Techni cal Report, Artificial Intelligence Lab,
Uni versity of Texas at Austin, January 1996.

Advantages of Decision Lists and Implicit Negatives in
Inductive Logic Programming™

Mary Elaine Califf and Raymond J. Mooney
Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

{mecaliff,;mooney }@Qcs.utexas.edu

January 20, 1996

Abstract

This paper demonstrates the capabilities of FoIDL, an inductive logic programming
(ILP) system whose distinguishing characteristics are the ability to produce first-order
decision lists, the use of an output completeness assumption to provide implicit negative
examples, and the use of intensional background knowledge. The development of FoIDL
was originally motivated by the problem of learning to generate the past tense of English
verbs; however, this paper demonstrates its superior performance on two different
sets of benchmark ILP problems. Tests on the finite element mesh design problem
show that FoIDL’s decision lists enable it to produce better results than all other ILP
systems whose results on this problem have been reported. Tests with a selection
of list-processing problems from Bratko’s introductory Prolog text demonstrate that
the combination of implicit negatives and intensionality allow FoIDL to learn correct
programs from far fewer examples than FoIL.

Keywords: inductive logic programming

1 Introduction

New machine learning algorithms are often motivated by the difficulties of solving new prob-
lems with existings algorithms. While this can be an important source of progress, it could
lead to a proliferation of overly specialized systems designed to handle a narrow range of
learning problems. Therefore, it is important to test new systems with problems other than
those which originally motivated the systems’ development.

*This research was supported by a fellowship from AT&T awarded to the first author and by the National
Science Foundation under grant IRI-9310819.

Mooney and Califf (1995) introduced FOIDL, a new inductive logic programming (IL.P)
system motivated by problems with applying previously existing I[L.P techniques to the prob-
lem of generating the past tense of English verbs from the base form of the verb. FoIDL
is based on FoIL (Quinlan, 1990) but has three distinguishing characteristics: 1) it uses
intensional background knowledge; 2) it avoids the need for explicit negative examples by
using an output completeness assumption to create implicit negatives; and 3) it is able to
create first-order decision lists (ordered lists of clauses, each ending in a cut). These char-
acteristics allow FOIDL to perform well on the past tense problem, bettering all previous

results (Mooney & Califf, 1995).

In this paper, we present results that show that the FOIDL algorithm is useful for more
than the problem for which it was originally designed. We have tested the system on two
standard ILP problems: the finite element mesh design introduced by Dolsak and Mug-
gleton (1992) and a selection of the list-processing programs from Bratko (1990) used by
Quinlan and Cameron-Jones (1993). We compare FOIDL’s performance to FOIL and to
FFoIL (Quinlan, submitted), a version of FOIL which learns single-output functions. The
first order decision lists enable FOIDL to achiever better accuracy on the finite element mesh
design problem than has previously been reported for an ILP system, and FOIDL’s intension-
ality and use of implicit negatives allow it to learn correct programs for the list-processing
examples from small sets of randomly selected examples.

The remainder of the paper is organized as follows. Section 2 provides background on
FoIL and FFOIL. Section 3 summarizes the FOIDL algorithm. Section 4 presents our results
on the finite element mesh design and list-processing problems. Section 5 discusses related
work, and Section 6 summarizes and presents our conclusions.

2 Background

2.1 FOIL

Since FOIDL is based on FOIL, we present a brief review of this important ILP system; see
articles on FOIL for a more complete description (Quinlan, 1990; Quinlan & Cameron-Jones,
1993; Cameron-Jones & Quinlan, 1994).! FoOIL learns a function-free, first-order, Horn-
clause definition of a target predicate in terms of itself and other background predicates. The
input consists of extensional definitions of these predicates as tuples of constants of specified
types. FOIL also requires negative examples of the target concept, which can be supplied
directly or computed using a closed-world assumption.

