
Proceedings of the IJCAI-2003 Workshop on Information Integration on the Web,
pp. 67-72, Acapulco, Mexico, August, 2003

Employing Trainable String Similarity Metrics for Information Integration

Mikhail Bilenko and Raymond J. Mooney
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

fmbilenko,mooneyg@cs.utexas.edu

Abstract
The problem of identifying approximately dupli-
cate objects in databases is an essential step for
the information integration process. Most exist-
ing approaches have relied on generic or manu-
ally tuned distance metrics for estimating the sim-
ilarity of potential duplicates. In this paper, we
present a framework for improving duplicate de-
tection using trainable measures of textual simi-
larity. We propose to employ learnable text dis-
tance functions for each data field, and introduce
an extended variant of learnable string edit distance
based on an Expectation-Maximization (EM) train-
ing algorithm. Experimental results on a range of
datasets show that this similarity metric is capable
of adapting to the specific notions of similarity that
are appropriate for different domains. Our overall
system, MARLIN, utilizes support vector machines
to combine multiple similarity metrics, which are
shown to perform better than ensembles of deci-
sions trees, which were employed for this task in
previous work.

1 Introduction
When databases contain records that were collected from
multiple information sources, they frequently include field-
values and tuples that refer to the same entity, but are not
syntactically identical. Variations in representation across
sources can arise from differences in formats used to store
data, typographical errors, and abbreviations. Variations are
particularly pronounced in data that is automatically extracted
from web pages and unstructured or semi-structured docu-
ments[Nahm and Mooney, 2000; Cohenet al., 2000]. Such
approximate duplicates can have many deleterious effects
on other data integration tasks, including preventing data-
mining algorithms from discovering important regularities.
This problem is typically handled during a tedious manual
de-duplication process.

Some previous work has addressed the problem of iden-
tifying duplicate records, where it was referred to as record
linkage [Fellegi and Sunter, 1969; Winkler, 1999], the
merge/purge problem[Hernández and Stolfo, 1995], du-
plicate detection[Monge and Elkan, 1997; Sarawagi and
Bhamidipaty, 2002], hardening soft databases[Cohenet al.,
2000], reference matching[McCallum et al., 2000], object
identification[Tejadaet al., 2002], and entity-name cluster-
ing and matching[Cohen and Richman, 2002]. Typically,

standard string similarity metrics such as edit distance[Gus-
field, 1997] or vector-space cosine similarity[Baeza-Yates
and Ribeiro-Neto, 1999] are used to determine whether two
values or records are alike enough to be duplicates. Some
more recent work[Cohen and Richman, 2002; Sarawagi and
Bhamidipaty, 2002; Tejadaet al., 2002] has investigated the
use of pairing functions that combine multiple standard met-
rics.

Because an estimate of similarity between strings can vary
significantly depending on the domain and specific field un-
der consideration, traditional similarity measures may fail
to estimate string similarity correctly. When syntactic vari-
ations are due to systematic typographical or OCR errors,
certain characters can be consistently replaced by others or
omitted. Certain abbreviations are also common to some do-
mains, for example “Street” is frequently abbreviated to “Str”
in addresses. Accurate similarity computations therefore re-
quire adapting string similarity metrics for each field of the
database with respect to the particular data domain.

Rather than hand-tuning a distance metric for each field,
we propose to use trainable similarity measures that can be
learned from small corpora of labeled examples, thus adapt-
ing to a specific domain. We present a trainable variant of
edit distance with affine gaps, which is a widely used simi-
larity metric for short and medium-length strings. Our metric
is based on a three-state stochastic generative model, and an
Expectation-Maximization (EM) algorithm is presented for
estimating its parameters.

