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Abstract

This paper presents a method for revising an approximate domain theory based on

noisy data. The basic idea is to avoid making changes to the theory that account for

only a small amount of data. This method is implemented in the EITHER propositional

Horn-clause theory revision system. The paper presents empirical results on arti�cially

corrupted data to show that this method successfully prevents over-�tting. In other

words, when the data is noisy, performance on novel test data is considerably better

than revising the theory to completely �t the data. When the data is not noisy, noise

processing causes no signi�cant degradation in performance. Finally, noise processing

increases e�ciency and decreases the complexity of the resulting theory.

�
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1 Introduction

Theory revision, or knowledge-base re�nement, is a di�cult problem that has important

applications in the development of expert systems. An approximate domain theory obtained

from an expert or a textbook can be substantially improved by observing the errors it

makes on a set of empirical data and automatically modifying the theory to correct for these

errors. Previous work on this problem

[

Ginsberg, 1990; Ourston and Mooney, 1990a

]

has

focussed on basic mechanisms for re�ning theories to completely �t a set of noise-free data.

Unfortunately, real-world data is frequently noisy and contains incorrect categorizations and

feature values. In such cases, modifying the theory to account for all of the data may result in

\over-�tting" by unnecessarily changing and complicating the theory to accommodate noisy

examples. Although the noise problem has been confronted in standard inductive learning

systems

[

Quinlan, 1986a; Mingers, 1989

]

, the problem of re�ning an existing domain theory

using noisy data has not previously been addressed.

This paper presents a method for using noisy data to revise domain theories. We are

developing a system called EITHER that is capable of revising arbitrarily imperfect proposi-

tional Horn-clause domain theories. In

[

Ourston and Mooney, 1990a

]

we described an initial

version of the system that modi�es a theory to completely �t a set of empirical data. This

paper describes important additions to EITHER for handling noisy data. Basically, the sys-

tem is prevented from making complicated changes to the theory in order to account for only

a small amount of data. We present empirical results that show this method successfully

prevents over-�tting. In other words, when the data is noisy, accuracy on novel test data is

signi�cantly better than revising the theory to completely �t the data. When the data is

not noisy, noise processing does not signi�cantly e�ect performance. By avoiding unneces-

sary revisions, noise processing also increases e�ciency and decreases the complexity of the

resulting theory.

2 Problem De�nition

Figure 1 gives a de�nition of the problem EITHER addresses. It is di�cult to precisely

de�ne the phrases \minimally revised" and \most of the examples." Since it is assumed that

the original theory is approximately correct, the goal is to change it as little as possible.

Syntactic measures such as the total number of symbols added or deleted are reasonable

criteria. EITHER uses various methods to help insure that its revisions are minimal in this

sense. In order to prevent over-�tting, EITHER avoids making changes to the theory that

account for only a single piece of data.

As in

[

Mitchell et al., 1986

]

, concepts are de�ned as predicates over some universe of

instances and a domain theory is de�ned as a logical theory that de�nes a set of concepts. The

current version of EITHER is restricted to Horn-clause theories expressed in a propositional
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Given: An imperfect domain theory for a set of categories and a set of

classi�ed examples that are described by a set of observable features and that

may su�er from feature and category noise.

Find: A minimally revised version of the domain theory that correctly clas-

si�es most of these examples without over-�tting the theory to noise in the data.

Figure 1: Problem De�nition for Theory Re�nement with Noise

logic whose atomic formulae include feature-value pairs and numerical thresholds as well as

binary propositions. Figure 2 shows a sample domain theory for animals. This theory is an

extended version of a set of rules given in

[

Winston and Horn, 1989, pages 388-390

]

. Leading

question marks denote variables, which are only used to de�ne thresholds on numerically-

valued features.

For the purpose of re�nement, a closed-world assumption is made. If the theory does not

prove that an example is a member of a concept, then it is assumed to be a negative example

of that concept. A domain theory is required to be acyclic and therefore de�nes a directed

acyclic graph (DAG). Propositions that are used to describe the examples (e.g. (color black))

are called observables. To avoid problems with negation as failure, only observables can

appear as negated antecedents. Propositions that represent the �nal concepts in which

examples are to be classi�ed (e.g. penguin) are called categories. It is currently assumed

that the categories are disjoint. In a typical domain theory, all of the sources (leaves) of the

DAG are observables and all of the sinks (roots) are categories. Propositions in the theory

that are neither observables nor categories (e.g bird) are called intermediate concepts.

