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ABSTRACT
A variety of experimental methodologies have been used to evalu-
ate the accuracy of duplicate-detection systems. We advocate pre-
senting precision-recall curves as the most informative evaluation
methodology. We also discuss a number of issues that arise when
evaluating and assembling training data for adaptive systems that
use machine learning to tune themselves to specific applications.
We consider several different application scenarios and experimen-
tally examine the effectiveness of alternative methods of collecting
training data under each scenario. We propose two new approaches
to collecting training data called static-active learning and weakly-
labeled non-duplicates, and present experimental results on their
effectiveness.

1. INTRODUCTION
Properly evaluating the accuracy of duplicate detection requires

a “gold-standard” dataset in whichall duplicate records have been
identified. A gold-standard dataset therefore consists of a set of
equivalence classes of records, where an equivalence class con-
tains all the records in the database referring to a particular en-
tity. Measuring the ability of an algorithm to correctly identify
equivalence classes in gold-standard annotated data is the best ap-
proach to assessing its accuracy. Since the relative costs of label-
ing a non-duplicate as a duplicate (false positives) and overlooking
true duplicates (false negatives) can vary across applications, we
believe the best experimental results to present are precision-recall
(PR) curves. Few previously published evaluations of duplicate-
detection have presented PR curves, therefore we propose a recom-
mended methodology for generating PR curves based on standard
practices in information retrieval.

Several other methodological issues arise when training adap-
tive duplicate-detection systems using machine learning. These in-
clude how to efficiently collect effective training data for the system
and how to appropriately measure generalization accuracy. We can
imagine two different scenarios in which machine learning can be
used to improve duplicate detection. In the first scenario, the goal
is to use machine learning to develop a general duplicate-detection
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system tailored to a specifictypeof data, such as mailing addresses
or bibliographic citations, but not tailored to a specific database. In
this approach, the eventual databases to be cleaned are not available
during the training phrase. We call this the “shrink-wrap” scenario,
since the goal is to develop and market a static “shrink-wrapped”
software system that any user can apply to their own database with-
out further training. In the second scenario, the goal is to train a
system to clean a specific database, and sample duplicate and non-
duplicate pairs from this database can be identified by the user dur-
ing the training phase. We call this the “consulting” scenario, since
it seems most appropriate under a business model where a company
is hired to clean specific databases and trains the software specifi-
cally for each database.

In both scenarios, results must be gathered on disjoint test data to
properly determine accuracy. However, one would ideally also like
to measure how rapidly system performance decreases as the dis-
tribution of the training data varies from examples from the same
database (consulting scenario) to examples from other databases
of decreasing similarity (shrink-wrap scenario). We present an ex-
perimental methodology and sample results examining these issues
using several extant gold-standard datasets.

A distinct but related issue is how labeled training examples are
obtained. One approach is to require the user to identify all dupli-
cates in a random sample of records or in the entire database. Note
that forN records, this requiresO(N2) comparisons in the worst
case. Another approach is to randomly choose pairs of records and
ask the user to label them as “same” or “different”. Finally, various
strategies may be used to actively select “good” training pairs from
the available data. Since most pairs of records selected at random
will not be equivalent, selecting only pairs that are fairly similar
accordingly to some default, static metric, may be a good strategy.
More sophisticated active learning strategies that dynamically se-
lect the next best pair of examples based on the current results of
learning can be very useful [16, 17]. We present results on various
simple static sample-selection strategies and make several method-
ological suggestions based on the results.

Finally, we present an unsupervised strategy for obtaining nega-
tive training examples. Since in a typical database the vast majority
of randomly selected record pairs are non-duplicates, it is possible
to populate the training set with negative examples based on such
pairs, while filtering out likely pairs of duplicate records using off-
the-shelf similarity metrics such as vector-space cosine similarity.
We present experimental results that prove the viability of such a
strategy for obtaining “weakly-labeled” negative examples without
user supervision.



