptsin an imperfe
t domain theory usable as additional fea-tures during indu
tion. EITHER also adds new inter-mediate 
on
epts to an in
omplete domain theory us-ing inverse resolution. These revisions allow EITHERto use domain theories in ways typi
al of work bothin 
onstru
tive indu
tion and theory re�nement. As aresult, EITHER 
an respond to a wide range of imper-fe
t domain theories. This paper presents an overviewof 
onstru
tive indu
tion in EITHER and a number ofexamples that illustrate its advantages.2 Types of Theory GapsIn this paper we will restri
t ourselves to Horn-
lause theories expressed in a propositional logi
 whoseatomi
 formulae in
lude feature value pairs and nu-meri
al thresholds as well as binary propositions. Fig-ure 1 shows a variation of the standard domain theoryfor the 
on
ept 
up that will be used as an examplethroughout the paper. Leading question marks denotevariables, whi
h are used to de�ne thresholds or in-tervals for numeri
ally-valued features. Propositionsthat 
orrespond to fa
ts used to des
ribe the examples(e.g. has-handle) are 
alled observables. Propositionsrepresenting 
lassi�
ation goals for whi
h expli
it ex-



Figure 2: Types of Theory Gapsamples (and possibly 
ounter-examples) are available(e.g. 
up) are 
alled 
ategories. Propositions in thetheory that are neither observables nor 
ategories (e.g.liftable) are 
alled intermediate 
on
epts.Resear
h in 
onstru
tive indu
tion frequently assumesthat the existing domain theory 
onsists of a numberof rules that de�ne a set of intermediate 
on
epts (de-rived features) in terms of observables. The rules 
on-ne
ting these intermediate 
on
epts to the 
ategoriesare assumed to be missing and must be learned usingindu
tion. The theory is used to derive truth values forall of the intermediate 
on
epts and these are used asadditional input features for indu
tion of the 
ategoryrules. This is the �rst situation illustrated in Figure 2where there is a gap at the \top" of the theory. Anexample would be if the rule for 
on
luding 
up wasmissing from the theory in Figure 1.Some resear
h in re�nement of in
omplete theorieswith missing rules [Danyluk, 1989℄ assumes that thedomain theory has 
orre
t rules for inferring 
ategoriesfrom intermediate 
on
epts but is instead missing rules
onne
ting observables to intermediate 
on
epts. Par-tial explanations (in
omplete proofs) are used to iso-late intermediate 
on
epts that should be provable forsome examples but are not. Indu
tion is then usedto learn rules for inferring these intermediate 
on
eptsfrom observables. This is the se
ond situation illus-trated in Figure 2 where there is a gap at the \bot-tom" of the theory. An example would be if one of therules for graspable was missing from the 
up theory.A third 
ase is illustrated in the �nal situation in Fig-ure 2, where there is a gap is in the \middle" of thetheory. An example would be if the rule for inferringliftable was missing from the 
up theory. None of theprevious resear
h seems to dire
tly address this issue.An ideal system should be able to deal with multiplegaps o

urring at arbitrary levels in the domain theory.It should also be able to introdu
e new intermediate
on
epts in order to handle the situation in whi
h thegap in the theory spans multiple levels. For example,imagine that all rules for inferring both liftable and

