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Abstract

This paper presents a review of recent work that
integrates methods from Inductive Logic Pro-
gramming (ILP) and Explanation-Based Learning
(EBL). ILP and EBL methods have complementary
strengths and weaknesses and a number of recent
projects have e�ectively combined them into sys-
tems with better performance than either of the
individual approaches. In particular, integrated
systems have been developed for guiding induction
with prior knowledge (ML-Smart, Focl, Gren-
del) re�ning imperfect domain theories (Forte,
Audrey, Rx), and learning e�ective search-control
knowledge (AxA-EBL, Dolphin).

1 Introduction

Inductive Logic Programming (ILP) and Explanation-Based
Learning (EBL) are two subtopics of Machine Learning that
have some important commonalities despite their di�erent
histories and methods. ILP [31] focuses on induction of logic
programs from examples and has roots in early work in gener-
alization in logic [35] and logic-program synthesis [44]. EBL
[25, 10] focuses on improving the e�ciency of a problem solver
using deductive methods and has roots in early work in learn-
ing in planning [13], natural language understanding [8], and
mathematical problem solving [23].

Despite these di�erences, the approaches also have two im-
portant similarities. First, both ILP and EBL methods em-
ploy background knowledge in learning. ILP methods gen-
eralize an existing domain theory by inductively adding new
rules that utilize existing concepts in the theory. EBL meth-
ods use an existing domain theory to deductively explain ex-
amples and use the resulting explanations to focus learning.
Second, both ILP and standard EBL methods traditionally
represent knowledge in Horn-clause logic, making it easy to
apply both methods to the same knowledge base.

A strength of ILP methods is their ability to induce complex
concepts represented in an expressive language. A weakness
of ILP methods is their inability to use existing knowledge to
guide the search through the extremely large space of possi-
ble hypotheses. A strength of EBL methods is their ability to
use explanations (deductive derivations) to guide the learn-
ing of concepts and problem-solving knowledge. A weakness
of traditional EBL methods is their inability to handle in-
complete or incorrect domain theories. A number of recent
projects in machine learning attempt to integrate the two ap-
proaches in order to exploit their complementary strengths
and compensate for their individual weaknesses.

Attempts to integrate ILP and EBL fall into two broad areas:
concept learning and control learning. ILP/EBL research in
concept learning focuses on learning concept de�nitions from
both classi�ed examples and an existing incomplete and/or
incorrect domain theory. Two general approaches to inte-

grating ILP and EBL in concept learning have been explored.
One approach, knowledge-guided induction, uses the existing
domain theory to guide the learning of a separate concept
de�nition, e.g. [2, 34, 7]. The other approach, theory re-

�nement, uses the examples to modify the existing domain
theory in an attempt to improve its accuracy, e.g. [39, 52, 47].

ILP/EBL research in control learning speci�cally focuses on
learning search-control knowledge that improves the perfor-
mance of an existing logic program or problem solver. Sam-
ple problems are used to generate a separate set of control
examples describing appropriate and inappropriate contexts
for applying operators in the domain theory. A combina-
tion of ILP and EBL methods are then used to learn control
rules for deciding when to apply the existing operators, e.g.
[4, 55]. Control learning is traditionally used to improve the
e�ciency of a problem solver as a form of speedup learning

[46]; however, it can also be used to improve accuracy [56].

This paper presents a review of recent research that integrates
ILP and EBL methods. We intentionally focus on ILP work
that is clearly in
uenced by ideas from EBL and do not at-
tempt to review other ILP research in the areas of knowledge-
based induction and theory re�nement, e.g. [11, 44]. The
remainder of the paper is organized as follows. Section 2
presents a brief review of traditional EBL for the uniniti-
ated reader. Section 3 reviews ILP/EBL research in concept
learning, including work in knowledge-guided induction and
theory re�nement. Section 4 reviews ILP/EBL research in
learning control rules and Section 5 presents our conclusions.

2 Background on EBL

The goal of explanation-based learning is to acquire an ef-
�cient concept de�nition from a single example by using
existing background knowledge to explain the example and
thereby focus on its important features [9]. The development
of EBL was driven by two general goals. First, was the de-
sire to make greater use of background knowledge in learning
as opposed to resorting to \tabula rasa" induction. Second,
was the desire to employ learning to improve problem solving
as opposed to the traditional focus on classi�cation. Histori-
cally, EBL methods were developed to improve planning [13],
mathematical problem solving [23, 45], and story understand-
ing [8].

The variety of related EBL techniques developed in the early
1980's eventually lead to an e�ort to unify the various ap-
proaches [25, 10]. The resulting de�nition of the general
problem addressed by EBL is shown in Table 1 (from [25]).
The task involves using a single example and a domain the-
ory to transform an abstract de�nition of a concept into an
operational de�nition that is useful for e�cient classi�cation.
Table 2 shows one of the standard examples of this task,
learning a structural de�nition of a cup from a functional
de�nition, a single example, and a domain theory relating
form to function [51, 25]. The basic method for solving the
explanation-based generalization problem consists of the fol-



Table 1: The Explanation-Based Generalization Problem.

Given:

� Goal Concept: A concept de�nition describing the concept
to be learned. (It is assumed that this concept de�nition fails
to satisfy the Operationality Criterion.)

� Training Example: An example of the goal concept.

� Domain Theory: A set of rules and facts to be used in ex-
plaining how the training example is an example of the goal
concept.