Our overall system, MARLIN (Multiply Adaptive Record
Linkage with INduction), employs a two-level learning ap-
proach. First, string similarity measures are trained for every
database field so that they can provide accurate estimates of
string distance between values for that field. Next, a final
predicate for detecting duplicate records is learned from sim-
ilarity metrics applied to each of the individual fields. We uti-
lize support vector machines for this task, and show that they
outperform boosted decision trees, the classifier used in prior
work [Tejadaet al., 2002; Sarawagi and Bhamidipaty, 2002].
We evaluate our approach on several real-world data sets con-
taining duplicate records and show that MARLIN improves
duplicate detection accuracy over traditional techniques.

2 Learnable String Distance
2.1 Background
The most widely used similarity metric for short strings is
Levenshtein distance, defined as the minimum number of in-
sertions, deletions or substitutions necessary to transform one

string into another. Its computation can be performed in time
proportional to the strings’ lengths using dynamic program-
ming. Allowing contiguous sequences of mismatched char-
acters, or gaps, in the alignment of two strings, lessens the
penalty for insertion or deletion of complete substrings, and
results in a better similarity estimate than Levenshtein dis-
tance, since it accomodates abbreviations and whole-word in-
sertions and deletions.

Most commonly the gap penalty is calculated using the
affinemodel:cost(g) = s+e� l , wheres is the cost of open-
ing a gap,e is the cost of extending a gap, andl is the length
of a gap in the alignment of two strings, assuming that all
characters have a unit cost. Usuallye is set to a value lower
thans, thus decreasing the penalty for contiguous mismatched
substrings. Computing edit distance with affine gaps is per-
formed via a dynamic programming algorithm that constructs
three matrices that represent minimum-cost string alignments
that end either matched characters, or with a gap in one of the
two strings[Gusfield, 1997].

2.2 Learnable Edit Distance with Affine Gaps
Different edit operations have varying significance in differ-
ent domains. For example, a digit substitution makes a major
difference in a street address since it effectively changes the
house number, while a single letter substitution is semanti-
cally insignificant because it is more likely to be caused by
a typo or an abbreviation. Therefore, adapting string edit
distance to a particular domain requires assigning different
weights to different edit operations.

In prior work, Ristad and Yianilos[Ristad and Yianilos,
1998] have developed a generative model for Levenshtein
distance along with an Expectation-Maximization algorithm
that learns model parameters using a training set consisting of
matched strings. We propose a similar stochastic model for
the edit distance with affine gaps.

The stochastic transducer shown in Fig.1 represents the
generative model that producesalignmentsof characters be-
tween two strings that may include gaps. A particular align-
ment of two strings is generated by this model as a sequence
of traversals along the edges. Each traversal is accompanied
by an emission of a character pair sampled from a probability
distribution of the state that is reached via each traversal. An
aligned pair of strings corresponds to a sequence of emissions
of character pairs, or single characters from one of the strings
that are aligned to a gap in the other string.

σ

σ

µ M

D

#

I

µτ

τI

τD

D

γD

I

γI

δI

δD

Figure 1: Generative model for string distance with affine
gaps

Given an alphabet of symbolsA� = A
S
fεg, the full set

of edit operations isE = Es
S

Ed
S

Ei , whereEs = fha;bi j
a;b2Ag is the set of all substitution and matching operations
ha;bi; andEi = fhε;ai j a2 Ag andEd = fha;εi j a2 Ag are

sets of insertion and deletion operations respectively. Each
edit operatione2 E is assigned a probabilityp(e) such that
∑e2Es p(e) = 1, ∑e2Ed

p(e) = 1, and∑e2Ei
p(e) = 1.

The production starts in stateM and terminates when the
special state # is reached. TransitionsσD and σI from the
matching stateM to either the deletion stateD or the insertion
stateI correspond to a gap in the alignment of the strings. A
gap is ended when the edgeγD (or γI) is traversed back to
the matching state. Remaining in stateM by taking edgeµ
corresponds to a sequence of substitutions or exact matches,
while remaining in statesI andD is analogous to extending a
gap in either the first or the second string.