graspable were missing from the theory in Figure 1.In this 
ase, the intermediate 
on
ept graspable is noteven present in the theory and must be 
reated.The latest version of EITHER 
ombines a number ofprevious te
hniques from theory re�nement and 
on-stru
tive indu
tion in order to deal with this generalproblem. In parti
ular, intermediate 
on
ept utiliza-tion allows existing intermediate 
on
epts in the the-ory to be used as ante
edents of learned rules. Inter-mediate 
on
ept 
reation employs inverse resolution tointrodu
e new intermediate 
on
epts in order to �ll agap in the theory than spans multiple levels. We will�rst review the basi
 EITHER algorithm and then dis-
uss these re
ent additions.3 Overview of EITHEREITHER's original theory re�nement algorithm is pre-sented in [Ourston and Mooney, 1990℄. It was designedto 
orre
t theories that are either overly general oroverly spe
i�
 or both. An overly general theory isone that 
auses an example (
alled a failing negative)to be 
lassi�ed in 
ategories other than its own. EI-THER spe
ializes existing ante
edents, adds new an-te
edents, and retra
ts rules to �x these problems. Anoverly spe
i�
 theory 
auses an example (
alled a fail-ing positive) not to be 
lassi�ed in its own 
ategory.EITHER retra
ts and generalizes existing ante
edentsand learns new rules to �x these problems.During theory generalization, EITHER uses a greedy
overing algorithm to �nd a near-minimum set of an-te
edent retra
tions that 
orre
t all of the failing pos-itive examples. At ea
h iteration of the 
overing al-gorithm, the system 
al
ulates a bene�t-to-
ost ratiofor ea
h set of ante
edent retra
tions that would 
om-plete a proof for a failing positive, and the set withthe most examples 
overed per ante
edent retra
tedis added to the 
over. This 
ontinues until all of thefailing positives have been 
overed. If retra
ting an-te
edents from a given rule over-generalizes by 
reatingadditional failing negatives, EITHER uses the failingpositive examples for the rule, and the negative exam-ples that be
ome provable when the 
onsequent of therule is assumed true, to indu
tively1 form a new rulethat 
orre
tly 
lassi�es these examples.During theory spe
ialization, EITHER uses a greedy
overing algorithm to identify a near-minimum set ofleaf-level rule retra
tions that �xes all of the failingnegatives. At ea
h iteration of the 
overing algorithm,the system determines the number of faulty proofs in1EITHER 
urrently uses a version of ID3 [Quinlan,1986℄ as its indu
tive 
omponent.



whi
h ea
h rule parti
ipates and the rule retra
tionthat removes the most proofs is added to the 
over.This 
ontinues until all faulty proofs for all failing neg-atives are removed. If a given rule retra
tion over-spe
ializes by 
ausing additional failing positives, ad-ditional ante
edents are indu
tively learned that dis-
riminate between the positive examples for the 
ate-gory and the erroneously proven negative examples.The initial EITHER pro
edure fo
uses on rules at the\bottom" of the theory where 
hanges generally havefewer rami�
ations. Therefore, the basi
 pro
edureeasily handles the middle 
ase in Figure 2 where thereare rules missing at the bottom of the theory. Whenthe se
ond rule for graspable was deleted from the the-ory in Figure 1, EITHER was able to learn it given 50random examples 
omposed of 50% positive examplesof 
up and 50% near-miss negative examples.4 Intermediate Con
ept UtilizationIntermediate 
on
ept utilization identi�es existing in-termediate 
on
epts in the theory that 
an be usedas ante
edents in learned rules. First, forward 
hain-ing is used to identify truth values of all intermediate
on
epts for ea
h of the failing examples. These inter-mediate 
on
epts are then fed to the indu
tive learneras additional features. In this way, if an intermediate
on
ept is highly 
orrelated with the 
lass of the fail-ing examples, then this 
on
ept is returned as an an-te
edent in the rules formed by the indu
tive learner.This approa
h allows the system to learn rules that �llgaps in either the \middle" or the \top" of the theory.For example, assume that the 
up theory is missingthe rule for liftable. Liftable is identi�ed as an unprov-able ante
edent of the 
up rule, and EITHER attemptsto learn a new rule for liftable. Forward 
haining onthe unprovable positive examples (in this 
ase, all ofthe positive examples) always adds the feature gras-pable. On the other hand, none of the negative exam-ples will be both graspable and lightweight, sin
e noneof them is liftable (remember the negative examplesused are those that be
ome provable when liftable isassumed true). Consequently, the indu
tive learner,given enough examples, will sele
t the intermediate
on
ept graspable as an ante
edent for the new rule forliftable. When given 20 random examples, EITHERlearns the rule:(liftable)  (graspable) (weight ?G0009)(< ?G0009 2.2346835)Intermediate 
on
ept utilization also allows EITHERto handle gaps at the very top of the theory as in nor-

