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Abstract
Most of the existing weight-learning algorithms for Markov
Logic Networks (MLNs) use batch training which becomes
computationally expensive and even infeasible for very large
datasets since the training examples may not fit in main
memory. To overcome this problem, previous work has
used online learning algorithms to learn weights for MLNs.
However, this prior work has only applied existing online
algorithms, and there is no comprehensive study of online
weight learning for MLNs. In this paper, we derive a new
online algorithm for structured prediction using the primal-
dual framework, apply it to learn weights for MLNs, and
compare against existing online algorithms on three large,
real-world datasets. The experimental results show that
our new algorithm generally achieves better accuracy than
existing methods, especially on noisy datasets.
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1 Introduction

Statistical relational learning (SRL) concerns the in-
duction of probabilistic knowledge that supports accu-
rate prediction for multi-relational structured data [11].
These powerful SRL models have been successfully ap-
plied to a variety of real-world problems. However, the
power of these models come with a cost, since they
can be computationally expensive to train, in partic-
ular since most existing SRL learning methods employ
batch training where the learner must repeatedly run
inference over all training examples in each iteration.
Training becomes even more expensive in larger datasets
containing thousands of examples, and even infeasible
in some cases where there is not enough main memory
to fit the training data [24]. A well-known solution to
this problem is online learning where the learner sequen-
tially processes one example at a time. In this work,
we look at the problem of online weight learning for
Markov Logic Networks (MLNs), a recently developed
SRL model that generalizes both full first-order logic
and Markov networks [29, 10]. Riedel and Meza-Ruiz
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[31] and Mihalkova and Mooney [24] have used online
learning algorithms to learn weights for MLNs. How-
ever, previous work only applied one existing online al-
gorithm to MLNs and did not provide a comparative
study of online weight learning for MLNs.

In this work, we derive a new online algorithm for
structured prediction [1] from the primal-dual frame-
work for strongly convex loss functions [16], which is
the latest framework for deriving online algorithms that
have low regret, and apply it to learn weights for MLNs
and compare against existing online algorithms that
have been used in previous work. The experimental
results show that our new algorithms generally achieve
better accuracy than existing algorithms on three large,
real-world datasets, especially on noisy datasets.

2 Background

2.1 Notation We use lower case letters (e.g. w, λ)
to denote scalars, bold face letters (e.g. x, y, λ) to
denote vectors, and upper case letters (e.g. W , X) to
denote sets. The inner product between vectors w and
x is denoted by 〈w,x〉.

2.2 MLNs An MLN consists of a set of weighted
first-order clauses. It provides a way of softening first-
order logic by making situations in which not all clauses
are satisfied less likely but not impossible [29, 10]. More
formally, let X be the set of all propositions describing
a world (i.e. the set of all ground atoms), F be the set of
all clauses in the MLN, wi be the weight associated with
clause fi ∈ F, Gfi be the set of all possible groundings
of clause fi, and Z be the normalization constant. Then
the probability of a particular truth assignment x to the
variables in X is defined as [29]:

P (X = x) =
1
Z

exp

∑
fi∈F

wi
∑
g∈Gfi

g(x)


=

1
Z

exp

∑
fi∈F

wini(x)





where g(x) is 1 if g is satisfied and 0 otherwise, and
ni(x) =

P
g∈Gfi

g(x) is the number of groundings of fi
that are satisfied given the current truth assignment to
the variables in X.

There are two inference tasks in MLNs. The first
one is to infer the Most Probable Explanation (MPE)
or the most probable truth values for a set of unknown
literals y given a set of known literals x, provided as
evidence. Both approximate and exact MPE methods
for MLNs have been proposed [17, 30, 14]. The second
inference task is computing the conditional probabilities
of some unknown literals, y, given some evidence x.
Computing these probabilities is also intractable, but
there are good approximation algorithms such as MC-
SAT [27] and lifted belief propagation [36].

There are two approaches to weight learning in
MLNs: generative and discriminative. In generative
learning, the goal is to learn a weight vector that
maximizes the likelihood of all the observed data [29].
In discriminative learning, we know a priori which
predicates will be used to supply evidence and which
ones will be queried, and the goal is to correctly predict
the latter given the former. Several discriminative
weight learning methods have been proposed, most of
which try to find weights that maximize the conditional
log-likelihood of the data [35, 20, 13]. Recently, Huynh
and Mooney [14] proposed a max-margin approach to
learn weights for MLNs.

2.3 The Primal-Dual Algorithmic Framework
for Online Convex Optimization In this section, we
briefly review the primal-dual framework for strongly
convex loss functions [16] which is the latest framework
for deriving online algorithms that have low regret, the
difference between the cumulative loss of the online
algorithm and the cumulative loss of the optimal offline
solution. Considering the following primal optimization
problem:

(2.1) inf
w∈W

Pt+1(w) = inf
w∈W

(
(σt)f(w) +

t∑
i=1

gi(w)

)

where f : W → R+ is a function that measures
the complexity of the weight vectors in W , gi :
W → R is a loss function, and σ is non-negative
scalar. For example, if W = Rd, f(w) = 1

2
||w||22, and

gi(w) = maxy∈Y [ρ(yt,y)− 〈w, (φ(xt,yt)− φ(xt,y)〉]+
where φ(x,y) : X × Y → Rd is a joint feature function,
then the above optimization problem is the max-margin
structured classification problem [39, 41, 38]. We can

Algorithm 1 A general incremental dual ascent algorithm
for σ-strongly convex loss function [16]

Input: A strongly convex function f , a positive scalar σ
for t = 1 to T do

Set: wt = ∇f∗
`
− 1
σt

Pt−1
i=1 λti

´
Receive: lt(wt) = σf(wt) + gt(wt)
Choose (λt+1

1 , ...,λt+1
t ) that satisfy the condition:

∃λ′ ∈ ∂gt(wt) s.t. Dt+1(λt+1
1 , ...,λt+1

t ) ≥
Dt+1(λt1, ...,λ

t
t−1,λ

′)
end for

rewrite the optimization problem in Eq. 2.1 as follows:

inf
w0,w1,...,wt

(
(σt)f(w0) +

t∑
i=1

gi(wi)

)
s.t. w0 ∈W, ∀i ∈ 1...t,wi = w0

where we introduce t new vectors w1, ...,wt and con-
strain them to all be equal to w0. The dual of this
problem is:

sup
λ1,...,λt

Dt+1(λ1, ...,λt)

= sup
λ1,...,λt

[
−(σt)f∗

(
− 1

(σt)

t∑
i=1

λi

)
−

t∑
i=1

g∗i (λi)

]

where each λt is a vector of Lagrange multipliers for the
equality constraint wt = w0, and f∗, g∗1 , ..., g

∗
t are the

Fenchel conjugate functions of f, g1, ..., gt. A Fenchel
conjugate function of a function f : W → R is defined as

f∗(θ) = supw∈W (〈w,θ〉 − f(w)). See [16] for details on
the steps to derive the dual problem.

From the weak duality theorem [3], we know that
the dual objective is upper bounded by the optimal
value of the primal problem. Thus, if an online algo-
rithm can incrementally ascend the dual objective func-
tion in each step, then its performance is close to the
performance of the best fixed weight vector that min-
imizes the primal objective function (the best offline
learner), since by increasing the dual objective, the al-
gorithm moves closer to the optimal primal value.

Based on this observation, Kakade et. al. [16] pro-
posed the general online incremental dual ascent al-
gorithm (Algorithm 1), where ∂gt(wt) = {λ : ∀w ∈
W, gt(w) − gt(wt) ≥ 〈λ, (w −wt)〉} is the set of sub-
gradients of gt at wt. The condition ∃λ′ ∈ ∂gt s.t.

Dt+1(λt+1
1 , ...,λt+1

t ) ≥ Dt+1(λt1, ...,λ
t
t−1,λ

′) ensures the
dual objective is increased in each step. The regret of
any algorithm derived from Algorithm 1 is O(log T ) [16],
where T is the number of examples seen so far.

A simple update rule that satisfies the condition in
Algorithm 1 is to find a subgradient λ′ ∈ ∂gt(wt) and
set λt+1

t = λ′ and keep all other λi’s unchanged (i.e.



λt+1
i = λti, ∀i < t). However, the gain in the dual

objective for this simple update rule is minimal. To
achieve the largest gain in the dual objective, one can
optimize all the λi’s at each step. But this approach is
usually computationally prohibitive to use since at each
step, we need to solve a large optimization problem:

(λt+1
1 , ...,λt+1

t ) ∈ arg max
λ1,...,λt

Dt+1(λ1, ...,λt)

A compromise approach is to fully optimize the dual
objective function at each time step t but only with
respect to the last variable λt:

λt+1
i =

{
λti if i < t

arg maxλt
Dt+1(λt1, ...,λ

t
t−1,λt) if i = t

This is called the Coordinate-Dual-Ascent (CDA) up-
date rule. If we can find a closed-form solution of the
optimization problem with respect to the last variable
λt, then the computational complexity of the CDA up-
date is similar to the simple update but the gain in
the dual objective function is larger. Previous work
[34] showed that algorithms which more aggressively as-
cend the dual function have better performance. In the
next section, we will show that it is possible to obtain
a closed-form solution of the CDA update rule for the
case of structured prediction.

3 Online Coordinate-Dual-Ascent Algorithms
for Structured Prediction

In this section, we derive new online algorithms for
structured prediction based on the algorithmic frame-
work described in the previous section using the CDA
update rule. In structured prediction [1], the label yt of
each example xt ∈ X belongs to some structure output
space Y. We assume that there is a joint feature func-
tion φ(x,y) : X × Y → Rd and the prediction function
takes the following form:

hw(x) = arg maxy∈Y 〈w,φ(x,y)〉

So in this case the weight vector w lies in Rd. A
standard complexity function used in many tasks is
f(w) = 1

2
||w||22. Regarding the loss function gt, a

generalized version of the Hinge loss is widely used in
max-margin structured prediction [39, 41]

lMM (w, (xt,yt)) =
maxy∈Y[ρ(yt,y)− 〈w, (φ(xt,yt)− φ(xt,y)〉]+

where ρ(y,y′) is a non-negative label loss function that
measures the difference between the two labels y,y′

such as the Hamming loss. However, minimizing the
above loss results in an optimization problem with a
lot of constraints in the primal (one constraint for each
possible label y ∈ Y) which is usually expensive to solve.
To overcome this problem, we consider two simpler
variants of the max-margin loss which only involves
a particular label: the maximal loss function and the
prediction-based loss function.

Maximal loss (ML) function This loss function
is based on the maximal loss label at step t, yML

t =

arg maxy∈Y{ρ(yt,y) + 〈wt,φ(xt,y)〉}:

lML(w, (xt,yt)) =[
ρ(yt,yML

t )−
〈
w,
(
φ(xt,yt)− φ(xt,yML

t )
)〉]

+

The loss lML(wt, (xt,yt)) is the greatest loss the al-
gorithm would suffer at step t if it used the maximal
loss label yML

t as the prediction. On the other hand,
it checks whether the max-margin constraints are satis-
fied since if lML(wt, (xt,yt)) = 0 then yML

t = yt, and
it means that the current weight vector wt scores the
correct label yt higher than any other label y′t where
the difference is at least ρ(yt,y′t). Note that the maxi-
mal loss label yML

t is the input to the maximal loss (it
is possible in online learning since the loss is computed
after the weight vector wt is chosen), therefore it does
not depend on the weight vector w for which we want
to compute the loss. So the maximal loss function only
concerns the particular constraint for whether the true
label yt is scored higher than the maximal loss label
with a margin of ρ(yt,yML

t ). This is the key difference
between the maximal loss and the max-margin loss since
the latter looks at the constraints of all possible labels.
The main drawback of the maximal loss is that find-
ing the maximal loss label yML

t , which is also called
the loss-augmented inference problem [38], is only feasi-
ble for some decomposable label loss functions [38] such
as Hamming loss (the number of misclassified atoms)
since the maximal loss label depends on the label loss
function ρ(yt,y′). This is the reason why we want to
consider the second loss function, prediction-based loss,
which can be used with any label loss function such as
(1−F1) loss, where F1 is the harmonic mean of precision
and recall.

Prediction-based loss (PL) function This loss
function is based on the predicted label yPt = hwt(xt) =

arg maxy∈Y〈wt,φ(xt,y)〉:

lPL(w, (xt,yt)) =[
ρ(yt,yPt )−

〈
w,
(
φ(xt,yt)− φ(xt,yPt )

)〉]
+

Like the maximal loss, the prediction-based loss only
concerns the constraint for the prediction label yPt .
We have lPL(wt, (xt,yt)) ≤ lML(wt, (xt,yt)) since yML

t



is the maximal loss label for wt. As a result, the
update based on the prediction-based loss function is
less aggressive than the one based on the maximal loss
function. However, the prediction-based loss function
can be used with any label loss function since the
predicted label yPt does not depend on the label loss
function.

To apply the primal-dual algorithmic framework
described in the previous section, we need to find the
Fenchel conjugate function of the complexity function
f(w) and the loss function g(w). The Fenchel conjugate
function of the complexity function f(w) = 1

2
||w||22 is

itself, i.e. f∗(θ) = 1
2
||θ||22 [3]. For the loss function,

recall that the Fenchel conjugate function of the Hinge-
loss g(w) = [γ − 〈w,x〉]+ is:

g∗(θ) =

{
−γα if θ ∈ {−αx : α ∈ [0, 1]}
∞ otherwise

(Appendix A in [33]). We can see that both the
prediction-based loss and the maximal loss have the
same form as the Hinge-loss where γ is replaced by the
label loss function l(yt,yPt ) and l(yt,yML

t ), and x is
replaced by ∆φPLt = φ(xt,yt) − φ(xt,y

P
t ) and ∆φML

t =
φ(xt,yt) − φ(xt,y

ML
t ) for the prediction-based loss and

the maximal loss respectively. Using the result of
the Hinge-loss, we have the Fenchel conjugate function
of the prediction-based loss and the maximal loss as
follows:

g∗t (θ) =

(
−ρ(yt,y

P |ML
t )α if θ ∈ {−α∆φ

PL|ML
t : α ∈ [0, 1]}

∞ otherwise

The next step is to derive the closed-form solution of
the CDA update rule. The optimization problem that
we need to solve is:

(3.2) argmaxλt
− (σt)f∗

(
−
λ1:(t−1) + λt

(σt)

)
− g∗t (λt)

where λ1:(t−1) =
∑t−1
i=1 λi. Substituting the conjugate

function f∗ and g∗t as above in the equation 3.2, we
obtain the following optimization problem:

arg max
α∈[0,1]

− (σt)

2

˛̨̨̨
˛
˛̨̨̨
˛−λ1:(t−1) − α∆φ

PL|ML
t

(σt)

˛̨̨̨
˛
˛̨̨̨
˛
2

2

+ αρ(yt,y
P |ML
t )

= arg max
α∈[0,1]

− α2 ||∆φ
PL|ML
t ||22
2(σt)

−
||λ1:(t−1)||22

2(σt)

+ α

„
ρ(yt,y

P |ML
t ) +

1

(σt)

D
λ1:(t−1),∆φ

PL|ML
t

E«
This objective function is a function of α only and in
fact it is a concave parabola whose maximum attains at
the point:

α∗ =
(σt)ρ(yt,y

P |ML
t ) +

〈
λ1:(t−1),∆φ

PL|ML
t

〉
||∆φPL|ML

t ||22

Algorithm 2 Online Coordinate-Dual-Ascent Algorithms
for Structured Prediction
1: Parameters: A constant σ > 0; Label loss function
ρ(y,y′)

2: Initialize: w1 = 0
3: for i = 1 to T do
4: Receive an instance xt
5: Predict yPt = arg maxy∈Y〈wt,φ(xt,y)〉
6: Receive the correct target yt
7: (For maximal loss) Compute yML

t =
arg maxy∈Y{ρ(yt,y) + 〈wt,φ(xt,y)〉}

8: Compute ∆φt:
8: PL: ∆φt = φ(xt,yt)− φ(xt,y

P
t )

8: ML: ∆φt = φ(xt,yt)− φ(xt,y
ML
t )

9: Compute loss:
9: PL (CDA): lt =

ˆ
ρ(yt,y

P
t )− t−1

t
〈wt,∆φt〉

˜
+

9: ML (CDA): lt =
ˆ
ρ(yt,y

ML
t )− t−1

t
〈wt,∆φt〉

˜
+

10: Update:
10: CDA: wt+1 = t−1

t
wt + min{1/(σt), lt

||∆φ||22
}∆φt

11: end for

If α∗ ∈ [0, 1], then α∗ is the maximizer of the problem.
If α∗ < 0, then 0 is the maximizer and if α∗ > 1 then 1
is the maximizer. In summary, the solution of the above
optimization is:

αmax =

min

{
1,

h
(σt)ρ(yt,y

P |ML
t )+

D
λ1:(t−1),∆φ

P L|ML
t

Ei
+

||∆φ
P L|ML
t ||22

}

To obtain the update in terms of the weight vectors w,
we have:

wt+1 = ∇f∗
„
−

1

σt
λ1:t

«
= −

1

σt
(λ1:(t−1) + λt)

= −
λ1:(t−1)

σt
−

1

σt
(−αmax

∆φ
P L|ML
t )

= −
−(σ(t− 1))wt

σt
+

1

σt
min

8><>:1,

h
(σt)ρ(yt,y

P |ML
t ) +

D
−(σ(t− 1))wt,∆φ

P L|ML
t

Ei
+

||∆φ
P L|ML
t ||22

9>=>;∆φ
P L|ML
t

=
t− 1

t
wt+

min

8><>: 1

σt
,

h
ρ(yt,y

P |ML
t )− t−1

t

D
wt,∆φ

P L|ML
t

Ei
+

||∆φ
P L|ML
t ||22

9>=>;∆φ
P L|ML
t

The new method is summarized in Algorithm 2.
Interestingly, this update formula has the same form as
that of the subgradient algorithm [25] which is derived



from the simple update criterion:

wt+1 = wt −
1
σt

(σwt −∆φML
t )

=
t− 1
t

wt +
1
σt

∆φML
t

The key difference is in the learning rate. The learning
rate of the subgradient algorithm, which is equal to
1/(σt), does not depend on the loss suffered at each
step, while the learning rate of CDA is the minimization
of 1/(σt) and the loss suffered at each step. In the
beginning, when t is small and therefore 1/(σt) is large
(assuming σ is small), CDA’s learning rate is controlled
by the loss suffered at each step. In contrast, when t
is large and therefore 1/(σt) is small, then the learning
rate of CDA is driven by the quantity 1/(σt). In other
words, at the beginning, when the model is not good,
CDA aggressively updates the model based on the loss
suffered at each step; and later when the model is good,
it updates the model less aggressively.

We can use the derived CDA algorithm to perform
online weight learning for MLNs since the weight learn-
ing problem in MLNs can be cast as a max-margin struc-
tured prediction problem [14]. For MLNs, the number
of true groundings of the clauses plays the role of the
joint feature function φ(x,y).

4 Experimental Evaluation

In this section, we conduct experiments to answer the
following questions in the context of MLNs:

1. How does our new online learning algorithm, CDA,
compare to existing online max-margin learning
methods? In particular, is it better than the
subgradient method due to its more aggressive
update in the dual?

2. How does it compare to existing batch max-margin
weight learning methods?

3. How well does using the prediction-based loss com-
pare to the maximal loss in practice?

4.1 Datasets We ran experiments on three large,
real-world datasets: the CiteSeer dataset [19] for bib-
liographic citation segmentation, a web search query
dataset [24] obtained from Microsoft Research for query
disambiguation, and the CoNLL 2005 dataset [4] for Se-
mantic Role Labeling.

For CiteSeer, we used the version created by Poon
and Domingos [28] and the simplest MLN, the isolated
segmentation model, in their work.1 The dataset

1Both the dataset and the MLN can be found at http:

//alchemy.cs.washington.edu/data/citeseer/

contains 1,563 bibliographic citations such as:
J. Jaffar, J. - L. Lassez. Constraint logic program-

ming. In Proceedings of the Fourteenth ACM sympo-
sium of the principles of programming languages, pages
111-119, Munich, 1987.

The task is to segment each of these citations into
three fields: Author, Title and Venue. The dataset
has four independent subsets consisting of citations to
disjoint publications in four different research areas.

For the search query disambiguation, we used the
data created by Mihalkova and Mooney [24]. The
dataset consists of thousands of search sessions where
ambiguous queries are asked. The data are split into 3
disjoint sets: training, validation, and test. There are
4, 618 search sessions in the training set, 4, 803 sessions
in the validation set, and 11, 234 sessions in the test
set. In each session, the set of possible search results
for a given ambiguous query is given, and the goal is to
rank these results based on how likely it will be clicked
by the user. A user may click on more than one result
for a given query. To solve this problem, Mihalkova
and Mooney [24] proposed three different MLNs which
correspond to different levels of information used in
disambiguating the query. We used all three MLNs in
our experiments. In comparison to the Citeseer dataset,
the search query dataset is larger but is much noisier
since a user can click on a result because it is relevant
or because the user is just doing an exploratory search.

