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Abstract reference matching (McCallum et al., 2000). Typically, a
fixed textual similarity metric such as edit distance (Gus-
field, 1997) or vector-space cosine similarity (Salton, 1989)
is used to determine whether two values or records are alike
enough to be duplicates. However, the similarity of two
strings can depend on the domain and field under consider-
ation. Rather than hand-tuning a distance metric for each
field in each domain, we present a method for automatically
learning an appropriate string-similarity metric from small
corpora of hand-labeled examples. Our systeraRMN
(Multiply Adaptive Record Linkage with INduction), em-
ploys a two-level learning approach. First, a set of sim-
ilarity metrics are trained to appropriately determine the
similarity for different database fields. Next, a final predi-
cate for detecting duplicate records is learned from multi-
ple similarity metrics for each of the individual fields using
Support Vector Machines (SVM's) (Vapnik, 1995).

With this “de-duping” approach, however, discovered as-
sociations are not able to capture all similarities between
different items. Since the similarity relation for textual
items is non-transitive, sometimes a fixed clustering en-
. counters a dilemma, e.g. when “WIinNT"” partially matches
1. Introduction “NT”, but it also matches “Windows”. By allowing par-
Textual entries in database fields often exhibit minor vari-tial matching of items, we explore the alternative of di-
ations that can prevent mining algorithms from discover-rectly mining “dirty” data by discovering “soft matching”
ing important regularities. Variations can arise from ty- association rules whose antecedents and consequents are
pographical errors, misspellings, abbreviations, as well agvaluated based on sufficient similarity to database entries.
other sources. Variations are particularly pronounced irSimilarity of textual items is measured using standard “bag
data that is automatically extracted from unstructured obf words” metrics (Salton, 1989) and edit distance mea-
semi-structured documents or web pages (Ghani et alsures (Gusfield, 1997); other standard similarity metrics
2000; Nahm & Mooney, 2000). For example, in data oncan be used for numerical and other data types. We gen-
local job offerings that we automatically extracted from eralize the standard#RioRr1algorithm for discovering as-
newsgroup postings, the Windows operating system is varisociation rules (Agrawal & Srikant, 1994) to allow for soft
ously referred to as “Microsoft Windows”, “MS Windows”, matching given a similarity metric for each field.

“Windows 95/98/ME”", etc. Sample duplicate records on . . . .

Fig.1 illustrate textual variations in a restaurant databas@. Adaptive Duplicate Detection Using

formed by merging two guidebooks. Learned Similarity Metrics

Some previous work has addressed the problem of identifytdentifying duplicate records and fields in textual databases
ing duplicate records, where it is referred to as record link-s beneficial both for text mining tasks such as association

age (Winkler, 1999), the merge/purge problem (Heez  rule discovery, and for traditional database tasks such as ob-
& Stolfo, 1995), duplicate detection (Monge & Elkan, taining counts and accurate query results. Our duplicate de-
1997), hardening soft databases (Cohen et al., 2000), and

Variation and noise in textual database entries
can prevent text mining algorithms from dis-
covering important regularities. We present
two novel methods to cope with this problem:
(1) an adaptive approach to “hardening” noisy
databases by identifying duplicate records, and
(2) mining “soft” association rules. For identify-
ing approximately duplicate records, we present
a domain-independent two-level method for im-
proving duplicate detection accuracy based on
machine learning. For mining soft matching
rules, we introduce an algorithm that discovers
association rules by allowing partial matching of
items based on a textual similarity metric such as
edit distance or cosine similarity. Experimental
results on real and synthetic datasets show that
our methods outperform traditional techniques
for noisy textual databases.



Figure 1.Sample duplicate records from th& RTAURANT database

| name | address | city | phone | cuisine |
fenix 8358 sunset blvd. wegt hollywood 213/848-6677| american
fenix at the argyle| 8358 sunset blvd. w. hollywood | 213-848-6677 french(new)

tection system, MRLIN, utilizes training pairs of records corresponds to one of the states of the generative model in
labeled as duplicates to induce a separate text similarityfig.2. A pair of matched strings is generated by this model
measure for each field, and to learn a classifier that comas a sequence of traversals along the edges accompanied by
bines the similarities across fields in a meaningful manneemissions of characters pairs, which are determined by the
to produce record similarity estimates. In this section, westate that is reached via each traversal.

describe the learning methods used imMLIN and some
experimental results that illustrate the benefits of our ap-
proach over non-adaptive duplicate detection methods that
use static similarity metrics.

