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Abstract

The ideas presented here are based on two obser-

vations of perceptrons: (1) when the perceptron

learning algorithm cycles among hyperplanes, the

hyperplanes may be compared to select one that

gives a best split of the examples, and (2) it is al-

ways possible for the perceptron to build a hyper-

plane that separates at least one example from all

the rest. We describe the Extentron which grows

multi-layer networks capable of distinguishing non-

linearly-separable data using the simple perceptron

rule for linear threshold units. The resulting algo-

rithm is simple, very fast, scales well to large prob-

lems, retains the convergence properties of the per-

ceptron, and can be completely speci�ed using only

two parameters. Results are presented comparing

the Extentron to other neural network paradigms

and to symbolic learning systems.

1 Introduction

It is well known that the simple perceptron algo-

rithm (Rosenblatt, 1958) is unable to represent clas-

si�cations which are not linearly separable (Minsky

and Papert, 1988). However, the perceptron does

exhibit two very useful properties. First, since there

are no hidden layers, designing the topology of the

network is not an issue for the user. One simply

uses the size of the input-output pairs to determine

the form of the network. Second, it has been shown

that the perceptron learning algorithm will either

converge (if the data is linearly separable) or will cy-

cle among a series of hyperplanes which do not fully

separate the input examples. Additionally, when

the perceptron learning algorithm cycles it is always

possible for the perceptron to build a hyperplane

that separates at least one example from all the rest.

By taking advantage of these observations, we have

been able to develop an algorithm which is simple,

very fast, scales well to large problems, retains the

convergence properties of the perceptron, and can

be completely speci�ed using only two parameters.

But most important of all, this new algorithm can

classify data which is not linearly separable, thus

avoiding the critical limitation of the perceptron.

At the foundation of our algorithm is the concept
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Figure 1: Explicit representation of a hyperplane.

Example of a hyperplane for the XOR problem. On the

left is a drawing of the original four examples given to

the perceptron. Each is labeled with a \1" (positive) or

\0" (negative). On the right is a mapping of the same

examples after extension.

of the hyperplane. A hyperplane found by a percep-

tron is implicit; it is stored in the weights connecting

input nodes to output nodes. However, the values of

the output nodes may be used as an explicit form of

the hyperplane. Figure 1 shows an example of how

this can be done for the XOR problem. Initially,

the examples for XOR are not linearly separable.

One possible hyperplane which may be found by a

perceptron for this problem is one in which both

of the positive examples are labeled correctly, but

only one negative example (upper right in the �g-

ure) is labeled correctly. Using this hyperplane, the

output of the perceptron for both positive examples

and the lower left negative example is \1," whereas

the output for the upper right example is \0."

The right half of �gure 1 shows what happens

to the input space when the examples are extended

using the corresponding output of the perceptron.

Here, the input for each example is now three bits

long, with the z-axis representing the added bit.

The examples which were on the same side of the

hyperplane are separated orthogonally in the new in-

put space from those examples on the other side of

the hyperplane. The result, in this particular case,

is a new set of examples which are linearly separable

and can be learned by a simple perceptron.
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In the following sections we describe the

Extentron algorithm, which builds upon this idea of

example extension. The goal of the Extentron is to

grow multi-layer networks capable of distinguishing

non-linearly-separable data using the simple percep-

tron rule for linear threshold units. Results are pre-

sented comparing the Extentron to other neural net-

work paradigms and to symbolic learning systems.

2 Overview of Extentron

2.1 Basic Algorithm

The Extentron is an iterative algorithm. Initially, a

perceptron is trained on the original data, which

is assumed to be a list of examples in the form

of input-output pairs. If the perceptron can suc-

cessfully separate all the examples then no iteration

need occur. Otherwise, the perceptron representing

the best split of the examples is saved, and the ex-

amples are extended using the output of that per-

ceptron as described above. The whole process is

then repeated until all of the examples can be cor-

rectly classi�ed.

More formally, let E be a set of examples and

let E

p

be the input-output pair for example p. Let

I

p

and T

p

be the input and output (target) of the

pair, respectively. Let H

E

be the perceptron with

the best hyperplane relative to the examples in E;

i.e., the set of weights that allows the perceptron to

correctly classify the most examples. Finally, let O

p

be the output generated by H

E

for example p. The

basic Extentron algorithm is as follows:

1. Compute H

E

using perceptron learning on the

input examples E. If all examples are classi�ed

correctly, i.e. O

p

= T

p

for all pairs E

p

, then

quit.

2. Otherwise, for each pair p in E, extend the in-

put of the pair by appending the output O

p

(generated by H

E

) to the end of I

p

. This forms

a new set of examples E

0

.

