Appears in Symbolic, Connectionist, and Statistical Approaches to Learning for
Nat ural Language Processing, Springer Verlag, 1996.

Al so appears in Wrking Notes of the |JCAl-95 Wrkshop on New Approaches to
Learning for Natural Language ProcessinghVontreal, Quebec, Canada, August 1995.

Learning the Past Tense of English Verbs Using
Inductive Logic Programming

Raymond J. Mooney and Mary Elaine Califf

Department of Computer Sciences, University of Texas
Austin, TX 78712-1188

Abstract. This paper presents results on using a new inductive logic
programming method called FoIDL to learn the past tense of English
verbs. The past tense task has been widely studied in the context of
the symbolic/connectionist debate. Previous papers have presented re-
sults using various neural-network and decision-tree learning methods.
We have developed a technique for learning a special type of Prolog
program called a first-order decision list, defined as an ordered list of
clauses each ending in a cut. FOIDL is based on FoIL [19] but employs
intensional background knowledge and avoids the need for explicit neg-
ative examples. It is particularly useful for problems that involve rules
with specific exceptions, such as the past-tense task. We present results
showing that FoOIDL learns a more accurate past-tense generator from
significantly fewer examples than all previous methods.

1 Introduction

The problem of learning the past tense of English verbs has been widely stud-
ied as an interesting subproblem in language acquisition. Previous research has
applied both connectionist and symbolic method to this problem [22, 12, 9]; how-
ever, previous efforts used specially-designed feature-based encodings that im-
pose a fixed limit on the length of words and fail to capture the generativity and
position-independence of the underlying transformation. We believed that repre-
senting the problem as constructing a logic program for the predicate past (X,Y)
where X and Y are words represented as lists of letters (e.g past([a,c,t],
[a,c,t,e,d]),past([a,c,h,e]l,[a,c,h,e,d]),past([r,i,s,e]l,[r,0,s,e]))
would produce much better results.

Inductive logic programming (ILP) is a growing subtopic of machine learn-
ing that studies the induction of Prolog programs from examples in the presence
of background knowledge [15, 8]. Due to the expressiveness of first-order logic,
ILP methods can learn relational and recursive concepts that cannot be repre-
sented in the attribute/value representations assumed by most machine-learning
algorithms. However, current ILP techniques make important assumptions that
restrict their application. Many assume that background knowledge is provided
extenstonally as a set of ground literals. However, an adequate extensional rep-
resentation of background knowledge for some problems is infinite or intractable
large. Most techniques assume that explicit negative examples of the target pred-
icate are available or can be computed using a closed-world assumption, but for

some problems explicit negative examples are not available, and an adequate set
of negative examples computed using a closed-world assumption is infinite or
intractably large. A third assumption is that the target program is expressed in
“pure” Prolog where clause-order is irrelevant and procedural operators such as
cut (1) are disallowed. However, a concise representation of many concepts re-
quires the use of clause-ordering and/or cuts [2]. The currently most well-known
and successful ILP systems, GoLEM [14] and Forr, [19], both make all three of
these assumptions.

Due to these limitations, we were unable to get reasonable results on learn-
ing past tense from either FoiL or GoLEM. This paper presents a new ILP
method called Foipr, (First-Order Induction of Decision Lists) which helps
overcome these limitations. The system represents background knowledge in-
tenstonally as a logic program. It does not require explicit negative examples.
Instead, an assumption of output completeness can be used to implicitly deter-
mine whether a hypothesized clause is overly-general and to quantify the degree
of over-generality by estimating the number of negative examples covered. Fi-
nally, a learned program can be represented as a first-order decision list, an
ordered set of clauses each ending with a cut. As its name implies, FOIDL is
closely related to FoiL and follows a similar top-down, greedy specialization
guided by an information-gain heuristic. However, the algorithm is substantially
modified to address the three advantages listed above. The resulting system is
able to learn the past tense of English more accurately and from fewer examples
than any of the previous methods applied to this problem.

The remainder of the paper is organized as follows. Section 2 provides back-
ground material on FoIL and on the past-tense learning problem. Section 3
presents the FoiDL algorithm. Section 4 presents our results on learning the
past-tense of English verbs. Section b discusses some related work, and Section
6 presents directions for future work. Section 7 summarizes and presents our
conclusions.

