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Abstract. Inductive Logic Programming (ILP) has been shown to be a
viable approach to many problems in multi-relational data mining (e.g.
bioinformatics). Link discovery (LD) is an important task in data min-
ing for counter-terrorism and is the focus of DARPA's program on Ev-
idence Extraction and Link Discovery (EELD). Learning patterns for
LD is a novel problem in relational data mining that is characterized
by having an unprecedented number of background facts. As a result
of the explosion in background facts, the eÆciency of existing ILP al-
gorithms becomes a serious limitation. This paper presents a new ILP
algorithm that integrates top-down and bottom-up search in order to
reduce search when processing large examples. Experimental results on
EELD data con�rm that it signi�cantly improves eÆciency over existing
ILP methods.

1 Introduction

The terrible events of September 11, 2001 have sparked increased development
of information technology that can aid intelligence agencies in detecting and
preventing terrorism. The Evidence Extraction and Link Discovery (EELD)
program of the Defense Advanced Research Projects Agency (DARPA) is one
attempt to develop new computational methods for addressing this problem.
More precisely, Link Discovery (LD) is the task of identifying known, complex,
multi-relational patterns that indicate potentially threatening activities in large
amounts of relational data. Some of the input data for LD comes from Evi-
dence Extraction (EE), which is the task of obtaining structured evidence data
from unstructured, natural-language documents (e.g. news reports), other input
data comes from existing relational databases (e.g. �nancial and other transac-
tion data). Finally, Pattern Learning (PL) concerns the automated discovery of
new relational patterns for detecting potentially threatening activities in large
amounts of multi-relational data.

Scaling to large datasets in data mining typically refers to increasing the
number of training examples that can be processed. Another measure of com-
plexity that is particularly relevant in multi-relational data mining is the size of



examples, by which we mean the number of ground facts used to describe the
examples. To our knowledge, the challenge problems developed for the EELD
program are the largest ILP problems attempted to date in terms of the number
of ground facts in the background knowledge. Relational data mining in bioinfor-
matics [5] was probably the previously largest ILP problem in this sense. Table 1
shows a comparison between link discovery and, to our knowledge, the largest
problem in bioinformatics.

Domain # Bg. preds. Avg. Arity # Bg. facts
Link Discovery 52 2 � 568k
Bioinformatics 36 4.9 � 24k

Table 1. Link Discovery versus Bioinformatics (e.g. carcinogenesis). # Bg. preds. is
the number of di�erent predicate names in the background knowledge, Avg. Arity is
the average arity of the background predicates, and # Bg facts is the total number of
ground background facts.

Scaling up ILP to eÆciently process large examples like those encountered
in EELD is a signi�cant problem. Section 2 discusses the problems existing ILP
algorithms have scaling to large examples and presents our general approach to
controlling the search for multi-relational patterns by integrating top-down and
bottom-up search. Section 3 presents the details of our new algorithm, Beth.
Section 4 presents some theoretical results on our approach. Experimental results
are presented and discussed in Section 5, followed by concluding remarks in
Section 6.

2 Combining Top-down and Bottom-up Approaches in

Beth

The two standard approaches to ILP are bottom-up and top-down [6]. Bottom-up
methods start with a very speci�c clause generated from an individual positive
example and generalize it as far as possible without covering negative examples.
Top-down methods start with the most general (empty) clause and repeatedly
specialize it until it no longer covers negative examples. Both approaches have
problems scaling to large examples.

The state-of-the-art ILP approach, originated from bottom-up methods, is
based on inverse entailment [2]. The most popular approach to implementing
inverse entailment is a two-stage process: 1) saturation which builds up the
most speci�c clause (a.k.a. bottom clause) describing a positive example, and
2) truncation which �nds solutions that generalize the bottom clause [3]. This
approach is implemented in Progol [2] and its successor Aleph.1

1 The Aleph Manual can be accessed via
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html.



Given a positive example and background knowledge, the bottom clause can
be in�nite, and practically one has to bound it. In Progol, it is bounded by
�ve parameters: i, r, M, j�, and j+ (please refer to [2] for more details). Un-
fortunately, the complexity of Progol's bottom clause is exponential w.r.t. the
variable depth i, which results in a hypothesis space that is doubly exponential!
(The size of the subsumption lattice is two to the power of the size of the bottom
clause.)