2.1. Learnable String Distance

2.1.1. BDIT DISTANCE

A common measure of textual similarity $¢ring edit dis-
tance originally proposed by Levenshtein (Levenshtein,
1966). It is defined as the minimum number of inser-
“OT‘S' qeletlons or substitutions necessary to tranSfo_rm OnEigure 2.Generative model for string distance with affine gaps
string into another, and can be computed for two strings of

lengthsT" andV" using a dynamic programming algorithm The production starts in staféf and terminates when spe-

in O(TV) time. Needleman and Wunsch (Needleman &cial state# is reached. Transitionsp ando; from the
Wunsch, 1970) extended the distance model to allow conmatching statél/ to either the deletion stat® or the in-
tiguous sequences of mismatched characters, or gaps, in tgertion statel correspond to starting a gap in one of the
alignment of two strings. strings. A gap is ended when edges and~; are tra-
Most commonly the gap penalty is calculated using theversed back to the matching state. Remaining in state
affine model, which assigns a high penalty for starting aby taking edge: corresponds to a sequence of substitutions
gap, and a lower linearly increasing penalty for extending &r exact matches of characters, while remaining in states
gap. With this model, distanc&(z”,y""), between strings andD is analogous to extending a gap in either the first or
zT of lengthT andy" of lengthV, can be computed us- the second string.

ing a dynamic programming algorithm that constructs threeedit operations emitted in each state correspond to aligned
T x V matrices, see (Gusfield, 1997) for details. pairs of characters: substitutiofis, b) and exact matches
Because different edit operations have varying significancéa, a) in stateM; deletions from the first stringa, €) in

in different domains, adapting a string similarity metric stateD; and insertions of characters from the second string
to a particular domain requires assigning character-specifigito the first string(e, a) in statel. Each edit operation
costs to gap costs and different elementary edit operationsis assigned a probability(e); probabilities are normal-
(insertion, deletion, substitution). This task that has tradzed for each state. Edit operations with higher probabili-
ditionally been performed manually either using domainties produce character pairs that are likely to be aligned in
knowledge or by trial and error. A more popular approacha given domain, such as substitution (*/", “-") for phone
is to approximate edit distance by adopting fixed costs fomumbers, or deletion (*s) for addresses.

edit operations across all characters. Standard forward and backward algorithms can be used to
2.1.2. LEARNABLE EDIT DISTANCE WITH AFEINE obtain the probability of generating a pair of strings us-
GAPS ing this model. Given a corpus aof matched strings cor-

. . . responding to pairs of duplicate€, = {(z™*,y"),...,
?'St?_d and r\](tla_mlods_ (t1998) d(lavelope_?ha gentlezratlvet TOdemen,yV")}, this model can be trained using the Baum-
or Levenshiein distance along with an Expectalion-yy,qp, algorithm, which is a variant of the Expectation-

.I\/IaX|m|z'aF|on algorithm that Iearn; model parameters YSMaximization procedure for learning parameters of gener-
ing a training corpus of matched strings. We propose a sim-

ilar stochastic model for the edit distance with affine gapsauve models (Rabiner, 1989). See (Bilenko & Mooney,

Each of the th tri fh iqinal afi q 002) for a full description of the model and details of
ach ot the three matrices ot the original affine gap modey, . algorithms. Thus, learnable edit distance with affine



gaps provides us a domain-specific textual similarity meaiarity based on an inverted index, to separate records into
sure can be adapted to reflect the notion of similarity that ioverlapping clusters (“canopies”) of potential duplicates,
specific to each field of a given database. and subsequently adds all pairs of records that fall in each

2.2. Combining similarity across multiple fields cluster as potential duplicates.

When the distance between records composed of multiple Training:
fields is being calculated, it is necessary to combine simi- Field training data extractor

larity estimates for individual fields in a meaningful man- Fiotd uptcates | e
. . . . . . Learner
ner, weighting them according to their contribution to the

true similarity between records.

Record Learned

Record training

While statistical aspects of combining similarity scores for data extractor sanon-iplesies
individual fields have been addressed in previous work on
record linkage (Winkler, 1999), availability of labeled du- — o oot

distance features Metrics

plicates allows a more direct approach that uses a binary
classifier (Cohen & Richman, 2001). Given a database that

contains records composed bfdifferent fields and a set . Duplicate Detection:

D ={d,...,dy} of distance metrics, we can represent Candidate pair extactor

any pair of records by amk-dimensional vector of “dis- s/ ceamed
tance features”. Each component of the vector represents Metrics
similarity between two fields of the records calculated us- I Distance features
ing one of the distance metrics. Matched pairs of dupli-

cate recordR = {(r10,711);- - -, ("m0, Tn1)} can be used

to construct a training set of such vectors by assigning them dopeates

a positive class label. Pairs of records that are not labeled

as duplicates form the complementary set of negative ex- Figure 3.MARLIN overview
amples.

A binary classifier can then be trained using these vectors tdn overall view of our system, MRLIN, is presented in
discriminate between pairs of records corresponding to dufig-3. In the training phase, the learnable distance metrics
plicates and non-duplicates.A®LIN utilizes SupportVec- are trained for each record field. The training corpus of
tor Machines (SVM's) (Vapnik, 1995), which are appropri- Paired field-level duplicates is obtained by taking pairs of
ate for this task due to their resistance to noise and abilityyalues for each field from the user-provided set of paired
to handle correlated features well. Confidence estimates éfuplicate records. Because duplicate records may contain
belonging to each class are naturally given by a datapoint#dividual fields that are not equivalent, training data can
distance from the hyperplane that separates classes of d@e noisy. This does not pose a serious problem for our
plicates and non-duplicates in high-dimensional space tha&Pproach, since particularly noisy fields that are unhelpful
is constructed by the SVM during training_ for |dent|fy|ng record-level duplicates will be ignored by
the binary classifier as irrelevant distance features.

i ) ) _After individual similarity metrics are learned, they are
A confidence estimate of belonging to the class of dupli-ysed to compute distances for each field of duplicate and
cates for a given pair of records can be viewed as an overaljon-duplicate record pairs to obtain training data for the
measure of similarity between the records comprising theyinary classifier in the form of vectors composed of dis-
pair. Given a large database, producing all possible pairs qhnce features. Because we are employing a classifier that
records and computing similarity between them is 100 exjoes not depend on the relative sizes of training data for the
pensive since it would requifg;=L distance computations. two classes, it is sufficient to randomly addon-duplicate
There are two methods which can be used to cut down theecord pairs to the training set.

number of potential duplicate pairs: the sorted neighborThe duplicate detection phase starts with the generation of
hood method (Hermdez & Stolfo, 1995) and the canopies potential duplicate pairs using either the sorted neighbor-
clustering method (McCallum et al., 2000). The formerhood or canopies method. Next, learned distance metrics
utilizes sorting the database using different fields as keyare used to calculate distances for each field of each pair of
in multiple passes, sliding a window of fixed size over thepotential duplicate records, thus creating distance feature
sorted database during each pass, and adding all pairs géctors for the classifier. Confidence estimates for belong-
records that co-occur within the window as potential dupli-ing to the class of duplicates are then produced by the bi-
cates. The canopies clustering method utilizes some coniary classifier for each candidate pair, and pairs are sorted
putationally inexpensive metri¢., such as Jaccard simi- py increasing confidence.

2.3. Duplicate detection algorithm



The problem of finding a similarity threshold for separat- was labeled as a duplicate, and the transitive closure of
ing duplicates from non-duplicates arises at this point. Agroups of duplicates was updated. Precision, recall and F-
traditional approach to this problem (Winkler, 1999) re- measure defined over pairs of duplicates were computed
quires assigning two thresholds: one that separates paiedter each iteration, where precision is the fraction of iden-

of records that are high-confidence duplicates, and anothéified duplicate pairs that are correct, recall is the fraction of

for possible duplicates that should be reviewed by a humaactual duplicate pairs that were identified, and F-measure is
expert. Since relative costs of labeling a non-duplicate as the harmonic mean of precision and recall.

duplicate (false positives) and overlooking true duplicatesprecision was interpolated at 20 standard recall levels
(false negatives) can vary from database to database, thef@lowing the traditional procedure in information re-
iS no “S"Ver bu”et" Solution to thls problem. AValIab|I|ty Of trieva| (Sa'ton, 1989) Only those portions Of the curves

labeled data, however, allows us to provide precision-recalihat exhibit differences between approaches are shown.
estimates for any threshold value and thus offer a way tg

control the trade-off between false and unidentified dupli—2'4'3' RESULTS AND DISCUSSION

cates by selecting threshold values that are appropriate fd?etecting duplicate field values To evaluate the use-
a particular database. fulness of adapting character-based distance metrics to a

Itis highly likely that several identified duplicate pairs will SPecific domain, we compared learned similarity metrics
contain the same record. Since the “duplicate of” relation igVith their fixed-cost equivalents for the task of identify-

transitive, it is necessary to compute the transitive closurd’d eguivalentfield values. We chose the most meaningful

of equivalent pairs to complete the identification process!'€!ds from the three datasets for these experiment®AC

Following (Monge & Elkan, 1997), we utilize the union- Paper title field, RESTAURANT nameandaddress
find data structure to store all database records in this steff€!dS: @nd MAILING street address  andnamefields
which allows updating the transitive closure of identified ((N€ 1atter is a concatenation bist name  andlast
duplicates incrementally in an efficient manner. name fields).
We have compared four distance metrics:
¢ Levenshtein edit distance (Gusfield, 1997), calculated
2.4.1. DATASETS as the minimum number of character deletions, inser-

We have used three different datasets for our experiments.  tions and substitutions of unit cost;

RESTAURANT is a database of 864 restaurant names and e Learned Levenshtein edit distance based on a gen-
addresses containing 112 duplicates assembled by Sheila erative model and trained using the Expectation-
Tejada from Fodor’'s and Zagat's guidebooks. The sec-  Maximization procedure describedin (Ristad & Yian-

2.4. Experimental Evaluation

ond dataset, GRA, is a collection of 1295 distinct refer- ilos, 1998);

ences to 122 Computer Science research papers from thee String distance with affine gaps (Gusfield, 1997) using
Cora Computer Science research paper search éngine a substitution cost of 3, gap opening cost of 3, and gap
nally, we used the database generator of ldrd&z and extension cost of 1, which are commonly used param-

