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When you combine information from heterogeneous information sources, you

must identify data records that refer to equivalent entities. However, records

that describe the same object might differ syntactically—for example, the same person

can be referred to as “William Jefferson Clinton” and “bill clinton.” Figure 1 presents 

more complex examples of duplicate records that are
not identical.

Variations in representation across information
sources can arise from differences in formats that
store data, typographical and optical character recog-
nition (OCR) errors, and abbreviations. Variations
are particularly pronounced in data that’s automati-
cally extracted from Web pages and unstructured or
semistructured documents, making the matching task
essential for information integration on the Web.

Researchers have investigated the problem of
identifying duplicate objects under several monikers,
including record linkage, merge-purge, duplicate
detection, database hardening, identity uncertainty,
coreference resolution, and name matching. Such
diversity reflects research in several areas: statistics,
databases, digital libraries, natural language pro-
cessing, and data mining. The sidebar summarizes
various traditional approaches to name matching.

Our research explores approaches to the name-
matching problem that improve accuracy. Particu-
larly, we employ methods that adapt to a specific
domain by combining multiple string similarity
methods that capture different notions of similarity.

Static string similarity metrics
Most methods we discuss in the sidebar use metrics

that measure the similarity between individual record
fields. As Figure 1 suggests, individual record fields are
often stored as strings. This means that functions that
accurately measure two strings’ similarity are impor-

tant in duplicate identification. We examine a few effec-
tive and widely used metrics for measuring similarity.

Edit distance
An important class of such metrics are edit dis-

tances. Here, the distance between strings s and t is
the cost of the best sequence of edit operations that
converts s to t. For example, consider mapping the
string s = “Willlaim” to t = “William” using these
edit operations:

• Copy the next letter in s to the next position in t.
• Insert a new letter in t that does not appear in s.
• Substitute a different letter in t for the next letter

in s.
• Delete the next letter in s; that is, don’t copy it to t.

Table 1 shows one possible sequence of opera-
tions. (The vertical bar represents a “cursor” in s or
t, indicating the next letter.) If the copy operation has
cost zero and all other operations have cost one, this
is the least expensive such sequence for s and t, so
the edit distance between s and t is three.

A fairly efficient scheme exists for computing the
lowest-cost edit sequence for these operations. The
trick is to consider a slightly more complex function,
D(s, t, i, j), which is the edit distance between the
first i letters in s and the first j letters in t. Let si denote
the ith letter of s, and, similarly, let tj be the jth letter
of t. It’s easy to see that we can define D(s, t, i, j)
recursively, where D(s, t, 0, 0) = 0 and
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We can evaluate this recursive definition
efficiently using dynamic programming tech-
niques. Specifically, for a fixed s and t, we
can store the D(s, t, i, j) values in a matrix
that is filled in a particular order. The total
computational effort for D(s, t, |s|, |t|), the edit
distance between s and t, is thus approxi-
mately O(|s||t|).

Edit distance metrics are widely used—
not only for text processing but also for bio-
logical sequence alignment1—and many
variations are possible. The simple unit-cost
metric just described is usually called Lev-
enstein distance. The Needleman-Wunsch
distance is a natural extension to Levenstein
distance that introduces additional parame-
ters defining each possible character substi-
tution’s cost and the cost of insertions and
deletions. We can implement it straightfor-
wardly by modifying Equation 1—replacing
the second term of the min with something
such as D(s, t, i − 1, j − 1) + substitution-
Cost(si, tj). The Smith-Waterman distance
lets us easily modify the metric to discount
mismatching text at the beginning and the
end of strings. The affine gap cost is another
widely used variation that introduces two
costs for insertion: one for inserting the first
character and a second (usually lower) for
inserting additional characters.

In information integration, Alvaro Monge
and Charles Elkan performed several exper-
iments in which they used an affine-cost vari-
ant of the Smith-Waterman distance to per-
form duplicate detection.2,3

The Jaro metric and variants
Another effective similarity metric is the

Jaro metric, which is based on the number
and order of common characters between
two strings.4–6 Given strings s = a1 … aK and
t = b1 … bL, define a character ai in s to be
“in common” with t iff there is a bj = ai in t
such that i − H ≤ j ≤ i + H, where H =
min(|s|,|t|)/2. Let be the charac-
ters in s that are common with t (in the same
order they appear in s), and let 
be analogous. Then define a transposition for
s′, t′ to be a position i such that ai = bi. Let
Ts′,t′ be one-half the number of transpositions

for s′ and t′. The Jaro metric for s and t is

.