In problems with large examples like EELD, the background knowledge con-
tains many facts using numerous predicates that describe each complex object
or event. Typically, many of these facts are irrelevant to the task. However, Pro-
gol's bottom clause includes every piece of background knowledge (within the
recall bound r) in its body. This leads to intractably large bottom-clauses which
generates an exponentially larger hypothesis space when learning a clause. This
leads one to wonder if it is possible to bound the bottom-clause di�erently so
that it contains only a relevant subset of background facts.

A strength of the top-down approach is that the generation of literals is
inherently directed by the heuristic search process itself: only the set of literals
that make re�nements to clauses in the search beam are generated. Clauses with
insuÆcient heuristic value are discarded, saving the need to generate literals
for them. So, there is a tangible link between the entire set of literals that
could be included in a bottom-clause and the heuristic search for a good clause.
Therefore, perhaps it is possible to employ the heuristic search as a guide to
selecting a relevant subset of background facts for inclusion in an alternative
bottom-clause.

A major weakness of the top-down approach (as far as literal generation
is concerned) is that the enumeration of all possible combination of variables
generates many more literals than necessary; some literals generated by the
algorithm are not even guaranteed to cover one positive example. The complexity
of enumerating all such combinations in Foil [7] (and mFoil [6]) is exponential
w.r.t. the arity of the predicates [8]. 2 A corresponding strength of the bottom-
up approach is that a literal is created using a ground atom describing a known
positive example. The advantages are: 1) specializing using this literal results in
a clause that is guaranteed to cover at least the seed example, and 2) the set of
literals generated are constrained to those that satisfy 1).

Given the strengths and weaknesses of typical top-down and bottom-up ap-
proaches, it seems that one can take advantage of the strength of each approach
by combining them into one coherent approach. More precisely, we no longer
build the bottom clause using a random seed example before we start search-
ing for a good clause. Instead, after a seed example is chosen, one generates
literals in a top-down fashion (i.e. guided by heuristic search) except that the
literals generated are constrained to those that cover the seed example. Based
on this idea, we have developed a new system called Bottom-clause Exploration

2 Enforcing argument type restrictions can help lower the complexity but cannot com-
pletely solve the problem.



ThroughHeuristic-search (Beth) in which the bottom clause is not constructed
in advance but \discovered" during the search for a good clause.3

3 The Algorithm

Beth's bottom clause is virtual in the sense that the algorithm does not have
to construct it to work, unlike Progol/Aleph; it is, nonetheless, constructed
to facilitate collection of statistics. However, the virtual bottom clause is a real
bound on the subsumption lattice (see Section 4).

Let us begin with some basic de�nitions. A predicate speci�cation takes the
form PredName/Arity where PredName is the name of the predicate in concern
and Arity its arity. A list of predicate speci�cations for the background knowl-
edge is given to the ILP system before learning starts. The function predname(P )
returns the predicate name of the predicate speci�cation of the background pred-
icates P and arity(P ) returns its arity. Likewise, predname(L) returns the pred-
icate name of the literal L and arity(L) returns its arity.

3.1 Constructing a Clause

The outermost loop of Beth is a simple set covering algorithm like that of any
typical ILP algorithm: 1) �nd a good clause which covers a non-empty subset of
positive examples, 2) remove the positive examples covered by the clause from
the entire set of positive examples, 3) add the clause found to the set of clauses
being built (a.k.a. theory) which was initially empty, 4) repeat step 1) to step
3) until the entire set of positive examples are covered by the theory, 5) return
the entire set of clauses found.

The way a clause is constructed in Beth is very similar to a traditional top
down ILP algorithm like Foil; the search for a good clause goes from general to
speci�c. It starts with the most general clause 2 which is specialized by adding
a literal to its body. The most general clause 2 = T  true where T is a literal
such that predname(T ) = predname(e) and arity(T ) = arity(e), where e is a
randomly chosen seed example from the set of positive examples. A beam of
potentially good clauses is kept while searching for re�nements of each clause in
the beam. The construction of a clause terminates when there is a clause in the
beam which is suÆciently accurate (i.e. its m-estimate is greater than or equal
to a certain threshold).

