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Abstract

This paper experimentally compares three approaches to program
induction: inductive logic programming (ILP), genetic programming (GP),
and genetic logic programming (GLP) (a variant of GP for inducing Pro-
log programs). Each of these methods was used to induce four simple,
recursive, list-manipulation functions. The results indicate that ILP is
the most likely to induce a correct program from small sets of random
examples, while GP is generally less accurate. GLP performs the worst,
and is rarely able to induce a correct program. Interpretations of these
results in terms of di�erences in search methods and inductive biases
are presented.

Keywords: Genetic Programming, Inductive Logic Programming, Empiri-
cal Comparison

This paper will also be submitted to the 8th Int. Workshop on Inductive Logic Programming, 1998.

1



1 Introduction

In recent years, two paradigms for inducing programs from examples have
become popular. One is inductive logic programming (ILP), in which rule-
learning methods have been generalized to induce �rst-order Horn clauses
(Prolog programs) from positive and negative examples of tuples satisfying
a given target predicate [11, 7, 1]. The other is genetic programming (GP)
[5, 6] in which genetic (evolutionary) algorithms are applied to tree structures
instead of strings and used to induce programs in a functional language such
as Lisp from input/output pairs. Although both of these approaches have
attracted signi�cant attention and spawned their own conferences, there has
been little if any direct comparison of the two approaches despite the fact that
they address the same general task of program induction from examples.

In this paper, we present experimental comparisons of several ILP methods
and a standard GP method on the induction of four simple, recursive, list-
manipulation functions (e.g. append, last). Such problems are typically used
as test examples for ILP systems; however, although they also represent simple
Lisp programs, they do not seem to be typical problems for testing GP.

GP is generally used to induce Lisp programs; however, the basic method
just requires that programs be represented as trees. Consequently, to control
for the di�erences in programming language, we also tested a variant of GP
called GLP (Genetic Logic Programming) for inducing Prolog programs.

Since the utility of partially correct programs for such problems is debat-
able, the experiments we conducted measure the probability of inducing a
completely correct program using di�erent methods and di�erent numbers of
randomly selected I/O pairs. Overall, the ILP methods were found to produce
correct programs more often than GP. GLP performed particularly poorly,
almost never producing a correct program. The remainder of the paper de-
scribes the systems compared and the experiments conducted and discusses
the results obtained.

2 Inductive Logic Programming

GP is used to induce function de�nitions rather than de�nitions of potentially
non-functional logical relations used in ILP. When ILP is used to induce func-
tions (represented by predicates with arguments for both input and output),
most systems must also be given explicit negative examples of I/O pairs, i.e.
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tuples of arguments that do not satisfy the predicate [10, 15]. Since GP does
generally not utilize negative examples, fairly comparing it to such ILP meth-
ods is di�cult. However, several ILP systems have recently been developed
that induce functions from only positive examples of I/O pairs [2, 9, 13]. Con-
sequently, we selected several of these methods, Foidl, IFoil, and FFoil, to
allow for a direct comparison to GP. Further comparison of these three ILP
system is presented in [4].

2.1 FOIL

Since all of these systems are variations on Foil [15], we �rst present a brief
overview of this system. Foil learns a function-free, �rst-order, Horn-clause
de�nition of a target predicate in terms of itself and other background pred-
icates. The input consists of extensional de�nitions of these predicates as a
complete set of tuples of constants of speci�ed types that satisfy the predi-
cate. Foil also requires negative examples of the target concept, which can
be supplied directly or computed using a closed-world assumption.

Given this input, Foil learns a Prolog program one clause at a time using
a greedy set-covering algorithm that can be summarized as follows:

Let positives-to-cover = positive examples.
While positives-to-cover is not empty

Find a clause, C, that covers a preferably large subset of positives-to-cover
but covers no negative examples.

Add C to the developing de�nition.
Remove examples covered by C from positives-to-cover.

Clauses are constructed using a general-to-speci�c hill-climbing search. Foil
starts with an empty body and adds literals one at a time, at each step picking
the one that maximizes an information gain metric, until the clause no longer
covers negative examples. The algorithm terminates when the set of positive
examples are completely covered by the set of learned clauses.

2.2 FOIDL and IFOIL

Foidl [9] is based on Foil but adds three important features:

1. Background knowledge is represented intensionally as a logic program.
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2. No explicit negative examples need be supplied or constructed. An as-
sumption of output completeness can be used instead to implicitly deter-
mine if a hypothesized clause is overly-general and, if so, to quantify the
degree of over-generality by simply estimating the number of negative
examples covered.