� Operationality Criterion: A predicate over concept de�ni-
tions, specifying the form in which the learned concept de�ni-
tion must be expressed. Generally, a concept de�nition that
refers only to directly observable properties of the example is
assumed to be operational.

Determine:

A generalization of the training example that is a su�cient
concept de�nition for the goal concept and satis�es the op-
erationality criterion.

Table 2: A Sample EBG Problem.

Goal Concept:

cup(x) :- stable(x), liftable(x), open vessel(x).

Training Example:
owner(obj1,fred). light(obj1). color(obj1,red).
partof(h1,obj1). handle(h1). bottom(b1).
partof(b1,obj1). flat(b1). concavity(c1).
partof(c1,obj1). up pointing(c1).

Domain Theory:

stable(X) :- partof(Y,X), bottom(Y), flat(Y).
liftable(X) :- graspable(X), light(X).
graspable(X) :- partof(Y,X), handle(Y).
open vessel(X) :- partof(Y,X), concavity(Y),

up pointing(Y).

Operationality Criterion: Concept de�nition must be ex-
pressed in terms of structural features used to describe ex-
amples (e.g. light, handle, flat, etc.).

lowing two steps:

1. Explain: Construct an explanation using the domain
theory that proves that the training example satis�es
the de�nition of the goal concept.

2. Generalize: Determine a set of su�cient conditions un-
der which the explanation structure holds, stated in
terms of the operationality criterion.

Standard Prolog deduction is generally used to construct ex-
planations. Several algorithms have been developed for cor-
rectly performing the generalization step [28, 17]. These pro-
cedures use uni�cation to properly variablize the explanation
and thereby generalize the proof as far as possible while main-
taining it's correctness. For the example in Table 2, the proof
and the generalization are straight-forward. The generalized
proof for this example is shown in Figure 1. An operational
de�nition can be obtained by compiling the generalized proof
into a new rule. The root of the proof tree forms the conse-
quent of the new rule and the leaves form the antecedents.
Below is the compiled rule or macro rule for the cup example:

cup(X)

stable(X) liftable(X) open_vessel(X)

partof(B,X) flat(B) graspable(X) light(X) up_pointing(C) concavity(C)

partof(C,X)

partof(H,X)handle(H)

bottom(B)

Figure 1: Generalized Explanation for the Cup Example.

cup(X) :- partof(B,X), bottom(B), flat(B),
partof(H,X), handle(H), light(X),
partof(C,X), concavity(C), partof(C,X),
up pointing(C).

Unlike the original de�nition, the learned de�nition satis�es
the operationality criterion since it only refers to observable,
structural features. Therefore, instead of performing complex
inferencing, direct pattern matching can be used to classify
future examples as cups. Explanation-based generalization is
closely related to partial evaluation as applied to logic pro-
grams and can be viewed as a form of example-guided partial
evaluation [50]. It is also closely related to chunking as ap-
plied to production rules in systems like Soar [43].

Adding macro rules can result in dramatic improvements in
e�ciency although on many tasks the overhead of match-
ing many speci�c rules can eventually degrade overall perfor-
mance [21]. The fact that adding compiled rules can have a
negative as well as a positive e�ect on e�ciency is generally
referred to as the utility problem. A number of techniques
have been subsequently developed to help insure the utility
of EBL, including simplifying and selectively retaining and
utilizing learned rules [22, 26, 16]. As discussed in section 4,
combining EBL with ILP is another important approach to
addressing the utility problem.

Another well-recognized problem with traditional EBL is the
requirement that the domain theory be correct and complete
[25]. A number of researchers have combined EBL with var-
ious forms of induction in order to address this issue. For
example, EBL has been combined with decision-tree induc-
tion [32] and neural-network learning [49] in order to re�ne
incomplete and/or incorrect propositional domain theories.
The following section discusses methods that combine EBL
and ILP in order to learn in the context of incomplete and/or
incorrect �rst-order domain theories.

3 ILP/EBL in Concept Learning

As discussed above, research on combining ILP and EBL for
general concept learning includes work on both knowledge-
guided induction and theory re�nement. This section brie
y
reviews research in both of these areas.

3.1 Knowledge-Guided Induction

All ILP systems perform concept learning in the context of
some background knowledge. However, many systems are
only concerned with the meanings of the background predi-
cates, not with an intensional representation that might be
considered a domain theory. In fact, many popular induc-
tion algorithms (e.g. Golem [30] and Foil [38]) represent
background theories extensionally as a set of ground facts.



A number of recent systems have attempted to improve the
performance of inductive concept learning by utilizing the
analytic techniques of EBL and intensional domain theories
to provide a bias for induction. We call such an approach
knowledge-guided induction.

3.1.1 Theory specialization

One of the earliest uses of EBL techniques to guide concept
induction in structured domains was through theory special-

ization [14, 6]. These systems utilize background knowledge
represented as an overly-general domain theory. That is, the
background theory de�nes a concept that is a superset of the
concept to be learned. More speci�cally, the theory special-
ization problem may be formulated as follows:

Given: 1) A domain theory, T0, de�ning a superset
of the target concept, C

2) Positive and negative examples of C
Find: Ts, a specialization of T0 de�ning C.