Given this input, FOIL learns a program one clause at a time using a greedy-covering
algorithm that can be summarized as follows:

Let positives-to-cover = positive examples.
While positives-to-cover is not empty
Find a clause, (', that covers a preferably large subset of positive s-to-cover
but covers no negative examples.

LFor1r is also available by anonymous FTP from ftp.cs.su.oz.au in the file pub/foil6.sh.

2

Add C' to the developing definition.
Remove examples covered by C' from positives-to-cover.

The “find a clause” step is implemented by a general-to-specific hill-climbing search that
adds antecedents to the developing clause one at a time. At each step, it evaluates possible
literals that might be added and selects one that maximizes an information-gain heuristic.
The algorithm maintains a set of tuples that satisfy the current clause and includes bindings
for any new variables introduced in the body. The gain metric evaluates literals based
on the number of positive and negative tuples covered, preferring literals that cover many
positives and few negatives. The papers referenced above provide details and information
on additional features.

2.2 FFOIL

FFoOIL is a descendant of FoIL with modifications(Quinlan, submitted), somewhat similar
to FOIDL’s, that specialize it for learning functional relations.? First, FFOIL assumes that
the final argument of the relation is an oulput argument and that the other arguments of
the relation uniquely determine the output argument. This assumption is used to provide
implicit negative examples: each positive example under consideration whose output variable
is not bound by the clause under construction is considered to represent one positive and r -
1 negatives, where r is the number of constants in the range of the function. Second, FFoIL
assumes that each clause will end in a cut, so that previously covered examples can be safely
ignored in the construction of subsequent clauses. Thus, FFoIL, like FOIDL, constructs
first-order decision lists, though it constructs the clauses in the same order as they appear
in the program, while FOIDL constructs its clauses in the reverse order.

3 The FOIDL Algorithm

FoIDL adds three major features to FOIL: 1) Intensional specification of background knowl-
edge, 2) Output completeness as a substitute for explicit negative examples, and 3) Support
for learning first-order decision lists. We now describe the modifications made to incorporate
these features.

As described above, FOIL assumes background predicates are provided with extensional
definitions; however, this is burdensome and frequently intractable. Providing an inten-
sional definition in the form of general Prolog clauses is generally preferable. Intensional
background definitions are not restricted to function-free pure Prolog and can exploit all
features of the language.

Modifying FOIL to use intensional background is straightforward. Instead of matching
a literal against a set of tuples to determine whether or not it covers an example, the
Prolog interpreter is used in an attempt to prove that the literal can be satisfied using the
intensional definitions. Unlike FOIL, FOIDL does not maintain expanded tuples; positive and

2The development of FFoIL was partially motivated by our work on FOIDL.

negative examples of the target concept are reproved for each alternative specialization of
the developing clause.

Learning without explicit negatives requires an alternate method of evaluating the utility
of a clause. In FOIDL a mode declaration and an assumption of output completeness (that for
every unique input pattern appearing in the training set, the training set includes all positive
examples with that input pattern) together determine a set of implicit negative examples.

Consider the predicate, last (Element ,List) which holds when Element is the last el-
ement of List. Providing the mode declaration last(-,+) indicates that the predicate
should provide the correct final element when a list, the standard definition of last/2. Since
the final element of a given list is unique, any set of positive examples of this predicate will
be output complete. However, output completeness can also be applied to non-functional
cases such as append(-,-,+), meaning that all possible pairs of lists that can be appended
together to produce a list are included in the training set (e.g. append([1, [a,b], [a,b]),
append([a], [b], [a,b]), append([a,b]l,[1, [a,bl)).

Given an output completeness assumption, determining whether a clause is overly-general
is straightforward. For each positive example, an output query is made to determine all out-
puts for the given input (e.g. last([a,c,b], X)). If any outputs are generated that are not
positive examples, the clause still covers negative examples and requires further specializa-
tion. In addition, in order to compute the gain of alternative literals during specialization,
the negative coverage of a clause needs to be quantified. Each ground, incorrect answer to
an output query clearly counts as a single negative example (e.g. last([a,c,b]l, [al)).
However, output queries will frequently produce answers with universally quantified vari-
ables. For example, given the overly-general clause last(A,B) :- append(C,D,A)., the
query last([a,c,b], X) generates the answer last([a,c,t], Y). This implicitly repre-
sents coverage of an infinite number of negative examples.