Given two strings,xT of lengthT andyV of lengthV, prob-
abilities of generating the pair of prefixes(xT

1:::t ;y
V
1:::v) and suf-

fixes (xT
t+1:::T ;yV

v+1:::V) can be computed using dynamic pro-
gramming in standard forward and backward algorithms in
O(TV) time [Rabiner, 1989].

Provided a corpus ofn matched strings corresponding to
pairs of duplicates,C= f(xT1

;yV1); : : : ; (xTn
;yVn)g, this model

can be trained using a variant of the Baum-Welch algorithm,
shown in Fig.2, which is an Expectation-Maximizationproce-
dure for learning parameters of generative models[Rabiner,
1989]. The training procedure iterates between two steps,
where in the first step the expected number of occurrences
for each state transition and edit operation emission is accu-
mulated for a given pair of strings(xT

;yV) from the training
corpus. This is achieved by accumulating the posterior prob-
abilities for every possible state transition and an accompa-
nying character pair emission. In the MAXIMIZATION pro-
cedure all model parameters are updated using the collected
expectations. Complete pseudo-code for the algorithm can be
found in[Bilenko and Mooney, 2002].

Input: A set of equivalent strings S = f(xTi ; yVi); xTi � yVig
Output: A set of parameters for edit distance with

aÆne gaps that minimizes distance for each (x; y) 2 S
Method:

until convergence
for each (xTi ; yVi) 2 S
Expectation-step: Use forward and backward algorithms

to accumulate the expected number of occurrences E[hxj ; yki]
for each edit operation used to align xTi and yVi ,
as well as E[�]; E[�I]; E[�D]; E[ÆI]; E[ÆD]; E[I]; E[D].

end
Maximization-step: Update all transition and emission

probabilities using the expected numbers of occurrences
and re-normalize.

end

Figure 2: Training algorithm for generative string distance
with affine gaps

It can be proved that this training procedure is guaranteed
to converge to a local maximum of likelihood of observing the
training corpusC. The trained model can be used for estimat-
ing distance between two strings by computing the probabil-
ity of generating the aligned pair of strings summed across all
possible paths as calculated by the forward and backward al-
gorithms:d(xT

;yV) =� logp(xT
;yV), and then obtaining the

posterior probability. Numerical underflow may occur when
these computation are performed for long strings; this prob-
lem can be resolved by mapping all computations into loga-

rithmic space or by periodic scaling of all values in matrices
M, D andI [Ristad and Yianilos, 1998].

If only a relatively small number of training examples is
available, probabilities of some edit operations may be under-
estimated, and distances assigned to strings will vary signifi-
cantly with minor character variations. To address this issue,
the probability distribution over the set of edit operations,E,
is smoothed by bounding each edit operation probability by
some minimum valueλ.

To improve efficiency, learned parameters of the generative
distance model can be mapped to operation costs of the origi-
nal edit distance with affine gaps by taking the negative loga-
rithm of each probability. Distance calculation is then analo-
gous to the classical three-matrix dynamic programming ap-
proach with the addition of supplemental costsg = � logγ
for ending a gap andm= � logµ for continuing to substi-
tute/match characters. This is equivalent to calculating the
cost of the most likely (Viterbi) alignment of the two strings
by the generative model in log-space.

3 Record-level Similarity
3.1 Combining similarity across multiple fields
When the distance between records composed of multiple
fields is calculated, it is necessary to combine similarity esti-
mates from individual fields in a meaningful manner. Avail-
ability of labeled duplicates allows using a binary classifier
that computes a “pairing function”[Cohen and Richman,
2002]. Given a database that contains records composed of
k different fields and a setD = fd1(�; �); : : : ;dm(�; �)g of dis-
tance metrics, we can represent similrity between any pair of
records by anmk-dimensional vector. Each component of the
vector represents similarity between two field values of the
records that is calculated using one of themdistance metrics.