2 Background

2.1 FOIL

Since FoIDL is based on FoOIL, this section presents a brief review of this impor-
tant TLP system; see articles on FOIL for a more complete description [19, 18, 4].
FoIL learns a function-free, first-order, Horn-clause definition of a target pred-
icate in terms of itself and other background predicates. The input consists of
extensional definitions of these predicates as tuples of constants of specified
types. FOIL also requires negative examples of the target concept, which can be
supplied directly or computed using a closed-world assumption.

Given this input, FoIL learns a program one clause at a time using a greedy-
covering algorithm that can be summarized as follows:

Let positives-to-cover = positive examples.
While positives-to-cover is not empty
Find a clause, (', that covers a preferably large subset of positives-to-cover
but covers no negative examples.
Add C' to the developing definition.
Remove examples covered by C from positives-to-cover.

The “find a clause” step is implemented by a general-to-specific hill-climbing
search that adds antecedents to the developing clause one at a time. At each step,
it evaluates possible literals that might be added and selects one that maximizes
an information-gain heuristic. The algorithm maintains a set of tuples that sat-
isfy the current clause and includes bindings for any new variables introduced
in the body. The gain metric evaluates literals based on the number of positive
and negative tuples covered, preferring literals that cover many positives and
few negatives. The papers referenced above provide details and information on
additional features.

2.2 Learning the Past Tense of English Verbs

The problem of learning the English past tense has been attempted by both
connectionist systems [22, 12] and systems based on decision tree induction [11,
9]. The task to be learned in these experiments is: given a phonetic encoding of
the base form of an English verb, generate the phonetic encoding of the past tense
form of that verb. The task can also be done using the alphabetic forms forms
of the verbs, and we use that form of the task for the examples in this paper. All
of this work encodes the problem as fixed-length pattern association and fails to
capture the generativity and position-independence of the true regular rules such
as “add ’ed’)” instead producing several position-dependent rules. Each output
unit or separate decision tree is used to predict a character in the fixed-length
output pattern from all of the input characters.

Although ILP methods seem more appropriate for this problem, our initial at-
tempts to apply FolL and GOLEM to past-tense learning gave very disappointing
results [3]. Below, we discuss how the three problems listed in the introduction
contribute to the difficulty of applying current ILP methods to this problem.

In principle, a background predicate for append is sufficient for constructing
accurate past-tense programs when incorporated with an ability to include con-
stants as arguments or, equivalently, an ability to add literals that bind variables
to specific constants (called theory constants in FoIL). However, a background
predicate that does not allow appending with the empty list is more appropri-
ate. We use a predicate called split(A, B, C) which splits a list A into two
non-empty sublists B and C. An intensional definition for split is:

split([X, Y | Zz1, [Xx1 , [Y | Z1).
split([X | Y1, [X | W1, Z) :- split(Y,W,Z).

Providing an extensional definition of split that includes all possible strings of
15 or fewer characters (at least 10?! strings) is clearly intractable. However, pro-
viding a partial definition that includes all possible splits of strings that actually

appear in the training corpus is possible and generally sufficient. Therefore, pro-
viding adequate extensional background knowledge is cumbersome and requires
careful engineering; however, it is not the major problem.

Supplying an appropriate set of negative examples is more problematic. Ac-
curacy for this domain should be measured by the ability to actually generate
correct output for novel inputs, rather than the ability to correctly classify novel
ground examples. Using a closed-world assumption to produce all pairs of words
in the training set where the second is not the past-tense of the first tends to
produce clauses such as:

past(A,B) :- split(B,A,C).

which is useless for producing the past tense of novel verbs. However, supplying
all possible strings of 15 characters or less as negative examples of the past tense
of each word is clearly intractable.

When Quinlan applied FoIL to the past tense problem [17], he used a three-
place predicate past(X,Y,Z) which is true iff the input word X is transformed
into past-tense form by removing its current ending Y and substituting the ending
Z; for example: past([a,c,t]1,[], [e,d]),past([r,i,s,e],[i,s,e],[o0,s,e]).
This method allows the generation of useful negatives under the closed world as-
sumption, but relies on an understanding of the desired transformation.

Although he solves the problem of providing negatives, Quinlan notes that
his results are still hampered by FoIL’s inability to exploit clause order [17]. For
example, when using normal alphabetic encoding, FoIL quickly learns a clause
sufficient for regular verbs:

past(A,B,C) :- B=[1, C=[e,d].