To better understand the intuition behind
this metric, consider the matrix M in Figure
2, which compares the strings s = “WILL-
LAIM” and t = “WILLIAM.” The boxed
entries are the main diagonal, and M(i, j) = 1
if and only if the ith character of s equals the
jth character of t. The Jaro metric is based on
the number of characters in s that are in com-
mon with t. In terms of the matrix M of the
figure, the ith character of s is in common
with t if Mi,j = 1 for some entry (i, j) that is
“sufficiently close” to M’s main diagonal,
where sufficiently close means that |i − j| <
min(|s|, |t|)/2 (shown in the matrix in bold).

William Winkler proposed a variant of the
Jaro metric that also uses the length P of the
longest common prefix of s and t.6 Letting
P′ = max(P, 4), we define

Jaro-Winkler(s, t) = Jaro(s, t) + 
(P′/10) ⋅ (1 − Jaro(s, t)).

This emphasizes matches in the first few char-
acters. The Jaro and Jaro-Winkler metrics
seem to be intended primarily for short strings
(for example, personal first or last names).

Token-based and hybrid distances
In many situations, word order is unim-

portant. For instance, the strings “Ray
Mooney” and “Mooney, Ray” are likely to
be duplicates, even if they aren’t close in edit
distance. In such cases, we might convert the
strings s and t to token multisets (where each
token is a word) and consider similarity met-
rics on these multisets.

One simple and often effective token-

based metric is Jaccard similarity. Between
the word sets S and T, Jaccard similarity is
simply (|S ∩ T|)/(|S ∪ T|). We can define
term frequency-inverse document frequency
(TF-IDF) or cosine similarity—which the
information retrieval community widely
uses—as
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Figure 2. The Jaro metric. The boxed
entries are the main diagonal, and each
bold character is in common with the
string “WILLIAM” (“WILLLAIM”).

W I L L I A M
W 1 0 0 0 0 0 0
I 0 1 0 0 1 0 0
L 0 0 1 1 0 0 0
L 0 0 1 1 0 0 0
L 0 0 1 1 0 0 0
A 0 0 0 0 0 1 0
I 0 1 0 0 1 0 0
M 0 0 0 0 0 0 1
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Table 1. An example of an 
edit-distance computation.

s t Operation

|Willlaim |

W|illlaim W| Copy “W”

Wi|lllaim Wi| Copy “i”

Wil|llaim Wil| Copy “l”

Will|laim Will| Copy “l”

Willl|aim Will| Delete “l”

Willla|im Willi| Substitute “i” for “a”

Willlai|m Willia| Substitute “a” for “i”

Willlaim| William| Copy “m”

Figure 1. Sample duplicate records from (a) a restaurant database and (b) a scientific
citation database.

Name Address City Phone Cuisine

Fenix 8358 Sunset Blvd. West Hollywood 213/848-6677 American

Fenix at the Argyle 8358 Sunset Blvd. W. Hollywood 213-848-6677 French (New)

(a)

L.P. Kaelbling. An architecture for intelligent reactive systems. In Reasoning About Actions and 
Plans: Proceedings of the 1986 Workshop. Morgan Kaufmann, 1986

Kaelbling, L.P., 1987. An architecture for intelligent reactive systems. In M.P. Georgeff & A.L. 
Lansky, eds., Reasoning about Actions and Plans, Morgan Kaufmann, Los Altos, CA, pp. 395–410

(b)



where TFw,S is the frequency of word w in S,
IDFw is the inverse of the fraction of names
in the corpus that contain w, V′(w, S) =
log(TFw,S + 1) ⋅ log(IDFw), and 

.

For name matching, you might collect the
statistics used to compute IDFw from the
complete corpus of names to be matched.

TF-IDF distance is attractive in that it

weights agreement on rare terms more heav-
ily than agreement on more common terms.
This means that “Ray Mooney” and “Wray
Mooney” will be considered more similar
than, say, “Ray Mooney” and “Ray Charles.”
Perhaps this is why TF-IDF often (but not
always) performs better than methods that
are insensitive to individual tokens’ fre-
quency, such as the Jaccard similarity.