3 Review of EITHER's Theory Revision Algorithm

EITHER's original theory re�nement algorithm is presented in

[

Ourston and Mooney, 1990a

]

and an extension to this algorithm for multi-category theories is presented in

[

Ourston and

Mooney, 1990b

]

. The EITHER algorithm is designed to correct theories that are either overly

general or overly speci�c or both. An overly-general theory is one that causes an example

(called a failing negative) to be classi�ed in categories other than its own. This is due to

additional rules or rules with missing or overly-general antecedents. EITHER specializes ex-

isting antecedents, adds new antecedents, and retracts rules to �x these problems. An overly

speci�c theory causes an example (called a failing positive) not to be classi�ed in its own cat-

egory. This is due to missing rules or rules with extra or overly-speci�c antecedents. EITHER

retracts and generalizes existing antecedents and learns new rules to �x these problems.

During theory generalization, EITHER uses a greedy covering algorithm to �nd a near-

minimum set of candidate antecedents that con
ict with the facts pertaining to the failing
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(mammal)  (body-covering hair)

(mammal)  (feed-young milk)

(mammal)  (birth live)

(bird)  (body-covering feathers)

(bird)  (birth egg) (
y)

(ungulate)  (mammal) (foot-type hoof)

(ungulate)  (mammal) (ruminate)

(carnivore)  (eat-meat)

(carnivore)  (teeth pointed) (foot-type clawed)

(gira�e)  (ungulate) (neck-length ?n) (� ?n 5) (� ?n 6) (color tawny)

(pattern spots) (pattern-color black)

(zebra)  (ungulate) (color white) (pattern stripes) (pattern-color black)

(cheetah)  (mammal) (carnivore) (color tawny) (pattern spots)(pattern-color black)

(tiger)  (mammal) (carnivore) (color tawny) (pattern stripes)(pattern-color black)

(dolphin)  (mammal) (fore-appendage �n) (color gray)(body-covering moist-skin)

(body-length ?b) (� ?b 4) (� ?b 6)

(whale)  (mammal) (fore-appendage �n) (color gray) (body-covering moist-skin)

(body-length ?b) (� ?b 10) (� ?b 60)

(bat)  (mammal) (color black) (pattern none) (pattern-color none) (
y)

(platypus)  (mammal) (birth egg) (foot-type webbed)

(ostrich)  (bird) (not (
y)) (neck-length ?n) (� ?n 3) (� ?n 4)

(color white) (pattern patch) (pattern-color black)

(penguin)  (bird) (color white) (pattern patch)

(pattern-color black) (foot-type webbed) (not (
y))

(duck)  (bird) (foot-type webbed) (
y)

(grackle)  (bird) (color black) (pattern none) (pattern-color none) (
y)

Observable Features: feed-young body-covering birth eat-meat 
y teeth

fore-appendage foot-type neck-length body-length color pattern pattern-color ruminate

Categories: gira�e zebra cheetah tiger dolphin whale bat platypus penguin ostrich duck grackle

Figure 2: Sample Domain Theory
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positive examples. The condition on these antecedents is that if they are removed from

the theory, then the failing positive examples will be provable. EITHER discovers these

antecedents through partial proofs of the failing positive examples: proofs that would be

complete if the candidate antecedents were removed from their associated rules.

At each iteration of the covering algorithm, the system calculates a bene�t-to-cost ratio

for each set of candidate antecedents that will �x a failing positive, and the set with the

most examples �xed per antecedent is added to the cover. This continues until all of the

failing positives are provable. However, simply removing antecedents from some rules may

over-generalize the theory. If retracting antecedents causes additional failing negatives, EI-

THER uses the failing positive examples for the rule, and the negative examples that become

provable when the consequent of the rule is assumed true, to inductively

1

form a new rule

that correctly classi�es these examples.

During theory specialization, EITHER uses a greedy covering algorithm to identify a

near-minimum set of leaf-level rule retractions that �xes all of the failing negatives. At each

iteration of the covering algorithm, the system determines the number of faulty proofs in

which each rule participates and the rule retraction that removes the most proofs is added

to the cover. This continues until all faulty proofs of all failing negatives are removed. As

with generalization, this initially-suggested change to the theory may be an over-correction.

If a given rule retraction causes additional failing positives, then additional antecedents are

inductively learned that discriminate between these failing positives and the erroneously

proven negative examples.

EITHER also contains a number of extensions to this basic procedure which are concerned

with generalizing and specializing existing antecedents; using existing rules in the theory to

construct new features; extracting new intermediate concepts from inductively learned rules;

and �nding the appropriate level in the theory to modify. These extensions omitted from this

discussion since they are beyond the scope of this paper. The interested reader is referred

to

[

Ourston and Mooney, 1990b

]

.