3. Repeat with E

0

until all examples are correctly

classi�ed.

After training, the network returned by the

Extentron is a series of layers, each of which is a per-

ceptron that depends upon the preceding layer for

its input. Propagating through an Extentron net-

work is achieved by normal perceptron propagation,

using the output of each layer to extend the input

before propagating through the next layer. Figure 2

shows an Extentron net for the XOR problem.

2.2 Observations

Several important characteristics

about the Extentron algorithm should be pointed

layer 2

layer 1

original inputs

Figure 2: Extentron network for the XOR prob-

lem. This network consists of two layers, each of which

is a perceptron. Solid lines represent perceptron weights.

Dotted lines are \pass through" weights which are not

learned. Here, the original input passes through to the

second perceptron, extended by the output of the �rst

perceptron.

out. First, note that the Extentron is guaranteed to

converge on consistent training examples since each

perceptron will generate a hyperplane that can sep-

arate at least one of the examples. Second, �gure 1

implies that one extension of a set of examples will

make them linearly separable, but in general this is

not true. In the worst case, each perceptron could

isolate only one example, causing the Extentron to

grow a layer for each input-output pair. However,

we have found empirically that an Extentron needs

only a small number of layers (see section 5), un-

less the problem is pathologically di�cult (e.g. the

two-spiral problem).

Third, the structure of the network can be op-

timized (i.e., weights removed) for problems with

more than one output bit. The savings comes from

the fact that each output node e�ectively represents

a separate perceptron, since its weights are updated

without regard to the accuracy of the other output

nodes. Figure 3 shows a network with two outputs,

one of which (the rightmost) is completely learned

by the �rst perceptron. The �rst extension of the ex-

amples (middle network) uses both outputs, causing

the input space to go from two to four dimensions.

But the second extension of the examples need not

include the rightmost output node, since this in-

formation would be redundant. Consequently, the

second extension of the examples causes the input

space to go to �ve dimensions rather than six. Fur-

thermore, once an output node is learned it can be

omitted from the training phase. Thus, no weights

(solid lines) are connected to the rightmost node af-

ter the �rst layer. Instead the correct value of this

node is simply passed through (dotted lines) from

the �rst layer.

Fourth, the Extentron only requires the user to

set two parameters. One of these, accuracy, mea-

sures the degree to which the training examples

must be accurately predicted. The other, max-

epochs, is used as a heuristic for cycle detection.
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Figure 3: Optimizing an Extentron network. This

diagram shows a three layer network for examples with

two input bits and two output bits. The �rst layer com-

pletely learns the rightmost output bit, thus no weight

connections are created to that output bit in succeed-

ing layers and its value is passed through from the �rst

layer.

Recall that the perceptron either converges or cy-

cles. In general, it may take a very long time for

a perceptron to cycle, and it is costly in both time

and space to save all states of the weight vector

and check for duplication after each epoch. The

Extentron's solution to this problem is twofold. Ini-

tially, training epochs are performed until a unit's

accuracy exceeds that of the corresponding unit of

the previous layer. In the case of the �rst layer, a

unit must do better than random guessing. This

ensures that each layer is making progress towards

correctly separating the examples. Once the ini-

tial hyperplane is found, the Extentron keeps track

of the number of epochs for which there has been

no further improvement in predictive accuracy. If

this exceeds max-epochs, a cycle is assumed and a

new layer is grown. Note that larger values of max-

epochs will tend to create networks of fewer layers,

but each layer will take longer to train.

Finally, the perceptron learning rule is very sim-

ple. This, combined with the weight optimiza-

tion described above, make the Extentron's learning

speed very fast compared to other neural network

algorithms such as back propagation. For example,

the XOR network of �gure 2 above was produced

in a fraction of a second using roughly 30 epochs.

Detailed results are presented in section 4.1.

3 Previous Work

A hybrid system known as perceptron trees (Utgo�,

1988; Utgo� and Brodley, 1990) is the work most

closely related to the ideas presented here. A per-

ceptron tree is a decision tree, where each node of

the tree is a linear threshold unit (perceptron). The

inner nodes of the tree are used as decision nodes

to split examples along di�erent paths of the tree.

Leaf nodes are perceptrons that can completely cat-

egorize some subset of the training examples. A

perceptron tree begins as a single perceptron, only

growing nodes when that perceptron fails to catego-

rize all of its training examples. Each internal node

of the perceptron tree e�ectively splits the training

set, sending some of the examples to one child node

and the rest to the other.

The chief di�erence between the Extentron and

perceptron trees is that the Extentron is a strictly

neural model, whereas a perceptron tree is a hybrid.