Matched pairs of duplicate records can used to construct
a training set of such feature vectors by assigning them a
positive class label. Pairs of records that are not labeled as
duplicates implicitly form the complementary set of negative
examples. If the transitive closure of matched pairs contains
disjoint sets of duplicate records, this approach will result in
noisy negative examples. A binary classifier is trained using
these training vectors to discriminate between pairs of records
corresponding to duplicates and non-duplicates.

Fenix at the Argyle 8358 Sunset Blvd. W. Hollywood French (new)

8358 Sunset Blvd. WestFenix Hollywood American

Name Address City Cuisine

SVM

Learned
distance
measures

Distance

Duplicate records Non−duplicate records

T
Feature vector

d2nd1n d2ad1a

d1n d1a d1c d1cu d2cud2n d2cd2a

d2cud1cud2cd1c

Figure 3: Computation of record similarity from individual
field similarities

Support vector machines[Vapnik, 1998] are an appropri-
ate classifier for this task due to their resilience to noise and

ability to learn from few informative training instances. The
distance from the separating hyperplane provides an appro-
priate measure of confidence in the pair of records being a
duplicate. Fig.3 illustrates the process of computing record
similarity using multiple distance metrics over each field and
a binary classifier to categorize the resulting feature vector as
belonging to the class of duplicates or non-duplicates, result-
ing in a distance estimate. For the sample database of Fig.3,
two learnable distance metrics,d1 andd2, are trained and sub-
sequently used to compute similarity for each field. The val-
ues computed by these metrics form the feature vector that is
then classified by a support vector machine, producing a con-
fidence value that represents similarity between the database
records.
3.2 The overall duplicate detection framework
The training phase of our system, MARLIN, consists of two
steps. First, learnable distance metrics are trained for each
record field. The training corpus of paired field-level dupli-
cates and non-duplicates is obtained by taking pairs of values
for each field from the set of paired duplicate records. Be-
cause duplicate records may contain individual fields that are
not equivalent, training data can be noisy. However, this issue
does not pose a serious problem for our approach, since par-
ticularly noisy fields that are unhelpful for identifying record-
level duplicates will be considered irrelevant by the classifier
that combines similarities from different fields.

After individual similarity metrics are learned, they are
used to compute distances for each field of duplicate and non-
duplicate record pairs to obtain training data for the binary
classifier in the form of vectors composed of distance fea-
tures.

In the duplicate detection phase, MARLIN utilizes the
canopiesclustering method[McCallumet al., 2000] to avoid
performingO(n2) distance computations between all pairs of
database records. Using Jaccard similarity, a computation-
ally inexpensive metric based on an inverted index, records
are separated into overlapping clusters (“canopies”) of poten-
tial duplicates. Pairs of records that fall in each cluster then
become candidates for a full similarity comparison.

Learned distance metrics are used to calculate distances for
each field of each pair of potential duplicate records, thus cre-
ating distance feature vectors for the classifier. Confidence
estimates for belonging to the class of duplicates are produced
by the binary classifier for each candidate pair, and pairs are
sorted by increasing confidence.

The problem of finding a similarity threshold for separat-
ing duplicates from non-duplicates arises at this point. Since
relative costs of labeling a non-duplicate as a duplicate (false
positives) and overlooking true duplicates (false negatives)
can vary from database to database, there is no “silver bul-
let” solution to this problem. Availability of labeled data,
however, allows us to provide precision-recall estimates for
any threshold value and thus offer a way to control the trade-
off between false and unidentified duplicates by selecting a
threshold that is appropriate for a particular database.

It is possible that several identified duplicate pairs will
contain the same record. Since the “duplicate of” relation
is transitive, it is necessary to compute the transitive clo-
sure of equivalent pairs to complete the identification process.
Following [Monge and Elkan, 1997], MARLIN utilizes the
union-find data structure to store all database records in this

Table 1: Sample duplicate records from theRestaurantdatabase
name address city phone cuisine
fenix 8358 sunset blvd. west hollywood 213/848-6677 american
fenix at the argyle 8358 sunset blvd. w. hollywood 213-848-6677 french(new)

step, which allows updating the transitive closure of identified
duplicates incrementally in an efficient manner.