However, since this clause still covers a fair number of negative examples due
to many irregular verbs, it continues to add literals. As a result, FOIL creates
a number of specialized versions of this clause that together still fail to capture
the generality of the underlying default rule.

However, an experienced Prolog programmer would exploit clause order and
cuts to write a concise program that first handles the most specific exceptions
and falls through to more general default rules if the exceptions fail to apply.
Such a program might be:

past(A,B) :- split(A,C,[e,e,pl), split(B,C,[e,p,t]), !.
past(A,B) :- split(4,C,[y]l), split(B,C,[i,e,d]), !.
past(A,B) :- split(A,C,[el), split(B,A,[d]), .
past(A,B) :- split(B,A,[e,d]).

FoipL can directly learn programs of this form, i.e., ordered sets of clauses
each ending in a cut. We call such programs first-order decision lists due to the
similarity to the propositional decision lists introduced by Rivest [21]. FOIDL uses
the normal binary target predicate and requires no explicit negative examples.
Therefore, we believe it requires significantly less representation engineering than
all previous work in the area.

3 FOIDL Induction Algorithm

As stated in the introduction, Foipr adds three major features to FoIrn: 1)
Intensional specification of background knowledge, 2) Output completeness as a
substitute for explicit negative examples, and 3) Support for learning first-order
decision lists. We now describe the modifications made to incorporate these
features.

As described above, FoIL assumes background predicates are provided with
extensional definitions; however, this is burdensome and frequently intractable.
Providing an intensional definition in the form of general Prolog clauses is gener-
ally preferable. Intentional background definitions are not restricted to function-
free pure Prolog and can exploit all features of the language.

Modifying FoIL to use intensional background is straightforward. Instead of
matching a literal against a set of tuples to determine whether or not it covers
an example, the Prolog interpreter is used in an attempt to prove that the literal
can be satisfied using the intensional definitions. Unlike FoIL, expanded tuples
are not maintained and positive and negative examples of the target concept are
reproved for each alternative specialization of the developing clause.

Learning without explicit negatives requires an alternate method of evalu-
ating the utility of a clause. A mode declaration and an assumption of output
completeness together determine a set of implicit negative examples. The out-
put completeness assumption indicates that for every unique input pattern in the
training set, the training set includes all of the correct output patterns. There-
fore, any other output which a programm produces for a given input pattern
must be a negative example.

Consider the predicate, past(Present,Past) which holds when Past is the
past-tense form of a verb whose present tense is Present. Providing the mode
declaration past(+,-) indicates that the predicate should provide the correct
past tense when provided with the present tense form. Assuming the past form
of a verb is unique, any set of positive examples of this predicate will be output
complete. However, output completeness can also be applied to non-functional
cases such as append(-,-,+), indicating that all possible pairs of lists that can
be appended together to produce a list are included in the training set (e.g.,
append([1, [a,bl, [a,bl), append([a], [b]l, [a,bl), append([a,b]l, [],
[a,b])).

Given an output completeness assumption, determining whether a clause is
overly-general is straightforward. For each positive example, an output query is
made to determine all outputs for the given input (e.g., past([a,c,t], X)). If
any outputs are generated that are not positive examples, the clause still covers
negative examples and requires further specialization. In addition, in order to
compute the gain of alternative literals during specialization, the negative cov-
erage of a clause needs to be quantified. Each ground, incorrect answer to an
output query clearly counts as a single negative example (e.g., past([a,c,h,e],
[a,c,h,e,e,d])). However, output queries will frequently produce answers with
universally quantified variables. For example, given the overly-general clause
past(A,B) :- split(4,C,D)., the query past([a,c,t], X) generates the an-

swer past([a,c,t], Y). This implicitly represents coverage of an infinite num-
ber of negative examples.

In order to quantify negative coverage, FOIDL uses a parameter u to represent
a bound on the number of possible terms in the universe. The negative coverage
represented by a non-ground answer to an output query is then estimated as
u¥ — p, where v is the number of variable arguments in the answer and p is
the number of positive examples with which the answer unifies. The u? term
stands for the number of unique ground outputs represented by the answer (e.g.,
the answer append(X,Y,[a,bl) stands for u? different ground outputs) and
the p term stands for the number of these that represent positive examples. This
allows FOIDL to quantify coverage of large numbers of implicit negative examples
without ever explicitly constructing them. It is generally sufficient to estimate
u as a fairly large constant (e.g., 1000), and empirically the method is not very
sensitive to its exact value as long as it is significantly greater than the number
of ground outputs ever generated by a clause.