mal 
onstru
tive indu
tion. For example, when therule for 
up is deleted from the theory in Figure 1, iteasily learns it given 30 random examples.5 Intermediate Con
ept CreationIntermediate 
on
ept 
reation serves the twin purposesof 
ompressing the rulebase and identifying new in-termediate 
on
epts. The 
on
ept 
reation algorithmused by EITHER is based on inverse resolution [Mug-gleton, 1987; Muggleton and Buntine, 1988℄. In par-ti
ular, EITHER uses the intra-
onstru
tion, inter-
onstru
tion, and absorption operators to identify newintermediate 
on
epts in the rules produ
ed or modi-�ed by the basi
 re�nement pro
edure presented.In DUCE [Muggleton, 1987℄, sets of rules are 
om-pared in order to identify 
ommon patterns, and then
ombined and 
ompressed using one of the inverse res-olution operators. The inter-
onstru
tion and intra-
onstru
tion operators introdu
e new 
on
epts in thepro
ess. The basi
 pro
edure is an iterative one inwhi
h operators are applied repeatedly until no fur-ther redu
tion of the theory is possible.In inter-
onstru
tion, a single rule is formed to extra
tthe 
ommon pattern asso
iated with the input rules.For example, rules su
h as x  w ^ y ^ z and x  u ^ y ^ z are 
ombined to form the rules: x  w ^ vand x  u ^ v and v  y ^ z, where v is a newintermediate 
on
ept.In intra-
onstru
tion, new rules are formed represent-ing the di�eren
es between the input rules. For ex-ample, the same rules as above would be 
ombined asx v^y^z where v  w and v  u where v is againa new intermediate 
on
ept. Note that unlike inter-
onstru
tion, intra-
onstru
tion requires that both in-put rules have the same 
onsequent.Absorption o

urs when all of the ante
edents for onerule (e.g. x a ^ b) are 
ontained in the ante
edentsof another (e.g. y  a ^ b ^ 
). The 
onsequent forthe smaller rule is inserted into the ante
edents for thelarger rule, in pla
e of the ante
edents whi
h the tworules have in 
ommon (e.g. y  x ^ 
). In the general
ase, absorption 
ould happen even if there were manyrules implying the 
onsequent for the smaller rule, andthe 
ombination would represent a generalization tothe larger rule. Sin
e the original EITHER algorithmguarantees 
onsisten
y with the example set, EITHERonly allows absorption when there is a single versionof the absorbed rule (i.e. a single rule with the given
onsequent) so that the semanti
s of the rules are un-
hanged.



After EITHER produ
es a revised theory that is 
on-sistent with the training examples, the above operatorsare used to 
ompress any rules that were modi�ed or
reated during the revision. In the pro
ess, new inter-mediate 
on
epts are 
reated. The EITHER pro
edureis slightly di�erent from the original one in DUCE inthat it does not employ an ora
le, does not a
tuallygeneralize the input rules, and employs hill-
limbingrather than best-�rst sear
h in order to �nd a goodoperator to apply.Let the original set of rules under 
onsideration forrule redu
tion be given by:Xi  A ^Ni (1 � i � n)Where A represents the set of ante
edents whi
h are in
ommon among all of the rules, and Ni represents theremaining ante
edents for ea
h rule. The obje
tive in
hoosing A is to produ
e the greatest synta
ti
 redu
-tion. The 
omputation of A uses a greedy algorithmand is done separately for inter and intra 
onstru
tion,sin
e a di�erent set of rules may be involved in ea
h
ase. At ea
h iteration, a new literal is 
hosen to addto A whi
h 
auses the largest redu
tion in the inputrules. If the redu
tion with the literal added is lessthan the previous redu
tion, the pro
ess halts. Theoverall pro
ess is halted when no further redu
tion ispossible. On
e A has been 
omputed for ea
h 
ase,the redu
tion operator whi
h produ
es the greatestsynta
ti
 redu
tion is 
hosen. In 
ase of ties, intra-
onstru
tion is 
hosen sin
e it fo
uses the redu
tionon rules having a single 
onsequent.As an example of intermediate 
on
ept 
reation, 
on-sider the 
ase in whi
h all of the rules for both liftableand graspable are deleted from 
up theory. Given 50examples, EITHER initially learns the rules(liftable)  (has-handle) (weight ?G0009)(< ?G0009 1.1257166)(liftable)  (insulating) (width small)(not (has-handle)) (weight ?G0009)(< ?G0009 1.1257166)These rules are then redu
ed to:(liftable)  (intra-0010) (weight ?G0009)(< ?G0009 1.1257166)(intra-0010) (has-handle)(intra-0010) (insulating) (width small)(not (has-handle))The intermediate 
on
ept intra-0010 formed usingintra-
onstru
tion is EITHER's new 
on
ept for gras-pable. The extra (not (has-handle)) ante
edent on these
ond rule is a side-e�e
t of translating ID3 de
isiontrees into rules. It does not e�e
t the semanti
s of thenew 
on
ept and 
ould be deleted using the sort of rulesimpli�
ation methods dis
ussed in [Quinlan, 1987℄.
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Figure 3: Learning Curves for Liftable Rule6 Empiri
al Results on Learning RateIn order to demonstrate that EITHER's ability to re-�ne arbitrarily imperfe
t domain theories a
tually in-
reases it's learning rate, this se
tion presents learning
urves for the 
ase of a gap in the middle of the theory.Re
all that none of the previous approa
hes addressedthis parti
ular problem. Results for the other types ofin
omplete theories are similar.Arti�
ial data was automati
ally generated for the
up theory shown in Figure 1. Positive examples of
ups were generated by �rst forming \
ore" examples,whi
h 
ontain just the observables needed to 
ompletea proof. For linear features, a value is 
hosen randomlyfrom the range required for a proof. Next, random val-ues for the remaining observable features were addedto the 
ore examples to 
reate full examples. \Cores"for near-miss negative examples were formed by ran-domly 
hanging one feature in a 
ore-positive examplein order to make it unprovable. Again, random valuesare added for the remaining observables to �ll out theexamples. Adding random values 
an sometimes makea 
ore-negative example provable by allowing an alter-nate proof to su