4 Modi�cations to Handle Noisy Data

For examples represented as attribute-value lists, there are two primary sources of noise. The

�rst is mis-speci�cation: the value for an attribute or category may be incorrect, for a variety

of reasons including typographical errors, errors in measurement, and perception errors. The

second type of noise is called residual variation in

[

Mingers, 1989

]

, and refers to additional

factors that a�ect the results, but that are not recorded. This is a fairly common source of

noise in real-world applications and can occur because those recording the data were either

unaware of the a�ect of the additional factors, or simply unable to record them. With either

source of noise, the e�ect is examples that are either inconsistent (i.e. two examples that

1

EITHER currently uses a version of ID3

[

Quinlan, 1986b

]

as its inductive component.
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have identical attributes, but that are labeled in di�erent categories), or examples that have

features that should correlate with their category, but that do not because of noise masking

the correlation.

One of the main problems with learning algorithms that don't account for noise is that

they may tend to \over�t" the data. That is, elaborate rules or decision structures are gener-

ated that serve to account for a small number of anomalous examples among the training set.

Generating the additional rules not only increases the processing time and the complexity of

the result, but in general will actually decrease performance since the learning algorithm is

learning rules that only apply to the noisy examples and may misclassify correct examples.

Response to noisy data shows up at three points in EITHER: in the generation of the

minimum covers, in the corrections EITHER makes to rules without calling the inductive

learner, and in the learning of rules and additional antecedents by the inductive learner.

When noisy data are submitted to EITHER, the resulting theory corrections can no longer

be guaranteed to be consistent with the training data (as mentioned above, examples in the

training data may not be consistent with each other). When noise processing is invoked, the

corrected theory may not even be consistent with noise-free training data. The next three

subsections describe EITHER's response to noise in more detail.

4.1 Accounting for Noise in the Minimum Covers

The principle behind handling noise in cover generation is that one is more con�dent in

corrections to rules that apply to several failing examples. If the correction only applies to a

single example, then it could well be that it was the example, rather than the rule that was

in error. However, if the same (erroneous) rule is implicated by several failing examples, it

is unlikely that all of the examples just happen to have noisy attributes that cause them to

all focus on the same rule.

To be speci�c, for failing positives, assume several of the partial proofs of the examples

happen to use the same rule, with the same set of antecedents in con
ict with the features of

the example. This is unlikely to happen if the examples are subject to random feature noise.

For failing negatives, assume several of the incorrect proofs of the examples use the same

rule. This is unlikely to happen if the incorrect proofs of the examples are due to random

feature noise in the examples.

EITHER's response to noise in these cases is to prune the minimum covers provided to

the rule correction algorithms. For antecedent covers, failing antecedents are grouped into

separate sets as necessary to account for the failing positive examples associated with each

rule. That is, a new antecedent set is created whenever the con
icting antecedents for a

particular example are di�erent from any of the antecedent sets already associated with the

rule. When the cover is completed, noise processing removes those antecedent sets from the

cover that correspond to only a single example. In minimum rule cover processing, terms in

the cover that only correspond to a single example are also removed. In this case, any rule
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in the cover that only corresponds to a single failing negative is removed.

Because EITHER is now using a partial cover, the corrected theory will not in general

be consistent with the training set. However, the bene�t of the partial cover in responding

to noise should actually improve as the number of training examples increases. This is

because the likelihood of a bad rule only a�ecting a single example decreases as the number

of examples increases, and since EITHER is attempting to select rules which correspond to

multiple examples, the likelihood of selecting a spuriously correlated rule will also decrease.

4.2 Accounting for Noise Outside the Inductive Learner

EITHER must also provides a response to noisy data in the cases where it modi�es the theory

without calling the inductive component since inconsistent examples may cause problems

with these changes. This occurs in the following situations:

� When a rule is generalized by generalizing its antecedents.

� When a rule is generalized by retracting an antecedent.

� When the theory is specialized by removing a rule from the theory.

To account for noise, EITHER pre-processes the input data prior to entering the calculations

described above. The pre-processing removes inconsistent examples in the following way:

� EITHER checks the input examples for inconsistency. Inconsistency is discovered when

two examples with di�ering category labels are found to have the same attribute values.

� For each set of inconsistent examples, if a majority belong to a particular category,

EITHER deletes the examples in other categories from the input.

This approach causes EITHER to ignore examples with obvious noise problems and provide

corrections that are consistent with the remaining examples.