Stolfo (Herrdndez & Stolfo, 1995) that randomly corrupts eters;
records to introduce duplicates into a mailing list database e Learned string distance with affine gaps described in
to create the MILING dataset of 1200 records correspond- Section 2.1.2

ing to 400 original entries. Fig.1 contains sample duplicate ) . _ .
records from the RSTAURANT database. Results for field-level duplicate detection experiments are

summarized in Table 1. Each entry in table contains the av-
2.4.2. XPERIMENTAL METHODOLOGY erage of maximum F-measure values over 10 folds. Results
All experiments were conducted using 10-fold cross vali-for experiments where the difference between the learned
dation. To create the folds, duplicate records were groupednd corresponding unlearned metric is significant at the
together, and the resulting clusters were randomly assigne@l05 level using a 1-tailed t-test are presented in bold font.
to the folds. Because the sizes of our datasets allowed confrg. 4 contains recall-precision curves for the performance
puting distances between all pairs of records, we did nobf MARLIN on the GRA paper title field.

employ the sorted neighborhood or canopies approaches f9erformance improvements achieved when learned dis-
limit the number of potential duplicates. Either of the ap-tance metrics were used instead of fixed-cost distance met-
proaches, however, could be used for evaluating accuragycs for detecting field duplicates demonstrate that learn-
of duplicate detection on larger datasets. able distance metrics are able to approximate the relative
After computing distances between all pairs of potentialimportance of differences between strings for a specific
duplicates, the pair of records with the highest similarityfield, as can be seen from higher maximum F-measure val-
T ues in Table 1. Results of all experiments except for the

http://cora.whizbang.com
P g address field of the MAILING database demonstrate that



Table 1.Maximum F-measure for detecting duplicate field values

| Distance metric | CorAtitle | RESTAURANTname | RESTAURANT address| MAILING name | MAILING address]
Levenshtein 0.870 0.843 0.950 0.867 0.878
Learned Levenshtein  0.902 0.886 0.975 0.899 0.897
Affine 0.917 0.883 0.870 0.923 0.886
Learned Affine 0.971 0.967 0.929 0.959 0.892

a 1-tailed t-test. All differences between the SVM and Sum
approaches are significant at the 0.05 level using a 1-tailed
t-test, except for the experiments that use unlearned string
distance with affine gaps for theeRTAURANT dataset, and
those that use learned string distance with affine gaps for
the MAILING dataset.

Precision

0.2 |

Levenshtein —— | Table 2Maximum F-measure for duplicate detection based on
Learned Leven&qgﬁ - multlple fields
0 peamen A 2 : : [ Classifier | Metric [ CORA | RESTAURANT | MAILING |
0.4 0.5 0.6 0.7 0.8 0.9 1
Recall Sum Affine 0.561 0.847 0.9431
Sum Learned Affine| 0.564 0.832 0.991
Figure 4.Title  duplicate field-value detection results for the | SVM Affine 0.959 0.861 0.992
CORA dataset SVM Learned Affine| 0.958 0.971 0.996
SVM Jaccard 0.983 0.971 0.961

taking gaps into account when constructing string align-

ments results in better estimates of string similarity for theFrom the results on the EBSTAURANT and MAILING

task of detecting approximate duplicate field values. Thelatasets we can conclude that using adaptive string distance
fact that the results of all metrics were not significantly metrics to compute similarity between field values makes a
different on that field can be explained by the fact that apositive contribution when similarities from multiple fields
certain fraction of entries was heavily corrupted by substi-are combined either in a simplistic manner by adding them,
tuting PO Box addresses, which are effectively impossibleor by using them as record-pair attributes for classification.

to match against the corresponding street address withowtje also ran trials which combined character-based met-
using other fields such amme andcity . rics (static and adaptive string distance with affine gaps)
and token-based metrics (Jaccard similarity). These exper-
iments resulted in near-100% precision and recall, without
significant differences between static and adaptive field-
level metrics. Similar results were obtained when common
nary classifier. We have compared classifier-based similaﬁreﬂx and common suffix I_engths were used as f|eld-leyel
: distance metrics along with the character-based metrics

gylsstlmatlﬁnr:()tru?r;n%tre S:Jdml ?/fcljlsitriﬂcﬁi’ f::])m d'f:eregitused above. This demonstrates that combining character-
€lds as a non-trained record-ievet simiiarity measure. £, 4 oren-pased distance metrics, such as learned string
ther simple affine gap distance or learned string distanc

. . . 'CBistance with affine gaps and Jaccard similarit , is clearl
with affine gaps described above were used for computln%n advantage of thg t\l/)vo-level approach implgmented i?’/]

similarity between values of each record field. Classmer—MARLlN_ Current datasets did not allow us to show the

?nfrig ti)gt)irsl?degt:uizeogzg?;iiebsyacsrgsl\g %iggélzriﬁziré;bgnefits of adaptive metrics over their static prototypes in
fifis scenario, but our initial results suggest that this can be

as “Sum” in Table 2. We also conducted additional exper- :
) : e emonstrated on more challenging datasets.
iments using the SVM for record-level classification basedﬂ ging

on Jaccard similarity as the distance metric for individual3  Mining Soft Association Rules
fields.

Record-level duplicate detection Next, we evaluated
the performance of MRLIN for multi-field (record-level)
duplicate detection. The SVM implementation from the
WEKA toolkit (Witten & Frank, 1999) was used as the bi-

Results I . ¢ ized in Tabl 2In this section, we generalize the standamRrAORI algo-

esults Tor afl experiments are summarized in 1able &y, o, for discovering association rules (Agrawal & Srikant,
Agam_, resu_lts in bold font correspc_)nd to those experlmenti994) to allow for soft matching based on a given similarity
in which differences between using the leamed and Unq i for each field. Detailed descriptions fapSTAPRI-
learned string metrics are significant at the 0.05 level using, - an be found in (Nahm & Mooney, 2002)



3.1. Background: Mining Association Rules
Given a databas®, the problem of mining association

Input D (set of records).
Output L; (frequentk-itemsets).
FunctionSoftApriori (D)

rules is to discover all association rules that have support, .= FindFrequentltemsets)).
and confidence greater than the user-specified minimurh := 2.
support and confidence. An association rule from a supeiwhile (Lx—1 # 0) do

market databasepéer = pretzels [5%,80%)]" indicates

that 5% of customers bought beer and pretzels together
and 80% of those who bought beer also bought pretzels.
One of the popular algorithms for mining association rules

is APRIORI (Agrawal & Srikant, 1994) where the closure
property of itemset support was introduced.

3.2. Mining Soft Association Rules
We introduce the problem of miningpftassociation rules

(', := GenerateCandidatds{_)
forall recordsr € D do
forall ¢ € C) do
if c gsoft r
then c.count := c.count + 1.
L; := All candidates inC, with minsups.
k=k+1
return |J,, L.

Figure 5. The SOFTAPRIORIalgorithm

from databases and investigate how to utilize an existing

association rule mining algorithm to incorporate similarity

Definition 4 (soft-support) The soft-support of an item-

in discovering associations. We present two implementaset X in a set of records (database, denoted as
tions using a string edit distance and a cosine similarity asoftsup(X), is the number of records? € D, such that

the primary similarity metrics.

3.2.1. DFTASSOCIATIONRULES

X Csort R. The soft-support of a rul&X = Y in a
databaseD, denoted asoftsup(X = Y), is the number
of recordsRk € D such thatX UY C,,4; R.

Soft relations are defined as follows. We assume that @.2.2. THE SOFTAPRIORIALGORITHM

function,similarity(z,y), is given for measuring the sim-
ilarity between two item& andy. The range of the sim-
ilarity function is the set of real numbers between 0 to 1
inclusive, angsimilarity(z,y) = 1iff z = y.

Definition 1 (is-similar-to) An itemz is similar to an item
y (z ~ y) iff similarity(z,y) > T (where the threshol@
is a predefined constant between 0 and 1).

Definition 2 (is-a-soft-element-of)An item z is a soft-
element of an itemsét(z €5, I) iffthere existsan’ € T
such thatz’ ~ z.

Definition 3 (is-a-soft-subset-of)An itemset/ is a soft-
subset of an itemset (I C,of: J) iff for every item in
I there is a distinct similar item i/, i.e. for every item
z; €I, 1= {x1,...,2,}, thereisaniteny; € J such that
z; ~y;andy; #y;forall j #4,1 <j <m.

The following is a formal statement of the problem of min-
ing soft association rules: Lét= {iy, iz, ..., %, } be a set
of literals, called items. LeD be a set of records, where
each recordR is a set of items such th@&® C I. A soft
association rule is an implication of the fork = Y,
whereX C I,Y C I,andX andY aresoft-disjoint(Two
itemsets/ and J are soft-disjoint when no item i is a
soft-element ofJ.). The problem of mining soft associa-
tion rules is to find all soft association rules,= Y, such
that thesoft-supportand thesoft-confidencef X = Y

In this section, we consider discovering frequent itemsets,
or finding all frequent itemsets with higher soft-support
than the user-specified minimum. To discover frequent
itemsets for soft association rules, we generalize the ex-
isting itemset mining algorithm presented in (Agrawal &
Srikant, 1994) in a straightforward way. Since the notion
of equality in the traditional definition of an association
rule is replaced by similarity, we need to compute the soft-
support of each item and itemset by Definition 4. Similar-
ity between items is computed once and cached for future
references. Fig. 5 gives pseudocode for theB\PRIORI
algorithm.

The first step of the algorithm determines the frequent 1-
itemsets. The set of frequent 1-itemséfsin SOFTAPRI-

ORI is the set of all 1-itemsets whose soft-support is greater
than the user-given minimum support. By Definition 4,
the soft-support of each item is calculated by summing the
number of occurrences of all similar items. Formally, the
soft support of a 1-itemsdtz } wherez is an element of the
set of all items! (z € I) is computed as follows:

softsupr({z}) = >_, ¢ similar(z,y) x support(y)

While counting the occurrences of all items, we measure
the similarity of every pair of items and constructmanx

m matrix similar(i, j), wherem is the total number of
items in the database. To determine frequent l-itemsets,

are greater than the user-defined minimum values (callethe soft-supports of all items are computed. Intuitively, we
minsupand minconfrespectively). Formal definition for construct a cluster of items containing the items similar to
soft-support is given below. Soft-confidence is a straight-each given “central” item, and sum the support of all items
forward generalization of the traditional one. in the cluster. Soft items are then treated the same as items



in the original APRIORI algorithm. distance is a suitable similarity metric. An obvious exten-