In order to quantify negative coverage, FOIDL uses a parameter u to represent the total
number of possible terms in the universe. The negative coverage represented by a non-ground
answer to an output query is then estimated as u¥ — p, where v is the number of variable
arguments in the answer and p is the number of positive examples with which the answer
unifies. The u¥ term stands for the number of unique ground outputs represented by the
answer (e.g. the answer append (X,Y, [a,b]) stands for u? different ground outputs) and the
p term stands for the number of these that represent positive examples. This allows FoIDL
to quantify coverage of large numbers of implicit negative examples without ever explicitly
constructing them.

Unfortunately, this estimate is not sensitive enough. For example, in the past tense
domain both clauses

past(A,B) :- split(A,C,D).
past(A,B) :- split(B,A,C).

where split(A,B,C) is equivalent to append(B,C,A) when B and C are non-empty lists cover
u implicit negative examples for the output query past([a,c,t], X) since the first produces
the answer past([a,c,t], Y) and the second produces the answer past([a,c,t], [a,c,t
| Y1). However, the second clause is clearly better since it at least requires the output to

4

be the input with some suffix added. Since there are presumably more words than there
are words that start with “a-c-t” (assuming the total number of words is finite), the first
clause should be considered to cover more negative examples. Therefore, arguments that
are partially instantiated, such as [a,c,t | Y], are counted as only a fraction of a variable
when calculating v. Specifically, a partially instantiated output argument is scored as the
fraction of its subterms that are variables, e.g. [a,c,t | Y] counts as only 1/4 of a variable
argument. Therefore, the first clause above is scored as covering u implicit negatives and

1/4

the second as covering only u'/*. Given reasonable values for v and the number of positives

covered by each clause, the literal split(B,A,C) will be preferred.

The algorithm incorporating intensional background knowledge and implicit negatives is:

Initialize C' to R(V, V3, ..., Vi) -. where R is the target predicate with arity k.
Initialize T' to contain the examples in positives-to-cover and output queries for all
positive examples.
While 7' contains output queries
Find the best literal L to add to the clause.
Let 7" be the subset of positive examples in 7" that can still be prove d as instances
of the target concept using the specialized clause, plus the output querie s in T’

that still produce incorrect answers.
Replace T by T".

Since expanded tuples are not produced, the information-gain heuristic for picking the best
literal is simply:

gain(L) = |T"| - (I(T') = I(1")). (1)
|T'| is computed as the number of positive examples in T' plus the sum of the number of
implicit negatives covered by each output query in 7. This is the algorithm for IFOIL

(Intensional FOIL), which is simply FOIDL with the decision list feature turned off, making
the system useful for non-functional relations.

FoibL’s final feature is that it can produce first-order decision lists. As described above,
these are ordered sets of clauses each ending in a cut. When answering an output query,
the cuts simply eliminate all but the first answer produced when trying the clauses in order.
Therefore, this representation is similar to propositional decision lists (Rivest, 1987), which
are ordered lists of pairs (rules) of the form (¢;,¢;) where the test ¢; is a conjunction of
features and ¢; is a category label and an example is assigned to the category of the first
pair whose test it satisfies.

In the original algorithm of Rivest (1987) and in CN2 (Clark & Niblett, 1989), rules are
learned in the order they appear in the final decision list (i.e. new rules are appended to
the end of the list as they are learned). However, Webb and Brki¢ (1993) argue for learning
decision lists in the reverse order since most preference functions tend to learn more general
rules first, and these are best positioned as default cases towards the end. They introduce an
algorithm, prepend, that learns decision lists in reverse order and present results indicating
that in most cases it learns simpler decision lists with superior predictive accuracy. FOIDL
can be seen as generalizing prepend to the first-order case for target predicates representing
functions.