3. A learned program can be represented as a �rst-order decision list, an
ordered set of clauses each ending with a cut. Only the �rst matching
clause in the ordered list can be used to satisfy a goal. This representa-
tion is very useful for problems that are best represented as general rules
with speci�c exceptions.

Functions are learned without explicit negative examples, by assuming that
any computed ouput which does not match the single, correct output for the
function represents a covered negative example. IFoil (Intensional Foil) is
just Foidl without the use of decision lists. The code for these systems is
available at http://www.cs.utexas.edu/users/ml.

2.3 FFOIL

FFoil [13] is a descendant of Foil with modi�cations similar to Foidl's,
that specialize it for learning functional relations. First, FFoil assumes that
the �nal argument of the relation is an output argument and that the other
arguments of the relation uniquely determine the output argument. This as-
sumption is used to provide implicit negative examples: each positive example
under consideration whose output variable is not bound by the clause under
construction is considered to represent one positive and r�1 negatives, where
r is the number of constants in the range of the function. Second, FFoil as-
sumes that each clause will end in a cut, so that previously covered examples
can be safely ignored in the construction of subsequent clauses. Thus, FFoil,
like Foidl, constructs �rst-order decision lists, though it constructs the clauses
in the same order as they appear in the program, while Foidl constructs its
clauses in the reverse order. The code we used for all the experiments was
FFoil version 1.0.
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Figure 1: Flowchart for the GP paradigm

3 Genetic Programming

Genetic programming applies a genetic algorithm to Lisp programs instead of
bit strings. It starts with an initial population of randomly generated programs
composed of functions and terminals from the appropriate problem domain.
Using the standard genetic operators of crossover and reproduction, it evolves
the population of programs according to a �tness measure (e.g. accuracy on
a training set of I/O pairs) until an individual program satisfying a measure

criteria (e.g. 100% accuracy on the training set) is found.
Figure 1 shows an outline of the algorithm. Reproduction is performed
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by �rst selecting an individual according to some selection method1 and then
copying the individual without any modi�cation to the new population. Crossover
is done by selecting two parents by the same �tness-based method and then
choosing an arbitrary crossover point for each parent. The entire subtrees be-
low the crossover points of the two parents are then \swapped" to give two
new individuals. Two properties need to be satis�ed in GP for the creation of
completely correct programs: the su�ciency and closure properties. The for-
mer requires that the set of functions and terminals supplied to the system are
su�cient for the expression of a solution to the problem and the latter requires
that each function in the function set is able to accept as its arguments any
value that may be returned by any of the function in the function set and any
value that the terminals may assume. The �rst property is easy to maintain.
Since each function in the function set may return its data type, to maintain
the second property we need to specify a list of constraints to the functions
(e.g. the set of functions or terminals that are allowed to be the arguments
of a certain function) so that GP will always generate syntactically correct
programs. Since choosing arbitrary points for crossover may not necessarily
result in syntactically legal programs, a test on the validity of o�spring is per-
formed after each crossover. The GP code we used for all the experiments is
that provided as a supplement to [5].

4 Genetic Logic Programming

Genetic logic programming was apparently �rst suggested in [16] as an alter-
native approach to ILP. The idea is to use genetic search on the space of logic
programs. We have implemented our own version of GLP for inducing Pro-
log programs. Function su�ciency is maintained straightwardly by using the
background predicates provided to ILP and the target predicate itself. How-
ever, to observe terminal su�ciency, a su�cient set of distinct variables must
be provided. Maintaining the closure property requires specifying the type of
each variable and the types of the arguments of each predicate to the system.
When GLP generates programs, it accepts only those that satisfy all the typing
constraints.

Logic programs are represented as logical expressions in Lisp syntax. For
example, the program for (member ?x, ?y) given the background knowledge

1We used �tness-proportionate selection.
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(components (?x . ?y) ?x ?y) can be represented as:

(or (components ?y ?x ?z)
(and (components ?y ?v ?z) (member ?x ?z)))

Like Foidl and IFoil, GLP is provided with intensional de�nitions of all the
background predicates, and standard Prolog execution is used to determine
accuracy on the I/O pairs in the training set. Since the original GP code does
not work with a logical representation, we modi�ed the code to work with this
new representation and interfaced it with a Prolog interpreter written in Lisp.2

The same Prolog interpretor is used with Foidl and IFoil.

5 Experimental Evaluation

5.1 Experimental Methodology

To compare the performance of ILP, GP and GLP we chose four functional list
processing programs: conc (aka append), last, shift, and translate (aka sublis).
These are a series of list-processing examples and exercises from Chapter 3 of
the Bratko's text on Prolog [3] previously used to evaluate ILP systems [14];
however, such list processing functions are standard examples in both Lisp
and Prolog. For each problem, the background knowledge provided consists of
the list functions encountered previously in the text, which are guaranteed to
be su�cient but may include irrelevant functions. The training data for the
experiments are randomly selected from the universe of input lists over three
atoms up to a length of three.

The standard experiments with GP and GLP were run with a population
size of 200 and a maximum number of generations of 50. The �tness metric
was the percentage of training examples for which correct output is generated.
Since Prolog programs can generate multiple outputs, in GLP an example is
considered correct if and only if the single correct output is generated.

Since partially-correct list programs are of limited utility, we present learn-
ing curves that measure the probability that a completely correct program is
produced from random training sets of positive examples of various sizes. This
probability was measured by running 20 independent trials in which each sys-
tem is trained on the same set of random positive examples of a given size and

2The Prolog interpreter we used was that provided with [12].
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determining the percentage of trials in which the system learns a completely
correct de�nition (as determined by a manual inspection of the resulting pro-
grams).

5.2 Experimental Results

The results are shown in Figure 2. In all cases, the performance of GLP
was the worst; it did not produce a completely correct program in any of the
trials. Foidl and IFoil's results on learning conc were clearly much better
than those of GP and GLP. Both ILP systems experienced a surge in their
performance given only a few training examples and gradually improved given
more training data, ending with a percentage of correct programs of more
than 70%. GP and GLP, however, did not seem to improve their performance
with more training data and could not produce more than 20% of correct
programs in the experiment. FFoil did poorly at the beginning but managed
to jump up to more than 50% correct programs given all the training data. The
performance of Foidl and FFoil in learning last was signi�cantly better than
that of GP which was slight better than IFoil. The performance of the ILP
systems on learning shift was signi�cantly better than GP. FFoil could output
a correct program for each of the trials given 10 or more training examples
while Foidl could do so with 15 or more training examples. The percentage of
correct de�nitions for GP given all the training examples was 20%. In learning
translate, two of the ILP systems, Foidl and IFoil, were signi�cantly better
than GP and GLP. FFoil's performance was about the same as the GP's
and GLP's. Given 10 training examples, one-third of the training data, the
ILP and GP systems performed roughly the same; the percentage of correct
programs for all of the systems was less than 20%. However, they began to
diverge after 15 training examples or more where both Foidl and IFoil had
75% correct programs and 0% for GP and GLP given all the training data.

Overall, the ILP systems exhibited the best performance in terms of the
probability of producing a correct program. GP came second and GLP was
clearly the worst.

5.3 Discussion of Results

The best explanation for the poor performance of GLP compared to GP is the
fact that it was less capable of converging on the training data. In fact, GLP
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Figure 2: Results for functional list processing programs
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Figure 3: E�ect of population size and number of generations on the conver-
gence and accuracy of GP on translate.

was never able to converge on any of the problems. This clearly suggests that
the current GP method works better with a functional language than a logical
one. Due to the fact that the calling hierarchy is explicit in a functional pro-
gram's tree structure, the swapping of subtrees is generally a better heuristic
for generating promising programs than swapping literals or arguments in the
representation of Prolog programs, where the calling hierarchy is \implicit" in
the sharing of variables between literals.

While GP works better with a functional representation, most of its results
are signi�cantly worse than those of ILP. Only in learning last were the GP
results somewhat competitive. Although much better than GLP, GP also had
trouble converging on the training data for some of the problems and therefore
could not �nd a correct program while the ILP systems were always able to �nd
at least a consistent program. For example on translate,3 GP had a di�cult
time converging, and giving the system twice as many generations and 5 times
the population only improved the performance moderately. The e�ect of both
of these factors on the convergence and accuracy of GP is shown in Figure 3.
When GP found a program consistent with the training data for translate, it
was frequently correct; but it was normally unable to �nd one.

The e�ect of the increase in search on GP's training time is shown in

3We have chosen translate as an illustration since it is the hardest of the problems; it has
the largest number of irrelevant background functions, requires the most number of symbols
to represent in both Prolog and Lisp, and it took Foidl the longest to train.
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Figure 4: Training time on translate and relative program complexity on shift.

Figure 4. All of the systems in the comparison were run on a Sun Sparc 5
under Allegro Common Lisp v4.3.1. Foidl and IFoil were more accurate than
GP (with a population of 1000 individuals and 100 generations) on translate
even though all of the systems used roughly the same amount of training
time. Increasing the search in GP much further seems infeasible given that the
growth in training time would be quite signi�cant. Foidl, IFoil, and GLP all
spend a fair fraction of the training time just proving examples using Prolog as
evident from the training time of GLP compared to GP. The overhead of using
an unoptimized Prolog interpreter in Lisp accounts for the signi�cant di�erence
between GLP-50-200 and GP-50-200, and therefore also largely accounts for
the di�erence between Foidl and GP-50-200. Therefore, if we just consider
the amount of search, the e�ort expended by Foidl and IFoil is actually much
less than their run time implies. The search methods employed in the ILP
systems are more speci�c to the particular representation of Prolog programs
and perform a more directed, systematic search. The combination of greedy
covering and general-to-speci�c search was apparently more e�ective at �nding
consistent programs than the more general evolutionary search. Standard
genetic approaches do not take advantage of the general-to-speci�c ordering
on hypotheses [8] and therefore their search is less directed.

Also, the current GP system was less robust at tolerating irrelevant back-
ground knowledge. This is clear from GP's signi�cant di�erence in perfor-
mance on last versus shift; GP had 75% of correct programs in the former
and only 20% in the latter given all the training data. The di�culty of the
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two programs is fairly similar in terms of the number of symbols required
to represent them; last requires 10 symbols and shift requires 12 symbols us-
ing background functions provided to them in the experiments. However, in
learning last, the systems were given only one irrelevant background function
while in learning shift, they were given seven. Even though GP frequently con-
verged when learning shift (50% of the time on average compared to less than
2% on translate), it very often acquired an incorrect program that happened
to be consistent with the training data (see the performance of GP on shift
in Figure 2). By contrast, the ILP systems seem more robust to irrelevant
background, frequently learning shift correctly from even fewer examples than
last.

Part of the explanation for this di�erence may lie in the fact that the ILP
systems generally induced simpler programs. Even when they were correct,
the programs learned by GP were usually more complex and convoluted. GP
tends to search a relatively more complex hypothesis space than ILP. To more
carefully examine this issue, we calculated the average relative complexity of
learned shift programs for Foidl and GP. Relative complexity is calculated
by counting the number of symbols used in a program compared to the known
simplest program. For example, the program (rest (append x (list (�rst x))))
has a complexity of 6 which is the smallest possible for the Lisp function
shift given the background supplied. Dividing this number by the complexity
of the simplest known program gives us the relative program complexity (in
this case 1.0). We measured relative complexity only for consistent programs
since it is easy to a construct trivial inconsistent programs. We used shift
instead of translate since GP converged more frequently for the former, and the
shift problem has a comparable amount of irrelevant background knowledge.
Results on average relative program complexity are shown in Figure 4. Overall,
GP learns much more complex programs than Foidl. This is undoubtably
due to the fact that the ILP systems have a stronger \Occam's Razor" bias
and speci�cally attempt to learn short programs.

6 Future Work

The experiments above suggest a number of ways in which the performance of
GP might be improved. One is to develop a more re�ned �tness function that
includes a penalty for program size in order to bias the search towards simpler
hypotheses. In addition, GLP might be improved by a �tness function that
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partially rewards correct outputs for an example even when the current Prolog
program also produces additional incorrect outputs. Using more specialized
genetic operators could also help. For example, one could possibly experiment
with crossover operators that are attempt to select \good" crossover points.

As originally suggested by [16], perhaps the right combination of GP and
ILP search techniques could prove the most e�ective. ILP systems generally
employ very directed (e.g. greedy) search that frequently works quite well, but
can get stuck at local minima. On the other hand, search in GP could clearly
bene�t from some of the directness of ILP methods.

We have only compared GP and ILP on learning simple recursive list func-
tions. It would of course be informative to compare the approaches on other
problems that have been used to test either ILP or GP systems.

7 Conclusions

ILP and GP are both interesting approaches to program induction; however,
there has been inadequate experimental comparison to uncover their individual
strengths and weaknesses. We hope the comparisons in this paper represent a
�rst step towards more concrete comparisons of the two approaches. On the
induction of several simple list manipulation functions, our experiments reveal
that ILP is generally more accurate at inducing correct programs given limited
data and computing resources. On these problems, the more systematic search
employed by ILP, which speci�cally exploits the semantics and modularity of
Prolog clauses, appears to give it an advantage over the more general and
search-intensive methods employed by GP. However, these comparisons also
indicate ways in which the performance of GP might be improved that could
eventually lead to a successful synthesis that exploits the strengths of both
approaches.
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