The CoNLL 2005 dataset contains over 40, 000 sen-
tences from Wall Street Journal (WSJ). Given a sen-
tence, the task is to analyze the propositions expressed
by some target verbs of the sentence. In particular, for
each target verb, all of its semantic components must
be identified and labeled with their semantic roles as in
the following sentence for the verb accept.

[A0 He] [AM−MOD would] [AM−NEG n’t] [V accept]
[A1 anything of value] from [A2 those he was writing
about].
A verb and its set of semantic roles form a proposition in
the sentence, and a sentence usually contains more than
one proposition. Each proposition serves as a training
example. The dataset consists of three disjoint subsets:
training, development, and test. The number of propo-
sitions (or examples) in the training, development, and
test sets are: 90, 750; 3, 248; and 5, 267 respectively.2

We used the MLN constructed by Riedel [30] which con-
tains clauses that capture the features of constituents
and dependencies between semantic components of the
same verb.

2We only used the WSJ part of the test set.



Table 1: F1 scores on CiteSeer dataset. Highest F1 scores are shown in bold.

Algorithms Constraint Face Reasoning Reinforcement

MM-HM 93.187 92.467 92.581 95.496
1-best-MIRA-HM 90.982 90.598 93.124 97.518
1-best-MIRA-F1 89.764 90.046 93.200 96.841
Subgradient-HM 90.957 89.859 91.505 95.318
CDA-PL-HM 91.245 90.992 92.589 96.516
CDA-PL-F1 91.742 92.368 92.726 96.994
CDA-ML-HM 93.287 93.204 93.448 97.560

4.2 Methodology To answer the above questions,
we ran experiments with the following systems:

MM: The offline max-margin weight learner for MLNs
proposed by Huynh and Mooney [14].3

1-best MIRA: MIRA is one of the first online learn-
ing algorithms for structured prediction proposed
by McDonald et. al [22]. A simple version of
MIRA, called 1-best MIRA, is widely used in prac-
tice since its update rule has a closed-form solution.
1-best MIRA has been used in previous work [31] to
learn weights for MLNs. In each round, it updates
the weight vectors w as follows:

wt+1 = wt +

[
ρ(yt,yPt )−

〈
wt,∆φPLt

〉]
+

||∆φPLt ||22
∆φPLt

Subgradient: This algorithm proposed by Ratliff et
al. [25] is an extension of the Greedy Projection
algorithm [42] to the case of structured prediction.
Its update rule is an instance of the simple update
criterion

CDA: Our newly derived online learning algorithm
presented in Algorithm 2.

Regarding label loss functions, we use Hamming
(HM) loss which is the standard loss function for
structured prediction [39, 41]. As mentioned earlier,
Hamming loss is a decomposable loss function, so it
can be used with both maximal loss and prediction-
based loss. Since F1 is the standard evaluation metric
for the citation segmentation task on Citeseer, we also
considered the label loss function 100(1 − F1) [15].
However, since this loss function is not decomposable,
we can only use it with the prediction-based loss.

In training, for online learning algorithms, we use
the exact MPE inference based on Integer Linear Pro-
gramming (ILP) described by Huynh and Mooney [14]

3This max-margin weight learner has been shown to be com-
parable to other offline weight learners for MLNs [14].

on Citeseer and web search query datasets, and Cutting
Plane Inference [30] on the CoNLL 2005 dataset. For
the offline weight learner MM, we use the approximate
inference algorithm developed by Huynh and Mooney
[14] since it is computationally intractable to run exact
inference for all training examples at once. In testing,
we use MCSAT to compute marginal probabilities for
the web search query dataset since we want to rank the
query results, and exact MPE inference on the other two
datasets. For all online learning algorithms, we ran one
pass over the training set and used the average weight
vector to predict on the test set. For CiteSeer, we ran
four-fold cross-validation (i.e. leave one topic out). The
parameter σ of the Subgradient and CDA is set based
on the performance on the validation set except Cite-
seer where the parameter is set based on training per-
formance.

For testing the statistical significance between the
performance of different algorithms, we use McNemar’s
test [9] on Citeseer and a two-sided paired t-test on the
web search query. The significance level was set to 5%
(p-value smaller than 0.05) for both cases.