The resulting clause-specialization algorithm can now be summarized as follows:

Initialize C' to R(Vi, V3, ..., Vi) -. where R is the target predicate with arity k.
Initialize T to contain the examples in positives-to-cover and output queries for all
positive examples.
While 7' contains output queries
Find the best literal L to add to the clause.
Let 7" be the subset of positive examples in 7" whose output query still produces
a first answer that unifies with the correct answer, plus the output queries in T
that either
1) Produce a non-ground first answer that unifies with the correct answer, or
2) Produce an incorrect answer but produce a correct answer using a

previously learned clause.
Replace T' by T".

To handle the list-processing tasks, FOIDL requires two features that were unnecessary
for the past-tense task: recursion and determinate literals. Both of these are features of
FoiL, but the change from an extensional system to an intensional one requires that the
features be implemented somewhat differently.

To handle recursion, FOIDL begins by adding all of the positive examples in the training
set to the current theory. When a new clause is being created, before each example is proved
with the new clause, the example i1s temporarily removed from the theory so that it can’t
be used to prove itself. Once the clause is complete, FOIDL greedily removes examples from
the theory permanently. FOIDL avoids infinitely recursive clauses by using a depth bound
when proving examples.

Determinate literals are literals which may have little or no gain, but add at least one
new variable which can only take on exactly one value for each positive tuple and and no
more than one value for each negative tuple when extensional tuples are maintained as in
Foir(Cameron-Jones & Quinlan, 1994). Since FOIDL does not maintain the extensional
tuples, it must recognize that there is exactly one possible proof of the literal given the
bindings produced by the rest of the clause.

4 Experimental Results

4.1 Finite Element Mesh Design

The finite element mesh design application, introduced by Muggleton and Feng (1992),
concerns the division of an object into regions for finite element simulation. The regions
are created by cutting each edge of the object into a number of intervals. The ILP task is
to learn to generate a suitable number of intervals for each edge: division into too many
intervals leads to excessive computation in the simulation; division into too few leads to a
poor approximation of the behavior of the object.

The tests described here use data concerning five objects with a total of 277 edges. The
function to be learned is mesh(A,B) where A is an edge and B is the number of intervals that

6

Object Edges Correct Error <1
Foi. FFoi. Foipn | Foi. FFoi. FoipL

A 54 16 21 21 21 33 34
B 42 9 13 15 14 20 24
C 28 8 11 11 10 14 13
D 57 12 22 22 15 27 27
E 96 16 33 39 45 66 73

Total 277 | 61 100 108 | 105 160 186
(22%) (36%) (39%) | (38%) (58%) (67%)

Table 1: Results for finite element mesh design data

the edge should be divided into. The background information consists of thirty relations
describing various properties of the edges and their relationship to other edges in the object.
We ran five trials; in each, the learning system was provided with the information about
four of the objects, and the resulting program was tested on the edges from the remaining
object.

Table 1 shows our results for FOIDL along with those reported in Quinlan (submitted)
for FoiLl. and FFoIL. We report both the number of edges which exactly match the expert’s
and the number for which the system is no more that one away, since being close may be
useful in this type of problem. FoIDL and FFOIL both exploit the functional nature of the
problem using decision lists and produce results that are dramatically better than those of
FoiL. FoIDL’s results are slightly better than FFOIL’s overall, but not significantly so. Both
systems also perform much better than results reported for mFoIL and GOLEM (21% and
19% correct respectively) (Lavrac & Dzeroski, 1994).

4.2 List-processing Programs

For another test of FOIDL’s capabilities, we used a selection of the list-processing problems
to which Quinlan and Cameron-Jones (1993) applied FOIL. These are a sequence of list-
processing examples and exercises from Chapter 3 of (Bratko, 1990). For each problem, the
background provided consists of the relations encountered previously. In his experiments,
Quinlan uses two universes: all lists on three elements of length up to three and all lists on
four elements of length up to four. For each problem, FOIL was provided with all positive
examples of the relation in the specified universe and generates negatives using the closed
world assumption. Because FOIL must either be provided with explicit negatives or be able
to generate negatives using a closed world assumption, it cannot learn the various relations
from a smaller set of examples if only positives are provided.

We speculated that FOIDL’s implicit negatives would enable it to learn several of the
list-processing relations from smaller sets of positive examples. Previous experiments with
learning list-processing Prolog programs have employed specially constructed sets of exam-
ples that are guaranteed to be complete in some sense. However, ideally an ILP system
should be able to learn such programs from random examples rather than carefully-selected
sets (Zelle & Mooney, 1994; Cohen, 1993). Consequently, we compared systems on randomly

7

100 T T T 100 = G
o
80 - Bl 80 -
kst kst
IS IS
S S
o o
E 60 - E 60 -
s s
> >
<) <)
a SR a
5 S+ . 5
o o
g 4o g 4t
£ £
3 3
° o
& FOIDL —— & ; FOIDL ——
IFOIL —+-- : IFOIL —+--
FFOIL -B- FFOIL -B-
20 - g 20+
A
0 = L 0 L L
0 5 10 15 20 0 5 10 15 20
Training Examples Training Examples
last shift
50 : :
45 1 T
40 -
g 35 -
] /
o /
E 30 - / FOIDL ——
g / IFOIL ~+-
5 FFOIL -8-
& 25 -
5
o
g 20 -
£
3
°
& 15
10
5 A —+
0 = &
0 5 10 15 20
Training Examples
translate

Figure 1: Results for functional list processing programs

selected examples. For each subset size, we ran 20 experiments, and we report the percentage
of trials out of the 20 that the system is able to learn a correct definition of the relation for
lists of arbitrary length. We use this definition of accuracy because in this type of domain
it seems more approprate than a measure of the ability of incorrect programs to classify
examples.

The relations we considered naturally divide into two distinct sets of experiments. Several
of them are functional, making them appropriate candidates for tests with systems that
learn decision lists. Quinlan (submitted) showed that FFOIL can learn these functional
relations more quickly than FoOIL, but he did not explore the possibility of learning from
fewer examples. We ran parallel trials on the functional relations from the set using FoIDL,
FFolIL, and TFoIL, which is FOIDL without decision lists. On two of the functions: reverse
and conc, our results were not encouraging. Reverse requires the entire universe of 40
examples when lists are limited to length three for all three of the systems. IFOIL and

FoIDL begin to be able to learn correct definitions for conc with subsets of 40 examples from
the 182 total.

Figure 1 shows the results for last, shift and translate. FoOIDL, both with and without

decision lists, is able to learn correct definitions from relatively small subsets of the positive
examples. FFOIL’s performance on these tasks points to one of the advantages of the FOIDL
algorithm. The correct programs for both last and translate are recursive, but shift does not
require recursion, and shift is the only one of these functions which FFOIL performs well on.
This is because the random subsets of examples rarely provide a sequence of examples of the
type that the extensional algorithm requires in order to learn recursive rules. Since FOIDL
interpret both the background and the rules being learned intensionally, it requires any base
example or clause, not the immediately preceding example. Thus, to learn the rule

last (A, [BIC]) :- last(A,C).
FFoIL would require sequences of examples such as:

last(3,[1,2,3]).
last(3,[2,3]).
last(3,[3]).

while FOIDL would need only the last item and one of the other two from the sequence.
FoibL and IFOIL perform identically on shift, but quite differently on the other two tasks.
IFoIL performs better with fewer examples on last and throughout on translate, but FoOIDL
catches up and surpasses IFOIL’s performance on last. This seems to be because having
very few examples tends to lead the decision list to create bad clauses as the default clause,
leading to incorrect definitions. Once there are enough examples, however, the decision list
bias becomes helpful on last.

