
Proceedings of the ICML-2002 Workshop on Text Learning,
pp. 18-27, Sydney, Australia, July 2002

Two Approaches to Handling Noisy Variation in Text Mining

Un Yong Nahm PEBRONIA@CS.UTEXAS.EDU

Mikhail Bilenko MBILENKO @CS.UTEXAS.EDU

Raymond J. Mooney MOONEY@CS.UTEXAS.EDU

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712-1188 USA

Abstract

Variation and noise in textual database entries
can prevent text mining algorithms from dis-
covering important regularities. We present
two novel methods to cope with this problem:
(1) an adaptive approach to “hardening” noisy
databases by identifying duplicate records, and
(2) mining “soft” association rules. For identify-
ing approximately duplicate records, we present
a domain-independent two-level method for im-
proving duplicate detection accuracy based on
machine learning. For mining soft matching
rules, we introduce an algorithm that discovers
association rules by allowing partial matching of
items based on a textual similarity metric such as
edit distance or cosine similarity. Experimental
results on real and synthetic datasets show that
our methods outperform traditional techniques
for noisy textual databases.

1. Introduction
Textual entries in database fields often exhibit minor vari-
ations that can prevent mining algorithms from discover-
ing important regularities. Variations can arise from ty-
pographical errors, misspellings, abbreviations, as well as
other sources. Variations are particularly pronounced in
data that is automatically extracted from unstructured or
semi-structured documents or web pages (Ghani et al.,
2000; Nahm & Mooney, 2000). For example, in data on
local job offerings that we automatically extracted from
newsgroup postings, the Windows operating system is vari-
ously referred to as “Microsoft Windows”, “MS Windows”,
“Windows 95/98/ME”, etc. Sample duplicate records on
Fig.1 illustrate textual variations in a restaurant database
formed by merging two guidebooks.

Some previous work has addressed the problem of identify-
ing duplicate records, where it is referred to as record link-
age (Winkler, 1999), the merge/purge problem (Hern´andez
& Stolfo, 1995), duplicate detection (Monge & Elkan,
1997), hardening soft databases (Cohen et al., 2000), and

reference matching (McCallum et al., 2000). Typically, a
fixed textual similarity metric such as edit distance (Gus-
field, 1997) or vector-space cosine similarity (Salton, 1989)
is used to determine whether two values or records are alike
enough to be duplicates. However, the similarity of two
strings can depend on the domain and field under consider-
ation. Rather than hand-tuning a distance metric for each
field in each domain, we present a method for automatically
learning an appropriate string-similarity metric from small
corpora of hand-labeled examples. Our system, MARLIN

(Multiply Adaptive Record Linkage with INduction), em-
ploys a two-level learning approach. First, a set of sim-
ilarity metrics are trained to appropriately determine the
similarity for different database fields. Next, a final predi-
cate for detecting duplicate records is learned from multi-
ple similarity metrics for each of the individual fields using
Support Vector Machines (SVM’s) (Vapnik, 1995).

With this “de-duping” approach, however, discovered as-
sociations are not able to capture all similarities between
different items. Since the similarity relation for textual
items is non-transitive, sometimes a fixed clustering en-
counters a dilemma, e.g. when “WinNT” partially matches
“NT”, but it also matches “Windows”. By allowing par-
tial matching of items, we explore the alternative of di-
rectly mining “dirty” data by discovering “soft matching”
association rules whose antecedents and consequents are
evaluated based on sufficient similarity to database entries.
Similarity of textual items is measured using standard “bag
of words” metrics (Salton, 1989) and edit distance mea-
sures (Gusfield, 1997); other standard similarity metrics
can be used for numerical and other data types. We gen-
eralize the standard APRIORI algorithm for discovering as-
sociation rules (Agrawal & Srikant, 1994) to allow for soft
matching given a similarity metric for each field.

2. Adaptive Duplicate Detection Using
Learned Similarity Metrics

Identifying duplicate records and fields in textual databases
is beneficial both for text mining tasks such as association
rule discovery, and for traditional database tasks such as ob-
taining counts and accurate query results. Our duplicate de-

Figure 1.Sample duplicate records from the RESTAURANT database
name address city phone cuisine

fenix 8358 sunset blvd. west hollywood 213/848-6677 american
fenix at the argyle 8358 sunset blvd. w. hollywood 213-848-6677 french(new)

tection system, MARLIN, utilizes training pairs of records
labeled as duplicates to induce a separate text similarity
measure for each field, and to learn a classifier that com-
bines the similarities across fields in a meaningful manner
to produce record similarity estimates. In this section, we
describe the learning methods used in MARLIN and some
experimental results that illustrate the benefits of our ap-
proach over non-adaptive duplicate detection methods that
use static similarity metrics.

2.1. Learnable String Distance

2.1.1. EDIT DISTANCE

A common measure of textual similarity isstring edit dis-
tance, originally proposed by Levenshtein (Levenshtein,
1966). It is defined as the minimum number of inser-
tions, deletions or substitutions necessary to transform one
string into another, and can be computed for two strings of
lengthsT andV using a dynamic programming algorithm
in O(TV) time. Needleman and Wunsch (Needleman &
Wunsch, 1970) extended the distance model to allow con-
tiguous sequences of mismatched characters, or gaps, in the
alignment of two strings.

Most commonly the gap penalty is calculated using the
affinemodel, which assigns a high penalty for starting a
gap, and a lower linearly increasing penalty for extending a
gap. With this model, distanceS(xT ; yV), between strings
xT of lengthT andyV of lengthV , can be computed us-
ing a dynamic programming algorithm that constructs three
T � V matrices, see (Gusfield, 1997) for details.