Some interesting commonalities exist
between the TF-IDF weighting scheme and
an unsupervised matching approach Fellegi
and Sunter proposed—ranking pairs s, t by

the odds ratio log((Pr(|s, t| M))/(Pr(|s, t|U))),
where M is the class of matched pairs and U
is the class of unmatched pairs. Under a plau-
sible series of assumptions, we can approx-
imate the incremental score for the odds ratio
associated with the event “s and t both agree
in containing word w” using log(IDFw).

We can also combine token-based and
string-based methods. In previous work, we
described a “soft” version of TF-IDF in
which similarity is affected not only by
tokens that appear in both S and T but also
by tokens in S such that a similar token

V w S V w S V w Sw, , / ,( ) = ′( ) ′( )′∑ 2
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Record linkage—the task of matching equivalent records
that differ syntactically—was first explored in the late 1950s
and 1960s.1 Ivan Fellegi and Alan Sunter’s seminal paper—
where they studied record linkage in the context of matching
population records—provides a theoretical foundation for
subsequent work on the problem.2 They described several key
insights that still lie at the base of many modern name-match-
ing systems:

• You can represent every pair of records using a vector of
features that describe similarity between individual record
fields. Features can be Boolean ( for example, last-name-
matches), discrete (for example, first-n-characters-of-name-agree), or
continuous (for example, string-edit-distance-between-first-names).

• The problem of identifying matching records, can be viewed as
the task of placinging feature vectors for record pairs into three
classes: links, nonlinks, and possible links. These correspond
to equivalent, nonequivalent, and possibly equivalent (for
example, requiring human review) record pairs, respectively.

• A system can perform record-pair classification by calculating
the ratio (P(γ |M))/(P(γ |U)) for each candidate record pair,
where γ is a feature vector for the pair and P(γ |M) and P(γ |U)
are the probabilities of observing that feature vector for a
matched and nonmatched pair, respectively. Two thresholds
based on desired error levels—Tµ and Tλ—optimally separate
the ratio values for equivalent, possibly equivalent, and non-
equivalent record pairs.

• When no training data in the form of duplicate and nondu-
plicate record pairs is available, name-matching can be unsu-
pervised, where conditional probabilities for feature values
are estimated using field value frequencies.

• Because most record pairs are clearly nonduplicates, you
needn’t consider them for matching; blocking databases so
that only records in blocks are compared significantly
improves efficiency.

The first four insights lay the groundwork for accurate record
pair matching, while the fifth provides for efficiently processing
large databases. We can describe subsequent name-matching
research in terms of improvements in those two directions.

Several methods address the computational cost of name
matching and follow the spirit of the blocking mechanism the
Fellegi-Sunter theory suggests. The sorted neighborhood
method sorts the database using multiple keys to obtain record

blocks (“windows”) in which candidates for matching lie.3 Alter-
natively, the canopies method uses a computationally cheap and
general string similarity metric such as term frequency-inverse
data frequency (TF-IDF) cosine similarity to create overlapping
record clusters that contain possible matching pairs.4

We can roughly categorize methods for improving matching
accuracy by how much human expertise they require and the
extent to which they use machine learning and probabilistic
methods. On one end of this spectrum are the rule-based meth-
ods based on equational theory that require a human expert to
specify the conditions for records to be equivalent in a declara-
tive rule language.3,5–7 Such conditions might involve multiple
string similarity metrics (for example, the string edit distance
being less than a threshold value), domain-specific comparisons
(equality of nicknames and full first names), and inferred knowl-
edge (geographic proximity based on zip codes). Although the
rule-based approach can lead to high accuracy after meticulous,
domain-specific tuning, its computational cost tends to be high
and therefore impractical for large databases.

Unlike the rule-based approach, probabilistic methods devel-
oped after the Fellegi-Sunter framework obviate the need to
involve human domain expertise by using unsupervised machine
learning methods. We can employ the powerful expectation
maximization algorithm to classify record pairs into the three
classes we specified without any training data on the basis of
the database’s statistical properties.8 In an iterative procedure,
EM estimates the probability that the records match for each
pair of records. We can add additional constraints to the stan-
dard EM algorithm to enforce one-to-one matching when
records are being matched across two databases, thereby
avoiding spurious multiple matches.9

An alternative unsupervised approach to domain-indepen-
dent matching assumes that data is stored in databases as 
natural language text and treats the matching task as an infor-
mation retrieval problem.10 This approach achieves domain
independence through normalization, which uses preprocess-
ing such as case conversion and stemming, then employs
cosine similarity in the vector space created using the TF-IDF
weighting scheme (see the main text). This approach often
works well for databases where records can be meaningfully
represented as natural text strings. An alternative approach to
dealing with such databases is to separate string records into
individual fields that represent atomic information units—for

Traditional Name-Matching Approaches



appears in T. Let sim′ be a secondary simi-
larity function that performs well on short
strings (such as Jaro-Winkler). Let
CLOSE(θ, S, T) be the set of words w ∈ S
such that some v ∈ T exists such that sim′(w,
v) > θ, and for w ∈ CLOSE(θ, S, T), let N(w,
T) = maxv∈T sim′(w, v). We define

.

Relative performance of the static
similarity metrics

To indicate these distance functions’ rela-
tive effectiveness, we evaluated them using
the set of record-matching problems in Table
2. Most of these problems have been
described elsewhere in the literature.2,7,8 In
all these data sets, if a record had multiple
fields, we concentrated them to form a sin-
gle string. The Census data set is a synthetic,
census-like data set from which we used only
textual fields (last name, first name, middle
initial, house number, and street).

To evaluate distance functions on a data
set, we ranked by distance all candidate
pairs an appropriate blocking algorithm
generated (see the sidebar for a definition
of blocking algorithms). (For token-based
distance metrics, the blocking algorithm
generates all pairs that contain at least one
common token. For other distance metrics,
it generates all pairs containing at least one
common character 4-gram.) In practice, we
would examine this ranking and choose a
suitable threshold θ. We could consider all
pairs more similar than this threshold to be

V w S V w T N w T
w CLOSE S T

, , ,
, ,

( )⋅ ( )⋅ ( )
∈ ( )

∑
θ

SoftTF IDF S T- ,( ) =

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 5

example, to parse a citation record into separate fields such as
author, title, venue, and so on. Hidden Markov models are par-
ticularly successful for this task if they receive sufficient train-
ing data in the form of segmented strings.11,12

Another avenue for using supervised learning to improve
name-matching relies on creating a relational probabilistic
model for the domain. This involves constructing a generative
model for individual fields and using a Markov chain Monte
Carlo procedure to obtain the matching decisions.13 This
approach allows for capturing the different matching decisions’
interdependence. This is useful for databases that contain several
matching records, such as bibliographies of citations to scientific
papers. Accounting for the distributed nature of matching deci-
sion-making in databases with many equivalent records is also
central to the database hardening approach, which formalizes
name matching as a mathematical optimization problem and
suggests a greedy algorithm for obtaining the best global record
matching using a graph of similarity values between records.14

Recently, researchers have proposed machine-learning
methods that use supervision in the form of matched and
unmatched record pairs to train classifiers to distinguish
between them. This includes those methods that try to select
the most informative record pairs for human labeling to pro-
duce maximum accuracy improvements.15 The main text
describes our recent work using training data in the form of
matched and unmatched record pairs to train an algorithm for
classifying record pairs as duplicate and nonduplicate.
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matches and all pairs less similar to be non-
matches.

Without committing to any particular
threshold, several plausible ways exist to
evaluate such a ranking; most are based on
recall and precision measures. If we fix a
threshold θ, recall will be the fraction of the
set of all correct matches that have a simi-
larity greater than θ. Conversely, precision is
the fraction of correct matches having a sim-
ilarity greater than θ . As the similarity
threshold θ is reduced, precision will typi-
cally decrease and recall will increase. So,
we can summarize the ranking as a single
monotonically decreasing curve in two
dimensions.

Figure 3 presents recall-precision curves
that are averages across all the benchmark
problems. Specifically, we use interpolated
precision at 11 evenly spaced recall points.
Interpolated precision at recall r is the max-
imum precision obtained at any point with
recall greater than or equal to r. Figure 3a

shows results for edit distance and Jaro vari-
ants. Figure 3b shows results for some token-
based and hybrid measures. Of the edit-dis-
tance-like methods, Monge-Elkan performs
best on average, and SoftTF-IDF performs
best overall.