In @ manner similar to the initial construction of frequent Sion is to replace edit distance with “bag of words” similar-
items, itemsets are grown by computing the Soft_suppori_ty metrics such as vector-space cosine similarity from in-
of candidates and discarding those with low soft-supportformation retrieval (Salton, 1989). In vector-space model,
For each itemset that is a soft subsetrpfor for each atextisrepresented as a vector of real numbers, where each
set of items that have similar items in soft-support of ~component corresponds to a word and the value is its fre-
an k-itemset is again computed by the equation in Defini-quency in the document. The similarity of two documents
tion 4, counting the number of soft-matching items, instead? andy is the cosine of the angleetween two vectors

of simply counting the number of occurrences of each itemandy representing: andy respectively. We also used the
By treating every pair of items in different fields as non- standard TFIDF (Term Frequency, Invgrse Dogument Fr_e-
similar, we are able to lower the number of similarity quency) weighting scheme to assign higher weights to dis-

computations which was originallg(m?) to SN m,>  tinguished terms.

whereasN is the number of fieldsyn,, is the number of In terms of computational performance, the major bottle-
items in fieldk, andm is the total number of items. De- neqk is the worst-case quadratip time_ complexity of mea-
pending on the particular similarity metric, additional op- suring the similarity of many pairs of items. Fortunately,
timizations are possible. For example, items in numeridhere are well-known indexing methods that allow efficient
fields can be sorted and then similar items can be quicklydentification of items that are close in cosine similarity
determined by checking neighboring items only. Addi- (Salton, 1989; Cohen, 1998). In our implementation, we
tional optimizations for string edit distance and cosine sim-used an inverted index to retrieve similar items efficiently.
ilarity are presented in the following sections. Performance gains obtained by this optimization are shown

in Section 3.3.4.
3.2.3. MPLEMENTATION |: STRING EDIT DISTANCE

We implemented SFTAPRIORI by modifying a publicly ~ 3-3. Experimental Evaluation

available version of ARRIORI (Borgelt, 2000) with the Ourfocus on mining soft-matching rules was motivated by
affine model (Gusfield, 1997). To measure similarity oftext-mining research on discovering patterns in data auto-
string-valued items, we definedmilarity(z,y) asl — matically extracted from natural-language documents and
normalized_edit_distance(z,y) where normalized edit web pages (Nahm & Mooney, 2000; Nahm & Mooney,
distance is scaled to always be between 0 and 1 (based @001). Therefore, we evaluateoSTAPRIORI on “dirty”

the lengths of the two strings). The similarity of items in databases extracted from text and compare prediction ac-
numeric fields is defined as the normalized absolute differeuracies (measured on independent test data) of soft and
ence. hard association rules mined from the same training data.

Given a particular edit distance function, we can reduce theg.3.1. DATASETS AND SAMPLE RULES

time complexity of determining similar items. Since edit £, he first dataset, 300 computer-science resume post-
distance counts the number of operations needed to chan%s to the newsgroumisc.jobs.resumes were col-

one string to ano_ther, two strings camot be_similar if theirlected and information on programming languages, plat-
lengths are too dn‘fere_nt. By generall_zmg thls_observatlonforms' applications, areas, hardwares, software engineer-
we obtain a test function to determe if two strings c@ g gyilis, job title, major, degree, years of experience, and
be similar under affine gap cost so that we are able to elimy ot gate were identified by human tagging to construct a
inate edit distance computations for very different strings. yo,4| database of job skills. Second, 3,000 science fiction
We can reduce the number of comparisons between iten{SF) book descriptions are automatically extracted from the
even further by using an n-gram index (Kim & Shawe- Amazon online bookstore. The information extractor for
Taylor, 1994). An n-gram is a substring of lengttof a ~ Amazon was developed manually and is highly accurate.
given string. It can be shown that a stringannot be sim- 12 fields (title, author, reviews, synopses, type, publisher,
ilar to y for a given threshold if they do not share at leastdate, subjects, related books and authors, price, and rating)
k (k > 0) n-grams. In our implementation, we used a tri- are identified and 10 of them except synopses and reviews
gram index to efficiently retrieve a list of candidate similar are used for the Implemention | (edit distance) while only
strings for each string. Each string is indexed under everg fields (title, author, reviews, synopses, subjects) are used
three-character substring that it contains. To find candifor Implementation Il (vector-space model).

dates for similar strings, we use the index to retrieve a”ExampIes of interesting soft association rules mined from
strings that share at least a certain number of trigrams.  {ne four sets of data are shown in Fig. 6 and Fig. 7. Items
3.2.4. MPLEMENTATION II: V ECTOR-SPACE MODEL similar to a given item are shown in parentheses, and val-

The implementation presented in Section 3.2.3 focuses of{€S for softsup and softconf are shown in brackets. With
textual data in which items are short strings for which editt® Same values of confidence and suppook; B\PRIORI



1. unix € platform = html (d/html, dhtml, shtml) e 1. {mike(1), resnick(1) € authorand = {american(1), fan-
programming-language [22.7%, 54.4%] tasy(1), fiction(4), science(B) subject [0.2%, 35.0%]

2. unix € programming-language> visual basic (visual basic 2. {gery(1), greer(l) € author and {accidentally(1), ac-
5.0, visual basic 6.0, visual basic 4.0, ms visual basic, visual tion(1), aliens(1), book(2), boys(1), carried(1), copyright(1),
basic 4, visual basic 5/&) programming-language [13.0%, distinct(1), escape(l), horn(2), humorous(l), personali-
31.2%)] ties(1), point(1), reserved(1), rights(1), slight(1), space(1),

story(1), strong(l), trouble(1), worth(l)e review =

3. netscape (netscape 4.7, netscape 4.x, netscape 6, netscape {spaceship($) € title [0.1%, 100.0%)]

Idap) € application=- tcp/ip (tcp ip, tcpip)€ application
[3.3%, 34.5%)] 3. {asimov(1), janet(T) € authorand {fiction(2), robots(1),
science(l) € subject=- {asimov(1l), isaac(}) € author
[0.1%, 100.0%)]
Figure 6.Sample soft association rules from USENET resume
postings ((Implementation T = 0.7)
Figure 8.Sample soft association rules from SF book descriptions

1. bob ruddicke author=- blanche I. sims (blanche sims) (Implementation 1" = 0.7)

author [0.3%, 30.0%
[ ] Input D5+ (test databaseRules (association rule set)

2. david gerrold (d. gerroldE author=- american science Output (Precision, Recall)
fiction and fantasy science fiction science fiction ; fantasyFunctionComputeAccuracy®;..:, Rules)
(american science fiction and fantasy science fiction, gen-fired := matched := item := predicted := 0.
eral science fiction science fiction ; fantasy, english sciencéor eachrecordR € D;.s: do
fiction and fantasy science fiction science fictinon ; fantasy, for eachr (4 = ¢) € Rules do

etc..) € subjects [0.2%, 50.0%)] if ((r is hard and4d C R) or
, : , o : (rissoftandA C.oy: R))
3. isaac asimov (isaac amimov, isaac asimeyauthorand then if r is hardthen A’ := A.
robot dreamsc related books=- robot visionse related elsed’ =X st. X C RandX ~ A.
books [0.1%, 100.0%] fired = fired + 1. -
if c €opt R—A'

. . L then matched := matched + 1.
Figure 7.Sample soft association rules from SF book descriptions for each ¢’ em}g dcoe matehe

(Implementation IT" = 0.7) item = item + 1.
if there exists & (A = ¢) € Rules S.t.

c~c and((rishardandd C R — {c'}) or
discovers more general rules including frequent clusters of _ (rissoftandA Coo5e R — {c'}))
similar items that would be overlooked by the traditional retutrze? nfg:gi‘;’if;lf%;fg’eﬁgzeg; (}/l rem).
algorithm because of the low support values for individual
items. Other examples show that soft association rules are
able to capture patterns based on groups of similar items
such as the different versions of Visual Basic, typos in the

author slot, efc.. 10 trials of training on 90% of the data and testing on 10%

We presented items in soft association rules by specifyingMitchell, 1997).

the item itself followed by its corresponding similar items To determine the accuracy of a set of association rules,
in parentheses. For other similarity metrics, alternative apwe measured precision and recall with respect to predict-
proaches to representing “softness,” such as ranges on ning the presence of items in a record from other items in
meric values, may be appropriate. In Implementation Il,that record.Precisionis the percentage of predicted items
items are represented by the bag intersection of its similathat are actually present anetall is the percentage of ac-
items in the cluster as in (Nahm & Mooney, 2001). Sampletual items that are correctly predicted. We also report
rules from this implementation are shown in Fig. 8. Num-measurewhich is the harmonic mean of recall and preci-
bers in parentheses stand for the number of occurrences feion. A prediction is judged to be correct iff there is an
each word, or bag counters. item in the record that is at least similar to the predicted
item (i.e. similarity(z,y) > T). The pseudocode for the

3.3.2. XPERIMENTAL METHODOLOGY X 4 o
N .. evaluation method is presented in Fig. 9.
We measured the ability of both hard and soft association

rules mined from the same training data with the same min3-3-3. RESULTS AND DISCUSSION

imum confidence and support parameters to make accurafée experimental results obtained for the resume postings
predictions on the sandisjoint set of test data. To obtain using Implementation | are summarized in Table 3. We
statistically reliable estimates of accuracy, we employedised a similarity threshold of 0.7 for every field. Differ-
ten-fold cross-validation which averages performance oveences for hard and soft rules were evaluated by a two-tailed,

Figure 9.Method for evaluating precision/recall



Minconf Minsup (%) kler, 1999), the merge/purge problem (Handez & Stolfo,

(%) Rule | > |10 [ 15 1995), duplicate detection (Monge & Elkan, 1997), hard-

20 Soft 1 90.86/3.171 86.95/3.14] 84.55/3.13 ening soft databases (Cohen et al., 2000), and reference
Hard || 62.19/3.01| 60.41/2.76| 60.32/2.31 .