In addition, we also compute the bottom clause which bounds the search
space. The initial bottom clause is set to the smallest (i.e. e  true which has
an empty set of literals in the body of this initial bottom clause and e is from the
set of positive examples) in which case the search space contains only the most
general clause (a.k.a. the empty clause). The bound is expanded incrementally
during the search for a good clause. The bound is �xed when a suÆciently good

3
Progol and Aleph are really, more precisely, \Subsumption lattice exploration
through heuristic-search". Here, we explore the bottom clause and the subsumption
lattice simultaneously.



clause is found, at which point both the clause and the bound are returned as
solutions to the search. The algorithm which constructs a clause is outlined in
Figure 1.

1. Given a set of predicate speci�cations P of the background predicates, a beam width b, a
bound on the clause length n, variable depth bound i, recall bound r, a non-empty set of
positive examples Pxs and a set (possibly empty) of negative examples Nxs.

2. Randomly choose a seed example e 2 Pxs.
3. ?0:=e true:
4. Q0:=f2g.
5. Q:=Q0.
6. ?:=?0.
7. REPEAT

generate re�nements(Q;P; b; n; i; r;Pxs;Nxs; Q0;?;?0),
Q:=Q0,
?:=?0

UNTIL
there is a clause C 2 Q which is suÆciently accurate. Q0 and ?0 are output variables and the
rest in generate re�nements are input variables.

8. Return C and ?.

Fig. 1. The construction of a clause in Beth

3.2 Generating Re�nements for a Clause

To �nd all the re�nements of a given clause Ci, �rst �nd a substitution �, which
satis�es the body of the clause (a \successful proof" of the clause, given the
background facts); then construct a literal (with dummy variables) Rj for a
predicate speci�cation in P , and �nd a substitution � that makes Rj� a ground
atom such that Ci� and Rj� satisfy the following conditions we call re�nement
constraints: 1) the link constraint: one of the arguments of Rj� has to appear
in Ci� (this is to make sure that the resulting clause is still a linked clause), 2)
the unique-literal constraint: Rj� 62 Ci� (to avoid making two identical literals).
We try to �nd pairs of � and � satisfying the re�nement constraints, but at
most r distinct ground atoms Rj� will be used. For example, suppose Ci� =
f(a; b)  g(a; c); h(c; d); g(b; e) and Rj�1 = g(e; f) and Rj�2 = g(a; c), then
only Rj�1 satis�es all the re�nement constraints, as Rj�2 fails the unique-literal
constraint. So, only Rj�1 will be used to make literals for the clause Ci.

To avoid repeatedly �nding a successful proof of a given clause by theorem
proving, we make a set of \cached proofs" for each clause in the beam (similar
to the way variable bindings are stored in extensional Foil) by starting with
the initial proof e  true, where e is a randomly chosen seed example, and we
incrementally update the cache of proofs of each clause by adding to the end of
each proof a ground atom satisfying all the re�nement constraints. A bound is
also given to the cache size. When �nding a satisfying substitution � for a clause
Ci in the beam, we will simply unify Ci with a proof in its cache. If there is no
Rj� satisfying the re�nement constraints, which can happen if the �rst chosen
example e was a \bad" one, a new example e0 6= e will be randomly chosen



from the remaining set of positive examples to be covered. The clause Ci will be
replaced (in the beam) by the most general clause such that its cache of proofs
will contain only e0  true. The idea is that if a clause cannot be re�ned, then
we will just restart with a di�erent seed example.

One can also take advantage of type declarations (if available) to further
restrict the number of predicate speci�cations needed to be considered for a
given clause | one needs only to consider those which contain at least one
argument type which is the same as at least one of the types of all the variables
in the current clause (so that a linked clause that satis�es the type constraints
is possible).

One can also make use of mode declarations (if available) by substituting
arguments with \input" mode for constants which appear in the clause, provided
that the argument type and the constant type are the same (similar to the way
the bottom clause is built in Progol). One needs to �nd satisfying substitutions
for Rj , for each unique way of substituting arguments with input mode for
constants in the clause. The algorithm for generating re�nements to a clause is
outlined in Figure 2.