4.3 Accounting for Noise in the Inductive Learner

Since noisy data may be passed on to the inductive component when learning new rules

and new antecedents, EITHER employs the chi-squared procedure

[

Quinlan, 1986a

]

in its

inductive component based on ID3. In this method, when an attribute is being considered

as a possible test feature in the decision tree, it is �rst checked to see if the values for the

attribute are independent of the example categories, using a chi-squared statistical test. If

so, this indicates that the attribute values may include noise and will not be predictive of the

category. When all of the remaining attributes fail the chi-squared test, the current node is

7



made a leaf node (i.e. the decision tree will be \pruned" of all possible subtrees that could

have originated from this node). The leaf is labelled with the majority category among the

training examples input to the node.

The decision trees formed using this approach are no longer guaranteed to be consistent

with the training examples. However, it has been shown that the pruned trees can provide

improved accuracy on the test data

[

Mingers, 1989; Quinlan, 1986a

]

. The trees are also

simpler, in that they do not include the complex subtrees necessary to account for the noisy

training examples. Since EITHER transforms these decision trees directly into rules, the

resulting rules should be syntactically simpler and show improved performance over the test

data.

5 Experimental Results

The changes to EITHER described above were tested on revising domain theories using data

arti�cially corrupted with noise. Feature and category noise were added to the training

examples, and feature noise only to the test examples. Feature noise was added by substi-

tuting a random value from the feature's domain. Category noise was added by substituting

a random category. Category noise was not added to the test examples in order to identify

how well EITHER was able to identify the correct categories for the test examples. The

noise level identi�es the frequency of noisy data: a noise level of 0.1 means that 10% of the

features and categories were randomly corrupted.

Data was automatically generated for the animal theory shown in Figure 2 and a similar

theory for classifying di�erent types of computers based on their appearance. Thirty exam-

ples of each category were generated by �rst forming \core" examples, which contain just

the observables needed to complete a proof. For linear features, a value is chosen randomly

from the range required for a proof. A core example was formed for each possible proof for

each category. For example, below are the core examples of ducks.

1. (body-covering feathers) (foot-type webbed) (
y)

2. (birth egg) (foot-type webbed) (
y)

Next, random values for the remaining observable features were added to the core examples

to create full examples. However, adding random values can sometimes make an example

provable in another category as well. Consequently, each example was checked to make sure

it was provable in only one category before adding it to the �nal data set. A total of 360

examples of animals and 210 examples of computers were created in this manner.

Imperfect versions of the animal and computer theories were also constructed. The errors

added to the animal theory are shown in Figure 3 (this theory has an accuracy of only 36%).

The faults introduced include missing rules, additional antecedents, and missing antecedents.

These theories were given to EITHER to revise.

8



Correct Rules Corrupted Rules

(mammal)  (body-covering hair) (mammal)  (body-covering hair)

(fore-appendage leg)

(mammal)  (feed-young milk) (mammal)  (feed-young milk)

(fore-appendage leg)

(mammal)  (birth live) (mammal)  (birth live)

(fore-appendage leg)

(bird)  (body-covering feathers) *retracted*

(bird)  (birth egg) (
y) (bird)  (
y)

(duck)  (bird) (foot-type webbed) (duck)  (bird) (foot-type webbed)

(
y)

(ostrich)  : : : (not (
y)) (ostrich)  : : :

(penguin)  : : : (not (
y)) (penguin)  : : :

Figure 3: Corrupted Animal Theory
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Figure 4: Test Accuracy vs. Noise Level for Animal and Computer Domains

9



EITHER-FULL

EITHER-PRUNE

0

500

1000

1500

2000

2500

0.00 0.05 0.10 0.15 0.20
Noise Level

T
ra

in
in

g 
T

im
e 

(s
ec

)

EITHER-FULL

EITHER-PRUNE

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00 0.05 0.10 0.15 0.20
Noise Level

T
ra

in
in

g 
T

im
e 

(s
ec

)

Figure 5: Train Time vs. Noise Level for Animal and Computer Domains

Figure 4 shows the degradation in predictive accuracy with increasing levels of noise

for EITHER with cover truncation (EITHER-PRUNE), EITHER without cover truncation

(EITHER-FULL), and ID3 (with chi-squared pruning). Since EITHER uses ID3 as its induc-

tive component, ID3 is the same as EITHER when it is not given an initial theory. The

animal results are averaged over 8 trials of 60 training and 100 test examples. The computer

results are averaged over 23 trials of 40 training and 100 test examples. Due to its initial

theory, EITHER-PRUNE always performs better than ID3. A statistical t-test shows that the

di�erence is signi�cant at each noise-level plotted except 0.2. With little or no noise (noise

levels of 0.0 and 0.01) both versions of EITHER perform approximately the same. However,

as the noise level is increased, the e�ect of pruning becomes more pronounced. The di�er-

ence is statistically signi�cant for levels of noise greater than 0.01. At noise levels of 0.1

and 0.2, pruning provides approximately a 9% advantage on animals and 4% advantage on

computers. Unlike EITHER-PRUNE, EITHER-FULL eventually performs worse than ID3 at

a noise-level of 0.2. Of course, one would expect the accuracy of all systems to converge to

random chance as noise-level is increased to 1.0.