Because different edit operations have varying significance
in different domains, adapting a string similarity metric
to a particular domain requires assigning character-specific
costs to gap costs and different elementary edit operations
(insertion, deletion, substitution). This task that has tra-
ditionally been performed manually either using domain
knowledge or by trial and error. A more popular approach
is to approximate edit distance by adopting fixed costs for
edit operations across all characters.

2.1.2. LEARNABLE EDIT DISTANCE WITH AFFINE

GAPS

Ristad and Yianilos (1998) developed a generative model
for Levenshtein distance along with an Expectation-
Maximization algorithm that learns model parameters us-
ing a training corpus of matched strings. We propose a sim-
ilar stochastic model for the edit distance with affine gaps.
Each of the three matrices of the original affine gap model

corresponds to one of the states of the generative model in
Fig.2. A pair of matched strings is generated by this model
as a sequence of traversals along the edges accompanied by
emissions of characters pairs, which are determined by the
state that is reached via each traversal.

σ

σ

µ M

D

#

I

µτ

τI

τD

D

γD

I

γI

δI

δD

Figure 2.Generative model for string distance with affine gaps

The production starts in stateM and terminates when spe-
cial state# is reached. Transitions�D and�I from the
matching stateM to either the deletion stateD or the in-
sertion stateI correspond to starting a gap in one of the
strings. A gap is ended when edges
D and
I are tra-
versed back to the matching state. Remaining in stateM

by taking edge� corresponds to a sequence of substitutions
or exact matches of characters, while remaining in statesI

andD is analogous to extending a gap in either the first or
the second string.

Edit operations emitted in each state correspond to aligned
pairs of characters: substitutionsha; bi and exact matches
ha; ai in stateM ; deletions from the first stringha; �i in
stateD; and insertions of characters from the second string
into the first stringh�; ai in stateI . Each edit operation
e is assigned a probabilityp(e); probabilities are normal-
ized for each state. Edit operations with higher probabili-
ties produce character pairs that are likely to be aligned in
a given domain, such as substitution (“/”, “-”) for phone
numbers, or deletion (“.”,�) for addresses.

Standard forward and backward algorithms can be used to
obtain the probability of generating a pair of strings us-
ing this model. Given a corpus ofn matched strings cor-
responding to pairs of duplicates,C = f(xT1 ; yV1); : : : ;
(xTn ; yVn)g, this model can be trained using the Baum-
Welch algorithm, which is a variant of the Expectation-
Maximization procedure for learning parameters of gener-
ative models (Rabiner, 1989). See (Bilenko & Mooney,
2002) for a full description of the model and details of
the algorithms. Thus, learnable edit distance with affine

gaps provides us a domain-specific textual similarity mea-
sure can be adapted to reflect the notion of similarity that is
specific to each field of a given database.

2.2. Combining similarity across multiple fields

When the distance between records composed of multiple
fields is being calculated, it is necessary to combine simi-
larity estimates for individual fields in a meaningful man-
ner, weighting them according to their contribution to the
true similarity between records.

While statistical aspects of combining similarity scores for
individual fields have been addressed in previous work on
record linkage (Winkler, 1999), availability of labeled du-
plicates allows a more direct approach that uses a binary
classifier (Cohen & Richman, 2001). Given a database that
contains records composed ofk different fields and a set
D = fd1; : : : ; dmg of distance metrics, we can represent
any pair of records by anmk-dimensional vector of “dis-
tance features”. Each component of the vector represents
similarity between two fields of the records calculated us-
ing one of the distance metrics. Matched pairs of dupli-
cate recordsR = f(r10; r11); : : : ; (rn0; rn1)g can be used
to construct a training set of such vectors by assigning them
a positive class label. Pairs of records that are not labeled
as duplicates form the complementary set of negative ex-
amples.

A binary classifier can then be trained using these vectors to
discriminate between pairs of records corresponding to du-
plicates and non-duplicates. MARLIN utilizes Support Vec-
tor Machines (SVM’s) (Vapnik, 1995), which are appropri-
ate for this task due to their resistance to noise and ability
to handle correlated features well. Confidence estimates of
belonging to each class are naturally given by a datapoint’s
distance from the hyperplane that separates classes of du-
plicates and non-duplicates in high-dimensional space that
is constructed by the SVM during training.

2.3. Duplicate detection algorithm

A confidence estimate of belonging to the class of dupli-
cates for a given pair of records can be viewed as an overall
measure of similarity between the records comprising the
pair. Given a large database, producing all possible pairs of
records and computing similarity between them is too ex-
pensive since it would requiren

2
�1

2
distance computations.

There are two methods which can be used to cut down the
number of potential duplicate pairs: the sorted neighbor-
hood method (Hern´andez & Stolfo, 1995) and the canopies
clustering method (McCallum et al., 2000). The former
utilizes sorting the database using different fields as keys
in multiple passes, sliding a window of fixed size over the
sorted database during each pass, and adding all pairs of
records that co-occur within the window as potential dupli-
cates. The canopies clustering method utilizes some com-
putationally inexpensive metricdc, such as Jaccard simi-

larity based on an inverted index, to separate records into
overlapping clusters (“canopies”) of potential duplicates,
and subsequently adds all pairs of records that fall in each
cluster as potential duplicates.

Labeled
duplicate pairs

Distance

Learner
Metric

Database
records

duplicates
Potential

Distance
Learned

Metrics

Binary classifier

Identified
duplicates

Distance
Metrics

Learned
Binary classifier

Duplicate Detection:

Candidate pair extractor

non−duplicate

Duplicate and

distance features

Distance features

Learned
parametersRecord training

data extractor

Training:

Field training data extractor

Field duplicates

Record duplicates

and non−duplicates

Figure 3.MARLIN overview

An overall view of our system, MARLIN, is presented in
Fig.3. In the training phase, the learnable distance metrics
are trained for each record field. The training corpus of
paired field-level duplicates is obtained by taking pairs of
values for each field from the user-provided set of paired
duplicate records. Because duplicate records may contain
individual fields that are not equivalent, training data can
be noisy. This does not pose a serious problem for our
approach, since particularly noisy fields that are unhelpful
for identifying record-level duplicates will be ignored by
the binary classifier as irrelevant distance features.