1. Given a set of predicate speci�cations P of the background predicates, a beam width b, a
bound on the clause length n, variable depth bound i, recall bound r, a non-empty set of
positive examples Pxs and a set (possibly empty) of negative examples Nxs, the current bottom
clause ? (i.e. the current bound on the search space).

2. For each clause Ci 2 Q and for each Pj 2 P, make a literal Rj with dummy variables such that
predname(Rj) = predname(Pj) and arity(Rj) = arity(Pj).

3. Find substitutions �; � such that 1) � satis�es Ci, 2) � satis�es Rj , and 3) Ci� and Rj� satisfy
all the re�nement constraints.

4. Collect at most r such ground atoms Rj� for di�erent � and �.
5. For each pair of Ci� and Rj� satisfying all the re�nement constraints,

make literals(Ci�;Rj�;Lits) and add Rj� to the body of ?.
6. For each L 2 Lits, add L to the body of Ci to make C0i and let the set of all C0i's be Qi.

7. Evaluate each clause in
S

Ci2Q
Ci by a heuristic (e.g. m-estimate) given Pxs and Nxs.

8. Put only the best b clauses into Q0.
9. Let ?0 be the resulting bottom clause after adding all the ground atoms Rj�'s to the body of
? for each Ci and Rj (such that there exists � and � satisfying all the re�nement constraints).

10. Return Q0 and ?0.

Fig. 2. Generate Re�nements

3.3 Making Literals

To make literals given a clause C, a satisfying substitution � of C, and a ground
atom Rj�, we replace arguments of Rj� by variables in C instantiated, in �, to
these arguments in Rj�, only if Rj� is not in C� and the resulted literal observes
the variable depth bound. ��1 replaces all occurrences of a term by the same
variable. For example, consider a clauseC : f(A;B) g(B;D); h(A;E); l(D;E),
� = fA=a;B=b;D=b; E=eg (thus, ��1 = fa=A; b=B; b=D; e=Eg) and two ground
atoms a1 = p(b; e) and a2 = p(e; f). We can make two literals using a1: 1)
p(B;E) (since b=B; e=E 2 ��1), and 2) p(D;E) (since b=D; e=E 2 ��1). We can



make one literal using a2: p(E;F ) (since e=E 2 ��1, but the constant f is not
bound to any variable in ��1). However, if the variable depth bound is one, then
the literal p(E;F ) will be rejected because the depth of F is two. The variable
depth d(V ) of variable V is de�ned in Linus [6]. The algorithm for making
literals is outlined in Figure 3.

1. Given a clause C� of the form e  a1; : : : ; an (where C is the current clause being re�ned,
i.e. specialized, and � is a substitution that satis�es C and e 2 Pxs and background knowledge
BK j= ai for each ground atom ai in the body of C�) and a ground atom an+1 such that
BK j= an+1.

2. Make a set of literals Lits such that each literal L 2 Lits satis�es: 1) predname(L) =
predname(an+1), 2) arity(L) = arity(an+1), 3) suppose the constant ci is the ith argument

of an+1 and the variable Vi is the ith argument of L. If ci appears in C�, then ci=Vi 2 ��1;
otherwise, Vi is a new variable not appearing in C, 4) there is no variable V in L such that
d(V ) > i where i is the variable depth bound.

3. Return Lits.

Fig. 3. Make Literals

3.4 A Concrete Example

We can see how the algorithm works through a simple example from the family-
relation domain. Suppose we want to learn the concept uncle(X;Y ), which is
true i� X is an uncle of Y (blood uncle).