A concrete example of a theory specialization system to ac-
quire Horn-clause concept de�nitions is A-EBL (Abductive
EBL)[6]. A-EBL uses T0 to construct all possible proofs of
the positive examples. Explanation generalization techniques
are then applied to construct operational macros, which serve
as a pool of candidate rules for the target theory. A greedy
set covering then extracts a small set of rules that are consis-
tent (cover no negative examples) and together cover all of
the positive examples.

A-EBL has been tested in a number of domains. In one
experiment A-EBL was used to learn concepts in the card
game, bridge. Starting with a straight-forward encoding of
conventional bidding rules from a bridge text, A-EBL was
able to specialize these overly-general guidelines to learn con-
cepts such as \correct opening bid" and \hand of opening
strength."

Although theory specialization might seem a very restricted
approach for using knowledge to guide induction, it turns
out to be surprisingly general. Cohen [5] shows that ANA-
EBL, a variant of A-EBL that allows macros to retain some
non-operational conditions, is able to exploit many di�erent
kinds of background knowledge expressed as overly-general
theories. This 
exibility derives from viewing the background
theory as a speci�cation for the inductive hypothesis space
rather than as a concept de�nition per se. This shift in view-
point underlies the explicit grammatical bias used in Gren-
del, which is discussed below.

3.1.2 ML-Smart

ML-Smart [2] illustrates another approach to integrating
EBL and inductive techniques to construct operational con-
cept de�nitions. Whereas theory specialization systems
can only deal with overly-general background theories, ML-
Smart is able to handle both overly-general and overly-
speci�c theories.

The backbone ofML-Smart is a (basically) top-down search
through the so-called specialization tree of the background
theory. Each node in this tree contains a (possibly empty)
conjunction of operational literals forming a classi�cation
rule for the node and a (possible empty) conjunction of non-
operational (intermediate) literals which may be operational-
ized to generate operational literals to further specialize the
rule. The root node is the most general literal of the concept
being learned.

ML-Smart employs three search operators. A theory-guided
component allows a node to be specialized by back-chaining
on one of its non-operational literals using a clause from the
domain theory. Specialization is also allowed by adding a
single arbitrary operational literal. Finally, when a node in
the tree is deemed to be overly speci�c, it may be general-
ized by dropping an operational literal. A number of statis-
tical, domain-independent, and domain-dependent heuristics
are used to guide a best-�rst search through the specialization
tree to �nd a subset of nodes whose rules cover the positive
examples of the concept and exclude the negatives.

A variant of ML-Smart was applied to learning an ex-
pert system for a real-world electromechanical fault diagnosis
problem [1]. This experiment demonstrated that the use of
such techniques could reduce the development time for expert
systems and obtain a level of performance comparable to sys-
tems developed with classical knowledge-engineering meth-
ods.

3.1.3 Focl

Focl (First Order Combined Learner) [34] is similar in spirit
to ML-Smart, but employs a hill-climbing search based on
Foil. As such, it is most easily understood as method for
biasing Foil with background knowledge.

Foil constructs a concept de�nition using a basic covering
strategy. A clause is constructed to cover some subset of the
positive examples, the covered examples are removed from
consideration, and the process repeats until all positive ex-
amples have been covered. In building a clause, Foil adds
antecedents one at a time. At each step, Foil evaluates all
possible literals that can be constructed from variablizations
of the operational predicates and selects one that maximizes
an information-based gain heuristic.

Focl extends Foil by including a theory-guided component.
In addition to the single literals examined by Foil the de-
veloping clause may also be extended by a conjunction of
literals derived from a background theory through an EBL
operationalization component. A conjunction of operational
literals is found by back-chaining through rules in the do-
main theory. Choices as to which of several competing rules
should be used to reduce a particular literal are made using
the Foil information-gain metric. In this way, the inductive
and analytic components are cleanly integrated with a single
uni�ed evaluation metric.

Systematic evaluations of Focl and Focl-Frontier [33], an
extension that allows the learning of de�nitions containing
non-operational literals, have been carried out in a number
of domains. In the standard ILP domain of classifying ille-
gal king-rook-king chess con�gurations [38], Focl was shown
capable of learning accurate de�nitions in the presence of a
wide variety of errors that were arti�cially introduced in the
initial domain knowledge. In another experiment, these sys-
tems were shown to signi�cantly outperform pure induction
in a real-world task customizing an existing expert system
for locating phone-line faults.

3.1.4 Grendel

Grendel [7] is another Foil-based system that incorporates
domain knowledge. Unlike, the previously discussed systems
where background knowledge is provided in the form of a
Horn-clause theory that somehow approximates the concept,
Grendel uses an antecedent description grammar (ADG) to
explicitly represent the inductive hypothesis space. An ADG
may be viewed as a sort of extended context-free grammar



that describes the space of all clauses that can be used in the
concept de�nition. Grendel employs a hill-climbing search
in this space in a manner reminiscent of the operationaliza-
tion process of Focl

The advantage of the grammatical framework is that this sin-
gle technique is general enough to take advantage of many
varied forms of background knowledge including partially
correct theories, programming \cliches", constraints on how
predicates may be used, and theories of related concepts. Us-
ing such an approach, it is possible to \code-up" di�erent
learning biases for various domains within a single framework
having a clear interpretation. For example, it is possible to
write ADG's that emulate various systems described here in-
cluding EBL, Foil, A-EBL, and Focl.