After individual similarity metrics are learned, they are
used to compute distances for each field of duplicate and
non-duplicate record pairs to obtain training data for the
binary classifier in the form of vectors composed of dis-
tance features. Because we are employing a classifier that
does not depend on the relative sizes of training data for the
two classes, it is sufficient to randomly addn non-duplicate
record pairs to the training set.

The duplicate detection phase starts with the generation of
potential duplicate pairs using either the sorted neighbor-
hood or canopies method. Next, learned distance metrics
are used to calculate distances for each field of each pair of
potential duplicate records, thus creating distance feature
vectors for the classifier. Confidence estimates for belong-
ing to the class of duplicates are then produced by the bi-
nary classifier for each candidate pair, and pairs are sorted
by increasing confidence.

The problem of finding a similarity threshold for separat-
ing duplicates from non-duplicates arises at this point. A
traditional approach to this problem (Winkler, 1999) re-
quires assigning two thresholds: one that separates pairs
of records that are high-confidence duplicates, and another
for possible duplicates that should be reviewed by a human
expert. Since relative costs of labeling a non-duplicate as a
duplicate (false positives) and overlooking true duplicates
(false negatives) can vary from database to database, there
is no “silver bullet” solution to this problem. Availability of
labeled data, however, allows us to provide precision-recall
estimates for any threshold value and thus offer a way to
control the trade-off between false and unidentified dupli-
cates by selecting threshold values that are appropriate for
a particular database.

It is highly likely that several identified duplicate pairs will
contain the same record. Since the “duplicate of” relation is
transitive, it is necessary to compute the transitive closure
of equivalent pairs to complete the identification process.
Following (Monge & Elkan, 1997), we utilize the union-
find data structure to store all database records in this step,
which allows updating the transitive closure of identified
duplicates incrementally in an efficient manner.

2.4. Experimental Evaluation

2.4.1. DATASETS

We have used three different datasets for our experiments.
RESTAURANT is a database of 864 restaurant names and
addresses containing 112 duplicates assembled by Sheila
Tejada from Fodor’s and Zagat’s guidebooks. The sec-
ond dataset, CORA, is a collection of 1295 distinct refer-
ences to 122 Computer Science research papers from the
Cora Computer Science research paper search engine1. Fi-
nally, we used the database generator of Hern´andez and
Stolfo (Hernández & Stolfo, 1995) that randomly corrupts
records to introduce duplicates into a mailing list database
to create the MAILING dataset of 1200 records correspond-
ing to 400 original entries. Fig.1 contains sample duplicate
records from the RESTAURANT database.

2.4.2. EXPERIMENTAL METHODOLOGY

All experiments were conducted using 10-fold cross vali-
dation. To create the folds, duplicate records were grouped
together, and the resulting clusters were randomly assigned
to the folds. Because the sizes of our datasets allowed com-
puting distances between all pairs of records, we did not
employ the sorted neighborhood or canopies approaches to
limit the number of potential duplicates. Either of the ap-
proaches, however, could be used for evaluating accuracy
of duplicate detection on larger datasets.

After computing distances between all pairs of potential
duplicates, the pair of records with the highest similarity

1http://cora.whizbang.com

was labeled as a duplicate, and the transitive closure of
groups of duplicates was updated. Precision, recall and F-
measure defined over pairs of duplicates were computed
after each iteration, where precision is the fraction of iden-
tified duplicate pairs that are correct, recall is the fraction of
actual duplicate pairs that were identified, and F-measure is
the harmonic mean of precision and recall.

Precision was interpolated at 20 standard recall levels
following the traditional procedure in information re-
trieval (Salton, 1989). Only those portions of the curves
that exhibit differences between approaches are shown.

2.4.3. RESULTS AND DISCUSSION

Detecting duplicate field values To evaluate the use-
fulness of adapting character-based distance metrics to a
specific domain, we compared learned similarity metrics
with their fixed-cost equivalents for the task of identify-
ing equivalent field values. We chose the most meaningful
fields from the three datasets for these experiments: CORA

paper title field, RESTAURANT nameandaddress
fields, and MAILING street address andnamefields
(the latter is a concatenation offirst name and last
name fields).

We have compared four distance metrics:

� Levenshtein edit distance (Gusfield, 1997), calculated
as the minimum number of character deletions, inser-
tions and substitutions of unit cost;

� Learned Levenshtein edit distance based on a gen-
erative model and trained using the Expectation-
Maximization procedure described in (Ristad & Yian-
ilos, 1998);

� String distance with affine gaps (Gusfield, 1997) using
a substitution cost of 3, gap opening cost of 3, and gap
extension cost of 1, which are commonly used param-
eters;

� Learned string distance with affine gaps described in
Section 2.1.2

Results for field-level duplicate detection experiments are
summarized in Table 1. Each entry in table contains the av-
erage of maximum F-measure values over 10 folds. Results
for experiments where the difference between the learned
and corresponding unlearned metric is significant at the
0.05 level using a 1-tailed t-test are presented in bold font.
Fig. 4 contains recall-precision curves for the performance
of MARLIN on the CORA paper title field.