Suppose we have the following set of background facts (Figure 4):

1. male(Bob), male(Tom), male(T im)
2. female(Ann), female(Mary), female(Susan), female(Betty), female(Joyce)
3. parent(Tom;Mary), parent(Tom;Betty), parent(Tom;Bob),

parent(Mary;Ann),parent(Joyce; Susan),parent(Tom;T im)
4. friend(Mary; Susan), friend(Susan;Mary), friend(Joyce; Betty),

friend(Betty; Joyce)

and P = fmale=1; female=1; friend=2; parent=2g (exactly in this order from
left to right) is our set of predicate speci�cations. We will use 0+0 to denote the
output mode and 0�0 the input mode here. The following is the set of mode
speci�cations for each predicate speci�cation:

male(�); female(�); parent(+;�); parent(�;+); friend(+;�); friend(�;+)

and the following is the set of type speci�cations for each predicate speci�cation:

male(person); female(person); parent(person; person); friend(person; person)

Suppose we have this set of training examples:

1. Positive: uncle(Bob; Ann)
2. Negative:

uncle(Bob; Susan), uncle(Betty;Ann), uncle(T im; Susan), uncle(Tom;Betty)
uncle(Susan; Betty), uncle(Joyce; Ann), uncle(T im; Joyce), uncle(Tom;Mary)
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Fig. 4. A simple family relation domain

We present a trace of how our algorithm discovers a good clause, given a
beam size and a recall bound of one, and a clause length of four. It starts by
choosing a random seed example from the set of positive examples. This has to
be uncle(Bob;Ann) since there is only one positive example. When generating
re�nements to a clause, it considers each predicate speci�cation in P (from left
to right). We will show the specialized clause before its set of cached proofs.
The literal added to the clause currently being built is generated from the new
ground atom added to the body of the cached proof of the current clause.

The algorithm starts with:

1. The most general clause which covers every pair of people: uncle(X,Y) :- true

2. The set of cached proofs for this clause: funcle(bob,ann) :- trueg
3. The empty bottom clause: uncle(bob,ann) :- true

It considers male=1 and generates the following:

1. The specialized clause: uncle(X,Y) :- male(X)

(m-est = 0.153)

2. The set of cached proofs for this clause: funcle(bob,ann) :- male(bob)g
3. The updated bottom clause: uncle(bob,ann) :- male(bob)

Next, the algorithm considers female=1, and the literal female(Y) is gener-
ated (in the same way as male=1), the new ground atom female(ann) is added
to the current bottom clause. The specialized clause uncle(X,Y) :- female(Y)
has anm-estimate of 0.111. Next, it considers parent=2 (using parent(+;�)) and
generates the following:

1. The specialized clause: uncle(X,Y) :- parent(Z,X)

(m-est = 0.136)



2. The set of cached proof of this clause: funcle(bob,ann) :- parent(tom,bob)g
3. The updated bottom clause:

uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob)

Similarily parent=2 (using parent(+;�)) is used to generate another special-
ized clause uncle(X,Y) :- parent(W,Y) (m-estimate = 0.122) using the ground
atom parent(mary,ann).

The predicate speci�cation friend=2 was considered but no ground atom
was found to satisfy all the re�nement constraints; the link constraint could
not be satis�ed, because neither Bob nor Ann has a friend. There are totally
four di�erent re�nements to the most general clause. The clause with the best
m-estimate is:

uncle(X;Y ) male(X)

Since the beam size is just one, only this clause is retained in the beam. This
clause is still covering negative examples: uncle(Bob; Susan), uncle(Tom;Betty),

uncle(T im; Susan), uncle(T im; Joyce), and uncle(Tom;Mary). So, it still needs to
be re�ned. Next, male=1 is considered but no ground atom is found to satisfy
all the re�nement constraints; the unique-literal constraint could not be satis�ed
(male(Bob) is already in the cached proof of the clause). The current bottom
clause is uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob).

Next, it considers female=1 and generates the following:

1. The specialized clause: uncle(X,Y) :- male(X),female(Y)

(m-est = 0.153)

2. The set of cached proof of this clause:
funcle(bob,ann) :- male(bob),female(ann)g

3. The updated bottom clause:
uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),

parent(mary,ann)

Next, it considers parent=2 (using parent(+;�)) and generates the following:

1. The specialized clause: uncle(X,Y) :- male(X),parent(Z,X)

(m-est = 0.204)

2. The set of cached proof of this clause:
funcle(bob,ann) :- male(bob),parent(tom,bob)g

3. The updated bottom clause:
uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),

parent(mary,ann)

parent=2 (using parent(+;�)) can be used to generate another specialized clause
uncle(X,Y) :- male(X),parent(W,Y) (m-estimate = 0.175) using the ground
atom parent(mary,ann).