Unfortunately, this estimate is not sensitive enough. For example, both clauses

past(A,B) :- split(A,C,D).
past(A,B) :- split(B,A,C).

cover u implicit negative examples for the output query past([a,c,t], X) since
the first produces the answer past([a,c,t], Y) and the second produces the
answer past([a,c,t], [a,c,t | Y]). However, the second clause is clearly
better since it at least requires the output to be the input with some suffix
added. Since there are presumably more words than there are words that start
with “a-c-t” (assuming the total number of words is finite), the first clause
should be considered to cover more negative examples. Therefore, arguments
that are partially instantiated, such as [a,c,t | Y], are counted as only a
fraction of a variable when calculating v. Specifically, a partially instantiated
output argument is scored as the fraction of its subterms that are variables,
e.g., [a,c,t | Y] counts as only 1/4 of a variable argument. Therefore, the first
clause above is scored as covering u implicit negatives and the second as covering
only u!'/*. Given reasonable values for u and the number of positives covered by
each clause, the literal split(B,A,C) will be preferred.

As described above, first-order decision lists are ordered sets of clauses each
ending in a cut. When answering an output query, the cuts simply eliminate all
but the first answer produced when trying the clauses in order. Therefore, this
representation is similar to propositional decision lists [21], which are ordered
lists of pairs (rules) of the form (¢;,¢;) where the test ¢; is a conjunction of
features and ¢; is a category label and an example is assigned to the category of
the first pair whose test it satisfies.

In the original algorithm of Rivest [21] and in CN2 [5], rules are learned in
the order they appear in the final decision list (i.e., new rules are appended to
the end of the list as they are learned). However, Webb and Brkic [23] argue for
learning decision lists in the reverse order since most preference functions tend
to learn more general rules first, and these are best positioned as default cases
towards the end. They introduce an algorithm, prepend, that learns decision

lists in reverse order and present results indicating that in most cases it learns
simpler decision lists with superior predictive accuracy. FOIDL can be seen as
generalizing prepend to the first-order case for target predicates representing
functions. It learns an ordered sequence of clauses in reverse order, resulting in
a program which produces only the first output generated by the first satisfied
clause.

The basic operation of the algorithm is best illustrated by a concrete example.
For alphabetic past-tense, the current algorithm easily learns the partial clause:

past(A,B) :- split(B,A,C), C = [e,d].

This clause still covers negative examples due to irregular verbs. However, it
produces correct ground output for a subset of the examples. Therefore, it is
best to terminate this clause to handle these examples, and add earlier clauses
in the decision list to handle the remaining examples. The fact that it produces
incorrect answers for other output queries can be safely ignored in the decision-
list framework. The examples correctly covered by this clause are removed from
positives-to-cover and a new clause i1s begun. The literals that now provide the
best gain are:

past(4,B) :- split(B,A,C), ¢ = [d].

covering the verbs that just add “d” since they end in “e”. This clause also
produces correct ground output for a subset of the examples; however, it is
not complete since it produces incorrect output for examples correctly covered
by a previously learned clause (e.g., past([a,c,t], [a,c,t,d])). Therefore,
specialization continues until all of these cases are also eliminated, resulting in
the clause:

past(A,B) :- split(B,A,C), C = [d], split(A,D,E), E = [e].

which is added to the front of the decision list. This approach ensures that
every new clause produces correct outputs for some new subset of the examples
but doesn’t result in incorrect output for examples already correctly covered by
previously learned clauses. This process continues adding clauses to the front of
the decision list until all of the exceptions are handled and positives-to-cover is
empty.

The resulting clause-specialization algorithm can now be summarized as fol-
lows:

Initialize C' to R(V1, Va, ..., Vi) :-. where R is the target predicate with arity k.
Initialize T" to contain the examples in positives-to-cover and output queries for a
all positive examples.
While T contains output queries
Find the best literal L to add to the clause.
Let 7" be the subset of positive examples in 1" whose output query still
produces a first answer that unifies with the correct answer, plus the
output queries in T that either

1) Produce a non-ground first answer that unifies with the correct
answer, or
2) Produce an incorrect answer but produce a correct answer
using a previously learned clause.
Replace T by T".