Performance improvements achieved when learned dis-
tance metrics were used instead of fixed-cost distance met-
rics for detecting field duplicates demonstrate that learn-
able distance metrics are able to approximate the relative
importance of differences between strings for a specific
field, as can be seen from higher maximum F-measure val-
ues in Table 1. Results of all experiments except for the
address field of the MAILING database demonstrate that

Table 1.Maximum F-measure for detecting duplicate field values
Distance metric CORA title RESTAURANT name RESTAURANT address MAILING name MAILING address
Levenshtein 0.870 0.843 0.950 0.867 0.878
Learned Levenshtein 0.902 0.886 0.975 0.899 0.897
Affine 0.917 0.883 0.870 0.923 0.886
Learned Affine 0.971 0.967 0.929 0.959 0.892

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Levenshtein
Affine

Learned Levenshtein
Learned Affine

Figure 4.Title duplicate field-value detection results for the
CORA dataset

taking gaps into account when constructing string align-
ments results in better estimates of string similarity for the
task of detecting approximate duplicate field values. The
fact that the results of all metrics were not significantly
different on that field can be explained by the fact that a
certain fraction of entries was heavily corrupted by substi-
tuting PO Box addresses, which are effectively impossible
to match against the corresponding street address without
using other fields such asname andcity .

Record-level duplicate detection Next, we evaluated
the performance of MARLIN for multi-field (record-level)
duplicate detection. The SVM implementation from the
WEKA toolkit (Witten & Frank, 1999) was used as the bi-
nary classifier. We have compared classifier-based similar-
ity estimation to using the sum of distances from different
fields as a non-trained record-level similarity measure. Ei-
ther simple affine gap distance or learned string distance
with affine gaps described above were used for computing
similarity between values of each record field. Classifier-
based experiments are denoted by “SVM”, while experi-
ments that used a sum of distances across fields are labeled
as “Sum” in Table 2. We also conducted additional exper-
iments using the SVM for record-level classification based
on Jaccard similarity as the distance metric for individual
fields.
Results for all experiments are summarized in Table 2.
Again, results in bold font correspond to those experiments
in which differences between using the learned and un-
learned string metrics are significant at the 0.05 level using

a 1-tailed t-test. All differences between the SVM and Sum
approaches are significant at the 0.05 level using a 1-tailed
t-test, except for the experiments that use unlearned string
distance with affine gaps for the RESTAURANT dataset, and
those that use learned string distance with affine gaps for
the MAILING dataset.

Table 2.Maximum F-measure for duplicate detection based on
multiple fields

Classifier Metric CORA RESTAURANT MAILING

Sum Affine 0.561 0.847 0.9431
Sum Learned Affine 0.564 0.832 0.991
SVM Affine 0.959 0.861 0.992
SVM Learned Affine 0.958 0.971 0.996
SVM Jaccard 0.983 0.971 0.961

From the results on the RESTAURANT and MAILING

datasets we can conclude that using adaptive string distance
metrics to compute similarity between field values makes a
positive contribution when similarities from multiple fields
are combined either in a simplistic manner by adding them,
or by using them as record-pair attributes for classification.

We also ran trials which combined character-based met-
rics (static and adaptive string distance with affine gaps)
and token-based metrics (Jaccard similarity). These exper-
iments resulted in near-100% precision and recall, without
significant differences between static and adaptive field-
level metrics. Similar results were obtained when common
prefix and common suffix lengths were used as field-level
distance metrics along with the character-based metrics
used above. This demonstrates that combining character-
and token-based distance metrics, such as learned string
distance with affine gaps and Jaccard similarity, is clearly
an advantage of the two-level approach implemented in
MARLIN. Current datasets did not allow us to show the
benefits of adaptive metrics over their static prototypes in
this scenario, but our initial results suggest that this can be
demonstrated on more challenging datasets.

3. Mining Soft Association Rules
In this section, we generalize the standard APRIORI algo-
rithm for discovering association rules (Agrawal & Srikant,
1994) to allow for soft matching based on a given similarity
metric for each field. Detailed descriptions for SOFTAPRI-
ORI can be found in (Nahm & Mooney, 2002).

3.1. Background: Mining Association Rules

Given a databaseD, the problem of mining association
rules is to discover all association rules that have support
and confidence greater than the user-specified minimum
support and confidence. An association rule from a super-
market database, “beer) pretzels [5%; 80%]” indicates
that 5% of customers bought beer and pretzels together
and 80% of those who bought beer also bought pretzels.
One of the popular algorithms for mining association rules
is APRIORI (Agrawal & Srikant, 1994) where the closure
property of itemset support was introduced.

3.2. Mining Soft Association Rules

We introduce the problem of miningsoftassociation rules
from databases and investigate how to utilize an existing
association rule mining algorithm to incorporate similarity
in discovering associations. We present two implementa-
tions using a string edit distance and a cosine similarity as
the primary similarity metrics.

3.2.1. SOFT ASSOCIATIONRULES

Soft relations are defined as follows. We assume that a
function,similarity(x; y), is given for measuring the sim-
ilarity between two itemsx andy. The range of the sim-
ilarity function is the set of real numbers between 0 to 1
inclusive, andsimilarity(x; y) = 1 iff x = y.

Definition 1 (is-similar-to) An itemx is similar to an item
y (x � y) iff similarity(x; y) � T (where the thresholdT
is a predefined constant between 0 and 1).

Definition 2 (is-a-soft-element-of)An item x is a soft-
element of an itemsetI (x 2soft I) iff there exists anx0 2 I

such thatx0 � x.

Definition 3 (is-a-soft-subset-of)An itemsetI is a soft-
subset of an itemsetJ (I �soft J) iff for every item in
I there is a distinct similar item inJ , i.e. for every item
xi 2 I , I = fx1; :::; xmg, there is an itemyj 2 J such that
xi � yi andyi 6= yj for all j 6= i, 1 � j � m.

The following is a formal statement of the problem of min-
ing soft association rules: LetI = fi1; i2; :::; img be a set
of literals, called items. LetD be a set of records, where
each recordR is a set of items such thatR � I . A soft
association rule is an implication of the formX) Y ,
whereX � I , Y � I , andX andY aresoft-disjoint(Two
itemsetsI andJ are soft-disjoint when no item inI is a
soft-element ofJ .). The problem of mining soft associa-
tion rules is to find all soft association rules,X) Y , such
that thesoft-supportand thesoft-confidenceof X) Y

are greater than the user-defined minimum values (called
minsupand minconfrespectively). Formal definition for
soft-support is given below. Soft-confidence is a straight-
forward generalization of the traditional one.

Input: D (set of records).
Output: Lk (frequentk-itemsets).
FunctionSoftApriori (D)
L1 := FindFrequentItemsets(D).
k := 2.
while (Lk�1 6= ;) do

Ck := GenerateCandidates(Lk�1)
forall recordsr 2 D do

forall c 2 Ck do
if c �soft r
then c:count := c:count + 1.

Lk := All candidates inCk with minsups.
k := k + 1

return
S

k Lk.

Figure 5.The SOFTAPRIORIalgorithm

Definition 4 (soft-support) The soft-support of an item-
set X in a set of records (database)D, denoted as
softsup(X), is the number of records,R 2 D, such that
X �soft R. The soft-support of a ruleX) Y in a
databaseD, denoted assoftsup(X) Y), is the number
of recordsR 2 D such thatX [Y �soft R.

3.2.2. THE SOFTAPRIORI ALGORITHM

In this section, we consider discovering frequent itemsets,
or finding all frequent itemsets with higher soft-support
than the user-specified minimum. To discover frequent
itemsets for soft association rules, we generalize the ex-
isting itemset mining algorithm presented in (Agrawal &
Srikant, 1994) in a straightforward way. Since the notion
of equality in the traditional definition of an association
rule is replaced by similarity, we need to compute the soft-
support of each item and itemset by Definition 4. Similar-
ity between items is computed once and cached for future
references. Fig. 5 gives pseudocode for the SOFTAPRIORI

algorithm.

The first step of the algorithm determines the frequent 1-
itemsets. The set of frequent 1-itemsetsL1 in SOFTAPRI-
ORI is the set of all 1-itemsets whose soft-support is greater
than the user-given minimum support. By Definition 4,
the soft-support of each item is calculated by summing the
number of occurrences of all similar items. Formally, the
soft support of a 1-itemsetfxgwherex is an element of the
set of all itemsI (x 2 I) is computed as follows:

softsupI(fxg) =
P

y2I similar(x; y)� support(y)

While counting the occurrences of all items, we measure
the similarity of every pair of items and construct anm �
m matrix similar(i; j), wherem is the total number of
items in the database. To determine frequent 1-itemsets,
the soft-supports of all items are computed. Intuitively, we
construct a cluster of items containing the items similar to
each given “central” item, and sum the support of all items
in the cluster. Soft items are then treated the same as items

in the original APRIORI algorithm.

In a manner similar to the initial construction of frequent
items, itemsets are grown by computing the soft-support
of candidates and discarding those with low soft-support.
For each itemset that is a soft subset ofr, or for each
set of items that have similar items inr, soft-support of
ank-itemset is again computed by the equation in Defini-
tion 4, counting the number of soft-matching items, instead
of simply counting the number of occurrences of each item.

By treating every pair of items in different fields as non-
similar, we are able to lower the number of similarity
computations which was originallyO(m2) to

PN
k=1mk

2

whereasN is the number of fields,mk is the number of
items in fieldk, andm is the total number of items. De-
pending on the particular similarity metric, additional op-
timizations are possible. For example, items in numeric
fields can be sorted and then similar items can be quickly
determined by checking neighboring items only. Addi-
tional optimizations for string edit distance and cosine sim-
ilarity are presented in the following sections.

3.2.3. IMPLEMENTATION I: STRING EDIT DISTANCE

We implemented SOFTAPRIORI by modifying a publicly
available version of APRIORI (Borgelt, 2000) with the
affine model (Gusfield, 1997). To measure similarity of
string-valued items, we definedsimilarity(x; y) as 1 �
normalized edit distance(x; y) where normalized edit
distance is scaled to always be between 0 and 1 (based on
the lengths of the two strings). The similarity of items in
numeric fields is defined as the normalized absolute differ-
ence.

Given a particular edit distance function, we can reduce the
time complexity of determining similar items. Since edit
distance counts the number of operations needed to change
one string to another, two strings cannot be similar if their
lengths are too different. By generalizing this observation,
we obtain a test function to determe if two strings cannot
be similar under affine gap cost so that we are able to elim-
inate edit distance computations for very different strings.

We can reduce the number of comparisons between items
even further by using an n-gram index (Kim & Shawe-
Taylor, 1994). An n-gram is a substring of lengthn of a
given string. It can be shown that a stringx cannot be sim-
ilar to y for a given threshold if they do not share at least
k (k � 0) n-grams. In our implementation, we used a tri-
gram index to efficiently retrieve a list of candidate similar
strings for each string. Each string is indexed under every
three-character substring that it contains. To find candi-
dates for similar strings, we use the index to retrieve all
strings that share at least a certain number of trigrams.

3.2.4. IMPLEMENTATION II: V ECTOR-SPACE MODEL

The implementation presented in Section 3.2.3 focuses on
textual data in which items are short strings for which edit

distance is a suitable similarity metric. An obvious exten-
sion is to replace edit distance with “bag of words” similar-
ity metrics such as vector-space cosine similarity from in-
formation retrieval (Salton, 1989). In vector-space model,
a text is represented as a vector of real numbers, where each
component corresponds to a word and the value is its fre-
quency in the document. The similarity of two documents
x andy is thecosine of the anglebetween two vectors~x
and~y representingx andy respectively. We also used the
standard TFIDF (Term Frequency, Inverse Document Fre-
quency) weighting scheme to assign higher weights to dis-
tinguished terms.