A disadvantage of the grammatical approach is that it does
not operate directly on existing domain knowledge. Whereas
other methods assume the existence of (perhaps incorrect)
rule-bases which can still provide some guidance for an in-
ductive learner, Grendel requires that the knowledge and
biases be translated into an ADG. One solution to this prob-
lem is to write systems that automatically convert rule-bases
into the ADG formalism in a canonical fashion that captures
the constraints of interest.

3.2 Theory Re�nement

Several recent projects have focussed on combining ideas from
ILP and EBL to modify an incomplete and/or incorrect �rst-
order Horn-clause domain theory to make it consistent with
a set of training examples. The standard logical de�nition
of ILP only considers adding clauses to a theory in order to
allow it to derive a set of positive examples without deriving
a set of negative examples [30]. Theory re�nement allows
for the possibility that the existing background knowledge
is incorrect, and therefore also allows existing clauses to be
generalized, specialized, and deleted.

The general theory re�nement problem is: Given a domain
theory T , a set of positive examples E+ and a set of negative
examples E�, �nd a revised theory T 0 such that T 0 ` E+

and T 0 6` E�. In order to preserve the correct aspects of the
initial theory, it is desirable to modify it as little as possible.
Since the minimal semantic change is to simply memorize the
incorrect examples as exceptions to the theory, most systems
focus on minimal syntactic change in order to force gener-
alization to novel cases. A notion of the syntactic distance

between two theories can be de�ned based on the number
of primitive edit operations required to transform one theory
into the other [27, 54]. Unfortunately, it is computationally
intractable to minimize such measures when revising a the-
ory. Therefore, implemented systems must resort to some
form of heuristic search in an attempt to minimize syntactic
change to the theory.

Researchers familiar with EBL have generally approached the
problem of theory re�nement by using failed attempts to ex-
plain positive examples and incorrect explanations of nega-
tive examples to suggest potential revisions to the domain
theory. This section reviews several theory re�nement sys-
tems that take this approach.

3.2.1 Forte

Forte [39, 40] performs a hill-climbing search through a
space of specializing and generalizing operators in an attempt
to �nd a minimal revision to a theory that makes it consis-
tent with the training examples. Forte's revision operators
include methods from propositional theory re�nement [32],

Table 3: Forte's program debugging results.
Program # of Training Train %

Programs Set Size Time Correct
directed path 4 121 87 secs 100%
insert after 9 35 82 secs 100%
merge sort 10 60 199 secs 100%

�rst order induction [38], and inverse resolution [29].

First, Forte attempts to prove all positive and negative ex-
amples using the current theory. When a positive example
is unprovable, some clause in the theory needs to be gen-
eralized. All clauses that were backtracked over during the
attempted proof are candidates for generalization. When a
negative example is provable, some clause needs to be spe-
cialized. All clauses that participated in the successful proof
are candidates for specialization.

When an error is detected, Forte identi�es all clauses that
are candidates for revision. The core of the system consists
of a set of operators that generalize or specialize a clause
to correctly classify a set of examples. Based on the error,
all relevant operators are applied to each candidate clause.
The best revision, as determined by classi�cation accuracy
on the complete training set, is implemented. This process
iterates until the theory is consistent with the training set or
until Forte is caught in a local maximum, i.e. none of the
proposed revisions improve overall accuracy.

Forte's specialization operators include rule deletion and an-
tecedent addition. Several methods are used to determine ap-
propriate additional antecedents to add to an overly-general
clause. One is a hill-climbing method based on Foil [38].
Another is called relational path�nding [41] and adds a se-
quence of literals that form a relational path linking all of
the arguments of the goal predicate. Since it adds multiple
literals at once, relational path�nding helps overcome local
minima problems in Foil.

Forte's generalization operators include deleting an-
tecedents and adding rules. Antecedents are chosen for dele-
tion using a greedy algorithm that attempts to maximize
the number of additional provable positive examples with-
out causing additional provable negatives. New rules are
learned using Foil and relational path�nding. Forte also
includes two additional generalization operators (identi�ca-
tion and absorption) based on inverse resolution [29]. These
operators introduce new rules based on repeated patterns of
literals found in existing rules.

In one test, Forte was used to automatically debug Pro-
log programs written by undergraduates for an assignment
in a class on programming languages. Students were asked
to submit their programs after they had satis�ed themselves
on paper that they were correct, but before they tried to run
them. The student programs were distributed among three
problems: �nding a path through a directed graph, inserting
an element into a list, and merge-sorting a list. Twenty-
three distinctly di�erent incorrect programs were collected,
representing a wide variety of bugs ranging from simple ty-
pographical errors to complete misunderstandings of recur-
sion. Forte correctly debugged all 23 programs (see Table
3). Forte has also been used to debug a version of the
decision-tree induction program from Bratko's Prolog text
[3], and to revise a qualitative model of a portion of the Re-
action Control System of the NASA Space Shuttle.



3.2.2 Audrey and A3

Audrey [52], Audrey II [54], and A3 [53] are a series of
�rst-order theory re�nement systems that also integrate ideas
from ILP and EBL. These systems share features with both
Forte and the propositional theory re�nement system Ei-
ther [32] as well as incorporating several unique features.

Like Either and unlike Forte, Audrey II employs two sep-
arate phases. First the theory is specialized to remove any
proofs of negatives, and next it is generalized to prove all of
the positives. Specialization is performed by a hill-climbing
search that at each point selects the clause who's deletion
corrects the most false positives. If deleting this clause does
not cause any positive examples to become unprovable, it is
deleted. Otherwise a Foil-like method is used to add addi-
tional antecedents until all of the provable negative examples
for which this clause is responsible are �xed. The original Au-
drey did not include clause specialization and instead relied
on generalization to re-cover any uncovered positives result-
ing from clause deletion.