2. BACKGROUND
The problem of identifying database records that are syntacti-

cally different yet describe the same physical entity has been re-
ferred to as duplicate detection [13], identity uncertainty [14], ob-
ject identification [18], and deduplication [16]. Record linkage is a
variation of the problem that arises when records that describe the
same entity are matched across multiple databases [6, 19]. Dupli-
cate detection systems go through the process of identifying match-
ing pairs via the following three phases:

1. Candidate generation. Since evaluating all possible record
pairs is highly inefficient because most of them are clearly
dissimilar non-matches, only record pairs that are loosely
similar (e.g. share common tokens) are selected as candi-
dates for matching using “blocking” [9] or “canopies” [12]
techniques.

2. Similarity calculation. For every candidate pair of records
(Ri, Rj) identified in step 1, similaritySim(Ri, Rj) is com-
puted using some distance metric(s) or a probabilistic method.

3. Linkage and closure. Candidate pairs that have similarity
scores higher than a threshold valueTsim are linked; transi-
tive closure of those linked points forms the final equivalence
classes of duplicate records.

Adaptive duplicate detection systems [4, 5, 16, 18, 20] attempt
to improve the accuracy of matching by exploiting labeled training
data in the form of record pairs that are marked as duplicates or
non-duplicates by the user. While methods that improve computa-
tional efficiency of record linkage have received some attention [1,
9], the primary focus of research on machine learning methods for
deduplication has been on improving accuracy.

In this paper, we conduct experiments using the MARLIN dupli-
cate detection system [4] which uses labeled training examples at
two levels. First, MARLIN can utilize trainable string metrics, such
as learnable edit distance, that adapt textual similarity computa-
tions to specific record fields. Second, MARLIN trains a classifier to
discriminate between pairs of duplicate and non-duplicate records
using textual similarity values for different fields as features.

Three datasets are used in the experiments:Cora is a collection
of 1295 distinct citations to 122 research papers, where each cita-
tion has been segmented into fields such asauthor, title , venue,
etc.. TheCiteseerdataset is comprised of 1564 single-field records
that represent citations to 785 unique papers. Finally,Restaurantis
a database containing 864 restaurant records that contain 112 du-
plicates. Each record is composed of four fields:name, address,
city andcuisine.

All experiments are conducted using two-fold cross-validation.
Folds are created by randomly assigning equivalence classes of du-
plicate records, except for experiments in Section 4.1, where pairs
of duplicate records are randomly assigned to folds. All results are
reported over 20 runs, where for each run the two folds are used
alternately for training and testing.

3. EVALUATION MEASURES FOR DUPLI-
CATE DETECTION

There has been little work in comparing the accuracy of various
adaptive deduping techniques experimentally, a problem that is par-
tially caused by scarcity of publicly available benchmark datasets.
Accuracy comparisons between different systems are also hindered
by the fact that a variety of different measures have been used to
evaluate individual approaches, such as:

• Maximum F-measure, which is the harmonic mean between
pairwise precision and recall [4, 5, 16];

• Pairwise precision for the optimal number of pairs [18];

• Percentage of the correct equivalence classes for which an
error exists in the grouping [11, 14];

• Proportions of true matching pairs at fixed error levels [20].

Although all of these quantities characterize accuracy of dupli-
cate detection systems, they sidestep the problem of selecting the
thresholdTsim that separates duplicates from non-duplicates. These
single-value accuracy measures either assume the optimal value
of Tsim has been chosen by the user, or select a certain value
implicitly, as maximum F-measure does. One problem with this
approach is that the relative cost of false positives (non-duplicate
pairs selected as duplicates) and false negatives (unidentified dupli-
cate pairs) may vary, making the optimal value ofTsim situation-
specific . Additionally, the record-linkage literature has advocated
using two thresholds,Tauto andTmanual, separating pairs of records
into three classes: those that are not linked (Sim < Tmanual),
those that should undergo human review (Tmanual ≤ Sim ≤
Tauto), and those that should be linked (Sim > Tauto) [6, 19].