In terms of computational performance, the major bottle-
neck is the worst-case quadratic time complexity of mea-
suring the similarity of many pairs of items. Fortunately,
there are well-known indexing methods that allow efficient
identification of items that are close in cosine similarity
(Salton, 1989; Cohen, 1998). In our implementation, we
used an inverted index to retrieve similar items efficiently.
Performance gains obtained by this optimization are shown
in Section 3.3.4.

3.3. Experimental Evaluation

Our focus on mining soft-matching rules was motivated by
text-mining research on discovering patterns in data auto-
matically extracted from natural-language documents and
web pages (Nahm & Mooney, 2000; Nahm & Mooney,
2001). Therefore, we evaluate SOFTAPRIORI on “dirty”
databases extracted from text and compare prediction ac-
curacies (measured on independent test data) of soft and
hard association rules mined from the same training data.

3.3.1. DATASETS AND SAMPLE RULES

For the first dataset, 300 computer-science resume post-
ings to the newsgroupmisc.jobs.resumes were col-
lected and information on programming languages, plat-
forms, applications, areas, hardwares, software engineer-
ing skills, job title, major, degree, years of experience, and
post date were identified by human tagging to construct a
textual database of job skills. Second, 3,000 science fiction
(SF) book descriptions are automatically extracted from the
Amazon online bookstore. The information extractor for
Amazon was developed manually and is highly accurate.
12 fields (title, author, reviews, synopses, type, publisher,
date, subjects, related books and authors, price, and rating)
are identified and 10 of them except synopses and reviews
are used for the Implemention I (edit distance) while only
5 fields (title, author, reviews, synopses, subjects) are used
for Implementation II (vector-space model).

Examples of interesting soft association rules mined from
the four sets of data are shown in Fig. 6 and Fig. 7. Items
similar to a given item are shown in parentheses, and val-
ues for softsup and softconf are shown in brackets. With
the same values of confidence and support, SOFTAPRIORI

1. unix 2 platform) html (d/html, dhtml, shtml) 2
programming-language [22.7%, 54.4%]

2. unix2 programming-language) visual basic (visual basic
5.0, visual basic 6.0, visual basic 4.0, ms visual basic, visual
basic 4, visual basic 5/6)2 programming-language [13.0%,
31.2%]

3. netscape (netscape 4.7, netscape 4.x, netscape 6, netscape
ldap) 2 application) tcp/ip (tcp ip, tcpip)2 application
[3.3%, 34.5%]

Figure 6.Sample soft association rules from USENET resume
postings ((Implementation I,T = 0.7)

1. bob ruddick2 author) blanche l. sims (blanche sims)2
author [0.3%, 30.0%]

2. david gerrold (d. gerrold)2 author) american science
fiction and fantasy science fiction science fiction ; fantasy
(american science fiction and fantasy science fiction, gen-
eral science fiction science fiction ; fantasy, english science
fiction and fantasy science fiction science fictinon ; fantasy,
etc..)2 subjects [0.2%, 50.0%]

3. isaac asimov (isaac amimov, isaac asimoy)2 authorand
robot dreams2 related books) robot visions2 related
books [0.1%, 100.0%]

Figure 7.Sample soft association rules from SF book descriptions
(Implementation I,T = 0.7)

discovers more general rules including frequent clusters of
similar items that would be overlooked by the traditional
algorithm because of the low support values for individual
items. Other examples show that soft association rules are
able to capture patterns based on groups of similar items
such as the different versions of Visual Basic, typos in the
author slot, etc..

We presented items in soft association rules by specifying
the item itself followed by its corresponding similar items
in parentheses. For other similarity metrics, alternative ap-
proaches to representing “softness,” such as ranges on nu-
meric values, may be appropriate. In Implementation II,
items are represented by the bag intersection of its similar
items in the cluster as in (Nahm & Mooney, 2001). Sample
rules from this implementation are shown in Fig. 8. Num-
bers in parentheses stand for the number of occurrences for
each word, or bag counters.

3.3.2. EXPERIMENTAL METHODOLOGY

We measured the ability of both hard and soft association
rules mined from the same training data with the same min-
imum confidence and support parameters to make accurate
predictions on the samedisjoint set of test data. To obtain
statistically reliable estimates of accuracy, we employed
ten-fold cross-validation which averages performance over

1. fmike(1), resnick(1)g 2 authorand) famerican(1), fan-
tasy(1), fiction(4), science(3)g 2 subject [0.2%, 35.0%]

2. fgery(1), greer(1)g 2 author and faccidentally(1), ac-
tion(1), aliens(1), book(2), boys(1), carried(1), copyright(1),
distinct(1), escape(1), horn(2), humorous(1), personali-
ties(1), point(1), reserved(1), rights(1), slight(1), space(1),
story(1), strong(1), trouble(1), worth(1)g 2 review)
fspaceship(1)g 2 title [0.1%, 100.0%]

3. fasimov(1), janet(1)g 2 authorand ffiction(2), robots(1),
science(1)g 2 subject) fasimov(1), isaac(1)g 2 author
[0.1%, 100.0%]

Figure 8.Sample soft association rules from SF book descriptions
(Implementation II,T = 0.7)

Input: Dtest (test database),Rules (association rule set)
Output: (Precision, Recall)
FunctionComputeAccuracy (Dtest, Rules)
fired := matched := item := predicted := 0.
for each recordR 2 Dtest do

for each r (A) c) 2 Rules do
if ((r is hard andA � R) or

(r is soft andA �soft R))
then if r is hardthenA0 := A.

elseA0 := X s.t.X � R andX � A.
fired := fired+ 1.
if c 2soft R �A0

thenmatched := matched + 1.
for each c0 2 R do
item := item+ 1.
if there exists ar (A) c) 2 Rules s.t.
c � c0 and ((r is hard andA � R� fc0g) or

(r is soft andA �soft R� fc
0g))

then predicted := predicted + 1.
return (matched=fired, predicted=item).

Figure 9.Method for evaluating precision/recall

10 trials of training on 90% of the data and testing on 10%
(Mitchell, 1997).

To determine the accuracy of a set of association rules,
we measured precision and recall with respect to predict-
ing the presence of items in a record from other items in
that record.Precisionis the percentage of predicted items
that are actually present andrecall is the percentage of ac-
tual items that are correctly predicted. We also reportF-
measurewhich is the harmonic mean of recall and preci-
sion. A prediction is judged to be correct iff there is an
item in the record that is at least similar to the predicted
item (i.e. similarity(x; y) � T). The pseudocode for the
evaluation method is presented in Fig. 9.

3.3.3. RESULTS AND DISCUSSION

The experimental results obtained for the resume postings
using Implementation I are summarized in Table 3. We
used a similarity threshold of 0.7 for every field. Differ-
ences for hard and soft rules were evaluated by a two-tailed,

Minconf Minsup (%)
(%) Rule 5 10 15
50 Soft 90.86/3.17 86.95/3.14 84.55/3.13

Hard 62.19/3.01 60.41/2.76 60.32/2.31
60 Soft 90.79/3.18 87.71/3.13 85.64/3.13

Hard 66.64/2.89 64.47/2.50 62.16/2.09
70 Soft 91.34/3.18 89.45/3.13 85.76/3.08

Hard 71.51/2.61 69.75/1.92 74.50/1.43
80 Soft 92.14/3.15 88.37/3.11 84.13/2.82

Hard 78.84/2.25 79.05/1.46 80.60/0.69

Table 3.Accuracies of soft vs. hard rules on USENET resume
postings (precision/recall)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
)

Number of Records (Training Data)

No Optimization
Inverted Index

Figure 10.Running time for similarity computations (Implemen-
tation II)

pairedt-test to determine if they were statistically signifi-
cant (p < 0:05). Overall, the results clearly show that soft
rules are generally better than hard rules at discovering re-
liable regularities in “dirty” data.

3.3.4. PERFORMANCERESULTS

Finally, we present results showing the efficiency gained
by using the optimization methods presented previously for
quickly finding similar string-valued items. The 3,000 SF
book descriptions were used in this experiment. Fig. 10
shows the CPU time needed for each item in the similarity
computation step. The “Inverted Index” method employs
the inverted index to efficiently retrieve documents with
shared terms. Performance gains for the edit distance im-
plementation can be achieved similarly by using the trigram
index (Nahm & Mooney, 2002). Both results demonstrate
that with good heuristics and an efficient indexing method,
our approach is scalable to larger datasets by reducing the
number of explicit similarity comparisons between pairs of
items.

4. Related Work
In previous work, the problem of identifying duplicate
records in databases was studied as record linkage (Win-

kler, 1999), the merge/purge problem (Hern´andez & Stolfo,
1995), duplicate detection (Monge & Elkan, 1997), hard-
ening soft databases (Cohen et al., 2000), and reference
matching (McCallum et al., 2000). In all of these ap-
proaches fixed-cost similarity metrics were used to com-
pare database records. The only previous work on adaptive
duplicate detection that we know of is the approach de-
scribed in (Cohen & Richman, 2001), which learns how to
combine multiple similarity metrics to identify duplicates,
but does not adaptively tune the underlying field-similarity
metrics themselves.

Association rule mining has been applied directly to tex-
tual data (Feldman & Hirsh, 1996; Ghani et al., 2000);
however, the heterogeneity of items in textual databases
has not been adequately addressed. Compared to an in-
ductive method for learning soft-matching prediction rules
(Nahm & Mooney, 2001), SOFTAPRIORI findsall associ-
ation rules with a given soft-support and soft-confidence,
and therefore typically discovers a larger set of regularities.

5. Future Work
Extending the metric learning approach to token-based dis-
tance metrics, such as Jaccard similarity or vector-space
cosine distance, is a promising avenue for research. Previ-
ous work on semi-supervised clustering (Cohn et al., 2000)
has shown the usefulness of a similar approach: learning
weights of individual words when calculating distance be-
tween documents using Kullback-Leibler divergence.

Another area for future work lies in generalizing edit dis-
tance to include macro-operators for inserting and deleting
common substrings, e.g. deleting “Street” in address fields.
The string distance model with gaps would be particularly
useful for this task, since it would allow discovering useful
deletion sequences by counting the frequencies of common
gaps.

One possible extension to SOFTAPRIORI is to incorpo-
rate semantic information in the similarity metric using ei-
ther lexical knowledge-bases such as WordNet (Fellbaum,
1998) or utilizing statistical measures of semantic similar-
ity in LSI (Deerwester et al., 1990). The limitation of the
current definitions for soft-support and soft-confidence is
that they do not reflect the differentoriginal supportval-
ues of individual items nor different degrees of similarities
between items. One solution to this problem is to adapt
the approach to use a real-valued similarity measure rather
than a binary one.

Currently, the similarity function as well as the thresh-
old values for determining similarity for SOFTAPRIORI

are pre-determined and fixed throughout the mining phase.
Since the similarity of two textual items can vary depend-
ing on the specific domain, automatic learning of these
functions should be explored. We plan to explore replacing
the fixed similarity function currently used in SOFTAPRI-

ORI by learned similarity metrics generated by MARLIN.

6. Conclusion
Data mining methods generally suffer from noisy databases
with non-standardized variations especially for text-valued
fields. In this paper, we presented two different methods to
deal with this problem. First, an adaptive approach called
MARLIN has been proposed that learns to identify duplicate
records in a specific domain. Our approach uses learning
at two levels: training similarity metrics for field-level du-
plicates and combining multiple similarity metrics for each
field to learn a record-level function. Second, the SOFT-
APRIORI algorithm to discover “soft matching” rules was
developed and evaluated using two different similarity met-
rics. Experimental results in several domains demonstrate
that MARLIN detects duplicates more accurately than com-
peting static approaches, while SOFTAPRIORI allows the
discovery of interesting rules that more accurately capture
regularities not discovered by traditional methods.

Acknowledgements

We would like to thank William Cohen, Nick Kushmer-
ick, Sheila Tejada and Mauricio Hern´andez for providing
us the duplicate detection datasets. This research was sup-
ported by the National Science Foundation under grant IIS-
0117308.

References
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining

association rules.Proceedings of the 20th International Con-
ference on Very Large Databases (VLDB-94)(pp. 487–499).
Santiago, Chile.

Bilenko, M., & Mooney, R. J. (2002). Learning to combine
trained distance metrics for duplicate detection in databases.
Submitted to CIKM-2002.

Borgelt, C. (2000). Apriori version 2.6.
http://fuzzy.cs.UniMagdeburg.de/˜borgelt/.

Cohen, W., & Richman, J. (2001). Learning to match and clus-
ter entity names.ACM SIGIR-2001 Workshop on Mathemat-
ical/Formal Methods in Information Retrieval. New Orleans,
LA.

Cohen, W. W. (1998). Providing database-like access to the web
using queries based on textual similarity.Proceedings of the
1998 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD-98)(pp. 558–560). Seattle, WA.

Cohen, W. W., Kautz, H., & McAllester, D. (2000). Hardening
soft information sources.Proceedings of the Sixth Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD-2000)(pp. 255–259). Boston, MA.

Cohn, D., Caruana, R., & McCallum, A. (2000). Semi-supervised
clustering with user feedback. Unpublished manuscript. Avail-
able athttp://www-2.cs.cmu.edu/˜mccallum/ .

Deerwester, S. C., Dumais, S. T., Furnas, G. W., Landauer, T. K.,
& Harshman, R. A. (1990). Indexing by latent semantic anal-
ysis. Journal of the American Society for Information Science,
41, 391–407.

Feldman, R., & Hirsh, H. (1996). Mining associations in text
in the presence of background knowledge.Proceedings of the
Second International Conference on Knowledge Discovery and
Data Mining (KDD-96)(pp. 343–346). Portland, OR.

Fellbaum, C. D. (1998).WordNet: An electronic lexical database.
Cambridge, MA: MIT Press.

Ghani, R., Jones, R., Mladeni´c, D., Nigam, K., & Slattery, S.
(2000). Data mining on symbolic knowledge extracted from
the web. Proceedings of the Sixth International Conference
on Knowledge Discovery and Data Mining (KDD-2000) Work-
shop on Text Mining(pp. 29–36). Boston, MA.

Gusfield, D. (1997).Algorithms on strings, trees and sequences.
New York: Cambridge University Press.

Hernández, M. A., & Stolfo, S. J. (1995). The merge/purge
problem for large databases.Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data
(SIGMOD-95)(pp. 127–138). San Jose, CA.

Kim, J. Y., & Shawe-Taylor, J. (1994). Fast string matching using
an n-gram algorithm.Software - Practice and Experience, 24,
79–83.

Levenshtein, V. I. (1966). Binary codes capable of correcting in-
sertions and reversals.Soviet Physics Doklady, 10, 707–710.

McCallum, A. K., Nigam, K., & Ungar, L. (2000). Efficient clus-
tering of high-dimensional data sets with application to refer-
ence matching.Proceedings of the Sixth International Confer-
ence on Knowledge Discovery and Data Mining (KDD-2000)
(pp. 169–178). Boston, MA.

Mitchell, T. (1997).Machine learning. New York, NY: McGraw-
Hill.

Monge, A. E., & Elkan, C. P. (1997). An efficient domain-
independent algorithm for detecting approximately duplicate
database records.Proceedings of the SIGMOD 1997 Workshop
on Research Issues on Data Mining and Knowledge Discovery
(pp. 23–29). Tuscon, AZ.

Nahm, U. Y., & Mooney, R. J. (2000). Using information extrac-
tion to aid the discovery of prediction rules from texts.Pro-
ceedings of the Sixth International Conference on Knowledge
Discovery and Data Mining (KDD-2000) Workshop on Text
Mining (pp. 51–58). Boston, MA.

Nahm, U. Y., & Mooney, R. J. (2001). Mining soft-matching rules
from textual data.Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI-2001)(pp.
979–984). Seattle, WA.

Nahm, U. Y., & Mooney, R. J. (2002). Mining soft-matching
association rules. Submitted to CIKM-2002.

Needleman, S. B., & Wunsch, C. D. (1970). A general method
applicable to the search for similarities in the amino acid se-
quences of two proteins.Journal of Molecular Biology, 48,
443–453.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and
selected applications in speech recognition.Proceedings of the
IEEE, 77, 257–286.

Ristad, E. S., & Yianilos, P. N. (1998). Learning string edit dis-
tance. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20.

Salton, G. (1989).Automatic text processing: The transformation,
analysis and retrieval of information by computer. Addison-
Wesley.

Vapnik, V. N. (1995). The nature of statistical learning theory.
Berlin: Springer-Verlag.

Winkler, W. E. (1999). The state of record linkage and current
research problems(Technical Report). Statistical Research Di-
vision, U.S. Bureau of the Census, Wachington, DC.

Witten, I. H., & Frank, E. (1999).Data mining: Practical ma-
chine learning tools and techniques with java implementations.
San Francisco: Morgan Kaufmann.