4.3 Metrics Like previous work, for citation segmen-
tation on Citeseer, we used F1 at the token level to mea-
sure the performance of each algorithm; for search query
disambiguation, we used MAP (Mean Average Preci-
sion) which measures how close the relevant results are
to the top of the ranking; and for semantic role labeling
on CoNLL 2005, we used F1 of the predicted arguments
as described in [4].

4.4 Results and Discussion Table 1 presents the
F1 scores of different algorithms on Citeseer. On this
dataset, the CDA algorithm with maximal loss, CDA-
ML-HM, has the best F1 scores across four folds. These
results are statistically significantly better than those of
subgradient method. So aggressive update in the dual
results in a better F1 scores. The F1 scores of CDA-ML-
HM are a little bit higher than those of 1-best-MIRA,
but the difference is not significant. Interestingly, with



Table 2: Average training time on CiteSeer dataset.

Algorithms Average training time

MM-HM 90.282 min.
1-best-MIRA-HM 11.772 min.
1-best-MIRA-F1 11.768 min.
Subgradient-HM 12.655 min.
CDA-PL-HM 11.869 min.
CDA-PL-F1 11.915 min.
CDA-ML-HM 12.887 min.

Table 3: MAP scores on Microsoft search query dataset.
Highest MAP scores are shown in bold.

Algorithms MLN1 MLN2 MLN3

CD 0.375 0.386 0.366
1-best-MIRA-HM 0.366 0.375 0.379
Subgradient-HM 0.374 0.397 0.396
CDA-PL-HM 0.382 0.397 0.398
CDA-ML-HM 0.380 0.397 0.397

the possibility of using exact inference in training,
CDA is a little bit more accurate than the batch max-
margin algorithm (MM) since the batch learner can
only afford to use approximate inference in training.
Other advantages of online algorithms are in terms
of training time and memory. Table 2 shows the
average training time of different algorithms on this
dataset. All online learning algorithms took on average
about 12-13 minutes for training while the batch one
took an hour and a half on the same machine. In
addition, since online algorithms process one example
at a time, they use much less memory than batch
methods. On the other hand, the running time results
also confirm that the new algorithm, CDA, has the
same computational complexity as other existing online
methods. Regarding the comparison between maximal
loss and prediction-based loss, the former is better than
the latter on this dataset due to its more aggressive
updates. For prediction-based loss function, there is
not much difference between using different label loss
functions in this case.

Table 3 shows the MAP scores of different algo-
rithms on the Microsoft web search query dataset. The
first row in the table is from Mihalkova and Mooney
[24] who used a variant of the structured perceptron
[5] called Contrastive Divergence (CD) [12] to do online
weight learning for MLNs. It is clear that the CDA
algorithm has better MAP scores than CD. For this
dataset, we were unable to run offline weight learning
since the large amount of training data exhausted mem-

Figure 1: Learning curve on CoNLL 2005

ory during training. The 1-best MIRA has the worst
MAP scores on this dataset. This behavior can be ex-
plained as follows. From the update rule of the 1-best
MIRA algorithm, we can see that it aggressively updates
the weight vector according to the loss incurred in each
round. Since this dataset is noisy, this update rule leads
to overfitting. This also explains why the subgradient
algorithm has good performance on this data since its
update rule does not depend on the loss incurred in
each round. The MAP scores of the CDA algorithms
are not significantly better than that of the subgradient
method, but their performance is more consistent across
the three MLNs. Regarding the loss function, the MAP
scores of CDA-PL and CDA-ML are almost the same.

Figure 1 shows the learning curve of three online
learning algorithms: CDA, 1-best MIRA and subgradi-
ent on the CoNLL 2005 dataset. In general, the relative
accuracy of three algorithms is similar to what we have
seen on Citeseer. CDA outperforms the subgradient
method across the whole learning curve. In particular,
at 30, 000 training examples, about 1/3 of the training
set, the F1 score of CDA is already better than the that
of the subgradient method trained on the whole train-
ing set. The performance of CDA and 1-best MIRA
are comparable to each other, except on the early part
of the learning curve (less than 10, 000 examples) where
the F1 scores of CDA are about 1 to 2 percentage points
higher than those of 1-best MIRA.

The CoNLL 2005 dataset was carefully annotated
by experts [26], which is a time consuming and expen-
sive process. Nowadays, a faster and cheaper way to
obtain this type of annotation is using crowdsourcing



services such as Amazon Mechanical Turk,4 which is
possible to assign annotation jobs to thousands of peo-
ple and get results back in a few hours [37]. However,
a downside of this approach is the big variance in the
quality of labels obtained from different annotators. As
a result, there is a lot of noise in the annotated data.
To simulate this type of noisy labeled data, we intro-
duce random noise to the CoNLL 2005 dataset. At p
percent noise, there is probability p that an argument in
a proposition is swapped with another argument in the
same proposition. For example, an argument with role
“A0” may be swapped to an argument with role “A1”
and vice versa. Figure 2 shows the F1 scores of the
above three online learning algorithms on noisy CoNLL
2005 dataset at various levels of noise. With the pres-
ence of noise, CDA is the most accurate and also the
most robust to noise among the three algorithms. For
10% noise and higher, CDA is significantly better than
the other two methods. The F1 score of CDA at a noise
level of 50% is 8.5% higher than that of 1-best MIRA
and 12.6% higher than that of the subgradient method.
On the other hand, comparing with the F1 score on the
clean dataset, the F1 score of CDA at 50% of noise only
drops 8.4 points while those of 1-best MIRA and subgra-
dient drop about 17.6 and 16.1 respectively. In addition,
the F1 score of CDA at 50% noise is higher than the F1

score of 1-best MIRA at 35% noise and comparable to
the F1 score of subgradient method at 20% noise.

In summary, our new online learning algorithm
CDA has generally better accuracy than existing max-
margin online methods for structured prediction such as
1-best MIRA and the subgradient method which have
been shown to achieve good performance in previous
work. In particular, CDA is significantly better than
other methods on noisy datasets.

5 Related Work

Online learning for max-margin structured prediction
has been studied in several pieces of previous work. In
addition to those mentioned earlier, a family of online
algorithms similar to the 1-best MIRA, called passive-
aggressive algorithms, was presented in [7]. Another
piece of related work is the exponentiated gradient
algorithm [2, 6] which also performs updates based on
the dual of the primal problem. However, the dual
problem in [2, 6] is more complicated and expensive
to solve since it was derived based on the max-margin
loss, lMM . As a result, to efficiently solve the problem,
the authors assume that each label y is a set of
parts and both the joint feature and the label loss
function can be decomposed into a sum over those

4https://www.mturk.com/mturk/

Figure 2: F1 scores on noisy CoNLL 2005

for the individual parts. Even under this assumption,
efficiently computing the marginal values of the part
variables is still a challenging problem.

In the context of online weight learning for MLNs,
one related algorithm is SampleRank [8] which uses a
sampling algorithm to generate samples from a given
training example and updates the weight vector when-
ever it misranks a pair of samples. So unlike traditional
online learning algorithms that perform one update per
example, SampleRank performs multiple updates per
example. However, the performance of SampleRank
highly depends on the sampling algorithm, and which
sampling algorithms are best is an open research ques-
tion.

The issue of prediction-based loss versus maximal
loss has been discussed previously [7, 32], but no
experiments have been conducted to compare them on
real-world datasets.

6 Future Work

In this work, we applied our derived online learning al-
gorithm to MLNs, but it can be used for any structured
prediction model. So it would be interesting to apply
the same method to other structured prediction models
such as M3Ns [39], Structural SVMs [41], RMNs [40],
and FACTORIE [21]. On the other hand, like most on-
line learners, our algorithm assumes that the model’s
structure (e.g. the set of clauses in an MLN) is cor-
rect, and only updates the model parameters (e.g. the
weights of an MLN). However, in practice, the input
structure is usually not optimal, so it should be also
revised. A number of methods for learning and revis-



ing MLN structure have been developed [23, 18]; how-
ever, they are all batch algorithms that do not scale
adequately to very large training sets. We are currently
developing a new algorithm that performs both online
parameter and structure learning.

7 Conclusions

We have presented a comprehensive study of online
weight learning for MLNs. Based on the primal-dual
framework, we derived a new CDA online algorithm for
structured prediction and applied it to learn weights
for MLNs and compared it to existing online methods
on three large, real-world datasets. Our new algorithm
generally achieved better accuracy than existing online
methods. In particular, our new algorithm is more
accurate and robust when training data is noisy.
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