Instead of splitting the examples into subsets, the

examples are extended and all are reused to train

the next perceptron. This allows the Extentron to

avoid learning duplicate representations of the same

feature. Speci�cally, the internal nodes of a percep-

tron tree are unable to use the information from

other parts of the tree. Thus two subtrees of the

decision tree may be forced to relearn the same hy-

perplane split. In short, by extending the inputs,

each layer of an Extentron network is able to use

any of the features learned to that point.

Back propagation (Rumelhart et al., 1986) can be

compared to the Extentron using several criteria.

Back propagation is a more general algorithm, due

to the fact that real-valued outputs can be gener-

ated (as opposed to the binary outputs of the simple

perceptron). Also, for pathologically non-linearly-

separable domains such as the two-spiral problem,

back propagation will tend to learn simpler networks

since the Extentron will have to grow an excessive

number of layers (hyperplanes) to successfully cat-

egorize the data. However, back propagation is not

guaranteed to converge on its training data, and re-

quires the user to adjust a large number of param-

eters by hand. The Extentron avoids both of these

problems. Finally, due to the simpler learning rule,

the Extentron is much faster than back propagation

(see section 4.2), and yet retains similar generaliza-

tion capabilities.

Finally, there are numerous symbolic classi�ca-

tion algorithms which can be used to perform the

same tasks as an Extentron. One such example is

Quinlan's ID3 algorithm (Quinlan, 1986). As with

perceptron trees, ID3 forms a decision tree to clas-

sify the input examples. However the internal nodes

of ID3 use an information theoretic measure to de-

termine a split in the data. Also, ID3's decision

nodes are limited to using one feature of the input

vector, as opposed to the multi-variate split avail-

able to both perceptron trees and the Extentron.

Finally, ID3 decision trees su�er from the same po-

tential duplication of e�ort as perceptron trees due

to the lack of information sharing between internal

nodes.

4 Experimental Method

4.1 Experimental Design

As an initial experiment, we tested the Extentron

on some of the well known neural network prob-

lems. For the XOR problem, the Extentron com-

pleted training in 0.03 seconds running on a SPARC

Station 1 under Sun Common Lisp (version 4.0).

We also ran an Extentron on Lang and Witbrock's

two-spiral problem (Lang and Witbrock, 1988). The

Extentron managed to completely learn the exam-
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ples, but only after growing 65 layers.

To test the Extentron against other classi�cation

algorithms, we duplicated some of the experiments

run by Mooney et. al. (Mooney et al., 1990) and

Shavlik et. al. (Shavlik et al., 1991). Two di�er-

ent data sets were used in these experiments, one

for soybean diseases (Reinke, 1984) and the other

for DNA promoter sequences (Hawley and McClure,

1983). These data sets involve, respectively: 50 and

57 features; 562 and 106 examples; 15 and 2 cat-

egories. After translation into a format usable by

an Extentron the soybean data set had 79 inputs

and the DNA data set had 228 inputs. The soy-

bean data set is known not to be linearly separable

(though subsets of this data are linearly separable),

and the DNA data set has been shown to be di�cult

for symbolic systems to learn (Fisher andMcKusick,

1989).

The experiments proceeded as follows. Each data

set was divided into training and test sets. Training

sets were further divided into subsets, so that the al-

gorithms could be evaluated with varying amounts

of training data. After training, each system's ac-

curacy was recorded on the test set. All tests were

run on the full test set. To reduce statistical uc-

tuations, the results of this process of dividing the

examples, training, and testing were averaged over a

number of runs (10 for the soybean data and 25 for

the DNA data). Additionally, the random seeds for

the back propagation algorithm were reset for each

run. Training speed, testing speed, training set ac-

curacy and test set accuracy were recorded for each

run. Experiments were conducted with implemen-

tations of the following algorithms: back propaga-

tion, ID3, AQ (Michalski and Larson, 1983), percep-

tron, and Extentron. For more details on the spe-

ci�c implementations of ID3 and back propagation,

see (Mooney et al., 1990). Statistical signi�cance

was measured using a Student t-test for paired dif-

ference of means at the 0.05 level of con�dence (i.e.

95% certainty that the di�erences are not due to

random chance).

We also tested the Extentron by repeating the

standard \leave-one-out" (cross-validation) method

performed by Towell et. al. on the DNA data set

(Towell et al., 1990). This experiment proceeds by

training with N � 1 examples (where N is the size

of the data set) and testing with the example left

out. This process is repeated once for each example

in the data set. The error rate is measured as the

number of errors on the single test cases, divided

by N . Again, to reduce the error due to statistical

uctuations the entire process was repeated 10 times

and the results averaged.