In many cases, this algorithm is able to learn accurate, compact, first-order
decision lists for past tense, like the “expert” program shown in section 2.2.
However, the algorithm can encounter local-minima in which it is unable to find
any literals that provide positive gain while still covering the required minimum
number of examples.! This was originally handled by terminating search and
memorizing any remaining uncovered examples as specific exceptions at the top
of the decision list. However, this can result in premature termination that pre-
vents the algorithm from finding low-frequency regularities. For example, in the
alphabetic version, the system can get stuck trying to learn the complex rule for
when to double a final consonant (e.g., grab — grabbed) and fail to learn the
rule for changing “y” to “ied” since this is actually less frequent.

The current version, like FoIL, tests if the learned clause meets a minimum-
accuracy threshold, but only counts as errors incorrect outputs for queries cor-
rectly answered by previously learned clauses. If it does not meet the threshold,
the clause is thrown out and the positive examples it covers are memorized at
the top of the decision list. The algorithm then continues to learn clauses for
any remaining positive examples.

When the minimum-accuracy threshold is met, the decision-list property is
exploited in a final attempt to still learn a completely accurate program. If the
negatives covered by the clause are all examples correctly covered by previously
learned clauses, FOIDL treats them as “exceptions to the exception to the rule”
and returns them to positives-to-cover to be covered correctly again by sub-
sequently learned clauses. With the minimum clause-accuracy threshold set to
50%, FoIDL only applies this uncovering technique when it results in covering
more examples than it uncovers, thereby guaranteeing progress towards fitting
all of the training examples.

An implementation of FOIDL in Quintus Prolog is available by anonymous
FTP from ftp.cs.utexas.edu.

4 Experimental Results

To test FOIDL’s performance on the English past tense task, we ran experiments
using data from Ling [9] which consist of 1390 pairs of base and past tense
verb forms in alphabetic and UNIBET phonemic form. We ran three different
experiments. In one we used the phonetic forms of all verbs. In the second we
used the phonetic forms of the regular verbs only, because this is the easiest
form of the task and because this is the only problem for which Ling provides

! Like Fom, FomL includes a parameter for the minimum number of examples that a
clause must cover (normally set to 2).

learning curves. Finally, we ran trials using the alphabetic forms of all verbs.
The training and testing followed the standard paradigm of splitting the data
into testing and training sets and training on progressively larger samples of the
training set. All results were averaged over 10 trials, and the testing set for each
trial contained 500 verbs.

In order to better separate the contribution of using implicit negatives from
the contribution of the decision list representation, we also ran experiments with
IFoIL, a variant of the system which uses intensional background and the output
completeness assumption, but does not build decision lists.

We ran our own experiments with FoiL, FoipL, and TFoIL and compared
those with the results from Ling. The FOIL experiments were run using Quin-
lan’s representation described above. As in Quinlan [17], negative examples were
provided by using a randomly-selected 25% of those which could be generated
using the closed world assumption.? All experiments with FoipL and IFoIL used
the standard default values for the various numeric parameters. The differences
among FoiIL, TFoIL, and FOIDL were tested for significance using a two-tailed
paired t-test.

4.1 Results

The results for the phonetic task using all verbs are presented in Figure 1. The
graph shows our results with FoiL, IFoiL, and FoIDL along with the best results
from Ling, who did not provide a learning curve for this task. As expected,
FoipL out-performed the other systems on this task, surpassing Ling’s best
results with 500 examples with only 100 examples. IF 011 performed quite poorly,
barely beating the neural network results despite effectively having 100% of the
negatives as opposed to FolL’s 256%. This poor performance is due at least in
part to overfitting the training data, because TFoIL lacks the noise-handling
techniques of FoIL6. FoIL also has the advantage of the three-place predicate,
which gives it a bias toward learning suffixes. IFOIL’s poor performance on this
task shows that the implicit negatives by themselves are not sufficient, and that
some other bias such as decision lists or the three-place predicate and noise-
handling is needed. The differences between FoIL and FoIDL are significant at
the 0.01 level. Those between FoIDL and IFOIL are significant at the 0.001 level.
The differences between FoIl and IFoIL are not significant with 100 training
examples or less, but are significant at the 0.001 level with 250 and 500 examples.

Figure 2 presents accuracy results on the phonetic task using regulars only.
The curves for SPA and the neural net are the results reported by Ling. Here
again, FOIDL out-performed the other systems. This particular task demon-
strated one of the problems with using closed-world negatives. In the regular
past tense task, the second argument of Quinlan’s 3-place predicate is always
the same: an empty list. Therefore, if the constants are generated from the posi-
tive examples, FOIL will never produce rules which ground the second argument,

2 We replicated Quinlan’s approach since memory limitations prevented us from using
100% of the generated negatives with larger training sets.

100

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, g
B 1
—————————————————————— -+ i
oy B -
Q
8
3
Q
Q
<
FOIDL ~—
IFOIL ——
: FOIL -B--
20 SPA -x |
/ Neural Network -2~
/
0 ‘ ‘ | | |
0 100 200 300 400 500

Training Examples

Fig. 1. Accuracy on phonetic past tense task using all verbs

since it cannot create negative examples with other constants in the second argu-
ment. This prevents the system from learning a rule to generate the past tense. In
order to obtain the results reported here, we introduced extra constants for the
second argument (specifically the constants for the third argument), enabling the
closed world assumption to generate appropriate negatives. On this task, IFoIL
does seem to gain some advantage over FOIL from being able to effectively use
all of the negatives. The regularity of the data allows both TFoiIL and FoIL to
achieve over 90% accuracy at 500 examples. The differences between FoIL and
FoipL are significant at the 0.001 level, as are those between IFoIL and FoIiDpL.
The differences between IFOIL and FoIL are not significant with 25 examples,
and are significant at the 0.02 level with 500 examples, but are significant at the
0.001 level with 50-250 training examples.

Results for the alphabetic version appear in Figure 3. This is a task which
has not typically been considered in the literature, but it is of interest to those
concerned with incorporating morphology into natural language understanding
systems which deal with text. It is also the most difficult task, primarily because
of consonant doubling. Here we have results only for FoipL, IFoiL, and FoIL.
Because the alphabetic task is even more irregular than the full phonetic task,
IFoIL again overfits the data and performs quite poorly. The differences between
FoiL. and FoIDL are significant at the 0.001 level with 25, 50, 250, and 500
examples, but only at the 0.1 level with 100 examples. The differences between
IFoiL and FoIDL are all significant at the 0.001 level. Those between FoIL and
[FoIL are not significant with 25 training examples and are significant only at

100 . . _
______ fmommmmmmmmmmmmm—msoooosmTooos
e X
80 = 1
60 P - |
hy - -
3 e
g g
3 g
3 Prg
g Prs
<
40 L |
FOIDL —<—
IFOIL -+~
FOIL -8--
20 SPA - |
Neural Network -4
0 & | I | |) ‘ ‘

0 50 100 150 200 250 300 350 400 450 500
Training Examples

Fig. 2. Accuracy on phonetic past tense task using regulars only

the 0.01 level with 50 training examples, but are significant at the 0.001 level
with 100 or more examples.

For all three of these tasks, FOIDL clearly outperforms the other systems. A
sufficient set of negatives is necessary, and all five of these systems provide them
in some way: the neural network and SPA both learn multiple-class classifica-
tion tasks (which phoneme belongs in each position); FoIL uses the three-place
predicate with closed world negatives; and ITFoiL and FoIDL, of course, use
the output completeness assumption. The primary importance of the implicit
negatives is not that they provide an advantage over propositional and neural
network systems, but that they enable first order systems to perform this task
at all. Without them, some knowledge of the task is required. FOIDL’s decision
lists give it a significant added advantage, though this advantage is less apparent
in the regular phonetic task, where there are no exceptions.

FoiDnL also generates very comprehensible programs. The following is an
example program generated for the alphabetic version of the task using 250
examples (excluding the memorized examples).

past(A,B) :- split(4,C,[e,pl), split(B,C,[p,t1),

past(4,B) :- split(4,C,[yl), split(B,C,[i,e,d]),
split(4,D,[r,y1),!.

past(4,B) :- split(4,C,[yl), split(B,C,[i,e,d]),
split(4,D,[1,y1),!.

past(A,B) :- split(B,A,[m,e,d]), split(a,C,[ml),

90

80 -

Accuracy

40

30 || i FOIDL —<— B
i IFOIL -+--
FOIL -&-

20 H i i

10 4

O Il Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450 500
Training Examples

Fig. 3. Accuracy on alphabetic past tense task

split (A, [s],D),!.
past(A,B) :- split(B,A,[r,e,d]), split(A,C,[u,r]),!.
past(A,B) :- split(B,A,[d]), split(4,C,[el),!.
past(A,B) :- split(B,A,[e,d]),!.

5 Related Work

5.1 Related Work on Past-Tense Learning

The shortcomings of most previous work on past-tense learning were reviewed
in section 2.2, and the results in section 4 clearly demonstrate the generalization
advantage FoIDL exhibits on this problem.

Most of the previous work on this problem has concerned the modelling of
various psychological phenomenon, such as the U-shaped learning curve that
children exhibit for irregular verbs when acquiring language. This paper has not
addressed the issue of psychological validity, and we make no specific psycholog-
ical claims based on our current results.

However, humans can obviously produce the correct past tense of arbitrarily-
long novel words, which FOIDL can easily model while fixed-length feature-based
representations clearly cannot. Ling also developed a version of SPA that elimi-
nates position dependence and fixed word-length [10] by using a sliding window.
A large window is used which includes 15 letters on either side of the current

position (padded with blanks if necessary) in order to always include the en-
tire word for all the examples in the corpus. The results on this approach are
significantly better than normal SPA but still inferior to FOIDL’s results.

5.2 Related Work on ILP

Although each of the three features mentioned in the introduction distinguishes
FoipL from most work in Inductive Logic Programming, a number of related
pieces of research should be mentioned. The use of intensional background knowl-
edge is the least distinguishing feature, since a number of other ILP systems also
incorporate this aspect. FocL [16], MFoIL [[8]], GRENDEL [6], FORTE [20], and
CHILLIN [25] all use intensional background to some degree in the context of a
Foir-like algorithm.

The use of implicit negatives is significantly more novel. Bergadano et al.
[2] allows the user to supply an intensional definition of negative examples that
covers a large set of ground instances; however, to be equivalent to output com-
pleteness, the user would have to explicitly provide a separate intensional nega-
tive definition for each positive example. The non-monotonic semantics used to
eliminate the need for negative examples in CLAUDIEN [7] has the same effect as
an output completeness assumption in the case where all arguments of the target
relation are outputs. However, output completeness permits more flexibility by
allowing some arguments to be specified as inputs and only counting as negative
examples those extra outputs generated for specific inputs in the training set.
Frip [1] provides a method for learning functional programs without negative
examples by making an assumption equivalent to output completeness for the
functional case only.

The notion of a first-order decision list 1s unique to FoIDL. The only other
ILP system that attempts to learn programs that exploit clause-order and cuts
is that of Bergadano et al. [2]. Their paper discusses learning arbitrary programs
with cuts, and the brute-force search used in their approach is intractable for
most realistic problems. FOIDL is tailored to the specific problem of learning first-
order decision lists, which use cuts in a very stylized manner that is particularly
useful for functional problems that involve rules with exceptions.

6 Future Work

One obvious topic for future research is FOIDL’s cognitive modelling abilities in
the context of the past-tense task. Incorporating over-fitting avoidance methods
may allow the system to model the U-shaped learning curve in a manner analo-
gous to that demonstrated by Ling and Marinov [11]. Tts ability to model human
results on generating the past tense of novel psuedo-verbs (e.g., spling — splang)
could also be examined and compared to SPA and connectionist methods.
Although first-order decision lists represent a fairly general class of programs,
currently our only convincing experimental results are on the past-tense problem.
The decision list mechanism in general should be applicable to other language

problems (as evidenced by the use of propositional decision lists for problems
such as lexical disambiguation [24]. Many realistic problems consist of rules with
exceptions, and experimental results on additional applications are needed to
support the general utility of this representation.

7 Conclusions

Learning the past tense of English is a small by interesting subproblem in lan-
guage acquisition which captures some of the fundamental problems such as the
generative ability to handle arbitrarily long input and the ability to learn excep-
tions as well as underlying regularities. Compared to feature-based approaches
such as neural-network, decision tree, and statistical methods, inductive logic
programming offers the advantage of generativity in being able to handle arbi-
trarily long input. In addition, the use of first-order decision lists allow one to
easily represent exceptions as well as general default rules. Qur results clearly
demonstrate that an ILP system for learning first-order decision lists can out-
prerform both the symbolic and the neural-network systems previously applied
to the past-tense task. Since the issues of generativity and exceptions and de-
faults are ubiquitous in language acquisition, we believe this approach will also
be useful for other language learning problems.

