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Abstract. Markov logic networks (MLNs) are an expressive represen-
tation for statistical relational learning that generalizes both first-order
logic and graphical models. Existing discriminative weight learning meth-
ods for MLNs all try to learn weights that optimize the Conditional Log
Likelihood (CLL) of the training examples. In this work, we present a new
discriminative weight learning method for MLNs based on a max-margin
framework. This results in a new model, Max-Margin Markov Logic Net-
works (M3LNs), that combines the expressiveness of MLNs with the pre-
dictive accuracy of structural Support Vector Machines (SVMs). To train
the proposed model, we design a new approximation algorithm for loss-
augmented inference in MLNs based on Linear Programming (LP). The
experimental result shows that the proposed approach generally achieves
higher F1 scores than the current best discriminative weight learner for
MLNs.

1 Introduction

Statistical relational learning (SRL) concerns the induction of probabilistic knowl-
edge that supports accurate prediction for multi-relational structured data [1].
Markov Logic Networks (MLNs) are a recently developed SRL model that gen-
eralizes both full first-order logic and Markov networks [2]. An MLN consists of
a set of weighted clauses in first-order logic. Rather than completely ruling out
situations that violate these logical constraints, possible worlds simply become
exponentially less likely as the total weight of violated clauses increases. MLNs
have been successfully applied to a variety of real-world problems ranging from
collective classification of web pages [3] to extraction of bibliographic information
from scientific papers [4].

Existing discriminative training algorithms for learning MLN weights at-
tempt to maximize the conditional log likelihood (CLL) of a set of target pred-

icates given evidence provided by a set of background predicates [5, 3, 6]. If the
goal is to predict accurate target-predicate probabilities, this approach is well
motivated. However, in many applications, the actual goal is to maximize an al-
ternative performance metric such as classification accuracy or F-measure. Max-
margin methods are a competing approach to discriminative training that are
well-founded in computational learning theory and have demonstrated empirical
success in many applications [7]. They also have the advantage that they can be



adapted to maximize a variety of performance metrics in addition to classification
accuracy [8]. Max-margin methods have been successfully applied to structured
prediction problems, such as in Max-Margin Markov Networks (M3Ns) [9] and
structural SVMs [10]; however, until now, they have not been applied to an SRL
model that generalizes first-order logic such as MLNs.

In this paper, we develop Max-Margin MLNs (M3LNs) by instantiating an ex-
isting general framework for max-margin training of structured models [11]. This
requires developing a new algorithm for approximating the “loss-augmented” in-
ference in MLNs. Extensive experiments in the two real-world MLN applications
referenced above demonstrate that M3LNs generally produce improved results
when the goal involves maximizing predictive accuracy metrics other than CLL.

The remainder of the paper is organized as follows. Section 2 provides some
background on MLNs and structural SVMs. Section 3 presents the max-margin
approach for weight learning in MLNs. Section 4 shows the experimental eval-
uation of the proposed approach. Section 5 and 6 discuss the related work and
future work. Section 7 concludes the paper.

2 Background

2.1 MLNs and Alchemy

An MLN consists of a set of weighted first-order clauses. It provides a way
of softening first-order logic by making situations in which not all clauses are
satisfied less likely but not impossible [2]. More formally, let X be the set of all
propositions describing a world (i.e. the set of all ground atoms), F be the set of
all clauses in the MLN, wi be the weight associated with clause fi ∈ F, Gfi

be the
set of all possible groundings of clause fi, and Z be the normalization constant.
Then the probability of a particular truth assignment x to the variables in X is
defined as [2]:
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where g(x) is 1 if g is satisfied and 0 otherwise, and ni(x) =
∑

g∈Gfi
g(x) is the

number of groundings of fi that are satisfied given the current truth assignment
to the variables in X .

There are two inference tasks in MLNs. The first one is to infer the Most
Probable Explanation (MPE) or the most probable truth values for a set of
unknown literals y given a set of known literals x, provided as evidence (also



called MAP inference). This task is formally defined as follows:

arg max
y

P (y|x) = argmax
y
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i

wini(x,y) (2)

where Zx is the normalization constant over all possible worlds consistent with
x, and ni(x,y) is the number of true groundings of clause fi given the truth
assignment (x,y). MPE inference in MLNs is therefore equivalent to finding the
truth assignment that maximizes the sum of the weights of satisfied clauses, a
Weighted MAX-SAT problem. This is an NP-hard problem for which a number
of approximate solvers exist, of which the most commonly used is MaxWalkSAT
[12]. Recently, Riedel [13] proposed a more efficient and accurate MPE inference
algorithm for MLNs called Cutting Plane Inference (CPI), which does not require
grounding the whole MLN. However, the CPI method only works well for some
classes of MLNs where the separation step of the CPI method returns a small
set of constraints. In the worst case, it also constructs the whole ground MLN.

The second inference task in MLNs is computing the conditional probabilities
of some unknown literals, y, given some evidence x. Computing these probabil-
ities is also intractable, but there are good approximation algorithms such as
MC-SAT [14] and lifted belief propagation [15].

Learning an MLN consists of two tasks: structure learning and weight learn-
ing. The weight learner can learn weights for clauses written by a human expert
or automatically induced by a structure learner. There are two approaches to
weight learning in MLNs: generative and discriminative. In discriminative learn-
ing, we know a priori which predicates will be used to supply evidence and which
ones will be queried, and the goal is to correctly predict the latter given the for-
mer. Several discriminative weight learning methods have been proposed, all of
which try to find weights that maximize the CLL (equivalently, minimize the
negative CLL). In MLNs, the derivative of the negative CLL with respect to a
weight wi is the difference of the expected number of true groundings Ew[ni]
of the corresponding clause fi and the actual number according to the data
ni. However, computing the expected count Ew[ni] is intractable. The first dis-
criminative weight learner [5] uses the voted perceptron algorithm [16] where it
approximates the intractable expected counts by the counts in the MPE state
computed by the MaxWalkSAT. Later, Lowd and Domingos [3] presented a
number of first-order and second-order methods for optimizing the CLL. These
methods use samples from MC-SAT to approximate the expected counts used
to compute the gradient and Hessian of the CLL. Among them, the best per-
forming is preconditioner scaled conjugate gradient (PSCG) [3]. This method
uses the inverse diagonal Hessian as the preconditioner. Recently, Huynh and
Mooney [6] proposed an efficient and accurate discriminative weight learner for
MLNs when all clauses are non-recursive (A non-recursive clause is a clause that
contains only one non-evidence literal). For information about previous work on
structure learning see [17].



Alchemy [18] is an open source software package for MLNs. It includes
implementations for all of the major existing algorithms for structure learning,
generative weight learning, discriminative weight learning, and inference. Our
proposed algorithm is implemented using Alchemy.

2.2 Structural Support Vector Machines

In this section, we briefly review the structural SVM problem and an algorithmic
schema for solving it efficiently. For more detail, see [11]. In structured output
prediction, we want to learn a function h : X → Y, where X is the space of
inputs and Y is the space of multivariate and structured outputs Y, from a set
of training examples S:

S = ((x1, y1), ..., (xn, yn)) ∈ (X × Y)n

The goal is to find a function h that has low prediction error. This can be
accomplished by learning a discriminant function f : X×Y → R, then maximizing
f over all y ∈ Y for a given input x to get the prediction.

hw(x) = arg max
y∈Y

fw(x, y)

The discriminant function fw(x, y) takes the form of a linear function:

fw(x, y) = wT Ψ(x, y)

where w ∈ RN is a parameter vector and Ψ(x, y) is a feature vector relating an
input x and output y. The features need to be designed for a given problem so
that they capture the dependency structure of y and x and the relations among
the outputs y . Then, the goal is to find a weight vector w that maximizes the
margin:

γ(xi, yi; w) = wT Ψ(xi, yi) − max
y′

i
∈Y\yi

wT Ψ(xi, y
′
i)

To find such a weight vector, Joachims et al. [11] proposed to solve the following
optimization problem, called the “1-slack” structural SVM problem:

Optimization Problem 1 (OP1): 1-Slack Structural SVMs [11]

min
w,ξ≥0

1

2
wT w + Cξ

s.t. ∀(ȳ1, ..., ȳn) ∈ Yn :
1

n
wT

n
∑

i=1

δΨ(ȳi) ≥
1

n

n
∑

i=1

∆(yi, ȳi) − ξ

where δΨ(ȳi) = Ψ(xi, yi) − Ψ(xi, ȳi), and ∆(yi, ȳi) is the loss function. This op-
timization problem has an exponential number of constraints |Y|n, one for each
possible combination of labels (ȳ1, ..., ȳn) ∈ Yn, but it can be solved efficiently
(provably linear runtime in the number of training examples) by Algorithm 1.



Algorithm 1 Cutting-plane method for solving the “1-slack structural SVMs”
[11]

1: Input: S = ((x1, y1), ..., (xn, yn)), C, ε

2: W ← ∅
3: repeat
4:

(w, ξ)← min
w,ξ≥0

1

2
wT w + Cξ

s.t. ∀(ȳ1, ..., ȳn) ∈W :
1

n
wT

n
X

i=1

[Ψ(xi, yi)− Ψ(xi, ȳi)] ≥
1

n

n
X

i=1

∆(yi, ȳi)− ξ

5: for i = 1 to n do
6: ŷi ← arg maxŷ∈Y{∆(yi, ŷ) + wT Ψ(xi, ŷ)}
7: end for
8: W ←W ∪ {(ŷ1, ..., ŷn)}

9: until 1

n

n
P

i=1

∆(yi, ŷi)−
1

n
wT

n
P

i=1

[Ψ(xi, yi)− Ψ(xi, ŷi)] ≤ ξ + ε

10: return (w, ξ)

In each iteration, this algorithm solves a Quadratic Programming (QP) problem
(line 4) to find the optimal weights corresponding to the current set of constraints
W and a loss-augmented inference problem (line 6), also called a separation ora-
cle, to find the most violated constraint to add to W. Since the QP problem does
not depend on the structure of a particular problem (the Ψ(x, y) and ∆(y, ȳ)), it
can be solved by any QP solver. In contrast, for each specific problem, one needs
to come up with an efficient way to solve the loss-augmented inference problem.

In summary, to apply structural SVMs to a new problem, one needs to design
a new feature vector function Ψ(x, y), choose a loss function ∆(y, ȳ), and solve
two argmax problems:

Prediction: argmaxy∈Y wT Ψ(x, y)
Separation Oracle: arg maxȳ∈Y{∆(y, ȳ) + wT Ψ(x, ȳ)}

3 Max-Margin Weight Learning for MLNs

3.1 Max-Margin Formulation

All of the current discriminative weight learners for MLNs try to find a weight
vector w that optimizes the conditional log-likelihood P (y|x) of the query atoms
y given the evidence x. However, an alternative approach is to learn a weight
vector w that maximizes the ratio:

P (y|x,w)

P (ŷ|x,w)

between the probability of the correct truth assignment y and the closest com-
peting incorrect truth assignment ŷ = argmaxȳ∈Y\y P (ȳ|x). Applying equation



1 and taking the log, this problem translates to maximizing the margin:

γ(x,y;w) = wTn(x,y) − wT n(x, ŷ)

= wTn(x,y) − max
ȳ∈Y\y

wT n(x, ȳ)

Note that, this translation holds for all log-linear models. For example, if we ap-
ply it to a CRF [19] then the result model is an M3N [9]. In fact, this translation
is the connection between log-linear models and linear classifiers [20].

In turn, the max-margin problem above can be formulated as a “1-slack”
structural SVM as follows:

Optimization Problem 2 (OP2): Max-Margin Markov Logic Networks

min
w,ξ≥0

1

2
wTw + Cξ

s.t. ∀ȳ ∈ Y : wT [n(x,y) − n(x, ȳ)] ≥ ∆(y, ȳ) − ξ

So for MLNs, the number of true groundings of the clauses n(x,y) plays the role
of the feature vector function Ψ(x, y) in the general structural SVM problem. In
other words, each clause in an MLN can be viewed as a feature representing a
dependency between a subset of inputs and outputs or a relation among several
outputs.

As mentioned, in order to apply Algorithm 1 to MLNs, we need algorithms
for solving the following two problems:

Prediction: argmaxy∈Y wT n(x,y)
Separation Oracle: arg maxȳ∈Y {∆(y, ȳ) + wT n(x, ȳ)}

The prediction problem is just the (intractable) MPE inference problem dis-
cussed in section 2.1. We can use MaxWalkSAT to get an approximate solu-
tion, but we have found that models trained with MaxWalkSAT have very low
predictive accuracy. On the other hand, recent work [21] has found that fully-
connected pairwise Markov random fields, a special class of structural SVMs,
trained with overgenerating approximate inference methods (such as relaxation)
preserves the theoretical guarantees of structural SVMs trained with exact infer-
ence, and exhibits good empirical performance. Based on this result, we sought
a relaxation-based approximation for MPE inference. We first present an LP-
relaxation algorithm for MPE inference, then show how to modify it to solve the
separation oracle problem for some specific loss functions.

3.2 Approximate MPE inference for MLNs

MPE inference in MLNs is equivalent to the Weighted MAX-SAT problem, and
there has been significant work on approximating this NP-hard problem us-
ing LP-relaxation [22, 23]. The existing algorithms first relax and convert the
Weighted MAX-SAT problem into a linear or semidefinite programming prob-
lem, then solve it and apply a randomized rounding method to obtain an ap-
proximate integral solution. These methods cannot be directly applied to MLNs,



since they require the weights to be positive while MLN weights can be negative
or infinite. So we modified the conversion used in these approaches to handle the
case of negative and infinite weights.

Based on the evidence and the closed world assumption, a ground MLN con-
tains only ground clauses (in clausal form) of the unknown ground atoms after
removing all trivially satisfied and unsatisfied clauses. The following procedure
translates the MPE inference in a ground MLN into an Integer Linear Program-
ming (ILP) problem.

1. Assign a binary variable yi to each unknown ground atom. yi is 1 if the
corresponding ground atom is TRUE and 0 if the ground atom is FALSE.

2. For each ground clause Cj with infinite weight, add the following linear
constraint to the ILP problem:

∑

i∈I+

j

yi +
∑

i∈I−

j

(1 − yi) ≥ 1

where I+

j , I−j are the sets of positive and negative ground literals in clause
Cj respectively.

3. For each ground clause Cj with positive weight wj , introduce a new auxiliary
binary variable zj, add the term wjzj to the objective function, and add the
following linear constraint to the ILP problem:

∑

i∈I+

j

yi +
∑

i∈I−

j

(1 − yi) ≥ zj

zj is 1 if the corresponding ground clause is satisfied.
4. For each ground clause Cj with k ground literals and negative weight wj ,

introduce a new auxiliary boolean variable zj , add the term −wjzj to the
objective function and add the following k linear constrains to the ILP prob-
lem:

1 − yi ≥ zj , i ∈ I+

j

yi ≥ zj , i ∈ I−j

The final ILP has the following form:
Optimization Problem 3:

max
yi,zi

∑

Cj∈C+

wjzj +
∑

Cj∈C−

−wjzj

s.t.
∑

i∈I+

j

yi +
∑

i∈I−

j

(1 − yi) ≥ 1 ∀ Cj where wj = ∞

∑

i∈I+

j

yi +
∑

i∈I−

j

(1 − yi) ≥ zj ∀Cj ∈ C+

1 − yi ≥ zj ∀ i ∈ I+

j and Cj ∈ C−

yi ≥ zj ∀ i ∈ I−j and Cj ∈ C−

yi, zj ∈ {0, 1}



Algorithm 2 The modified ROUNDUP procedure

1: Input: The LP solution y = {y1, ..., yn}
2: F ← ∅
3: for i = 1 to n do
4: if yi is integral then
5: Remove all the ground clauses satisfied by assigning the value of yi to the

corresponding ground atom
6: else
7: add yi to F
8: end if
9: end for

10: repeat
11: Remove the last item yi in F

12: Compute the sum w+ of the unsatisfied clauses where yi appears as a positive
literal

13: Compute the sum w− of the unsatisfied clauses where yi appears as a negative
literal

14: if w+ > w− then
15: yi ← 1
16: else
17: yi ← 0
18: end if
19: Remove all the ground clauses satisfied by assigning the value of yi to the cor-

responding ground atom
20: until F is empty
21: return y

where C+ and C− are the set of clauses with positive and negative weights
respectively. This ILP problem can be simplified by not introducing an auxiliary
variable zj for unit clauses, where we can use the variable yi directly. This
reduces the problem considerably, since ground MLNs typically contain many
unit clauses (Alchemy combines all the non-recursive clauses containing the
query atom into a unit clause whose weight is the sum of all the clauses’ weights).
Note that our mapping from a ground MLN to an ILP problem is a bit different
from the one presented in [13] which generates two sets of constraints for every
ground clause: one when the clause is satisfied and one when it is not. For a clause
with positive weight, our mapping only generates a constraint when the clause
is satisfied; and for a clause with negative weight, the mapping only imposes
constraints when the clause is unsatisfied. The final ILP problem has the same
solution with the one in [13], but it has fewer constraints since our mapping
does not generate unnecessary constraints. We then relax the integer constraints
yi, zj ∈ {0, 1} to linear constraints yi, zj ∈ [0, 1] to obtain an LP-relaxation of
the MPE problem.

This LP problem can be solved by any general LP solver. If the LP solver
returns an integral solution, then it is also the optimal solution to the original
ILP problem. In our case, the original ILP problem is an NP-hard problem, so



the LP solver usually returns non-integral solutions. Therefore, the LP solution
needs to be rounded to give an approximate ILP solution. We first tried some
of the randomized rounding methods in [23] but they gave poor results since
the LP solution has a lot of fractional components with value 0.5. We then
adapted a rounding procedure called ROUNDUP [24], a procedure for producing
an upper-bound binary solution for a pseudo-Boolean function, to the case of
pseudo-Boolean functions with linear constraints, which we found to work well.
In each step, this procedure picks one fractional component and rounds it to 1
or 0. Hence, this process terminates in at most n steps, where n is the number
of query atoms. Note that due to the dependencies between yi’s and zj ’s (the
linear constraints of the LP problem), this modified ROUNDUP procedure does
not guarantee an improvement in the value of the objective function in each step
like the original ROUNDUP procedure where all the variables are independent.

3.3 Approximation algorithm for the separation oracle

The separation oracle adds an additional term, the loss term, to the objective
function. So, if we can represent the loss as a linear function of the yi variables
of the LP-relaxation, then we can use the above approximation algorithm to also
approximate the separation oracle. In this work, we consider two loss functions.
The first one is the 0/1 loss function, ∆0/1(y

T,y) where yT is the true assign-
ment and y is some predicted assignment. For this loss function, the separation
oracle is the same as the MPE inference problem since the loss function only
adds a constant 1 to the objective function. Hence, in this case, to find the most
violated constraint, we can use the LP-relaxation algorithm above or any other
MPE inference algorithm. This 0/1 loss makes the separation oracle problem
easier but it does not scale the margin by how different yT and y are. It only
requires a unit margin for all assignments y different from the true assignment
yT. To take into account this problem, we consider the second loss function that
is the number of misclassified atoms or the Hamming loss:

∆Hamming(yT,y) =

n
∑

i

[yT
i 6= yi]

=

n
∑

i

[(yT
i = 0 ∧ yi = 1) ∨ (yT

i = 1 ∧ yi = 0)]

From the definition, this loss can be represented as a function of the yi’s:

∆Hamming(yT,y) =
∑

i:yT
i

=0

yi +
∑

i:yT
i

=1

(1 − yi)

which is equivalent to adding 1 to the coefficient of yi if the true value of yi is
0 and subtracting 1 from the coefficient of yi if the true value of yi is 1. So we
can use the LP-relaxation algorithm above to approximate the separation oracle
with this Hamming loss function. Another possible loss function is (1−F1) loss.



Unfortunately, this loss is a non-linear function, so we cannot use the above
approach to optimize it. Developing algorithms for optimizing or approximating
this loss function is an area for future work.

4 Experimental Evaluation

This section presents experiments comparing M3LNs to the current best dis-
criminative weight learner for MLNs with recursive clauses, PSCG.

4.1 Datasets

We ran experiments on two large, real-world MLN datasets: WebKB for collective
web-page classification, and CiteSeer for bibliographic citation segmentation. All
the datasets and MLNs can be found at the Alchemy website1.

The WebKB dataset consists of labeled web pages from the computer science
departments of four universities. Different versions of this data have been used in
previous work. To make a fair comparison, we used the version from [3], which
contains 4,165 web pages and 10,935 web links. Each page is labeled with a
subset of the categories: course, department, faculty, person, professor, research

project, and student. The goal is to predict these categories from the words and
links on the web pages. We used the same simple MLN from [3], which only has
clauses relating words to page classes, and page classes to the classes of linked
pages.

Has(+word, page)→ PageClass(+class,page)
¬Has(+word, page)→ PageClass(+class,page)
PageClass(+c1, p1) ∧ Linked(p1, p2)→ PageClass(+c2, p2)

The plus notation creates a separate clause for each pair of word and page class,
and for each pair of classes. The final MLN consists of 10,891 clauses, and a
weight must be learned for each one. After grounding, each department results
in an MLN with more than 100,000 ground clauses and 5,000 query atoms in a
complex network. This also results in a large LP-relaxation problem for MPE
inference.

For CiteSeer, we used the dataset and MLN used in [4]. The dataset has
1,563 citations and each of them is segmented into three fields: Author, Title

and Venue. The dataset has four disconnected segments corresponding to four
different research topics. We used the simplest MLN in [4], which is the isolated
segmentation model. Despite its simplicity, after grounding, this model results in
a large network with more than 30,000 query atoms and 110,000 ground clauses.

1 http://alchemy.cs.washington.edu



Table 1. F1 scores on WebKB

Cornell Texas Washington Wisconsin Average

PSCG-MCSAT 0.418 0.298 0.577 0.568 0.465
PSCG-LPRelax 0.420 0.310 0.588 0.575 0.474
MM-∆0/1-MaxWalkSAT 0.150 0.162 0.122 0.122 0.139
MM-∆0/1-LPRelax 0.282 0.372 0.675 0.521 0.462
MM-∆Hamming-LPRelax 0.580 0.451 0.715 0.659 0.601

Table 2. F1 scores of different inference algorithms on WebKB

Cornell Texas Washington Wisconsin Average

PSCG-MCSAT 0.418 0.298 0.577 0.568 0.465
PSCG-MaxWalkSAT 0.161 0.140 0.119 0.129 0.137
PSCG-LPRelax 0.420 0.310 0.588 0.575 0.474
MM-∆Hamming-MCSAT 0.470 0.370 0.573 0.481 0.473
MM-∆Hamming-MaxWalkSAT 0.185 0.184 0.150 0.154 0.168
MM-∆Hamming-LPRelax 0.580 0.451 0.715 0.659 0.601

4.2 Metrics

We used F1, the harmonic mean of recall and precision, to measure the per-
formance of each algorithm. This is the standard evaluation metric in multi-
class text categorization and information extraction. For systems that compute
marginal probabilities rather than MPEs, we predict that an atom is true iff its
probability is at least 0.5.

4.3 Methodology

We ran four-fold cross-validation (i.e. leave one university/topic out) on both
datasets. For the max-margin weight learner, we used a simple process for se-
lecting the value of the C parameter. For each train/test split, we trained the al-
gorithm with five different values of C: 1, 10, 100, 1000, and 10000, then selected
the one which gave the highest average F1 score on training. The ǫ parameter
was set to 0.001 as suggested in [11]. To solve the QP problems in Algorithm
1 and LP problems in the LP-relaxation MPE inference, we used the Mosek
2 solver. The PSCG algorithm was carefully tuned by its author. For MC-SAT
and MaxWalkSAT, we used the default setting in Alchemy.

4.4 Results and Discussion

Table 1 and 3 present the performance of different systems on the WebKB and
Citeseer datasets. Each system is named by the weight learner used, the loss

2 http://www.mosek.com/



Table 3. F1 scores on CiteSeer

Constraint Face Reasoning Reinforcement Average

PSCG-MCSAT 0.937 0.914 0.931 0.975 0.939
MM-∆Hamming-LPRelax 0.933 0.922 0.924 0.958 0.934

Table 4. F1 scores on CiteSeer with different parameter values

Constraint Face Reasoning Reinforcement Average

PSCG-MCSAT-5 0.852 0.844 0.836 0.923 0.864
PSCG-MCSAT-10 0.937 0.914 0.931 0.973 0.939
PSCG-MCSAT-15 0.878 0.896 0.780 0.891 0.861
PSCG-MCSAT-20 0.850 0.859 0.710 0.784 0.801
PSCG-MCSAT-100 0.658 0.697 0.600 0.668 0.656
MM-∆Hamming-LPRelax-1 0.933 0.922 0.924 0.955 0.934
MM-∆Hamming-LPRelax-10 0.926 0.922 0.925 0.955 0.932
MM-∆Hamming-LPRelax-100 0.926 0.922 0.925 0.954 0.932
MM-∆Hamming-LPRelax-1000 0.931 0.918 0.925 0.958 0.933
MM-∆Hamming-LPRelax-10000 0.932 0.922 0.919 0.968 0.935

function used in training, and the inference algorithm used in testing. For max-
margin (MM) learner with margin rescaling, the inference used in training is the
loss-augmented version of the one used in testing. For example, MM-∆Hamming-
LPRelax is the max-margin weight learner using the loss-augmented (Hamming
loss) LP-relaxation MPE inference algorithm in training and the LP-relaxation
MPE inference algorithm in testing.

Table 1 shows that the model trained by MaxWalkSAT has very low predic-
tive accuracy. This result is consistent with the result presented in [13] which also
found that the MPE solution found by MaxWalkSAT is not very accurate. Us-
ing the proposed LP-relaxation MPE inference improves the F1 score from 0.139
to 0.462, the MM-∆0/1-LPRelax system. Then the best system is obtained by
rescaling the margin and training with our loss-augmented LP-relaxation MPE
inference, which is the only difference between MM-∆Hamming-LPRelax and
MM-∆0/1-LPRelax. The MM-∆Hamming-LPRelax achieves the best F1 score
(0.601), which is much higher than the 0.465 F1 score obtained by the current
best discriminative weight learner for MLNs, PSCG-MCSAT.

Table 2 compares the performance of the proposed LP-relaxation MPE infer-
ence algorithm against MCSAT and MaxWalkSAT on the best trained models by
PSCG and MM on the WebKB dataset. In both cases, the LP-relaxation MPE
inference achieves much better F1 scores than those of MCSAT and MaxWalk-
SAT. This demonstrates that the approximate MPE solution found by the LP-
relaxation algorithm is much more accurate than the one found by the MaxWalk-
SAT algorithm. The fact that the performance of the LP-relaxation is higher
than that of MCSAT shows that in collective classification it is better to use the
MPE solution as the prediction than the marginal prediction.



For the WebKB dataset, there are other results reported in previous work,
such as those in [9], but those results cannot be directly compared to our results
since we use a different version of the dataset and test on a more complicated
task (a page can have multiple labels not just one).

On the Citeseer results presented in Table 3, the performance of max-margin
methods are very close to those of PSCG. However, its performance is much
more stable. Table 4 shows the performance of MM weight learners and PSCG
with different parameter values by varying the C value for MM and the number
of iterations for PSCG. The best number of iterations for PSCG is 9 or 10.
In principle, we should run PSCG until it converges to get the optimal weight
vector. However, in this case, the performance of PSCG drops drastically on
both training and testing after a certain number of iterations. For example,
from Table 4 we can see that at 10 iterations PSCG achieves the best F1 score
of 0.939, but after 15 iterations, its F1 score drops to 0.861 which is much worse
than those of the max-margin weight learners. Moreover, if we let it run until 100
iterations, then its F1 score is only 0.656. On the other hand, the performance of
MM only varies a little bit with different values of C and we don’t need to tune
the number of iterations of MM. On this dataset, [4] achieved a F1 score of 0.944
with the same MLN by using a version of the voted perceptron algorithm called
Contrastive Divergence (CD) [25] to learn the weights. However, the performance
of the CD algorithm is very sensitive to the learning rate [3], which requires a
very careful tuning process to learn a good model.