Unlike EITHER-FULL, EITHER-PRUNE's correctness on training data also decreases as

noise is increased. Therefore, the di�erence between training correctness and test correctness

is much smaller for EITHER-PRUNE (26% for animals at noise-level 0.2) than for EITHER-

FULL (66% for animals at noise-level 0.2). This con�rms that EITHER-PRUNE avoids much

of the over-�tting performed by EITHER-FULL. Ideally, a system's performance on training

and test data should be the same in order to completely avoid over-�tting.

Since cover truncation prunes computation as well as theory changes, EITHER-PRUNE is
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Figure 6: Theory Complexity vs. Noise Level for Animal and Computer Domains

also more e�cient than EITHER-FULL. Figure 5 shows the training time for both systems as

noise is increased. EITHER-PRUNE is clearly faster than EITHER-FULL and the di�erence

increases with noise-level since more pruning is taking place at the higher noise levels.

Finally, cover truncation decreases the number of changes to the theory and therefore

decreases the over-all complexity of the revised theory as well. Figure 6 shows the number of

literals (i.e. total number of consequents and antecedents) in the revised theory as a function

of noise-level. EITHER-PRUNE clearly produces simpler theories than EITHER-FULL and

again the di�erence increases with noise-level due to increased pruning. However, the fact

that EITHER-PRUNE's theory-complexity still increases with noise-level indicates that it is

perhaps not doing enough pruning.

EITHER was also tested on a version of the DNA data used by

[

Towell et al., 1990

]

. This

data involves learning the concept of a promoter, a sequence of nucleotides that initiates

the expression of a gene. An initial theory and data for this problem was assembled from

the biological literature. Figure 7 shows accuracy vs. noise curves for this data. The

results are averaged over 19 trials of 100 training examples and 100 test examples. EITHER-

PRUNE only becomes signi�cantly better than EITHER-FULL at a a noise level of 0.1. The

di�erences at lower noise levels are not statistically signi�cant. Both versions of EITHER

perform signi�cantly better than ID3. EITHER-PRUNE's performance degrades with noise

at about the same rate as ID3's. EITHER-PRUNE's training time is consistently about 6%

less than EITHER-FULL's.
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Figure 7: Test Accuracy vs. Noise Level for DNA Domain

6 Related Work

Most previous system that use imperfect domain theories to aid concept learning

[

Wilkins,

1988; Danyluk, 1989; Pazzani, 1989; Flann and Dietterich, 1989; Cohen, 1990; Ginsberg,

1990

]

have not dealt with the issue of noisy data. KBANN

[

Towell et al., 1990

]

, which

converts a theory into a neural net and then re�nes it using backpropagation, has been

shown to be able to handle noisy data. However, KBANN produces a neural-net classi�er

rather than a revised theory and does not perform any special noise processing to speci�cally

avoid over-�tting. IVSM

[

Hirsh, 1989

]

uses an imperfect domain theory to aid learning and

is noise tolerant; however, it cannot make use of arbitrarily imperfect theories and does not

produce a revised domain theory.

The most closely related work within standard inductive learning is the cover trunca-

tion performed in AQ15

[

Michalksi et al., 1986

]

. However, AQ15's covers consist of disjuncts

that match examples while EITHER's covers consist of theory changes that �x failing pos-

itive and negative examples. In addition, AQ15 prunes complete concept de�nitions after

they were formed, while EITHER prunes potential theory changes before they are fully com-

puted. Consequently, pruning in EITHER improves e�ciency as well as accuracy and theory

complexity.
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7 Conclusions

In order to prevent over-�tting, a theory revision system must have methods to prevent

complicated changes to a theory that only account for noisy instances. This paper has

presented an e�ective method for dealing with noise during theory re�nement. The basic

approach is to avoid making changes to a theory that account for only a single data-point.

This method has been incorporated into the EITHER theory re�nement system and tested

on arti�cially corrupted data. Experimental data supports the conclusion that this method

is e�ective at preventing over-�tting and that it increases accuracy while decreasing both

run-time and theory complexity.
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