To summarize a ranking’s value as a sin-
gle number, we can use the maximum F1
score. The F1 score for a threshold is the har-
monic mean of recall and precision (that is,
F1 = 2pr/(p + r), where p is precision and r is
recall). The maximum F1 score is simply the
maximum value of F1 that is obtained for any
threshold. Figure 3c details the SoftTF-IDF’s
performance compared to numerous other
measures that perform well on average. In this
plot, each point is a data set, positioned so that

its maximum F1 score for SoftTF-IDF is the
x-axis position and the maximum F1 score
for some other method is the y-axis position.
So, points above the line y = x indicate better
performance for SoftTF-IDF.

Learning to combine field
similarities

Figure 3 focuses on results that are aver-
aged across several benchmark data sets.
However, for any individual problem, per-
formance can differ markedly from average
performance, as Figure 3c indicates. Table 3
also emphasizes this fact.

Table 3 shows that the Census data set
behaves quite differently from most of the
others in Table 2. (In addition to the F1 mea-
sure, the table shows average precision,
which is simply precision averaged over
every threshold θ that is just below a correct
pair.) Perhaps owing to the high incidence of
misspellings, none of the token-based met-
rics perform well on Census. Unusually, Jac-
card performs about as well as any of the

more complex token-based metrics. This
could be because Census includes several
households with a moderate number of indi-
viduals—for instance, a family of seven
Mosqueras resides at one address and a fam-
ily of five Hoerrlings at another—which
reduces the value of weighting rare terms
heavily. The hybrid SoftTF-IDF performs
somewhat better but is still worse than the
pure string-based methods. The Jaro metric
performs surprisingly well given that it seems
designed for short strings, while the Census
data contains first name, last name, middle
initial, house number, and street name
appended together. The best off-the-shelf dis-
tance metric on Census is by far the Leven-
stein metric—the simplest of the edit-dis-
tance approaches and the one that performs
worst on average.

Table 2 illustrates a dilemma: even meth-
ods that have been tuned and tested on many
previous matching problems can perform
poorly on new and different matching prob-
lems. This is a fundamental limitation of sta-
tic similarity functions, which by nature can
include no special knowledge of the specific
problem at hand.

To solve this problem, we must introduce
some knowledge of the problem into the sim-
ilarity function we’re using. We can do this by
treating each record as a set of fields rather
than a single, long-string field and then aggre-
gating distances across these fields. For
instance, consider breaking the Census data
into the original fields (first name, last name,
middle initial, house number, and street name)
and measuring the similarity between records
as the average similarity between fields. This
small change has numerous implications. For
instance, we must no longer implicitly align
the different fields in measuring similarity, and
short fields (such as house number) receive
the same weight as longer fields. Table 4 com-
pares this method’s performance (labeled
AVG) with computing similarity based on the
same record encoded as a single string
(labeled “Single string”). For five of the six
comparisons, performance improved.

Segmenting the record also means that we
can represent records’ similarity with a fea-
ture vector instead of a single similarity mea-
surement. If some pairs are available that have
been labeled as matching and nonmatching,
we can use learning methods to adaptively
find a combined distance function that’s most
appropriate for a particular problem.

In another experiment, we represented
record pairs as feature vectors, using as fea-
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Table 3. The performance of various
matching methods on the 

Census data set.

Method Maximum Average
F1 score precision

TF-IDF 0.518 0.369

Jaccard 0.567 0.402

SoftTF-IDF 0.685 0.782

Jaro 0.728 0.789

Levenstein 0.865 0.925

Table 2. The data sets used in
experiments.

Name No. of strings No. of tokens

Animal7 5,709 30,006

Bird17 377 1,977

Bird27 982 4,905

Bird37 38 188

Bird47 719 4,618

Business7 2,139 10,526

Game7 911 5,060

Park7 654 3,425

Restaurant8 863 10,846

UcdFolks2 90 454

Census* 841 5,765

*Personal communication with William
Winkler

Segmenting the record also

means that we can represent

records’ similarity with a feature

vector instead of a single

similarity measurement



tures the distances between corresponding
fields. We trained a binary support vector
machine classifier (using the SVMlight soft-
ware package9) using these feature vectors,
then used the learned classifier’s confidence
in the match class as a new distance metric.
Table 3 shows this method’s performance eval-
uated on unseen pairs using threefold cross
validation (in the rows labeled SVM). For five
of the six comparisons, performance improved
over the simple averaging of the distances, and
performance improved in all cases over the
single-string distance computation.