50 Soft 1 90.79/3.18 87 71/3 13| 85.64/3.13 matching (.McCaIIum _et_al.., 2000).. In all of these ap-
Hard || 66.64/2.89| 64.47/2.50| 62.16/2.09 proaches fixed-cost similarity metrics were used to com-

70 Soft || 91.34/3.18| 89.45/3.13| 85.76/3.08 pare database records. The only previous work on adaptive
Hard || 71.51/2.61| 69.75/1.92| 74.50/1.43 duplicate detection that we know of is the approach de-

80 Soft | 92.14/3.15| 88.37/3.11| 84.13/2.82 scribed in (Cohen & Richman, 2001), which learns how to
Hard || 78.84/2.25| 79.05/1.46| 80.60/0.69 combine multiple similarity metrics to identify duplicates,

USENET resume PUt dpes not adaptively tune the underlying field-similarity
metrics themselves.
Association rule mining has been applied directly to tex-
tual data (Feldman & Hirsh, 1996; Ghani et al., 2000);

Table 3.Accuracies of soft vs. hard rules on
postings (precision/recall)

No Optimization —— however, the heterogeneity of items in textual databases
ver A has not been adequately addressed. Compared to an in-
e r X 1 ductive method for learning soft-matching prediction rules
14l E (Nahm & Mooney, 2001), SFTAPRIORI finds all associ-

_12f P , ation rules with a given soft-support and soft-confidence,
& / g | and therefore typically discovers a larger set of regularities.
g o
o8 1 5. Future Work
oer e 1 Extending the metric learning approach to token-based dis-
o4r ] tance metrics, such as Jaccard similarity or vector-space
02| X f cosine distance, is a promising avenue for research. Previ-
okl X . . . ous work on semi-supervised clustering (Cohn et al., 2000)
0 500 1000 1500 2000 2500 3000

has shown the usefulness of a similar approach: learning
weights of individual words when calculating distance be-
Figure 10Running time for similarity computations (Implemen- tween documents using Kullback-Leibler divergence.

tation 1) Another area for future work lies in generalizing edit dis-
tance to include macro-operators for inserting and deleting
common substrings, e.g. deleting “Street” in address fields.

pairedt-test to determine if they were statistically signifi- The string distance model with aans would be particular!
cant {p < 0.05). Overall, the results clearly show that soft gd . . gap : P y
useful for this task, since it would allow discovering useful

rules are generally better than hard rules at discovering re . . :
. N deletion sequences by counting the frequencies of common
liable regularities in “dirty” data.

gaps.
3.3.4. EERFORMANCERESULTS One possible extension toOBTAPRIORI is to incorpo-
Finally, we present results showing the efficiency gainedate semantic information in the similarity metric using ei-
by using the optimization methods presented previously fother lexical knowledge-bases such as WordNet (Fellbaum,
quickly finding similar string-valued items. The 3,000 SF 1998) or utilizing statistical measures of semantic similar-
book descriptions were used in this experiment. Fig. 1Qty in LSI (Deerwester et al., 1990). The limitation of the
shows the CPU time needed for each item in the similaritycurrent definitions for soft-support and soft-confidence is
computation step. The “Inverted Index” method employsthat they do not reflect the differentiginal supportval-
the inverted index to efficiently retrieve documents with ues of individual items nor different degrees of similarities
shared terms. Performance gains for the edit distance inmbetween items. One solution to this problem is to adapt
plementation can be achieved similarly by using the trigranthe approach to use a real-valued similarity measure rather
index (Nahm & Mooney, 2002). Both results demonstratethan a binary one.
that with good heuristics and an efficient indexing methOdCurrentIy, the similarity function as well as the thresh-
our approach is scalable to larger datasets by reducing thgq values for determining similarity for G=TAPRIORI
pumber of explicit similarity comparisons between pairs of 3¢ pre-determined and fixed throughout the mining phase.
items. Since the similarity of two textual items can vary depend-
4. Related Work ing on the specific domain, automatic learning of the_se
functions should be explored. We plan to explore replacing
r%he fixed similarity function currently used in0BTAPRI-

Number of Records (Training Data)

In previous work, the problem of identifying duplicate
records in databases was studied as record linkage (Wi



ORI by learned similarity metrics generated byaRLIN. Fellbaum, C. D. (1998)WordNet: An electronic lexical database
) Cambridge, MA: MIT Press.
6. Conclusion Ghani, R., Jones, R., MladeniD., Nigam, K., & Slattery, S.

Data mini thod I frer f isv datab (2000). Data mining on symbolic knowledge extracted from
ata mining methods generally Sulierirom noisy aatabases g ygp, Proceedings of the Sixth International Conference

with non-standardized variations especially for text-valued on Knowledge Discovery and Data Mining (KDD-2000) Work-
fields. In this paper, we presented two different methods to shop on Text Miningpp. 29-36). Boston, MA.

deal with this problem. First, an adaptive approach calledsusfield, D. (1997) Algorithms on strings, trees and sequences
MARLIN has been proposed that learns to identify duplicate New York: Cambridge University Press.

records in a specific domain. Our approach uses learning€Mndez, M. A., & Stolfo, S. J. (1995). The merge/purge
at two levels: training similarity metrics for field-level du- problem for large databasesroceedings of the 1995 ACM

; o _ e - SIGMOD International Conference on Management of Data
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