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Abstract

The problem of identifying approximately dupli-
cate objects in databases is an essential step for
the information integration process. Most exist-
ing approaches have relied on generic or manu-
ally tuned distance metrics for estimating the sim-
ilarity of potential duplicates. In this paper, we
present a framework for improving duplicate de-
tection using trainable measures of textual simi-
larity. We propose to employ learnable text dis-
tance functions for each data field, and introduce
an extended variant of learnable string edit distance
based on an Expectation-Maximization (EM) train-
ing algorithm. Experimental results on a range of
datasets show that this similarity metric is capable
of adapting to the specific notions of similarity that
are appropriate for different domains. Our overall
system, MARLIN, utilizes support vector machines
to combine multiple similarity metrics, which are
shown to perform better than ensembles of deci-
sions trees, which were employed for this task in
previous work.

Introduction

standard string similarity metrics such as edit distdi@es-
field, 1997 or vector-space cosine similarifBaeza-Yates
and Ribeiro-Neto, 199%re used to determine whether two
values or records are alike enough to be duplicates. Some
more recent workCohen and Richman, 2002; Sarawagi and
Bhamidipaty, 2002; Tejadet al., 2004 has investigated the
use of pairing functions that combine multiple standard met-
rics.

Because an estimate of similarity between strings can vary
significantly depending on the domain and specific field un-
der consideration, traditional similarity measures may fail
to estimate string similarity correctly. When syntactic vari-
ations are due to systematic typographical or OCR errors,
certain characters can be consistently replaced by others or
omitted. Certain abbreviations are also common to some do-
mains, for example “Street” is frequently abbreviated to “Str”
in addresses. Accurate similarity computations therefore re-
quire adapting string similarity metrics for each field of the
database with respect to the particular data domain.

Rather than hand-tuning a distance metric for each field,
we propose to use trainable similarity measures that can be
learned from small corpora of labeled examples, thus adapt-
ing to a specific domain. We present a trainable variant of
edit distance with affine gaps, which is a widely used simi-

When databases contain records that were collected frofdfity metric for short and medium-length strings. Our metric
multiple information sources, they frequently include field- IS based on a three-state stochastic generative model, and an
values and tuples that refer to the same entity, but are ndexpectation-Maximization (EM) algorithm is presented for
syntactically identical. Variations in representation acros€stimating its parameters. _ .
sources can arise from differences in formats used to store Our overall system, MRLIN (Multiply Adaptive Record
data, typographical errors, and abbreviations. Variations arkinkage with INduction), employs a two-level learning ap-
particularly pronounced in data that is automatically extractedroach. First, string similarity measures are trained for every
from web pages and unstructured or semi-structured doclatabase field so that they can provide accurate estimates of
ments[Nahm and Mooney, 2000; Cohet al, 200d. Such string distance betyveen va_Iues for that _fleld. Next, a f|r_1al
approximate duplicates can have many deleterious effecfdredicate for detecting duplicate records is learned from sim-
on other data integration tasks, including preventing datallarity metrics applied to each of the individual fields. We uti-
mining algorithms from discovering important regularities. lize support vector machines for this task, and show that they
This problem is typically handled during a tedious manualoutperform boosted decision trees, the classifier used in prior
de-duplication process. work [Tejadaet al,, 2002; Sarawagi and Bhamidipaty, 2002
Some previous work has addressed the problem of iderW_e _evaluate_ our approach on several real-world_data sets con-
tifying duplicate records, where it was referred to as recordaining duplicate records and show thatRLIN improves
linkage [Fellegi and Sunter, 1969; Winkler, 1999the duplicate detection accuracy over traditional techniques.
merge/purge probleniHerndndez and Stolfo, 1995 du- i i
plicate detectiofMonge and Elkan, 1997; Sarawagi and 2 Learnable String Distance
Bhamidipaty, 200R hardening soft databask@ohenet al, 2.1 Background
200d, reference matchinfMcCallum et al, 2004, object The most widely used similarity metric for short strings is
identification[Tejadaet al,, 2004, and entity-name cluster- Levenshtein distance, defined as the minimum number of in-
ing and matchindCohen and Richman, 20D2 Typically,  sertions, deletions or substitutions necessary to transform one



string into another. Its computation can be performed in timesets of insertion and deletion operations respectively. Each
proportional to the strings’ lengths using dynamic program-edit operatiore € E is assigned a probabilitg(e) such that
ming. Allowing contiguous sequences of mismatched chary ecg, p(€) = 1, Y ecg, P(€) = 1, andy ecg; p(€) = 1.
acters, or gaps, in the alignment of two strings, lessens the The production starts in stald and terminates when the
penalty for insertion or deletion of complete substrings, andspecial state # is reached. Transitians andao; from the
results in a better similarity estimate than Levenshtein dismatching stat# to either the deletion staf2or the insertion
tance, since it accomodates abbreviations and whole-word irstatel correspond to a gap in the alignment of the strings. A
sertions and deletions. gap is ended when the edge (or ;) is traversed back to
Most commonly the gap penalty is calculated using thethe matching state. Remaining in staieby taking edgeu
affinemodel:cost(g) = s+ e x|, wheresis the cost of open- corresponds to a sequence of substitutions or exact matches,
ing a gapgis the cost of extending a gap, ahi the length  while remaining in statesandD is analogous to extending a
of a gap in the alignment of two strings, assuming that allgap in either the first or the second string.
characters have a unit cost. Usuadlis set to a value lower Given two stringsx” of lengthT andy” of lengthV, prob-

thans, thus decreasing the penalty for contiguous mismatchedy.; . ; ; v _
substrings. Computing edit distance with affine gaps is pergbnltlesTofgen\(/aratmg the %awof preflx%é_rmt',yl__a,) and $Uf
formed via a dynamic programming algorithm that constructs XS (Xt.+l---.T’yvt+l...(\j/) gafn € Cgmpgtg l“l'(s'ngd y?amltﬁ pro-

three matrices that represent minimum-cost string alignmentd @MMING In Standard torward and backward aigorithms in

that end either matched characters, or with a gap in one of th (TV) _time [Rabiner, 1980 . .
two strings[Gusfield, 1997, Provided a corpus aofi matched strings corresponding to

o _ _ pairs of duplicate; = {(x™,y"1),..., (x™,y"")}, this model
2.2 Learnable Edit Distance with Affine Gaps can be trained using a variant of the Baum-Welch algorithm,

Different edit operations have varying significance in differ- Shownin Fig.2, which is an Expectation-Maximization proce-
ent domains. For example, a digit substitution makes a majdfure_for leaming parameters of generative modsbiner,
difference in a street address since it effectively changes th£289. The training procedure iterates between two steps,
house number, while a single letter substitution is semantihere in the first step the expected number of occurrences
cally insignificant because it is more likely to be caused byfOr €ach state transition and edit operation emission is accu-
a typo or an abbreviation. Therefore, adapting string edifulated for a given pair of string,y) from the training
distance to a particular domain requires assigning differenorpus. This is achieved by accumulating the posterior prob-
weights to different edit operations. abilities for every possible state transition and an accompa-
In prior work, Ristad and YianilogRistad and Yianilos, NYing character pair emission. In theAMIMIZATION pro-
1999 have developed a generative model for Levenshteigedure all model parameters are updated using the collected
distance along with an Expectation-Maximization algorithmexpectations. Complete pseudo-code for the algorithm can be
that learns model parameters using a training set consisting pund in[Bilenko and Mooney, 2042
matched strings. We propose a similar stochastic model for

the edit distance_z with affine gaps. ) ] Input: A set of equivalent strings S = {(zT,y%7), 2T = y¥i}
The stochastic transducer shown in Fig.1 represents the Output: A set of parameters for edit distance with
generative model that producakgnmentsof characters be- affine gaps that minimizes distance for each (z,y) € §

tween two strings that may include gaps. A particular align- | Method:
|, until convergence

ment of two strings is generated by this model as a sequence AN
. . for each (zi,y"") € S
of traversals along the edges. Each traversal is accompanied  gyprcramon-step: Use forward and backward algorithms

by an emiSSion ofa charactr—_zr pair Sampl_ed from a probability to accumulate the expected number of occurrences E[(z;, yx)]
distribution of the state that is reached via each traversal. An for each edit operation used to align 7% and y%,
aligned pair of strings corresponds to a sequence of emissions as well as E[u], E[or], E[op], E[61], E[6p], E[1], E[7p]-

of character pairs, or single characters from one of the stringg ¢ » .
that are aligned toa gap in the other string. MAXIMIZATION-STEP: Update all transition and emission

probabilities using the expected numbers of occurrences
and re-normalize.
end

Figure 2: Training algorithm for generative string distance
with affine gaps

It can be proved that this training procedure is guaranteed
to converge to a local maximum of likelihood of observing the
training corpu€. The trained model can be used for estimat-
Figure 1. Generative model for string distance with affineing distance between two strings by computing the probabil-
gaps ity of generating the aligned pair of strings summed across all

possible paths as calculated by the forward and backward al-

Given an alphabet of symbol* = A|J{e}, the full set  gorithms:d(x",y") = —logp(x",y"), and then obtaining the
of edit operations i€ = EsUEqUEi, whereEs = {(a,b) | posterior probability. Numerical underflow may occur when
a,b € A} is the set of all substitution and matching operationsthese computation are performed for long strings; this prob-
(a,b); andE; = {(g,a) |a€ A} andEy = {(a,€) |ac A} are lem can be resolved by mapping all computations into loga-




rithmic space or by periodic scaling of all values in matricesability to learn from few informative training instances. The
M, D andl [Ristad and Yianilos, 1998 distance from the separating hyperplane provides an appro-

If only a relatively small number of training examples is priate measure of confidence in the pair of records being a
available, probabilities of some edit operations may be undeduplicate. Fig.3 illustrates the process of computing record
estimated, and distances assigned to strings will vary signifisimilarity using multiple distance metrics over each field and
cantly with minor character variations. To address this issuea binary classifier to categorize the resulting feature vector as
the probability distribution over the set of edit operatidas, belonging to the class of duplicates or non-duplicates, result-
is smoothed by bounding each edit operation probability bying in a distance estimate. For the sample database of Fig.3,
some minimum valua. two learnable distance metrialy, andd,, are trained and sub-

To improve efficiency, learned parameters of the generativeequently used to compute similarity for each field. The val-
distance model can be mapped to operation costs of the origites computed by these metrics form the feature vector that is
nal edit distance with affine gaps by taking the negative logathen classified by a support vector machine, producing a con-
rithm of each probability. Distance calculation is then analo-fidence value that represents similarity between the database
gous to the classical three-matrix dynamic programming aprecords.

proach with the addition of supplemental cogts- —logy 3.2 The overall duplicate detection framework

tote/match characiers, This i equivalent to saloulating th e aINiNg phase of our system ARLIN, consists of two
’ teps. First, learnable distance metrics are trained for each

gosthgfégﬁerpz;is\}e“lri"?(ljét(a\ll:}qelrgg-sgggén ent of the two strings record field. The training corpus of paired field-level dupli-
y ' cates and non-duplicates is obtained by taking pairs of values

3 Record-level Similarity for each field from the set of paired duplicate records. Be-
- L . . cause duplicate records may contain individual fields that are
3.1 Combining similarity across multiple fields not equivalent, training data can be noisy. However, this issue

When the distance between records composed of multipldoes not pose a serious problem for our approach, since par-
fields is calculated, it is necessary to combine similarity estiticularly noisy fields that are unhelpful for identifying record-
mates from individual fields in a meaningful manner. Avail- level duplicates will be considered irrelevant by the classifier
ability of labeled duplicates allows using a binary classifierthat combines similarities from different fields.
that computes a “pairing functionfCohen and Richman, After individual similarity metrics are learned, they are
2004. Given a database that contains records composed afsed to compute distances for each field of duplicate and non-
k different fields and a séd = {di(-,-),...,dm(-,-)} of dis-  duplicate record pairs to obtain training data for the binary
tance metrics, we can represent similrity between any pair oflassifier in the form of vectors composed of distance fea-
records by amk-dimensional vector. Each component of the tures.
vector represents similarity between two field values of the In the duplicate detection phase, ARLIN utilizes the
records that is calculated using one of thelistance metrics. canopieslustering metho@McCallumet al, 2004 to avoid
Matched pairs of duplicate records can used to construgserformingO(n?) distance computations between all pairs of
a training set of such feature vectors by assigning them @atabase records. Using Jaccard similarity, a computation-
positive class label. Pairs of records that are not labeled aglly inexpensive metric based on an inverted index, records
duplicates implicitly form the complementary set of negativeare separated into overlapping clusters (“canopies”) of poten-
examples. If the transitive closure of matched pairs containgal duplicates. Pairs of records that fall in each cluster then
disjoint sets of duplicate records, this approach will result inpecome candidates for a full similarity comparison.
noisy negative examples. A binary classifier is trained using Learned distance metrics are used to calculate distances for
these training vectors to discriminate between pairs of recordgach field of each pair of potential duplicate records, thus cre-

corresponding to duplicates and non-duplicates. ating distance feature vectors for the classifier. Confidence
estimates for belonging to the class of duplicates are produced
Name Address City Cuisine by the binary classifier for each candidate pair, and pairs are
Fenix 8358 Sunset Blvd. West| Hollywood American sorted by increasing confidence.
Fenix at the Argyle | 8358 Sunset Blvd. W. Hollywood  French (new) The pr0b|em of f|nd|ng a S|m||ar|ty threshold for Separat_

Leamed g g, e o e O O oo ing duplicates from non-duplicates arises at this point. Since
distance relative costs of labeling a non-duplicate as a duplicate (false
easires \}xd\d \d d/{ d»{/ positives) and overlooking true duplicates (false negatives)
Feature vector [Gin Gon ha Goa Che Gz Gheu ooy can vary from database to database, there is no “silver bul-
let” solution to this problem. Availability of labeled data,

SVM however, allows us to provide precision-recall estimates for
any threshold value and thus offer a way to control the trade-
‘ Distance off between false and unidentified duplicates by selecting a
Duplicate records  Non~duplicate records - threshold that is appropriate for a particular database.

It is possible that several identified duplicate pairs will
Figure 3: Computation of record similarity from individual contain the same record. Since the “duplicate of” relation
field similarities is transitive, it is necessary to compute the transitive clo-
sure of equivalent pairs to complete the identification process.
Support vector machind&apnik, 1998 are an appropri- Following [Monge and Elkan, 1997 MARLIN utilizes the
ate classifier for this task due to their resilience to noise andinion-find data structure to store all database records in this



Table 1: Sample duplicate records from fRestaurantiatabase

[ name | address | city | phone | cuisine |
fenix 8358 sunset blvd. west hollywood 213/848-6677| american
fenix at the argyle| 8358 sunset bivd. w. hollywood | 213-848-6677| french(new)
step, which allows updating the transitive closure of identified 0.9 T
duplicates incrementally in an efficient manner. 0s T8 Leamed Affne - ||

4 Experimental Evaluation o7t
4.1 Datasets and Methodology o6 "

Our experiments were conducted on six datasé&gstau- o5t
rantis a database of 864 restaurant names and addresses con-
taining 112 duplicates obtained by integrating records from
Fodor’'s and Zagat's web site€orais a collection of 1295
distinct citations to 122 Computer Science research papers 02
from the Cora Computer Science research paper search en- o1l
gine. ReasoningFace Reinforcemenand Constraintare ‘ ‘ ‘ :
single-field citation datasets from tlidteseerscientific liter- 0 20 0 60 80 100
ature digital library ittp://citeseer.nj.nec.com/ ) Rea- Recall
soningcontains 514 citation records that represent 196 unique . . . . )
mentcontains 406 citations to 148 papers, abdnstraint  Of theRestaurantataset
contains 295 citations to 199 papers. Table 1 contain sam-
ple duplicate records from tHeestaurantiataset. . . . . .
For each experimental run every dataset was randomly split ® Léarned edit distance with affine gaps described in Sec-
into 2 folds for cross-validation by assigning all records for ~ tion 2.2, trained using the EM algorithm shown |n5F|g.2
every unique underlying object to one of the folds. All results ~ With edit operation probabilities smoothedhat 107>;

are reported over 20 random splits, where for each split the o Normalized dot product in vector space (cosine simi-
two folds were used alternately for training and testing. larity), computed using TF-IDF weights after stemming

During each run, duplicate detection was performed as de-  and stopword removal.
scribed in Section 3.2. At each iteration, the pair of records , . ) i
with the highest similarity was labeled a duplicate, and the Results for field-level duplicate detection experiments are
transitive closure of groups of duplicates was updated. PrecBummarized in Table 2. Each entry in the table contains the
sion, recall and F-measure defined over pairs of duplicateg8verage of maximum F-measure values over the 40 evaluated
were computed after each iteration, where precision is thélds. Results for experiments where the difference between
fraction of identified duplicate pairs that are correct, recalthe learned and unlearned edit distance is significant at the
is the fraction of actual duplicate pairs that were identified 0-05 level using a 1-tailed t-test are presented in bold. Fig. 4
and F-measure is the harmonic mean of precision and reclemonstrates the recall-precision curves for the performance
[Baeza-Yates and Ribeiro-Neto, 1999 of MARLIN on thenamefield of theRestaurantlataset.

As more pairs with lower similarity are labeled as dupli- Relatively low precision of the MRLIN field experiments
cates, recall increases, while precision begins to decrease he-due to the fact that the duplicates on individual fields are
cause the number of non-duplicate pairs erroneously labeleeery noisy: for example, several restaurants from different
as duplicates increases. Precision was interpolated at 20 statities may have variations of the same name, and in these
dard recall levels following the traditional procedure in infor- trials these variations would be considered a non-duplicate.
mation retrieva[Baeza-Yates and Ribeiro-Neto, 1999 However, results in the following section will show that a
42 Results combination of individual field estimates provides an accu-

: rate approximation of overall record similarities.

Detecting duplicate field values Overall, these results demonstrate that despite the noise
To evaluate the usefulness of adapting string similarity mealearned affine edit distance is able to outperform non-trained
sures to a specific domain, we compared learned distanalit distance and vector-space cosine similarity for individ-
metrics with their fixed-cost equivalents for the task of identi-ual field duplicate detection. Visual inspection of the learned
fying equivalent field values. Along with the four single-field parameter values reveals that the parameters obtained by our
Citeseerdatasets we chose two most meaningful fields fromtraining algorithm capture certain domain properties that al-
the Restaurantlataset hameandaddress low more accurate similarity computations. For example, for
We have compared four string similarity measures: theaddressfield of theRestaurantiata, the lowest-cost edit
¢ Edit distance with affine gaplGusfield, 1997 using  operations after deleting a space are deleting 'e’ and delet-
substitution cost of 2, gap opening cost of 3, gap extening 't' - which captures the fact that a common cause of
sion cost of 1, and match cost of -1, which are commonlystreet name duplicates are abbreviations ftStreet” to
used parameters; “Str”

Precision




Table 2: Maximum F-measure for detecting duplicate field values
| Restauranname | Restauranaddress | Reasoning] Face | Reinforcemeni Constraint |

[ Distance metric

Edit distance 0.290 0.749 0.927 0.952 0.893 0.924
Learned edit distance 0.354 0.787 0.938 0.966 0.907 0.941
\ector-space 0.365 0.412 0.897 0.922 0.903 0.923

Table 3: Maximum F-measure for duplicate detection baseg

on multiple fields

[ Metric | Restaurant] Cora |
Edit distance 0.909 0.793
Learned edit distance¢  0.928 0.824
Vector space 0.917 0.867
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omparison of classifiers for adaptive duplicate detection
revious work that employed classifiers to combine similar-
ity estimates from multiple fields has utilized committees
of decision tree learnefSarawagi and Bhamidipaty, 2002;
Tejadaet al, 2004. We compared performance of support
vector machines to boosted decision trees for combining sim-
ilarity estimates across the database fields to produce overall
similarity of records. Experiments were conducted for two
scenarios: using very limited training data (30 negative and
30 positive duplicate pair examples), and using large amounts
of training data (500 randomly sampled negative pairs and up
to 500 positive pairs - fewer were available for tRestau-
rant dataset due to the limited number of duplicates in it).
The SVM9" implementation of a support vector machine
with a radial basis function kernel was compared with the
WEKA packagdWitten and Frank, 1999mplementation of
alternating decision tre¢&reund and Mason, 199% state-
of-the-art algorithm that combines boosting and decision tree
learning. Unlearned vector-space cosine similarity was used
as the field-level similarity measure. Fig.6 illustrate the re-
sults on theRestauranand Cora datasets for the the limited
training data setting. For the large amount of training data,
SVMs significantly outperformed decision trees Rastau-

Figure 5: Duplicate detection results for tiestaurant
dataset based arame, address, cityandcuisinefields

Record-level duplicate detection

Next, we evaluated the performance ofaARLIN for multi-

field (record-level) duplicate detection. We used the
SvM'ight implementation of a support vector machine
[Joachims, 1999as the binary classifier that combines simi-
larity estimates across the different fields to produce the over-
all measure of record similarity as shown on Fig.3.
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*****

,,,,,,
eeeeeeee
~~~~~~

We have compared the performance of learnable and base- L
line text similarity metrics for producing the similarity esti- onf] Remam ST
mates of individual fields. Table 5 summarizes the results 0 Cora - SVM —x

. .
0 20 40 60 80 100
Recall

for the RestauranandCora datasets, and Fig.5 contains the
recall-precision curve for th®estaurantdataset. The re-

sults demonstrate that using learnable string similarity metgjgyre 6: Duplicate detection results f&estaurantand

rics makes a positive contribution when similarities from Cora datasets using different record-level classifiers on lim-
multiple fields are combined. ited training data

~We also ran trials which combined character-based met-
rics (static and learnable string edit distance with affine gaps) These results show that support vector machines signifi-

and vector-space cosine similarity. These experiments res,ni outperform boosted decision trees when training data

sulted in near-100% precision and recall, without signifi-r-g limited, which is the most likely scenario for adaptive du-

cant Eirirf;f.ergnces b(tetvxéeeThsttatic ag.d _adapr:ive fifld'le\éetl Te jlicate detection. While decision trees are reliable classifiers,
rics. his aemonstrates that comboining character and lokelypqining calibrated confidence scores from them relies on

based distar;]c_e mletrics its gn a:in;/anta%e of thtedt""to'le}[’eldl.%arﬁ'robabiIity estimates based on training data statistics over the
mgt a;lalproac tlmphemetnhe b'” f'IEIN'f larre?_ a aste_s 10" tree node§zadrozny and Elkan, 2001 When little training

not aflow us o show the DENETILS or ataplive MeCs OVey 44 s ayailable, such frequency-based estimates are very un-
their static prototypes for this scenario, but the initial resultSgjjapje A5 a result, the confidence of the decision tree classi-

suggest that they can be demonstrated on more challengifg, i 2 inaccurate measure of relative record similarity that

datasets. leads to poor accuracy in the duplicate detection process.



5 Related Work [Bilenko and Mooney, 20d2Mikhail Bilenko and Raymond J.
Fellegi and SuntdiFellegi and Sunter, 19¢@eveloped a for- Mooney. Learning to combine trained distance metrics for dupli-
mal theory for record |inkage and offered statistical meth- cate detection in databases. TR Al 02-296, Artificial Intelllgence
ods for estimating matching parameters and error rates. IF Laboratory, U. of Texas at Austin, February 2002. .
more ecent work n statsis, Winklr proposed using Eh-{ 20" 16 Ml Zhaan i Coner s acct R
based methods for obtaining optimal matching ruMsn- : : : b ) |
kler, 1999. That work was highly specialized for the domain f)eetrfgogggzta integration. fAroc. of KDD-2002 Edmonton, Al
of census records a.nd used hand-tun_e_d similarity_ measureS[Cohenét al, 2600 William W. Cohen, Henry Kautz, and David
~ McCallum et. al. introduced the efficient canopies cluster-  pcallester. Hardening soft information Sources. Mmoc. of
ing algorithm[McCallumet al, 2004 for the task of match- KDD-200Q Boston, MA, August 2000.
ing scientific citations. Monge and Elkan developed the iterafrellegi and Sunter, 19891. P. Fellegi and A. B. Sunter. A theory
tive merging algorithm based on the union-find data structure for record linkage.Journal of the American Statistical Associa-