Learnable string similarity
The learning method we just described is

limited. Although it can determine how to
weight a fixed set of static string similarity
measures, it can’t modify the similarity mea-
sures each field uses. However, because an
estimate of similarity between strings can
vary significantly depending on the domain
for each field under consideration, static sim-
ilarity measures could fail to accurately esti-
mate string distance. When syntactic varia-
tions occur due to systematic typographical
or OCR errors, certain characters can be con-
sistently replaced with others or omitted.
Certain abbreviations are also common to
some domains; for example, Street is fre-
quently abbreviated to St. in addresses. So,
precise similarity computations require
adapting string similarity metrics for each
database field with respect to the particular
data domain.

We propose an adaptive version of edit dis-
tance with affine gaps such as those we pre-
viously described. Because different edit oper-
ations vary in significance in different
domains, adapting string edit distance to a par-
ticular text data type necessitates assigning
individual weights to edit operations. Each
operation’s weight must capture the likelihood
with which we can apply it to align equiva-
lent strings in a particular domain’s context.
For example, the “substituting ‘-’with ‘/’” edit
operation should have a low weight for a text
field that describes a phone number because
it captures a common difference between
equivalent phone numbers. Conversely, the
“deleting ‘q’” operation should be significant
for comparing first names because it concerns
a rare letter that’s usually at the beginning of
a name (for example, Quincy or Quentin). So,
we probably wouldn’t apply it to form abbre-
viations and diminutives.

Likewise, we should be able to adapt the
costs of starting a gap, extending a gap, and

continuous substitution to a particular
domain. Long sequences of contiguous inser-
tions and deletions are common for certain
data types; for example, conference titles in

scientific citations are often abbreviated. In
other domains, such as telephone numbers,
gaps are infrequent and short and therefore
must incur high cost.
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Our model for the edit distance’s adaptive
version with affine gaps is similar to prior
work by Eric Ristad and Peter Yianilos, who
developed a learnable model for Levenstein
distance.10 We can represent edit distance
with affine gaps using a hidden Markov
model11 that produces character alignments
between two strings, possibly including gaps.
This model generates a particular alignment
of two strings as a sequence of character
pairs. Each pair is either an aligned pair of
characters from the two strings or a charac-
ter aligned to a gap corresponding to an inser-
tion or a deletion.

The distance between two strings in this
model corresponds to the probability of gen-
erating the most likely alignment between
the strings’ characters. We can compute this
using dynamic programming in standard for-
ward and backward algorithms in time pro-
portional to the strings’ lengths.11 Given a
corpus of matched strings corresponding to
duplicate pairs, we can train the model using
a variant of the Baum-Welch algorithm,12

which is an expectation maximization (EM)
procedure for learning generative models’
parameters. We can use the trained model to
estimate distance between strings by com-
puting the probability of generating the
aligned pair of strings. Strings that are
aligned with a high probability are similar,
while strings for which the optimal alignment
has a low probability are dissimilar.

To evaluate the usefulness of adapting

string similarity measures to a specific
domain, we compared learnable and fixed-
cost distances with affine gaps to identify
equivalent field values. We conducted our
experiments on four single-field scientific
citation data sets from the CiteSeer digital
library. The Reasoning, Face, Reinforce-
ment, and Constraint data sets contain cita-
tions for corresponding computer science
areas: automated reasoning, face recognition,
reinforcement learning, and constraint satis-
faction. Also, we tested our approach on the
two most meaningful fields from the Restau-
rant data set—name and address. The matching
fields for these two data sets are noisy
because we assume that matching records
have duplicate individual fields and vice

versa. This assumption can be incorrect, lead-
ing to unavoidable testing errors. For exam-
ple, two distinct restaurants can exist in dif-
ferent cities with a variation of the same
name, while in these trials we would consider
the two name fields nonmatching because
they correspond to nonduplicate records.

We randomly split every data set into two
folds to cross validate each experimental run
by grouping equivalent records and assigning
them to a random fold. We report all results
over 20 random splits, where, for each split,
we used the two folds alternately for training
and testing. In the training phase, we used
matched record pairs from the training fold to
learn the parameters of the learnable edit dis-
tance just described. In the testing phase, we
computed the similarity between records in
the testing fold and merged most similar
records iteratively. After every merged step,
we computed the transitive closure of matched
records to create matched record clusters.

Table 5 summarizes our results for field-
level duplicate detection experiments. Each
entry contains the average of maximum F1
scores over the 40 evaluated folds. These
results demonstrate that despite the noise,
learned affine edit distance can outperform
nontrained edit distance when detecting
duplicate database fields. Visually inspect-
ing the learned parameter values shows us
that the parameters our training algorithm
obtained capture certain domain properties
that allow more accurate similarity compu-
tations. For example, for the address field of
the Restaurant data, the lowest-cost edit oper-
ations after deleting a space are deleting “e”
and deleting “t.” This captures the fact that a
common cause of street name duplicates is
abbreviations from Street to Str. Overall, the
results indicate that learnable string edit dis-
tance outperforms the static variant and leads
to higher name-matching accuracy when
training pairs in the form of duplicate records
are available.

Identifying distinct records that refer to the
same entity is an important information-

integration subproblem that has been stud-
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Table 5. Maximum F1 scores for detecting duplicate field values.

Distance metric Restaurant name Restaurant address Reasoning Face Reinforcement Constraint

Edit distance 0.290 0.749 0.927 0.952 0.893 0.924

Learned edit distance 0.354 0.787 0.938 0.966 0.907 0.941

Table 4. Performance of various structure-exploiting methods on the Census data set.

String metric Field aggregation method Maximum F1 Average precision

SoftTF-IDF SVM 0.792 0.830

AVG 0.803 0.810 

Single string 0.685 0.782

Jaro SVM 0.917 0.932

AVG 0.897 0.922

Single string 0.728 0.789

Levenstein SVM 0.890 0.928

AVG 0.870 0.920

Single string 0.865 0.925

We have described how such

techniques can be used to

accurately identify equivalent

records when integrating data

from multiple, heterogenous

sources.



ied for over 40 years. Most recent work in
the area has focused on using the latest
machine-learning techniques, such as EM
and SVMs, to learn accurate matching func-
tions. We have described how such tech-
niques can be used to accurately identify
equivalent records when integrating data
from multiple, heterogenous sources.

Acknowledgments
The National Science Foundation partially sup-

ported this article’s preparation under grants IIS-
0117308 and EIA-0131884. It was also supported
by a contract from the Army Research Office to
the Center for Computer and Communications
Security with Carnegie Mellon University and by
a faculty fellowship from IBM.

References

1. R. Durban et al., Biological Sequence Analy-
sis—Probabilistic Models of Proteins and
Nucleic Acids, Cambridge Univ. Press, 1998.

2. A. Monge and C. Elkan, “The Field-Matching
Problem: Algorithm and Applications,” Proc.
2nd ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, AAAI Press,
1996, pp. 267–270.

3. A. Monge and C. Elkan, “An Efficient
Domain-Independent Algorithm for Detect-
ing Approximately Duplicate Database
Records,” Proc. SIGMOD Workshop Data
Mining and Knowledge Discovery, ACM
Press, 1997, pp. 267–270.

4. M.A. Jaro, “Advances in Record-Linkage
Methodology as Applied to Matching the
1985 Census of Tampa, Florida,” J. Am. Sta-
tistical Assoc., vol. 84, no. 406, June 1989,
pp. 414–420.

5. M.A. Jaro, “Probabilistic Linkage of Large
Public Health Data Files,” Statistics in Med-
icine, vol. 14 nos. 5–7, Mar.–Apr. 1995, pp.
491–498.

6. W.E. Winkler, “The State of Record Linkage
and Current Research Problems,” Statistics of
Income Division, Internal Revenue Service
Publication R99/04, 1999; www.census.
gov/srd/www/byname.html.

7. W.W. Cohen, “Data Integration Using Simi-
larity Joins and a Word-Based Information
Representation Language,” ACM Trans.
Information Systems, vol. 18, no. 3, July 2000,
pp. 288–321.

8. S. Tejada, C.A. Knoblock, and S. Minton,
“Learning Object Identification Rules for
Information Integration,” Information Sys-
tems, vol. 26, no. 8, Dec. 2001, pp. 607–633.

9. T. Joachims, Learning to Classify Text Using

Support Vector Machines, Kluwer, 2002.

10. E.S. Ristad and P.N. Yianilos, “Learning
String-Edit Distance,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 20,
no. 5, May 1998, pp. 522–532.

11. L.R. Rabiner, A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition,” Proc. IEEE, vol. 77, no. 2, Feb.
1989, pp. 257–286.

12. M. Bilenko and R.J. Mooney, “Adaptive
Duplicate Detection Using Learnable String
Similarity Measures,” Proc. 9th ACM
SIGKDD Int’l Conf. Knowledge Discovery
and Data Mining (KDD 2003), ACM Press,
2003, pp. 39–48.

For more information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

SEPTEMBER/OCTOBER 2003 computer.org/intelligent 9

T h e  A u t h o r s
Mikhail Bilenko is a PhD student in the Department of Computer Sciences
at the University of Texas at Austin. His research interests include semisu-
pervised learning, text mining, clustering, and information integration. He
received his MSCS from the University of Texas at Austin. Contact him at
the Dept. Computer Sciences, Univ. of Texas at Austin, 1 University Station
C0500, Austin, TX 78712-1188; mbilenko@cs.utexas.edu; www.cs.
utexas.edu/users/mbilenko.

Raymond Mooney is a professor of computer sciences at the University of Texas
at Austin. His research interests include text mining, learning for natural language
processing, information extraction, text categorization, recommender systems,
inductive-logic programming, and semi-supervised clustering. He received his
PhD in computer science from the University of Illinois at Urbana/Champaign.
He is a member of the ACM,AAAI,Association for Computational Linguistics,
and the Cognitive Science Society. Contact him at the Dept. of Computer Sci-
ences, Univ. of Texas at Austin, 1 University Station C0500,Austin, TX 78712-
0233; mooney@cs.utexas.edu; www.cs.utexas.edu/users/mooney.

William Cohen is an associate research professor at Carnegie Mellon Uni-
versity’s Center for Automated Learning and Discovery and an action editor
for the Journal of Machine Learning Research. His research interests include
information integration and machine learning, particularly text categoriza-
tion, information extraction, and learning from large data sets. He received his
PhD in computer science from Rutgers University. Contact him at the Cen-
ter for Automated Learning & Discovery, Carnegie Mellon Univ., 5000 Forbes
Ave., Pittsburgh, PA 15213; wcohen@cs.cmu.edu; www.cs.cmu.edu/~wcohen.

Pradeep Ravikumar is a PhD student at Carnegie Mellon University’s Cen-
ter for Automated Learning and Discovery at the School of Computer Sci-
ence. His research interests include information integration, disclosure limi-
tation, and machine learning. He received his Bachelor of Technology in
computer science and engineering from the Indian Institute of Technology,
Bombay. Contact him at Wean Hall, Rm. 4212, School of Computer Science,
Carnegie Mellon Univ., 5000 Forbes Ave., Pittsburgh, PA 15213;
pradeepr@cs.cmu.edu; www-2.cs.cmu.edu/~pradeepr.

Stephen Fienberg is a Maurice Falk University professor of statistics and
social science in the Department of Statistics, the Center for Automated Learn-
ing and Discovery, and the Center for Computer and Communications Secu-
rity at Carnegie Mellon University. His research interests include analysis of
categorical data, Bayesian approaches to confidentiality and data disclosure,
causation, foundations of statistical inference, the history of statistics, sample
surveys and randomized experiments, statistics and the law, and inference for
multiple-media data. He received his PhD in statistics from Harvard Univer-
sity. He is a fellow of the American Association for the Advancement of Sci-

ence, the American Statistical Association, and the Institute of Mathematical Statistics, and is an elected
member of the National Academy of Sciences. Contact him at 132G Baker Hall, Dept. of Statistics,
Carnegie Mellon Univ., Pittsburgh, PA 15213; fienberg@stat.cmu.edu; www.stat.cmu.edu/~fienberg.