Precision-recall curves, traditionally used for evaluating infor-
mation retrieval systems [2], provide a method for presenting per-
formance over the complete range of possible threshold values.
Precision and recall for duplicate detection are calculated based on
the number of duplicate pairs found by the system: precision is the
proportion of identified duplicate pairs that are correct, and recall
is the proportion of actual duplicate pairs in the test database that
have been identified. Precision values are interpolated at 20 stan-
dard recall levels following the traditional procedure in information
retrieval [2]. The curves are obtained by successive lowering of the
threshold value, labeling pairs whose similarity is above the thresh-
old as duplicates, and updating the transitive closure to obtain the
equivalence classes of identified duplicates at each distinct point.
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Figure 1: Deduplication precision of two classifiers for different
recall levels on theCoradataset.

Figure 1 presents results of an experiment where precision-recall
curves illustrate behavior that would be overlooked by single-value
comparisons. It compares two adaptive record linkage systems that
use different state-of-the-art classifiers to discriminate between du-
plicate and non-duplicate pairs: SVMlight [10] and alternating de-
cision trees [7]. Both systems employ edit distance with affine gaps
[8] as the underlying string comparison metric. System perfor-
mance is compared on theCoradataset; training is performed using



40 randomly selected pairs of duplicate records and 40 randomly
selected pairs of non-duplicate records.1 While the ADTree-based
system outperforms the SVM-based system for high recall values,
it makes more mistakes at low recall, and therefore is inferior in
situations when a small set of highly accurate duplicate pairs is de-
sired.

When adaptive systems are being compared, learning curve plots
illustrate the dependence of accuracy on the amount of training
data, which is provided as record pairs that are labeled as dupli-
cates or non-duplicates by a human expert. Learning curves are
particularly important for evaluating the utility of active learning
techniques that attempt to select record pairs that, when labeled,
are most useful for improving the matching accuracy [16, 18]. Fig-
ure 2 demonstrates how precision-recall curves can be combined
with learning curves on three-dimensional plots, providing a com-
prehensive comparison of adaptive deduplication systems.

As in Figure 1, the SVM-based and ADTree-based systems de-
scribed above are compared on theCoradataset. Equal amounts of
randomly selected duplicate and non-duplicate record pairs were
used to comprise the training set at every point on the “Training
Pairs” axis. Performance of each system is described by a surface.
Its projections onto the precision-recall plane yield precision-recall
curves for fixed amounts of training data, while projections onto
the precision-training plane produce learning curves for fixed recall
levels. The surface plot for one system lying higher than for another
indicates that the system performs better at a specific recall level
for a given amount of training data. In Figure 2, the ADTree-based
system outperforms the SVM-based system at high recall levels for
all amounts of training data, as well as at at low recall levels when
a moderate amount of training data is supplied (15-30 training ex-
amples). Thus, the optimal classifier choice for duplicate detection
on this dataset depends both on the desired precision/recall and on
the amount of available training data.

Figure 2: Comparison of two adaptive systems for varying
amounts of training data on theCora dataset.

Overall, we argue that precision-recall curves allow comprehen-
sive comparisons of duplicate detection systems for varying rel-

1In these experiments we assume for simplicity that training data
was provided by a human expert. Section 4 discusses realistic sce-
narios for training set construction in detail.

ative misclassification costs and for different amounts of training
data, and therefore should be used for experimental evaluation of
deduplication systems over single-value accuracy measures. PR
curves can also be used for selecting the optimal similarity thresh-
old Tsim empirically and to aid and validate statistical approaches
to record linkage error rate estimation [3]. The importance of using
PR curves for evaluation of duplicate detection systems echoes the
findings of Provostet. al. [15], who advocate using ROC curves
for comparing classifiers over single-value accuracy measures.

4. TRAINING SCENARIOS FOR ADAPTIVE
DEDUPLICATION SYSTEMS

4.1 “Consulting” versus “Shrink-wrap”
Circumstances in which duplicate detection systems are used in

an industrial setting can vary significantly. