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Abstract

This paper presents results on using a theory revision system to automatically

debug logic programs. Forte is a recently developed system for revising function-free

Horn-clause theories. Given a theory and a set of training examples, it performs a hill-

climbing search in an attempt to minimally modify the theory to correctly classify all of

the examples. Forte makes use of methods from propositional theory revision, Horn-

clause induction (Foil), and inverse resolution. The system has has been successfully

used to debug logic programs written by undergraduate students for a programming

languages course.

1 Introduction

Most of the recent work on inductive logic programming has focused on the synthesis of

logic programs from examples, e.g. Foil

[

Quinlan, 1990

]

and Golem

[

Muggleton and Feng,

1990

]

. There has been very little work on automated debugging of logic programs since

Shapiro's original work on the subject

[

Shapiro, 1983

]

. Although systems like Foil and

Golem generally make use of existing subroutines, e.g. learning reverse given append,

the supplied de�nitions are extensional rather than intensional and these systems can only

�
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learn new theories and cannot revise existing ones. However, unlike Shapiro's system, recent

systems do not rely on an omniscient oracle that is capable of determining the truth of

arbitrary ground atomic formulae. Consequently, current systems require much less user

interaction.

This paper presents results on using methods for �rst-order theory revision to automati-

cally debug logic programs without the use of an oracle. We are developing a theory revision

system, Forte

[

Richards and Mooney, 1991

]

, that modi�es an incomplete and/or incorrect

Horn-clause domain theory to �t a set of training examples. When the domain theory is

viewed as a logic program, theory revision corresponds to automated debugging from I/O

pairs. The design of Forte has been in
uenced by a number of previous developments.

Many of its basic revision operators (delete antecedent, add antecedent, delete rule, and add

rule) are based on similar operators in Either, a predecessor of Forte for propositional

Horn-clause theories

[

Ourston and Mooney, 1990; Mooney and Ourston, 1991

]

. Forte also

makes use of a Foil-like algorithm to add new rules and antecedents, and several inverse-

resolution operators

[

Muggleton and Buntine, 1988

]

to generalize and compress the theory.

The system has recently been augmented with a path-�nding method for overcoming local-

maxima

[

Richards and Mooney, 1992

]

and modi�ed to handle recursion.

To test the resulting system, we collected buggy Prolog programs from students in an

undergraduate course on programming languages. Students were asked to hand in their

initial versions of programs for �nding a path in a graph and inserting a new element after a

speci�ed element in a list. The collected programs included a total of 12 distinctly di�erent

buggy programs. Forte was able to correctly debug all but one of these programs based on

a relatively small set of training examples.

Since induction of complete programs is a very di�cult problem, we believe automated

debugging is a more realistic goal with greater potential for practical utility. Induction of

programs in other languages has not been particularly successful. Even the most sophis-

ticated systems have been able to produce only relatively toy programs

[

Barstow, 1988

]

.

Using inductive techniques to revise buggy programs has not been explored nearly as well,

and we believe our initial results in oracle-free inductive logic-program debugging are quite

promising.

The remainder of the paper is organized as follows. Section 2 presents an overview of

Forte's basic revision algorithm. Additional details on the revision algorithm are presented

in

[

Richards and Mooney, 1991; Richards and Mooney, 1992

]

. Section 3 presents results on

automatically debugging actual student programs. Section 4 presents results on debugging

subroutines using only examples for the main program. Section 5 discusses related work and

Section 6 presents directions for future research. Section 7 presents our conclusions.
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2 Forte's Theory Revision Algorithm

In order to revise a logic program, one must �rst detect an error. Forte attempts to prove

all positive and negative instances in the training set using the current program. As in most

ILP systems, positive (negative) instances are tuples of constants that should (should not)

satisfy the goal predicate. When a positive instance is unprovable, some program clause

needs to be generalized. All clauses that failed during the attempted proof are candidates

for generalization. When a negative instance is provable, some program clause needs to be

specialized. All clauses that participated in the successful proof are candidates for special-

ization.

When an error is detected, Forte identi�es all clauses that are candidates for revision.

The core of the system consists of a set of operators that generalize or specialize a clause to

correctly classify a set of examples. Based on the error, all relevant operators are applied

to each candidate clause. The best revision, as determined by classi�cation accuracy on the

complete training set, is implemented. This process iterates until the theory is consistent

with the training set or until Forte is caught in a local maximum, i.e. none of the proposed

revisions improve overall accuracy.

Forte maintains a list, for each program clause, of all errors for which the clause may

be responsible. After trying to prove all instances, the clauses are ordered by the number of

errors for which they may be responsible. Note that we treat specialization and generalization

separately, so each clause may appear twice in this ordered list. Revision begins with the

clause that provides the greatest potential bene�t.

2.1 Specializing the theory

When one or more negative instances are provable, the theory needs to be specialized. There

are two basic ways to do this: delete a clause or add new antecedents to an existing clause.

Deleting a clause is a simple operation. The clause identi�ed in the revision point is deleted

from the theory, and the remaining theory is tested on the training set.

Adding antecedents to a clause is more complex. Our goal is to eliminate incorrect proofs

of negative instances without eliminating many (or any) of the correct proofs of positive

instances. It may be necessary to create several specializations of an existing clause. For

example, we might specialize the propositional rule

a :- b, c

in two di�erent ways

a :- b,c,d,e

a :- b,c,f
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Forte employs two competing methods for adding antecedents. The �rst is similar to Foil

in that it adds antecedents one at a time, choosing at any point the antecedent that provides

the best information gain. Our information metric is di�erent from Foil's in that it considers

only the number of positive and negative instances { not the number of proofs of positives

and negatives.

The second algorithm is called relational path�nding

[

Richards and Mooney, 1992

]

. We

designed this method based on the assumption that relational concepts are usually repre-

sented by a small number of �xed relational paths connecting the arguments of a predicate.

Relational path�nding is reminiscent of Quillian's spreading activation

[

Quillian, 1968

]

. In

essence, the variables already present in the clause are treated as nodes in a graph. Rela-

tions in the predicate are treated as edges (predicates with arity greater than two are simply

edges with more than two ends). THe graph associated with the overly-general clause is

frequently disconnected into separate subgraphs. Relational path�nding seeks to �nd a path

of additional relations that can be used to join the distinct subgraphs into a coherent whole.

2.2 Generalizing the theory

When one or more positive instances cannot be proven, the theory needs to be generalized.

There are several ways to do this in Forte: deleting antecedents from an existing clause,

adding a new clause, or using the inverse resolution operators identi�cation or absorption.

As with clause specialization, several generalizations of a clause may need to be generated

in order to provide proofs for all of the positives without letting negatives become provable.

There are two approaches to deleting antecedents from a rule. The �rst approach, which

works well in simple cases, is to delete antecedents singly, based on a simple information

metric. However, in some cases, we may need to delete several antecedents simultaneously

in order to gain anything. A simple example of this is an "m of n" type problem. Given the

clause

a :- b, c, d, e, f

it may be that all of the antecedents are important, but positive instances are distinguished

by satisfying any three of them. In this case, we would need to create the rules

a :- b, c, d

a :- b, c, e

a :- b, c, f

a :- b, d, e

and so forth. However, deleting a single antecedent may not help, since none of the positives

may satisfy a four antecedent rule like

a :- b, c, d, e

4



In order to add a new clause, Forte copies the clause identi�ed in the revision point. It

then deliberately over-generalizes this clause by deleting all antecedents whose deletion allows

the proof of one or more previously unprovable positives { even though their deletion may

also allow proofs of some negative instances. This overly general rule is then given to the

antecedent addition algorithms described in the section on specialization.

Lastly, Forte can use the inverse resolution operators identi�cation and absorption to

generalize a program. Identi�cation allows alternate de�nitions of a particular literal to come

into play. For example, suppose we have the following two clauses in our program.

a :- b, c, d

a :- b, x

--------------

x :- c, d

Assume c in the �rst clause was a failure point in an attempted proof of a positive instance.

Identi�cation replaces the �rst clause with the third clause shown. This does not a�ect

current proofs, but it allows other de�nitions of x to generalize proofs that use the �rst

clause.

Absorption is, in e�ect, the complement of identi�cation. Suppose we have, in our

program, the �rst two clauses shown below.

a :- b, c, d

x :- c, d

--------------

a :- b, x

Absorption notes the common antecedents and replaces the �rst clause with the third one.

Again, this does not endanger any existing proofs, and has the e�ect of allowing alternate

de�nitions of x to come into play. Absorption is particularly useful for developing recursive

clauses, since x and a may be the same predicate.

3 Debugging Student Programs

In order to test Forte's debugging ability, sample logic programs were collected from stu-

dents taking an undergraduate course on programming languages. Students were given an

assignment to write several short logic programs. The �rst problem involved �nding a path

in a directed graph, a standard test problem for Foil

[

Quinlan, 1990

]

. Below is a correct

program for this problem.

path(A,B):-edge(A,B).

path(A,B):-edge(A,C),path(C,B).
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The second involved inserting an element in a list immediately following a speci�ed item.

Below is a correct program for this problem:

1

insert_after([A|B],A,C,[A,C|B]).

insert_after([A|B],C,D,[A|E]) :- C\=A, insert_after(B,C,D,E).

where insert after(X,A,B,Y) inserts B after the �rst occurrence of A in the list X. Students

were asked to hand in the initial versions of their programs before running and debugging

them. We received 3 distinctly di�erent buggy programs for path, and 9 for insert after.

Forte was given each of these 12 programs to debug together with a training set of

correct input-output pairs. The training set for path was a complete set of positive and

negative examples for an 11-node graph (15 positive, 106 negative). The training set for

insert after contained 10 positive examples for lists up to size 3 and 23 selected negative

examples. For this problem, Forte is also given a de�nition for components.

The system was able to correctly debug all but one of the 13 programs. Debugging time

took an average of 68 seconds for the path programs and 350 seconds for the insert after

examples running in Quintus Prolog on a Sun Sparcstation. One program was not properly

debugged due to a local maximum. The revisions included deleting incorrect clauses, adding

additional literals to clauses, and adding totally new clauses. Below is one of the buggy

student programs for path:

path(A,B):-edge(B,A).

path(A,B):-edge(A,B).

path(A,B):-edge(A,C),edge(D,B),path(A,C).

The �rst clause is incorrect since a directed path is desired. Since it covers a number of

negatives and no positives, Forte retracts this clause as its �rst revision. Since the student

wrote the recursive clause with two edges and a path, the case of a path of length two is not

handled. As a result, Forte adds the rule:

path(A,B) :- edge(A,C), path(C,B).

Finally, Forte decides to delete the student's original recursive clause since the new clause

covers all of the examples it covers. The result is the simple correct program presented

earlier.

One of the buggy student programs for insert after is shown below:

insert_after([A|B],C,D,[A|E]):-insert_after(B,C,D,E).

insert_after([A|B],A,C,[A,C|D]):-insert_after(B,A,C,D).

1

It should be noted that Forte uses a function-free representation like Foil. A term shown as [AjB]

must actually represented by an additional literal, components(X,A,B), in the body of the clause. Forte

translates its results into normal Prolog notation for readability.
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This program is missing a base case, so the �rst revision Forte makes is to add the clause:

insert_after([A|B],A,C,[A,C|B]).

Next, the system adds the antecedent C 6= A to the student's �rst clause to prevent answers

that never insert the desired item. Finally, the student's second clause is deleted because

the instructions were to insert C only after the �rst occurrence of A. The result is the correct

version of insert after previously presented.

4 Additional Debugging Examples

Since the students in the previous experiment were writing their �rst Prolog programs, the

examples could not be too di�cult. Like many ILP systems, Forte can actually induce

complete programs for such simple problems. Given an empty initial theory and the same

data used to re�ne the buggy programs, Forte can construct complete and correct de�ni-

tions for path and insert after. Consequently, it is not particularly surprising that it can

also debug programs for these problems.

However, Forte can also debug programs which, due to fundamental limitations or

resource constraints, existing ILP systems cannot induce without an oracle. Since they

cannot create new predicates, systems like Foil and Golem cannot induce programs with

recursive subroutines unless they are given extensional de�nitions of these subroutines. For

example, they cannot produce a program for reverse given only a background de�nition for

components of a list { they need an extensional de�nition of append. Although Forte is

also unable to induce programs with recursive subroutines from scratch, it can debug many

incorrect de�nitions.

As an example of �xing a recursive subroutine, consider the following buggy de�nition

of subset.

member(A,[A|B]).

member(A,[B|C]).

subset([],A).

subset([A|B],C) :- member(A,C), subset(B,C).

The second clause for member is missing the recursive literal member(A,C) from its body.

Forte successfully added this antecedent given only 64 positive and negative examples of

subset and a de�nition of components { explicit examples of member were not necessary.

5 Related Work

As previously mentioned, most recent work in ILP has concerned the complete induction

of logic programs from examples

[

Quinlan, 1990; Muggleton and Feng, 1990; Kijsirikul et
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al., 1991

]

. Shapiro's Prolog debugger, PDS6

[

Shapiro, 1983

]

, uses many techniques from his

learning system, MIS; however, it requires a great deal of user interaction. The user must

be available to answer membership queries as well as provide other detailed information.

Forte requires only a su�cient supply of examples; no oracle or additional user interaction

is required.

Work in automated debugging for other programming languages has primarily employed

static methods that compare a program to a formal speci�cation

[

Katz and Manna, 1976

]

abstract program plan

[

Johnson, 1986

]

, or existing correct program

[

Murray, 1988

]

. By

comparison, PDS6 and Forte are dynamic. They run a program on speci�c examples,

detect errors, and use them to revise the program.