eed. Consequently, ea
h negativeexample was 
he
ked to make sure it was not provablebefore adding it to the �nal data set. A total of 50positive and 50 near-miss negatives were generated inthis manner.EITHER was given the theory in Figure 1 with therule for liftable removed. Learning 
urves were gen-erated by performing bat
h training on in
reasinglylarger fra
tions of a set of training examples and re-peatedly testing predi
tive a

ura
y on the same dis-



joint test set of 20 test examples. The �nal results wereaveraged over 30 random sele
tions of training and testsets. EITHER was 
ompared to ID3, whi
h is the sameas EITHER without an initial theory sin
e ID3 is EI-THER's indu
tive learning 
omponent. The learning
urves in Figure 3 shows that the initial in
ompletetheory provides a signi�
ant performan
e advantage.A statisti
al t-test showed that the di�eren
e betweenthe two 
urves is signi�
ant for ea
h non-zero pointplotted (p < :05). Similar results hold for all of theother in
omplete theories dis
ussed in this paper.7 Related WorkBy integrating previous methods for 
onstru
tive in-du
tion and theory re�nement, EITHER 
an employa wider range of imperfe
t theories than previous sys-tems. Other systems using imperfe
t domain theoriesto aid 
on
ept learning [Wilkins, 1988; Danyluk, 1989;Pazzani, 1989; Flann and Dietteri
h, 1989; Drastal etal., 1989℄ 
annot deal with arbitrary gaps in a do-main theory and 
annot introdu
e new intermediate
on
epts. KBANN [Towell et al., 1990℄ and RTLS[Ginsberg, 1990℄ perhaps 
ome the 
losest to handlingas many types of imperfe
tions. However, unlike EI-THER, neither of them 
an deal with a
tual gaps inthe theory (where there are no rules for proving a 
at-egory or intermediate 
on
ept) nor introdu
e new in-termediate 
on
epts. These issues 
ould possibly beaddressed in KBANN (whi
h translates a theory into aneural-net, re�nes it using ba
kpropagation, and thenretranslates the result ba
k into rules) by adding ex-tra hidden units and 
onne
tions to the initial network;however, this would require predetermining the num-ber and type of intermediate 
on
epts to be 
reated.In addition, unlike EITHER, KBANN is not guaran-teed to produ
e a revised theory that is 
onsistent withthe training data.8 Con
lusionsIn this paper, we have presented 
onstru
tive indu
-tion te
hniques re
ently added to the EITHER theoryre�nement system. Intermediate 
on
ept utilizationemploys existing rules in the theory to derive higher-level features for use in indu
tion. Intermediate 
on-
ept 
reation employs inverse resolution to introdu
enew intermediate 
on
epts in order to �ll gaps in atheory than span multiple levels. These revisions allowEITHER to make use of imperfe
t domain theories inthe ways typi
al of previous work in both 
onstru
tiveindu
tion and theory re�nement. As a result, EITHERis able to handle a wider range of theory imperfe
tions
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