The predicate speci�cation friend=2 was considered but no ground atom
was found to satisfy all the re�nement constraints (the link constraint cannot
be satis�ed). There are totally three di�erent re�nements to uncle(X;Y )  
male(X). The clause with the best m-estimate is:

uncle(X;Y ) male(X); parent(Z;X)



This clause still covers a non-empty set of negative examples:

uncle(Bob; Susan); uncle(T im; Susan); uncle(T im; Joyce):

The algorithm continues in exactly the same manner for the last two steps
(omitted to save space). The clause uncle(X;Y )  male(X); parent(Z;X) has
four di�erent re�nements. The clause with the best m-estimate is:

uncle(X;Y ) male(X); parent(Z;X); parent(W;Y )

which is still covering a non-empty set of negative examples: uncle(Bob; Susan)
and uncle(T im; Susan).

There are totally eight di�erent re�nements to

uncle(X;Y ) male(X); parent(Z;X); parent(W;Y ):

The clause with the best m-estimate is:

uncle(X;Y ) male(X); parent(Z;X); parent(W;Y ); parent(Z;W )

which covers all the positive examples and no negative examples. At this point,
the algorithm has found the target concept. Both the bottom clause discovered
and the consistent clause found are returned. Notice that the bottom clause
found by Beth is:
uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),parent(mary,ann),

male(tom),female(mary),parent(tom,mary),friend(mary,susan),

friend(susan,mary)

whereas, Progol's bottom clause is:
uncle(bob,ann) :- male(bob),female(ann),parent(tom,bob),parent(mary,ann),

male(tom),female(mary),parent(tom,mary),friend(mary,susan),

friend(susan,mary),female(susan)

which is bigger than Beth's bottom clause.

4 Analysis

Let ?(b; n;P ; r; i) be the bottom clause constructed by Beth (Section 3) given
the parameters b, n, P , r, and i which are the beam width, the maximum clause
length, the set of predicate speci�cations, the recall bound, and the variable
depth bound respectively.

Theorem 1. Suppose B is a beam of clauses produced by Beth, for any
clause C 2 B, C � ?(b; n;P ; r; i).
Proof. Suppose Cj is a clause in B such that Cj = H  L1; : : : ; Lm where
m � n. Each Lk is produced from a ground atom ak and H from a partic-
ular seed example e. Obviously, e 2 ?(b; n;P ; r; i). For any k : 1 � k � m,
ak 2 ?(b; n;P ; r; i), since each ground atom satisfying all the re�nement con-
straints is added to the current bottom clause and only ground atoms satis-
fying all the re�nement constraints are used to make literals for any clause.



Thus, there's a substitution � which satis�es Cj s.t. Cj� = e  a1; : : : ; am.
So, Cj� � ?(b; n;P ; r; i). And, we have Cj � ?(b; n;P ; r; i). Hence we have
C � ?(b; n;P ; r; i) for any clause C 2 B. 2

Theorem 2. The worst case length of ?(b; n;P ; r; i) is O(bnjPjr).
Proof. The maximum number of ground atoms that 1) satisfy the re�nement
constraints and 2) make literals observing the variable depth bound i for any
clause in the search beam at the point the clause is being re�ned are jPjr. There-
fore, the maximum number of ground atoms satisfying the re�nement constraints
after adding n literals to the body of the most general clause are njPjr. Since
there are at most b clauses in the search beam at any time, the maximum num-
ber of ground atoms satisfying the re�nement constraints are bnjPjr. Thus, the
worst case complexity of the bottom clause ?(b; n;P ; r; i) is O(bnjPjr). 2

The length of Progol's bottom clause is O((rjMjj+j�)ij
+

); where jMj
is the number of mode declarations, and j+=� are bounds on the number of
(+=�) types in a mode declaration [2] | which makes a hypothesis space doubly
exponential w.r.t. i. Whereas the length of Beth's bottom clause is only linear
w.r.t. n (which gives rise to a much smaller hypothesis space).

5 Experimental Evaluation

We compared our system, Beth, with two other leading ILP systems | Aleph

and mFoil.

5.1 Domain

After the events of 9/11, the EELD project has been working on several Chal-
lenge Problems that are related to counter-terrorism. The problem that we
choose to tackle is the detection of Murder-For-Hires (contract killings) in the
domain of Russian Organized Crime. The data used in all EELD Challenge Prob-
lems include representations of people, organizations, objects, and actions and
many types of relations between them. One can picture this data as a large graph
of entities connected by a variety of relations. For our purposes, we represent
these relational databases as facts in Prolog.

For the ease of generating large quantities of data, and to avoid violating pri-
vacy, the program currently only uses synthetic data generated by a simulator.
The data for the Murder-For-Hire problem was generated using a Task-Based
(TB) simulator developed by Information Extraction and Transport Incorpo-
rated (IET). The TB simulator outputs case �les, which contain complete and
unadulterated descriptions of murder cases. These case �les are then �ltered for
observability, so that facts that would not be accessible to an investigator are
eliminated. To make the task more realistic, this data is also corrupted, e.g.,
by misidentifying role players or incorrectly reporting group memberships. This
�ltered and corrupted data form the evidence �les. In the evidence �les, facts
about each event are represented as ground facts, such as:

murder(Murder714)



perpetrator(Murder714, Killer186)

crimeVictim(Murder714, MurderVictim996)

deviceTypeUsed(Murder714, PistolCzech)

The synthetic dataset that we used consists of 632 murder events. Each mur-
der event has been labeled as either a positive or negative example of a murder-
for-hire. There are 133 positive and 499 negative examples in the dataset. Our
task was to learn a theory to correctly classify an unlabeled event as either
a positive or negative instance of murder-for-hire. The amount of background
knowledge for this dataset is extremely large; consisting of 52 distinct predicate
names, and 681,039 background facts in all.

5.2 Results

The performance of each of the ILP systems was evaluated using 6-fold cross-
validation. The total number of Prolog atoms in the data is so large that running
more than six folds is not feasible.4 The data for each fold was generated by sep-
arate runs of the TB simulator. The facts produced by one run of the simulator,
only pertain to the entities and relations generated in that run; hence the facts
of each fold are unrelated to the others. For each trial, one fold is set aside for
testing, while the remaining data is combined for training. To test performance
on varying amounts of training data, learning curves were generated by test-
ing the system after training on increasing subsets of the overall training data.
Note that, for di�erent points on the learning curve, the background knowledge
remains the same; only the number of positive and negative training examples
given to the system varies.

We compared the three systems with respect to accuracy and training time.
Accuracy is de�ned as the number of correctly classi�ed test cases divided by
the total number of test cases. The training time is measured as the CPU time
consumed during the training phase. All the experiments were performed on a
1.1 GHz Pentinum with dual processors and 2 GB of RAM. Beth and mFoil
were implemented in Sicstus Prolog version 3.8.5 andAleph was implemented in
Yap version 4.3.22. Although di�erent Prolog compilers were used, the Yap Pro-
log compiler has been demonstrated to outperform the Sicstus Prolog compiler,
particularly in ILP applications [4].

In our experiments, we used a beam width of 4 for Beth and mFoil; and
limited the number of search nodes in Aleph to 5000. We used m-estimate
(m = 2) as a search heuristic for all ILP algorithms. The clause length was
limited to 10 and the variable depth bound to 5 for all systems. The recall bound
was limited to 1 for Beth and Aleph (except for some mode declarations it was
set to '*'). We modi�ed mFoil to be constrained by the maximum clause length
and the variable depth bound, to ensure that it terminates. We refer to this
version of mFoil as Bounded mFoil. All the systems were given 1 second of
CPU time to compute the set of examples covered by a clause. If a specialized

4 The maximum number of atoms that the Sicstus Prolog compiler can handle is
approximately a quarter million.
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Fig. 5. Performance of the systems versus the percentage of training examples given

System Accuracy CPU Time (mins) # of Clauses Bottom Clause Size

Beth 94.80% (+/- 2.3%) 23.39 (+/- 4.26) 4483 34
Aleph 96.91% (+/- 2.8%) 598.92 (+/- 250.00) 63334 4061
mFoil 91.23% (+/- 4.8%) 45.28 (+/- 5.40) 112904 n/a

Table 2. Results on classifying murder-for-hire events given all the training data. #
of Clauses is the total number of clauses tested; and Bottom Clause Size is the average
number of literals in the bottom clause constructed for each clause in the learned
theory. The 90% con�dence intervals are given for test Accuracy and CPU time.

clause took more time than allotted, the clause was ignored; although the time
it took to create the clause is still recorded.

The results of our experiments are summarized in Figure 5. A snapshot of
the performance of the three ILP systems given 100% of the training examples
is shown in Table 2. The following is a sample rule learned by Beth:

murder_for_hire(A):- murder(A), eventOccursAt(A,H),

geographicalSubRegions(I,H), perpetrator(A,B),

recipientOfinfo(C,B), senderOfinfo(C,D), socialParticipants(F,D),

socialParticipants(F,G), payer(E,G), toPossessor(E,D).

This rule covered 9 positive examples and 3 negative examples. The rule can be
interpreted as: A is a murder-for-hire, if A is a murder event, which occurs in a
city in a subregion of Russia, and in which B is the perpetrator, who received
information from D, who had a meeting with and received some money from G.



5.3 Discussion of Results

On the full training set, Beth trains 25 times faster than Aleph while losing
only 2 percentage points in accuracy and it trains twice as fast as mFoil while
gaining 3 percentage points in accuracy. Therefore, we believe that its integration
of top-down and bottom-up search is an e�ective approach to dealing with the
problem of scaling ILP to large examples. The learning curves further illustrate
that the training time of Beth grows slightly slower than that of mFoil, and
considerably slower than that of Aleph.

The large speedup over Aleph is explained by the theoretical analysis on
the complexity of the bounds on the search space, i.e. the di�erent sizes of the
bottom clauses they construct. The size of the bottom clause for Beth is only
linear w.r.t. n compared to that of Aleph which is exponential w.r.t. to i (i � n)
even for small i. As a result, Aleph's search space is much larger than Beth's.
Aleph's bottom clause was on average 119x larger than Beth's and the total
number of clauses it constructed was 14x larger, although a theory of similar
accuracy was learned.

Systems like Beth and Aleph construct literals based on actual ground
atoms in the background knowledge, guaranteeing that the specialized clause
covers at least the seed example. On the other hand, mFoil generates more
literals than necessary by enumerating all possible combination of variables.
Some such combinations make useless literals; adding any of them to the body
of the current clause makes specialized clauses that do not cover any positive
examples. Thus, mFoil wastes CPU time constructing and testing these literals.
Since the average predicate arity in the EELD data was small (2), the speedup
over mFoil was not as great, although much larger gains would be expected for
data that contains predicates with higher arity.

Nevertheless, searching a smaller space comes at the cost of spending more
time generating each literal for re�ning a clause. In Aleph, all the necessary
ground literals are generated before the search starts, while Beth must spend
time computing a set of ground atoms satisfying the re�nement constraints on
literal generation, resulting in fewer clauses tested per unit time compared to
both Aleph and mFoil.

From the experimental results obtained, we can conclude that 1) an approach
like Beth, which emphasizes searching a much smaller space over testing hy-
potheses at a higher rate, can outperform (in terms of eÆciency) an approach
like Progol/Aleph, which trades o� the two factors the other way around, and
2) using ground atoms directly avoids testing useless literals, improving training
time over a purely top-down approach like mFoil.

6 Conclusions

An important under-studied aspect of scaling to large databases in multi-relational
data mining concerns the size of examples rather than their number. For ILP
methods, this issue involves scaling to large numbers of connected background



facts associated with each example or set of examples. We have developed a
new ILP algorithm that integrates top-down and bottom-up search in order to
more eÆciently learn in the presence of large sets of background facts. Challenge
problems constructed for DARPA's program on Evidence Extraction and Link
Discovery concern identifying potential threatening activities in large amounts of
heterogeneous, multi-relational data. These problems contain relatively modest
numbers of examples but involve very large sets of background facts. Experi-
mental results on these problems demonstrate that our new hybrid approach
substantially decreases training time compared to existing ILP methods.
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