2

Consequently, dynamic methods require

only partial, extensional de�nitions of programs. This is an important advantage since formal

speci�cations are frequently unavailable. Systems that require an existing correct program

(e.g. Talus

[

Murray, 1988

]

) are primarily useful in tutoring environments, since a correct

program is rarely available in other situations.

Most other work in theory revision is propositional in nature, and therefore inapplicable

to logic programming

[

Ginsberg, 1990; Towell and Shavlik, 1991; Cain, 1991

]

. Focl

[

Pazzani

et al., 1991

]

uses an initial theory to guide a Foil-based system; however, it produces a 
at,

operationalized de�nition instead of a revised theory. A version of Focl that performs theory

revision has been developed

[

Pazzani and Brunk, 1990

]

; however, it requires signi�cant user

interaction. Finally, Focl has not been tested on logic programming problems and it is

unclear how its operationalization procedure would handle recursion.

6 Future Work

As with all existing ILP systems, the problems currently used to test Forte are quite

simple. Consequently, we plan to test Forte's ability to debug more di�cult programs. An

interesting problem we are considering is debugging a Prolog implementation of ID3

[

Bratko,

1990

]

. Since debugging is normally much easier than program synthesis, we believe Forte

should be able to handle larger problems than purely inductive systems. We also plan to

test Forte on other real-world problems such as revising qualitative models of complicated

systems

[

Bratko et al., 1991; Richards and Mooney, 1992

]

and revising the Chou-Fassman

theory for protein folding

[

Maclin and Shavlik, 1991

]

.

Like many other ILP systems (e.g. Golem, Foil), Forte is unable to create new

predicates. Current predicate-invention methods such as inverse resolution

[

Muggleton and

Buntine, 1988

]

are computationally very demanding and usually employ an oracle. E�-

cient oracle-free methods for predicate invention are needed to revise programs that require

additional recursive subroutines.

2

The terms static and dynamic are borrowed from

[

Murray, 1988

]

.
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We are also developing techniques for learning search heuristics

[

Mitchell, 1984; Cohen,

1990

]

to improve the e�ciency of logic programs. Meta-rules for when to use a particular

clause can be empirically learned using sample calls for which the clause ultimately failed

or succeeded in leading to a �nal solution. Such examples can be extracted from the search

conducted during the execution of a logic program

[

Cohen, 1990

]

. Existing ILP systems

should be useful for learning search heuristics from these examples. As an example, consider

the following exponential-time sorting program:

naivesort(X,Y) :- permutation(X,Y), ordered(Y).

permutation([],[]).

permutation([X|Xs],Ys) :- permutation(Xs,Ys1), remove(X,Ys,Ys1).

remove(X,[X|Xs],Xs).

remove(X,[Y|Ys],[Y|Ys1]) :- remove(X,Ys,Ys1).

ordered([_X]).

ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

The predicate remove(X,Y,Z) is true if removing one of the occurrences of the item X from

the list Y leaves the list Z. The predicate permutation actually uses remove to insert an

element into a list at every possible position. Using examples for when each of the clauses

for remove leads to a success or failure, it should be possible to learn the following heuristics:

the base case ultimately leads to a solution when Xs = [] or when Xs = [YjYs] and X � Y;

the recursive clause leads to a solution when X > Y. If these constraints are folded into the

existing rules, the resulting de�nition for remove is:

remove(X,[X],[]).

remove(X,[X,Y|Ys],[Y|Ys]) :- X =< Y.

remove(X,[Y|Ys],[Y|Ys1]) :- X > Y, remove(X,Ys,Ys1).

When this new procedure is used by permutation, it always inserts the element X before

the �rst element of Ys1 that is greater than it. Upon inspection, it is clear that the result is

an insertion sort, where permutation always returns a sorted permutation and the ordered

check is redundant. Consequently, by learning heuristics for when to use each of the clauses

for remove, we have turned an O(n!) sorting algorithm into a O(n

2

) one! We are currently

developing an ILP system that learns such heuristics using a Foil-based inductive learner.

7 Conclusions

Automated program debugging is an area of ILP that has not been extensively explored.

Shapiro's original work in this area has not been followed-up nearly as well as his work on
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induction of complete programs. We believe that recent developments in �rst-order induction

and theory revision hold great promise in developing dynamic automated debuggers for logic

programming. Initial results on using our theory revision system, Forte, to debug logic

programs is quite promising. It is already capable of debugging actual student programs for

simple problems without any user interaction. We plan to extend our tests to larger, more

realistic problems and to develop e�ective learning methods for improving the speed as well

as the accuracy of logic programs.
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