4 Experimental Evaluation
4.1 Datasets and Methodology
Our experiments were conducted on six datasets.Restau-
rant is a database of 864 restaurant names and addresses con-
taining 112 duplicates obtained by integrating records from
Fodor’s and Zagat’s web sites.Cora is a collection of 1295
distinct citations to 122 Computer Science research papers
from the Cora Computer Science research paper search en-
gine. Reasoning, Face, Reinforcementand Constraint are
single-field citation datasets from theCiteseerscientific liter-
ature digital library (http://citeseer.nj.nec.com/) Rea-
soningcontains 514 citation records that represent 196 unique
papers,Facecontains 349 citations to 242 papers,Reinforce-
mentcontains 406 citations to 148 papers, andConstraint
contains 295 citations to 199 papers. Table 1 contain sam-
ple duplicate records from theRestaurantdataset.

For each experimental run every dataset was randomly split
into 2 folds for cross-validation by assigning all records for
every unique underlying object to one of the folds. All results
are reported over 20 random splits, where for each split the
two folds were used alternately for training and testing.

During each run, duplicate detection was performed as de-
scribed in Section 3.2. At each iteration, the pair of records
with the highest similarity was labeled a duplicate, and the
transitive closure of groups of duplicates was updated. Preci-
sion, recall and F-measure defined over pairs of duplicates
were computed after each iteration, where precision is the
fraction of identified duplicate pairs that are correct, recall
is the fraction of actual duplicate pairs that were identified,
and F-measure is the harmonic mean of precision and recall
[Baeza-Yates and Ribeiro-Neto, 1999].

As more pairs with lower similarity are labeled as dupli-
cates, recall increases, while precision begins to decrease be-
cause the number of non-duplicate pairs erroneously labeled
as duplicates increases. Precision was interpolated at 20 stan-
dard recall levels following the traditional procedure in infor-
mation retrieval[Baeza-Yates and Ribeiro-Neto, 1999].

4.2 Results
Detecting duplicate field values
To evaluate the usefulness of adapting string similarity mea-
sures to a specific domain, we compared learned distance
metrics with their fixed-cost equivalents for the task of identi-
fying equivalent field values. Along with the four single-field
Citeseerdatasets we chose two most meaningful fields from
theRestaurantdataset -nameandaddress.

We have compared four string similarity measures:
� Edit distance with affine gaps[Gusfield, 1997] using

substitution cost of 2, gap opening cost of 3, gap exten-
sion cost of 1, and match cost of -1, which are commonly
used parameters;

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100

P
re

ci
si

on

Recall

Affine
Learned Affine

TF-IDF

Figure 4: Field duplicate detection results for the Name field
of theRestaurantdataset

� Learned edit distance with affine gaps described in Sec-
tion 2.2, trained using the EM algorithm shown in Fig.2
with edit operation probabilities smoothed atλ = 10�5;

� Normalized dot product in vector space (cosine simi-
larity), computed using TF-IDF weights after stemming
and stopword removal.

Results for field-level duplicate detection experiments are
summarized in Table 2. Each entry in the table contains the
average of maximum F-measure values over the 40 evaluated
folds. Results for experiments where the difference between
the learned and unlearned edit distance is significant at the
0.05 level using a 1-tailed t-test are presented in bold. Fig. 4
demonstrates the recall-precision curves for the performance
of MARLIN on thenamefield of theRestaurantdataset.

Relatively low precision of the MARLIN field experiments
is due to the fact that the duplicates on individual fields are
very noisy: for example, several restaurants from different
cities may have variations of the same name, and in these
trials these variations would be considered a non-duplicate.
However, results in the following section will show that a
combination of individual field estimates provides an accu-
rate approximation of overall record similarities.