Next, Audrey II generalizes the theory to cover all of the
positive examples. An unprovable positive is selected at ran-
dom and an abductive process is used to �nd a single as-
sumption that will make the example provable. If deleting
the assumed literal from the relevant clause does not cause
negative examples to become provable, then it is deleted. If
deletion causes false positives, the system next attempts to
replace the assumed literal with a conjunction of new liter-
als learned using Foil. If this also fails to improve cover-
age, Foil is �nally used to learn a new set of clauses. This
generalization process repeats until all of the positives are
covered. Audrey's use of abduction is similar to Either's;
however, Either was not restricted to making a single as-
sumption and used greedy covering, selecting at each step
the most promising abduction from a potentially large set of
possibilities generated from all of the unprovable positives.

A3 is the most recent system in the series and adds the ability
to revise theories employing negation as failure, i.e. Prolog's
not operator. The notion of an assumption is generalized
to include negated literals of the form not(P), representing
the assumption that P is not provable. Such assumptions
can represent both specializations and generalizations to the
theory as appropriate. At each step, a single correcting as-
sumption is found for each incorrectly classi�ed example and
the assumption that corrects the most examples is used to
form a revision. Unnegated assumptions are used to form a
generalization such as antecedent deletion or clause addition.
Negated assumptions are used to form a specialization such
as clause deletion or antecedent addition.

Both Audrey II and A3 have been tested on revising ran-
domly corrupted versions of a domain theory for determining
whether or not payment is due on a student loan. With a
small number of training examples, the revised theories pro-
duced for this domain are signi�cantly more accurate than
the operational de�nitions learned by Focl. Since theory
re�nement attempts to preserve the structure and content
of the domain theory as much as possible, it can have an
advantage over knowledge-guided induction as illustrated in
this domain.

3.2.3 Rx and Latex

Rx [47] and Latex [48] are two recent �rst-order theory re-
�nement systems developed at the Tokyo Institute of Tech-
nology. Rx initially learns an operational concept de�nition
in a manner very similar to Focl and then \unoperational-

izes" this de�nition back into a revised theory. The general
approach is very similar to the reduce, revise, and retrans-
late method used in the RTLS propositional theory reviser
[15]. Latex is a simple hill-climbing revision system that
uses a method based on minimum description length (MDL)
to handle noisy data.

The theory revision process in Rx consists of four steps:
1) Operationalization, 2) Specialization, 3) Rule creation,
and 4) Unoperationalization. Operationalization expands the
theory into a set of operational clauses, removing literals that
do not have su�cient information gain according to the Foil
metric (< 0:25). Specialization uses Foil to add literals to
the resulting operational clauses that cover negative exam-
ples. Rule creation uses Foil to add additional clauses that
cover any remaining positive examples. Finally, unopera-
tionalization reconstructs a hierarchical domain theory from
the revised operational de�nition. This is accomplished by
revising the de�nition of each subconcept, starting with the
deepest (most operational) subconcepts and working bottom-
up until the goal concept is reached. The revised de�nition
of each subconcept is constructed by noticing similarities and
di�erences in the literals that Foil added to the operational
clauses expanded from each of the rules for the subconcept.
A problem with this approach is that it relies on Foil adding
the same correct literals to each of the resulting operational
clauses in order to reconstruct a reasonable subconcept de�ni-
tion. Rx has successfully revised randomly corrupted versions
of a simple chemical theory about bu�er solutions. The sys-
tem produced revised theories that were signi�cantly more
accurate than those learned by Foil and correctly revised
subconcepts in the theory for which no direct training exam-
ples were provided.

Latex is a quite di�erent approach to theory re�nement that
employs a unique application of the minimum description
length (MDL) principle [42] to e�ectively learn from an ap-
proximate theory and noisy data. The normal approach to
using MDL in inductive learning with noisy data is to attempt
to induce a theory that minimizes the sum of the number of
bits required to represent the theory plus the number of bits
required to encode the classi�cation of the training examples
given the theory [37]. This allows one to resolve the trade-o�
between making a theory more complex in order to account
for the remaining misclassi�ed data or accepting the simpler
theory and treating the remaining data as noise. In order to
use MDL in the context of theory re�nement, Latex uses a
slight variation in which one attempts to minimize the sum
of the number of bits required to encode the changes to the
initial theory plus the number of bits required to encode the
classi�cation of the training examples given the revised the-
ory. This approach resolves the trade-o� between making
additional changes to one's initial theory or simply accepting
the remaining misclassi�ed data as noise. Latex uses a very
simple hill-climbing revision algorithm that tries all possible
single-literal additions and deletions anywhere in the theory
and picks the one that minimizes the description length met-
ric given above. Experiments in the standard ILP domain of
determining illegal king-rook-king chess con�gurations [38]
demonstrated that this approach could e�ectively revise the-
ories even in the presence of data with 10% classi�cation
noise.

4 ILP/EBL in Control Learning

As previously mentioned, EBL research is rooted in the use
of learning to improve the performance of problem-solving
systems. One prominent method is the learning of search-
control knowledge. The notion of intelligence as controlled



search pervades AI. Learning rules to control search can im-
prove both the e�ciency and accuracy of a problem solver
by eliminating search along paths that do not lead to correct
solutions.

4.1 Background

Early systems such as Lex [24] and Sage [19] used inductive
methods to learn operator-selection rules. Using experience
from a set of training problems, these systems collected ex-
amples where the application of each operator led to success-
ful problem solutions. Induction over the problem-solving
states in which various operators were successful or unsuc-
cessful produced operator-selection rules. The use of such
rules when solving new problems allows operators to be cho-
sen according to their potential usefulness, limiting search
and enhancing performance.

It was quickly realized that a purely inductive approach to
the learning of control knowledge ignored a major source of
information: the solution sequence of the problem itself. For
example, Lex, which learned search control heuristics for
solving problems in integral calculus, might require a number
of examples to form an inductive generalization such as:

IF the integral is of form:
< any � fn > �

R
r1 � x

r2dx and r2 6= �1
THEN apply operator-3.

However, utilizing a simple domain theory stating that an op-
erator is useful when it leads to a solution allows the learning
of this generalization from a single example using EBL tech-
niques [25]. Such techniques formed the basis of the Lex2
system [23]. Subsequent speedup learning research in plan-
ning (e.g. Prodigy [21], Static [12]) and production sys-
tems (e.g. Soar [18]) has focussed on these analytic methods.

Arguably, one of the reasons for the ascent of EBL over induc-
tive techniques in control-rule learning was the relative lack
of good tools for performing induction in structured domains.
The recent emergence of new, e�cient ILP algorithms (e.g.
Foil and Golem), has led to renewed interest in inductive
methods for control-rule learning.

Leckie and Zuckerman's Grasshopper [20] uses a modi�-
cation of Foil to learn search-control rules in a Prodigy
framework. Grasshopper was shown to outperform
Prodigy/EBL on several standard planning problems. The
inductive process was able to learn rules that were relatively
simple and covered multiple examples. These two factors
serve to increase the utility of the resulting rules by lowering
the cost of matching the rules to new problem states and in-
suring that the learned rules have broad applicability. Thus
induction helps tame the utility problem of control-learning
[21] wherein the acquisition of control rules can sometimes
degrade the overall performance of a system.

Of course, the purely inductive approach of Grasshopper
does not take advantage of the information provided by ana-
lytic methods. It would seem that a combination of EBL and
ILP might provide the best alternative. A unifying frame-
work that cleanly integrates these techniques can be achieved
by considering the problem of control-rule learning within the
context of logic programming.

4.2 Controlling Search in Logic Programs

Although most EBL research in logic programming has gen-
erally focussed on learning macros, [25, 10, 36], Recent work
has shown the utility of learning explicit search-control rules
within a logic programming framework [4, 55, 56].

The execution of a logic program can be viewed as a prob-
lem solving process with a search strategy based on reso-
lution theorem proving. A program executes by �nding a
constructive proof of a partially instantiated goal given as
input. Prolog provides a particular implementation of logic
programming using a very simple control strategy incorpo-
rating depth-�rst search with simple backtracking.

Controlling search in this framework can be viewed as a
clause selection problem [4]. Clause selection is the process of
deciding which of several applicable program clauses should
be used to solve a particular subgoal during the course of a
proof. If the theorem prover always applies an appropriate
clause to reduce the current subgoal, the program executes
deterministically (without backtracking) and produces only
correct solutions.

Final
Program

Example
Analysis

Control
Rule

Program
Specialization

Training
Examples

Initial
Program

Control Examples

Control

RulesFormation

Figure 2: Learning Clause Selection Heuristics

A framework for control-rule learning in Prolog programs is
illustrated in Figure 2. The input to the learning system
is a Prolog program and a set of training examples, which
are fully instantiated examples of the top-level program goal.
The output is a modi�ed program that incorporates learned
clause-selection heuristics.

When performing speedup learning, the initial program is
correct, but potentially ine�cient. The set of training exam-
ples can be generated by using the initial program to enu-
merate the solutions to a set of prototypical problems. For
programs that compute a function, each solved problem will
generate a single (fully instantiated) training example. In the
case of program that computes a relation (multiple outputs
for a given input) each problem may give rise to multiple
training examples.

The three phases of the framework, example analysis, con-
trol rule formation, and program specialization, are explained
and illustrated by way of a simple example in the following
subsections.

4.2.1 Example analysis

During example analysis, the training examples are utilized
to identify clauses of the program that give rise to unwanted
backtracking or incorrect solutions. Examples of correct and
incorrect clause applications are extracted as control exam-

ples for subsequent control rule induction. A control example
for a clause is a (partially) instantiated subgoal to which the
clause was applied at some point during the search for a proof



naivesort(X,Y) :- permutation(X,Y), ordered(Y).

permutation([],[]).
permutation([X|Xs],Ys) :- permutation(Xs,Ys0),

insert(X,Ys0,Ys).

insert(X,Xs,[X|Xs]).
insert(X,[Y|Ys0],[Y|Ys]) :- insert(X,Ys0,Ys).

ordered([X]).
ordered([X,Y|Ys]) :- X =< Y, ordered([Y|Ys]).

Figure 3: Naive Sorting Program

Table 4: Control Examples for First insert Clause

Positives Negatives
insert(9,[],A) insert(9,[5],A)
insert(1,[3,4,5],A) insert(9,[4,5],A)
insert(5,[],A) insert(9,[3,4,5],A)
insert(3,[4],A) insert(9,[1,3,4,5],A)
insert(4,[],A) insert(5,[4],A)

insert(5,[3,4],A)

of a training example.

Positive control examples are generated by �nding the �rst
proof for each training example using the initial program.
The clause applications actually used in the completed proof
are retraced, but with the goal having only its input argu-
ments instantiated. For each clause application in the proof,
a \snapshot" of the subgoal to which it is applied is saved
as a positive control example for that clause. These posi-
tive control examples re
ect the subgoals to which the clause
should be applied when the program is actually being used
to generate the expected output from the given input.

The set of positive control examples also implicitly de�nes a
set of negative control examples. Knowing the set of clauses
that should be applied to a given subgoal identi�es other
clauses as those that should not be applied. Thus, positive
examples for any clause can be considered as negative control
examples for any competing clauses.

As an example, consider the naive sorting program in Fig-
ure 3, which sorts a list by generating permutations until it
�nds one that is ordered. Permutations are generated by per-
muting the tail of the input list and inserting the head some-
where in the permuted tail. The predicate, insert(Item,
List1, List2), holds when List2 is List1 with Item in-
serted at an arbitrary location. In naivesort, insert is
called with its �rst and second arguments instantiated to in-
sert items into the permutation, which is returned in the third
argument.

In this speci�cation of sorting, computation proceeds \nonde-
terministically" by generating successive permutations. The
nondeterminism of the permutation predicate actually arises
from the de�nition of insert. Either clause of insert may
be used to reduce any insert subgoal. This nondetermin-
ism could be eliminated by learning a control rule for the
�rst clause that accurately predicts the situations in which
an item should be placed at the front of the list.

Given, naivesort([9,1,5,3,4],[1,3,4,5,9]), the example
analysis phase discovers �ve examples of correct uses of the

insert(A, B, [A|B]) :- useful_insert_1(A, B, [A|B]).
insert(A, [B|C], [B|D]) :- insert(A, C, D).

useful_insert_1(A, [], [A]).
useful_insert_1(A, [B|C], [A,B|C]) :- A =< B.

Figure 4: Improved Insert Predicate

clause and six failed attempts. These control examples,
shown in Table 4, represent the concept useful insert 1,
that is, subgoals to which the �rst clause of insert should
be applied. The positive control examples are the subgoals
that were solved by the �rst insert clause. The negative
control examples for this clause are the subgoals solved by
the second clause of insert.

4.2.2 Control rule formation

The goal of control-rule formation is to produce a set of con-
trol rules specifying the contexts in which it is useful to apply
clauses of the initial program. For each program clause, C, a
de�nition of the concept, \subgoals for which C is useful," is
needed. Given the positive and negative control examples for
a clause, the speci�c task is to �nd a set of clauses that cover
all (or most) the positive examples, and as few negatives as
possible. The algorithm for acquiring control-rules may be
purely inductive, purely analytic, or employ a combination
of techniques.

Continuing with the naivesort example, a suitable algorithm
might produce a control rule such as:

useful insert 1(insert(A,[],[A])) true

useful insert 1(insert(A, [BjC],[A,BjC])) A=<B

This simple de�nition correctly classi�es the examples in Ta-
ble 4. It states that the �rst clause of insert should be used
to insert an element into a list that is empty or has a head
at least as large as the element being inserted.

4.2.3 Program specialization

In the program specialization phase, the initial Prolog pro-
gram is modi�ed using the learned control rules so that at-
tempts to use a clause inappropriately fail immediately. This
is accomplished by adding the learned control-conditions to
the beginning of clauses that give rise to backtracking. In
this way, the search space of the Prolog solver is pruned to
e�ciently produce correct solutions, e�ectively utilizing the
control information without incurring the overhead of a sep-
arate interpreter.

Returning to the sorting example, folding the clause selec-
tion rules back into the program produces a new de�nition
of insert shown in Figure 4. In e�ect, permutation has
been modi�ed to produce ordered permutations. Careful in-
spection shows that this is a version of the insertion sort
algorithm, and an O(n!) sort has been \optimized" into an
O(n2) version by learning and incorporating suitable control
rules.

4.3 An EBL Approach

One approach to learning search-control in a logic program
is EBL-control [5], an application of standard EBL methods
to the clause selection problem. Each clause application in
a successful proof is \explained" by compiling a macro-rule
for the subgoal which extracts the generalized operational



conditions that allowed the the clause to successfully solve
the subgoal. These macros are then collected as a set of
control rules that cover the positive control examples (note
that this strategy ignores the negative control examples).

Unfortunately, this approach has some de�ciencies. First, it
tends to produce control rules containing many (often irrele-
vant) conditions which make them costly to match against
subsequent subgoals and can degrade overall performance
rather than improving it. This is a manifestation of the util-
ity problem mentioned above.

A second shortcoming is that this approach only explains the
success of a clause application in terms a successful proof of
the subgoal to which the clause was applied. This does not
guarantee that the proof of the subgoal will be useful in com-
pleting the surrounding proof. EBL-control is not able to
induce the kind of control rule that would be useful in op-
timizing the naivesort example. Recall that the necessary
control rule must decide when to apply the �rst clause of the
de�nition of insert. EBL-control explains this decision by
considering the proofs of insert subgoals. The proof of the
subgoal in this case is just, true, because the �rst clause of
insert has no antecedents. Hence the only learnable condi-
tion is true which is, obviously, not a useful heuristic. Put
another way, since every application of either clause of insert
will ultimately succeed, EBL-control will not be able to for-
mulate any control rules for the sorting problem that exclude
the negative control examples. This type of problem illus-
trates the need to consider conditions of the top-level proof
that lie outside of the subproof of the immediate goal for
which clause selection rules are being learned.

4.4 AxA-EBL

Cohen [4] attacks the utility problem for clause selection by
combining EBL with induction to learn a small set of \ap-
proximate" control rules with reduced match cost. His al-
gorithm, AxA-EBL (Approximating Abductive EBL), is a
variant of the A-EBL concept learning algorithm applied to
the problem of learning control rules.

Control-rule formation in AxA-EBL starts with the standard
EBL explanations of correct clause applications by compil-
ing out a generalized macro for the subgoal to which the
clause was applied. The set of macros for a given clause is
expanded into a set of candidate control rules by considering
all k-bounded approximations of these macros. A k-bounded
approximation is formed by dropping all but j conditions
from the macro for some j < k. AxA-EBL then performs
a greedy covering of the positive control examples, selecting
control-rules that are consistent (do not cover negative con-
trol examples) and maximize the ratio of positives covered to
rule (explanation) size.

In a series of experiments utilizing di�erent problem solvers
encoded as Prolog programs, AxA-EBL was shown to outper-
form standard EBL and A-EBL used as a control-rule learner.
These domains included a simpli�ed version of the Lex do-
main employing state-space search with iterative deepening,
two standard planning domains (Strips-world and Blocks-
world) and a bounded depth-�rst graph search. It is par-
ticularly noteworthy that AxA-EBL performed much better
than the competing approaches on the graph-search problem
which poses severe utility problems for standard EBL.

Unfortunately, AxA-EBL inherits the shortcoming of EBL-
control discussed above, which prevents it from learning the
desired control rule for naivesort. AxA-EBL is also limited
by e�ciency considerations; the number of candidate rules is

exponential in k, and hence only relatively simple approxi-
mations may be considered.

4.5 Dolphin

Dolphin, (Dynamic Optimization of Logic Programs
through Heuristics INduction) [55] is an integration of ILP
and EBL that extends the AxA-EBL approach. Dolphin
improves on AxA-EBL in two signi�cant ways. First, like
Grasshopper, it employs Foil, a powerful ILP induction
algorithm [38]. Second, Dolphin explicitly considers the sur-
rounding proof context during control-rule induction.

Dolphin begins by applying EBL techniques to the entire
proof-tree of each training example to produce a set of gener-
alized proofs. These generalized proofs of top-level examples
can be seen as giving the context for the appropriate applica-
tion of clauses used within the proof. The operational nodes
of the proof represent all of the primitive conditions that had
to be satis�ed for the proof to succeed. Dolphin uses in-
duction to identify a small set of simple tests that provide
signi�cant guidance in determining whether the application
of a given clause is likely to be part of a complete proof.

Control-rule formation is performed as concept learning over
the control examples informed by the generalized proofs of
the training examples. Dolphin employs the same gen-
eral covering algorithm as Foil but modi�es the clause con-
struction step. Whereas Foil considers every possible literal
that might be used to extend the current clause, Dolphin
specializes by considering only operational literals from the
generalized proofs of the training problems. With this ap-
proach, Dolphin is often able to learn exactly the appropri-
ate control-rules for naivesort from a single example. Train-
ing with three or more simple examples virtually insures
learning of the insertion-sort heuristic.

Dolphin has been evaluated in a number of problem-solving
domains. Figure 5 shows speedup curves comparing the per-
formance of Dolphin to three other approaches in optimiz-
ing a Prolog program that implements a means-ends analysis
planner for a STRIPS-like robot-world domain. The graph
depicts the time required to solve a set of benchmark prob-
lems as a function of the number of training examples used to
perform program optimization. In addition to EBL-control
and AxA-EBL which are the control-rule learning algorithms
discussed above, the �gure also shows a comparison to a
macro-based speedup strategy, EBL-macro.

EBL-macro uses a macro-operator approach reminiscent of
the original STRIPS macro-operator learning mechanism
[13]. EBL-macro collects a set of top-level macros from the
training problems and attempts to solve new problems by di-
rect application of a previously learned macro before resort-
ing to normal planning. As an illustration, for the naivesort
example, naivesort([9,1,5,3,4],X), EBL-macro stores the
learned rule:

naivesort([A,B,C,D,E], [B,D,E,C,A]) :-
B=<D, D=<E, E=<C, C=<A.

Obviously, this is not a useful strategy in the sorting problem
as the set of macros essentially memorizes di�erent list order-
ings and has little ability to generalize to new problems. In
planning domains, however, it is often surprisingly successful.

These results are consistent with those in the other test do-
mains showing that Dolphin can achieve signi�cant speedup
with relatively small sets of training problems.
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Figure 5: STRIPS-planner Results

5 Conclusion

The research reviewed in this article clearly indicates that
ILP and EBL methods can be e�ectively integrated to pro-
duce a system that performs better than either method alone.
In particular, ideas from explanation-based learning are use-
ful in guiding induction with prior knowledge, re�ning in-
complete and incorrect domain theories, and improving the
learning of search-control knowledge. The fact that several
systems that integrate ILP and EBL have already been suc-
cessfully applied to real-world problems further demonstrates
the promise of this approach.
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