Besides demonstrating the performance of FOIDL on functions, we wished to examine
the usefulness of the implicit negatives in non-functional applications. So we also ran an
experiment with four of the non-functional list-processing problems. Again we randomly
selected subsets of positive examples from the universe of lists of length up to three on three
elements (20 subsets of each size), and we ran FOIDL (without decision lists, of course) on
each subset to determine whether it produced a correct program for lists of arbitrary length.
Because of the requirement that the input be output complete, the subsets were chosen not
by randomly selecting the examples, but by randomly selecting a set of inputs and then
providing the system with all of the positive examples with those inputs. For the relations
tested, the average number of examples per input varies from barely over 1 for deleting an
item from a list to 5 for sublist.

The results for the non-functional relations tested appear in Figure 2. Although it learns
some relations better than other, FOIDL clearly can exploit its ability to use implicit negative
examples to learn these relations from far fewer positive examples than FOIL requires (75

for member, 81 for del, 81 for insert, and 202 for sublist).

5 Related Work

The first learning system to focus on learning functions only was FILP (Bergadano & Gunetti,
1993). It assumes that the target and all background relations are functional and uses this

9

100 T T i i i i

80 - -

°
o
S
&)
0 - =
g 60 x
g X,
S .
& x
S : x . #
® E / p
g 40 4
£ : ' 4
8 X
& member ——
del —
; insert -m-- .+
20F sublist - -~ .
; P o
e
0 L Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8

Number of Distinct Inputs

Figure 2: TFOIL’s performance on non-functional list processing programs

knowledge to limit its search for literals. However, these assumptions prevent its use on the
tasks considered here because they typically involve non-functional background relations.
Also, although FILP assumes that its target relation is function, the definitions learned
consist of unordered sets of clauses.

Other systems, most notably LOPSTER(Lapointe & Matwin, 1992) and CRUSTACEAN
(Aha, Ling, Matwin, & Lapointe, 1993), have addressed learning relations from very small
sets of examples. These systems can learn certain recursive relations from even fewer ex-
amples than FOIDL, but they can only learn relations with a particular recursive structure,
and they use the assumption that the target relation has this particular structure. FOIDL
requires a few more examples, but this is because it is a more general system, working on a
number of other types of problems, and because FOIDL does not make assumptions about
the structure of the solution, only about the nature of the data.

Two other systems use intensional negative examples, but neither is as general and flex-
ible as FoIDL. Bergadano, Gunetti, and Trinchero (1993) allows the user to supply an
intensional definition of negative examples that covers a large set of ground instances (e.g
(past([a,c,t], X), not(equal(X, [a,c,t,e,d])))); however, to be equivalent to out-
put completeness, the user would have to explicitly provide a separate intensional negative
definition for each positive example. The non-monotonic semantics used to eliminate the
need for negative examples in CLAUDIEN (De Raedt & Bruynooghe, 1993) has the same
effect as an output completeness assumption in the case where all arguments of the tar-
get relation are outputs. However, output completeness permits more flexibility by allowing
some arguments to be specified as inputs and only counting as negative examples those extra
outputs generated for specific inputs in the training set.

The system most similar to FOIDL is FFOIL. Both systems use decision lists to learn
functions, and both provide implicit negatives. However, there are several important dif-

10

ference between the systems. The two most obvious are the intensional versus extensional
background and the different order in which they learn clauses. Also significant, though
more subtle, are the differences in their handling of implicit negatives. FFOIL determines
the number of negatives covered based on the range of the function as specified in the pro-
vided constants. It does not allow for the possibility that some, but not all of those constants
might be covered, and it does not allow for the difficulties of generating all of the constants
for a function an intractably large range, such as the standard past tense task. For ex-
periments with FFOIL on the past tense task, Quinlan still uses a special formulation of
the problem invented to allow FOIL some success at the task, which exploits the knowledge
that the English past tense is formed using suffixes in order to greatly reduce the number
of constants required in order to produce negatives. The final distinction between the two
systems is FOIDL’s greater flexibility. The implicit negatives can be used without decision
lists to handle non-functional relations.