4.2 Results

The experimental results are shown as learning

curves in �gures 4 and 5. Note that these graphs
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Figure 4: Learning curves for the the soybean

data set. All curves were generated using 262 novel

test examples. Signi�cant di�erences were found be-

tween ID3 and Extentron for 150 and 300 training ex-

amples, between Extentron and perceptron for all but

150 training examples.

measure generalization over novel test data, as

opposed to typical training data learning curves.

These graphs show how the accuracy of each sys-

tem changes as larger training sets are used. For

the soybean data set, signi�cant di�erences were

found between ID3 and the Extentron, and between

the Extentron and the simple perceptron (see cap-

tion, �gure 4). For the DNA data set, back prop-

agation and the Extentron performed equivalently,

and each signi�cantly out-performed the symbolic

algorithms. Figure 6 compares the average training

times of back propagation, ID3, and the Extentron.

Table 1 contains the number of errors for the

\leave-one-out" test on the DNA examples. This ta-

ble is identical to the one reported by Towell et. al.,

except for the inclusion of the Extentron results. In

all cases, the algorithms listed correctly classify all

members of the training sets. Towell et. al. report

a statistical di�erence (99.95% certainty) between

Kbann and back propagation.

1

Unfortunately, we

did not have the data to test the signi�cance be-

tween back propagation and the Extentron for this

experiment, but we suspect the di�erence is not sig-

ni�cant (since we found no signi�cant di�erences in

the DNA tests of �gure 5).

5 Discussion of Results

As shown in �gure 5 and table 1, the Extentron algo-

rithm generalizes a well as back propagation, using

only a fraction of the training time (see �gure 6).

1

They attribute this di�erence to the fact that

Kbann starts with additional domain knowledge.
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Figure 5: Learning curves for the DNA data set.

All curves were generated using 16 novel test exam-

ples. No signi�cant di�erences were found between back

propagation and Extentron. Signi�cant di�erences were

found between each of the above and the two symbolic

algorithms.
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Figure 6: Timing comparison of Backprop,

Extentron and ID3.

System Error Rate

Kbann 4/106

Back Propagation 8/106

Extentron 9/106

O'Neill 12/106

Nearest Neighbor 13/106

ID3 19/106

Table 1: DNA Error rates using leave-one-out

method.

The Extentron also performs better than the simple

perceptron on the soybean data set, which was ex-

pected since the soybean data set is not linearly sep-

arable. In the DNA tests, the Extentron's superior-

ity to ID3 and AQ duplicates the results reported by

Fisher and McKusick (Fisher and McKusick, 1989)

that neural networks are better at learning \N-of-

M" concepts than symbolic algorithms.

The soybean tests and statistical results were run

on a TI Explorer 1. To determine a good value for

the accuracy parameter, the Extentron was trained

with the entire soybean data set with accuracy set

to 100%. After 6 layers, the Extentron consistently

achieved 96% accuracy on the examples, and after

10 layers it converged. As a result, for the trials

shown in �gure 4, the Extentron was run with its

accuracy parameter set at 0.95. This might ac-

count for the Extentron's inferior performance to

ID3, since the Extentron was not forced to converge

on the training data. Note that the Extentron never

required more than three layers to complete any of

the training runs on the soybean data set.

Unfortunately, the slowness of the back propaga-

tion algorithm prevented us from testing it using the

full soybean data set.

2

However, in other tests using

a subset of the soybean data, Mooney et. al. re-

port nearly identical performance between the per-

ceptron and back propagation. Since the Extentron

proved to be superior to the perceptron, it is likely

that the Extentron and back propagation perform

similarly on this data set.

6 Future Work

There are many other experiments which could be

performed to compare the Extentron with existing

algorithms. To begin with, the Extentron should be

run using a large problem such as NETtalk to fur-

ther test its scalability.

3

It would also be interesting

to compare the complexity of Extentron networks to

other ontogenetic neural network algorithms, to see

if the Extentron produces any savings in weights

or neurons. Finally, it may be possible to gener-

alize the Extentron to handle real-valued outputs,

though we are skeptical that such attempts would

succeed. During our development of the Extentron,

we derived a closed-form solution for perceptron

sum-squared error function. Though this solution

could compute the optimal set of weights in one

step, the work had to be abandoned because the

weight vector yielding minimal error does not nec-

essarily yield the best classi�cation, even if the data

is linearly separable.

2

We were unable to get backprop to converge on any

of the 10 test runs.

3

Note that a simple perceptron can have more

weights than a backprop net if the backprop net has

a su�ciently small hidden layer.
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7 Conclusion

In conclusion, it has been shown that the simple per-

ceptron learning rule can be extended to solve dif-

�cult (not linearly separable) problems. Empirical

results show that for naturally arising classi�cation

problems, the Extentron produces networks which

generalize as well as back propagation in a fraction

of the time.
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