Regarding training time, on both of the datasets, the max-margin weight
learner is comparable to PSCG. It usually took about 200 iterations on the
WebKB and less than 50 iterations on Citeseer to find the optimal weights,
which resulted in a few hours of training for WebKB and less than an hour for
Citeseer.

5 Related Work

Our work is related to various previous projects. Among them, M3N [9] is prob-
ably the most related. It is a special case of structural SVMs where the feature
function Ψ(x, y) is represented by a Markov network. When the Markov net-
work can be triangulated and the loss function can be linearly decomposed, the
original exponentially-sized QP can be reformulated as a polynomially-sized QP
[9]. Then, the polynomially-sized QP can be solved by general QP solvers [26],
decomposition methods [9], extragradient methods [27], or exponentiated gra-
dient methods [28]. As mentioned in [9], these methods can also be used when
the graph cannot be triangulated, but the algorithms only yield approximate so-
lutions like our approach. However, these algorithms are restricted to the cases
where a polynomially-sized reformulation exists [11]. That’s why in this work
we used the general cutting plane algorithm which imposes no restrictions on
the representation. The ground MLN can be any kind of graph. On the other
hand, since an MLN is a template for constructing Markov networks [2], the
proposed model, M3LN, can also be seen as a template for constructing M3Ns.



Hence, when the ground MLN can be triangulated and the loss is a linearly
decomposable function, the algorithms developed for M3Ns can be applied. Our
work is also closely related to the Relational Markov Networks (RMNs) [29].
However, by using MLNs, M3LNs are more powerful than RMNs in term of rep-
resentation [2]. Besides, the objectives of M3LNs and RMNs are different. One
tries to maximize the margin between the true assignment and other competing
assignments, and one tries to maximize the conditional likelihood of the true
assignment. Another related system is Rumble [30], a margin-based approach
to first-order rule learning. In that work, the goal is to find a set of weighted
rules that maximizes a quantity called margin minus variance. However, unlike
M3LNs, Rumble only applies to independent binary classification problems and
is unable to perform structured prediction or collective classification. In terms of
applying the general structural SVM framework to a specific representation, our
work is related to the work in [31] which used CRFs as the representation and
graph cuts as the inference algorithm. In the context of discriminative learning,
our work is related to previous work on discriminative training for MLNs [5, 3,
6, 32]. We have mentioned some of them [5, 3, 6] in previous sections. The main
difference between the work in [32] and ours is that we assume the structure
is given and apply max-margin framework to learn the weights while [32] tries
to learn a structure that maximizes the conditional likelihood of the data. Ex-
tending the max-margin framework to structure learning is an area for future
work.

6 Future Work

Currently, our loss-augmented LP-relaxation MPE inference algorithm requires
grounding the entire network first. It would be useful to develop new loss-
augmented MPE inference algorithms which do not require grounding the full
network. On the other hand, the max-margin framework allows optimizing differ-
ent kinds of loss functions. Therefore, it would also be interesting to extend the
current algorithm to optimize other loss functions. Besides, we also want to ap-
ply M3LNs to other structured prediction tasks and compare to other structured
prediction models.

7 Conclusions

We have presented a max-margin weight learning method for MLNs based on
the framework of structural SVMs. It resulted in a new model, M3LN, that
has the representational expressiveness of MLNs and the predictive performance
of SVMs. M3LNs can be trained to optimize different performance measures
depending on the needs of the application. To train the proposed model, we
developed a new approximation algorithm for loss-augmented MPE inference
in MLNs based on LP-relaxation. The experimental results showed that the
new max-margin learner generally has better or equally good but more stable



predictive accuracy (as measured by F1) than the current best discriminative
MLN weight learner.
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