and showed the advantages of using a string distance met- tion, 64:1183-1210, 19689.
ric that allows gapgMonge and Elkan, 1997 Cohen et. [Freund and Mason, 1999Y. Freund and L. Mason. The alternat-
al. [Cohenet al,, 2004 posed the duplicate detection task as ing decision tree learning algorithm. Rroc. of ICML-99 Bled,
an optimization problem, proved NP-hardness of solving the Slovenia, 1999. _ _ _
problem optimally, and proposed a nearly linear algorithm foﬁGusfleld, 1997 Dan Gusfield. Algorithms on Strings, Trees and
finding a local optimum using the union-find data structure. ,  SeguencesCambridge University Press, New York, 1997.

In recent work, Cohen and Richman have proposed aH—|ermndez and Stolfo, 1995Mauricio A. Herréndez and Salva-
adaptive framework for duplicate detection that combines ©°r€ J: Stolfo. The merge/purge problem for large databases. In

X L= . ; Proc. of SIGMOD-95pages 127-138, San Jose, CA, May 1995.
multiple similarity metrics[Cohen and Richman, 20D2 [Joachims, 1999 Thorsten Joachims. Making large-scale SVM

Sarawagi and BhamidipatySarawagi and Bhamidipaty, " |eaming practical. In B. Saikopf, C. J. C. Burges, and A. J.
2002 and Tejada et. aI[.ngadaet al, 200_2 developed sys- Smola,ge%itorsAdvances in Ke?nel Methods -gSupport Vector
tems that employ committee-based active learning methods [earning pp. 169-184. MIT Press, 1999.

for selecting informative record pairs to train the classifier[McCallumet al, 20040 Andrew K. McCallum, Kamal Nigam, and
that combines similarity estimates from multiple fields. Inall  Lyle Ungar. Efficient clustering of high-dimensional data sets
of these approaches fixed-cost similarity metrics were used with application to reference matching. Rroc. of KDD-2000

to compare individudual field values. We have shown that pp. 169-178, Boston, MA, August 2000.

learnable similarity measures can be combined with trainablEMonge and Elkan, 1997Alvaro E. Monge and Charles P. Elkan.
record-level similarity, and active learning techniques from An efficient domain-independent algorithm for detecting approx-

prior work can be easily extended to include the distance mea- IMmately duplicate database records. Hroc. of SIGMOD-1997
sures that we proposed. Workshop on Research Issues on Data Mining and Knowledge

Discovery pp. 23-29, Tuscon, AZ, May 1997.

6 Conclusions and Future Work [Nah;]m and MSO_ney! %OOOUn Yong Nahm a_réd hRag{mond J.f
Duplicate detection is an important problem for the data inte- Mooney. Using information extraction to aid the discovery o
gration process, and an adaptive approach that learns to iden—%i?'l\cﬂti'r?irr‘]éuéeos‘s :‘cr)c:]ml\;&(ti\.ugrscntcé&f)(l)(DD-zooo Workshop on
tify duplicate records for a specific domain has clear advan ; T ; o .

tages over static methods. Experimental results demonstraI;Rabmer’ 198p Lawrence R. Rabiner. A tutorial on hidden Markov

. L - € models and selected applications in speech recogniRooc. of
that trainable similarity measures are capable of learning the he |EEE 77(2):257-286, 1989.

specific notion of similarity that is appropriate for a partic- [Rjstad and Yianilos, 1998Eric Sven Ristad and Peter N. Yianilos.
ular domain. Our overall framework for duplicate detection | earning string edit distancéEEE PAM|, 20(5), 1998.
integrates previous work on adaptive methods with learnablgsarawagi and Bhamidipaty, 2005unita Sarawagi and Anuradha
similarity measures, leading to improved results. Extending Bhamidipaty. Interactive deduplication using active learning. In
the metric learning approach to token-based similarity mea- Proc. of KDD-2002 Edmonton, Alberta, 2002.

sures, such as vector-space cosine similarity, as well as déFejadaet al, 2004 Sheila Tejada, Craig A. Knoblock, and Steven
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