Overall, these results demonstrate that despite the noise
learned affine edit distance is able to outperform non-trained
edit distance and vector-space cosine similarity for individ-
ual field duplicate detection. Visual inspection of the learned
parameter values reveals that the parameters obtained by our
training algorithm capture certain domain properties that al-
low more accurate similarity computations. For example, for
theaddressfield of theRestaurantdata, the lowest-cost edit
operations after deleting a space are deleting ’e’ and delet-
ing ’t’ - which captures the fact that a common cause of
street name duplicates are abbreviations from‘‘Street’’ to
‘‘Str’’ .

Table 2: Maximum F-measure for detecting duplicate field values
Distance metric Restaurantname Restaurantaddress Reasoning Face Reinforcement Constraint
Edit distance 0.290 0.749 0.927 0.952 0.893 0.924
Learned edit distance 0.354 0.787 0.938 0.966 0.907 0.941
Vector-space 0.365 0.412 0.897 0.922 0.903 0.923

Table 3: Maximum F-measure for duplicate detection based
on multiple fields

Metric Restaurant Cora
Edit distance 0.909 0.793
Learned edit distance 0.928 0.824
Vector space 0.917 0.867

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
re

ci
si

on

Recall

Affine
Learned Affine

TF-IDF

Figure 5: Duplicate detection results for theRestaurant
dataset based onname, address, cityandcuisinefields

Record-level duplicate detection
Next, we evaluated the performance of MARLIN for multi-
field (record-level) duplicate detection. We used the
SVMlight implementation of a support vector machine
[Joachims, 1999] as the binary classifier that combines simi-
larity estimates across the different fields to produce the over-
all measure of record similarity as shown on Fig.3.

We have compared the performance of learnable and base-
line text similarity metrics for producing the similarity esti-
mates of individual fields. Table 5 summarizes the results
for theRestaurantandCora datasets, and Fig.5 contains the
recall-precision curve for theRestaurantdataset. The re-
sults demonstrate that using learnable string similarity met-
rics makes a positive contribution when similarities from
multiple fields are combined.

We also ran trials which combined character-based met-
rics (static and learnable string edit distance with affine gaps)
and vector-space cosine similarity. These experiments re-
sulted in near-100% precision and recall, without signifi-
cant differences between static and adaptive field-level met-
rics. This demonstrates that combining character and token-
based distance metrics is an advantage of the two-level learn-
ing approach implemented in MARLIN. Current datasets did
not allow us to show the benefits of adaptive metrics over
their static prototypes for this scenario, but the initial results
suggest that they can be demonstrated on more challenging
datasets.

Comparison of classifiers for adaptive duplicate detection
Previous work that employed classifiers to combine similar-
ity estimates from multiple fields has utilized committees
of decision tree learners[Sarawagi and Bhamidipaty, 2002;
Tejadaet al., 2002]. We compared performance of support
vector machines to boosted decision trees for combining sim-
ilarity estimates across the database fields to produce overall
similarity of records. Experiments were conducted for two
scenarios: using very limited training data (30 negative and
30 positive duplicate pair examples), and using large amounts
of training data (500 randomly sampled negative pairs and up
to 500 positive pairs - fewer were available for theRestau-
rant dataset due to the limited number of duplicates in it).
The SVMlight implementation of a support vector machine
with a radial basis function kernel was compared with the
WEKA package[Witten and Frank, 1999] implementation of
alternating decision trees[Freund and Mason, 1999], a state-
of-the-art algorithm that combines boosting and decision tree
learning. Unlearned vector-space cosine similarity was used
as the field-level similarity measure. Fig.6 illustrate the re-
sults on theRestaurantandCora datasets for the the limited
training data setting. For the large amount of training data,
SVMs significantly outperformed decision trees onRestau-
rant, and performed slightly worse onCoradata.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
re

ci
si

on

Recall

Restaurant - ADTree
Restaurant - SVM

Cora - ADTree
Cora - SVM

Figure 6: Duplicate detection results forRestaurantand
Cora datasets using different record-level classifiers on lim-
ited training data

These results show that support vector machines signifi-
cantly outperform boosted decision trees when training data
is limited, which is the most likely scenario for adaptive du-
plicate detection. While decision trees are reliable classifiers,
obtaining calibrated confidence scores from them relies on
probability estimates based on training data statistics over the
tree nodes[Zadrozny and Elkan, 2001]. When little training
data is available, such frequency-based estimates are very un-
reliable. As a result, the confidence of the decision tree classi-
fier is an inaccurate measure of relative record similarity that
leads to poor accuracy in the duplicate detection process.

5 Related Work
Fellegi and Sunter[Fellegi and Sunter, 1969] developed a for-
mal theory for record linkage and offered statistical meth-
ods for estimating matching parameters and error rates. In
more recent work in statistics, Winkler proposed using EM-
based methods for obtaining optimal matching rules[Win-
kler, 1999]. That work was highly specialized for the domain
of census records and used hand-tuned similarity measures.

McCallum et. al. introduced the efficient canopies cluster-
ing algorithm[McCallumet al., 2000] for the task of match-
ing scientific citations. Monge and Elkan developed the itera-
tive merging algorithm based on the union-find data structure
and showed the advantages of using a string distance met-
ric that allows gaps[Monge and Elkan, 1997]. Cohen et.
al. [Cohenet al., 2000] posed the duplicate detection task as
an optimization problem, proved NP-hardness of solving the
problem optimally, and proposed a nearly linear algorithm for
finding a local optimum using the union-find data structure.

In recent work, Cohen and Richman have proposed an
adaptive framework for duplicate detection that combines
multiple similarity metrics[Cohen and Richman, 2002].
Sarawagi and Bhamidipaty[Sarawagi and Bhamidipaty,
2002] and Tejada et. al.[Tejadaet al., 2002] developed sys-
tems that employ committee-based active learning methods
for selecting informative record pairs to train the classifier
that combines similarity estimates from multiple fields. In all
of these approaches fixed-cost similarity metrics were used
to compare individudual field values. We have shown that
learnable similarity measures can be combined with trainable
record-level similarity, and active learning techniques from
prior work can be easily extended to include the distance mea-
sures that we proposed.

6 Conclusions and Future Work
Duplicate detection is an important problem for the data inte-
gration process, and an adaptive approach that learns to iden-
tify duplicate records for a specific domain has clear advan-
tages over static methods. Experimental results demonstrate
that trainable similarity measures are capable of learning the
specific notion of similarity that is appropriate for a partic-
ular domain. Our overall framework for duplicate detection
integrates previous work on adaptive methods with learnable
similarity measures, leading to improved results. Extending
the metric learning approach to token-based similarity mea-
sures, such as vector-space cosine similarity, as well as de-
veloping more advanced models of character-based metrics
are promising research directions that we are currently pursu-
ing. Other avenues for future research include using learnable
string metrics for other informartion integration tasks, such as
ontology matching and wrapper generation.

7 Acknowledgments
We would like to thank Steve Lawrence for providing us the
Citeseerdatasets, Sheila Tejada for theRestaurantdataset,
and William Cohen for providing theCora dataset. This re-
search was supported by the National Science Foundation un-
der grant IIS-0117308 and a Faculty Fellowship from IBM
Corporation.

References
[Baeza-Yates and Ribeiro-Neto, 1999] Ricardo Baeza-Yates and

Berthier Ribeiro-Neto. Modern Information Retrieval. ACM
Press, New York, 1999.