Acknowledgements Most of the basic research for this paper was conducted while
the first author was on leave at the University of Sydney supported by a grant
to Prof. J.R. Quinlan from the Australian Research Council. Thanks to Ross
Quinlan for providing this enjoyable and productive opportunity and to both
Ross and Mike Cameron-Jones for very important discussions and pointers that
greatly aided the development of FoIDL. Partial support was also provided by
grant TRI-9310819 from the National Science Foundation and an MCD fellowship
from the University of Texas awarded to the second author. A fuller discussion
of this research appears in [13].

References

1. F. Bergadano and D. Gunetti. An interactive system to learn functional logic
programs. In Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, pages 1044-1049, Chambery, France, 1993.

2. F. Bergadano, D. Gunetti, and U. Trinchero. The difficulties of learning logic pro-
grams with cut. Journal of Artificial Intelligence Research, 1:91-107, 1993.

3. M. E. Califf. Learning the past tense of English verbs: An inductive logic program-
ming approach. Unpublished project report, 1994.

4. R. Mike Cameron-Jones and J. Ross Quinlan. Efficient top-down induction of logic
programs. SIGART Bulletin, 5(1):33-42, Jan 1994.

5. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261—
284, 1989.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. W.W. Cohen. Compiling prior knowledge into an explicit bias. In Proceedings

of the Ninth International Conference on Machine Learning, pages 102-110, Ab-
erdeen, Scotland, July 1992.

. L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proceedings

of the Thirteenth International Joint Conference on Artificial Intelligence, pages
1058-1063, Chambery, France, 1993.

. N. Lavra¢ and S. DZeroski, editors. Inductive Logic Programming: Techniques and

Applications. Ellis Horwood, 1994.

. C. X. Ling. Learning the past tense of English verbs: The symbolic pattern associa-

tor vs. connectionist models. Journal of Artificial Intelligence Research, 1:209-229,
1994.

C. X. Ling, 1995. Personal communication.

C. X. Ling and M. Marinov. Answering the connectionist challenge: A symbolic
model of learning the past tense of English verbs. Cognition, 49(3):235-290, 1993.
B. MacWhinney and J. Leinbach. Implementations are not conceptualizations:
Revising the verb model. Cognition, 40:291-296, 1991.

R. J. Mooney and M. E. Califf. Induction of first-order decision lists: Results on
learning the past tense of English verbs. Journal of Artificial Intelligence Research,
3:1-24, 1995.

S. Muggleton and C. Feng. Efficient induction of logic programs. In Proceed-
ings of the First Conference on Algorithmic Learning Theory, Tokyo, Japan, 1990.
Ohmsha.

S. H. Muggleton, editor. Inductive Logic Programming. Academic Press, New
York, NY, 1992.

M. Pazzani and D. Kibler. The utility of background knowledge in inductive learn-
ing. Machine Learning, 9:57-94, 1992.

J. R. Quinlan. Past tenses of verbs and first-order learning. In C. Zhang,
J. Debenham, and D. Lukose, editors, Proceedings of the Seventh Australian Joint
Conference on Artificial Intelligence, pages 13-20, Singapore, 1994. World Scien-
tific.

J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proceedings
of the Furopean Conference on Machine Learning, pages 3—20, Vienna, 1993.

J.R. Quinlan. Learning logical definitions from relations. Machine Learning,
5(3):239-266, 1990.

B. L. Richards and R. J. Mooney. Automated refinement of first-order Horn-clause
domain theories. Machine Learning, 19(2):95-131, 1995.

R. L . Rivest. Learning decision lists. Machine Learning, 2(3):229-246, 1987.

D. E. Rumelhart and J. McClelland. On learning the past tense of English verbs.
In D. E. Rumelhart and J. L.. McClelland, editors, Parallel Distributed Processing,
Vol. I, pages 216-271. MIT Press, Cambridge, MA, 1986.

G. 1. Webb and N. Brki¢. Learning decision lists by prepending inferred rules. In
Proceedings of the Australian Workshop on Machine Learning and Hybrid Systems,
pages 6-10, Melbourne, Australia, 1993.

David Yarowsky. Decision lists for lexical ambiguity resolution: Application to
accent restoration in Spanish and French. In Proceedings of the 32nd Annual
Meeting of the Association for Computational Linguistics, pages 88-95, Las Cruces,
NM, 1994.

J. M. Zelle and R. J. Mooney. Combining top-down and bottom-up methods in
inductive logic programming. In Proceedings of the Eleventh International Confer-
ence on Machine Learning, pages 343-351, New Brunswick, NJ, July 1994.