6 Conclusions

We have shown that FOIDL, an ILP system originally designed to address a particular prob-
lem in natural language processing, has important advantages outside of natural language
processing. FOIDL’s results on the finite element mesh design problem are better than any
others reported for an ILP system, and it also performs well on several list-processing tasks.
We believe that these results indicate that FOIDL’s innovations—decision lists and implicit
negatives generated using the output completeness assumption—will prove useful for a variety
of machine learning tasks.

References

Aha, D. W., Ling, C. X.,; Matwin, S., & Lapointe, S. (1993). Learning singly recursive
relations from small datasets. In Workshop on Inductive Logic - 1JCAI93, pp. 47-58.

Bergadano, F., & Gunetti, D. (1993). An interactive system to learn functional logic pro-
grams. In Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence, pp. 1044-1049 Chambery, France.

Bergadano, F., Gunetti, D., & Trinchero, U. (1993). The difficulties of learning logic pro-
grams with cut. Journal of Artificial Intelligence Research, 1, 91-107.

Bratko, 1. (1990). Prolog Programming for Artificial Intelligence. Addison Wesley, Read-
ing:MA.

Cameron-Jones, R. M., & Quinlan, J. R. (1994). Efficient top-down induction of logic
programs. SIGART Bulletin, 5(1), 33-42.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-284.

11

Cohen, W. W. (1993). Pac-learning a resticted class of recursive logic programs. In Proceed-
ings of the Fleventh National Conference on Artificial Intelligence, pp. 86-92 Wash-
ington, D.C.

De Raedt, L., & Bruynooghe, M. (1993). A theory of clausal discovery. In Proceedings of
the Thirteenth International Joint Conference on Artificial Intelligence, pp. 1058-1063
Chambery, France.

Dolsak, B., & Muggleton, S. (1992). The application of inductive logic programming to
finite-element mesh design. In Muggleton, S. (Ed.), Inductive Logic Programming, pp.
453-472. Academic Press, New York.

Lapointe, S., & Matwin, S. (1992). Sub-unification: A tool for efficient induction of recursive
programs. In Proceedings of the Ninth International Conference on Machine Learning,

pp. 273-281 Aberdeen, Scotland.

Lavrac, N., & Dzeroski, S. (Eds.). (1994). [Inductive Logic Programming: Techniques and
Applications. Ellis Horwood.

Mooney, R. J., & Califf, M. E. (1995). Induction of first-order decision lists: Results on
learning the past tense of English verbs. Journal of Artificial Intelligence Research, 3,
1-24.

Muggleton, S., & Feng, C. (1992). Efficient induction of logic programs. In Muggleton, S.
(Ed.), Inductive Logic Programming, pp. 281-297. Academic Press, New York.

Quinlan, J. R. (submitted). Learning first-order definitions of functions. Artificial Intelli-
gence.

Quinlan, J. R., & Cameron-Jones, R. M. (1993). FOIL: A midterm report. In Proceedings
of the European Conference on Machine Learning, pp. 3-20 Vienna.

Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning, 5(3),
239-266.

Rivest, R. L. . (1987). Learning decision lists. Machine Learning, 2(3), 229-246.

Webb, G. L., & Brki¢, N. (1993). Learning decision lists by prepending inferred rules. In
Proceedings of the Australian Workshop on Machine Learning and Hybrid Systems, pp.
6—10 Melbourne, Australia.

Zelle, J. M., & Mooney, R. J. (1994). Combining top-down and bottom-up methods in
inductive logic programming. In Proceedings of the Fleventh International Conference
on Machine Learning, pp. 343-351 New Brunswick, NJ.

12