[Bilenko and Mooney, 2002] Mikhail Bilenko and Raymond J.
Mooney. Learning to combine trained distance metrics for dupli-
cate detection in databases. TR AI 02-296, Artificial Intelligence
Laboratory, U. of Texas at Austin, February 2002.

[Cohen and Richman, 2002] William W. Cohen and Jacob Rich-
man. Learning to match and cluster large high-dimensional data
sets for data integration. InProc. of KDD-2002, Edmonton, Al-
berta, 2002.

[Cohenet al., 2000] William W. Cohen, Henry Kautz, and David
McAllester. Hardening soft information sources. InProc. of
KDD-2000, Boston, MA, August 2000.

[Fellegi and Sunter, 1969] I. P. Fellegi and A. B. Sunter. A theory
for record linkage.Journal of the American Statistical Associa-
tion, 64:1183–1210, 1969.

[Freund and Mason, 1999] Y. Freund and L. Mason. The alternat-
ing decision tree learning algorithm. InProc. of ICML-99, Bled,
Slovenia, 1999.

[Gusfield, 1997] Dan Gusfield. Algorithms on Strings, Trees and
Sequences. Cambridge University Press, New York, 1997.

[Hernández and Stolfo, 1995] Mauricio A. Hernández and Salva-
tore J. Stolfo. The merge/purge problem for large databases. In
Proc. of SIGMOD-95, pages 127–138, San Jose, CA, May 1995.

[Joachims, 1999] Thorsten Joachims. Making large-scale SVM
learning practical. In B. Sch¨olkopf, C. J. C. Burges, and A. J.
Smola, editors,Advances in Kernel Methods - Support Vector
Learning, pp. 169–184. MIT Press, 1999.

[McCallumet al., 2000] Andrew K. McCallum, Kamal Nigam, and
Lyle Ungar. Efficient clustering of high-dimensional data sets
with application to reference matching. InProc. of KDD-2000,
pp. 169–178, Boston, MA, August 2000.

[Monge and Elkan, 1997] Alvaro E. Monge and Charles P. Elkan.
An efficient domain-independent algorithm for detecting approx-
imately duplicate database records. InProc. of SIGMOD-1997
Workshop on Research Issues on Data Mining and Knowledge
Discovery, pp. 23–29, Tuscon, AZ, May 1997.

[Nahm and Mooney, 2000] Un Yong Nahm and Raymond J.
Mooney. Using information extraction to aid the discovery of
prediction rules from texts. InProc. of KDD-2000 Workshop on
Text Mining, Boston, MA, August 2000.

[Rabiner, 1989] Lawrence R. Rabiner. A tutorial on hidden Markov
models and selected applications in speech recognition.Proc. of
the IEEE, 77(2):257–286, 1989.

[Ristad and Yianilos, 1998] Eric Sven Ristad and Peter N. Yianilos.
Learning string edit distance.IEEE PAMI, 20(5), 1998.

[Sarawagi and Bhamidipaty, 2002] Sunita Sarawagi and Anuradha
Bhamidipaty. Interactive deduplication using active learning. In
Proc. of KDD-2002, Edmonton, Alberta, 2002.

[Tejadaet al., 2002] Sheila Tejada, Craig A. Knoblock, and Steven
Minton. Learning domain-independent string transformation
weights for high accuracy object identification. InProc. of KDD-
2002, Edmonton, Alberta, 2002.

[Vapnik, 1998] V. N. Vapnik. Statistical Learning Theory. John
Wiley & Sons, 1998.

[Winkler, 1999] William E. Winkler. The state of record linkage
and current research problems. Technical report, Statistical Re-
search Division, U.S. Bureau of the Census, Wachington, DC,
1999.

[Witten and Frank, 1999] Ian H. Witten and Eibe Frank.Data Min-
ing: Practical Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, San Francisco, 1999.

[Zadrozny and Elkan, 2001] Bianca Zadrozny and Charles Elkan.
Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. InProc. of ICML-2001,
Williamstown, MA, 2001.

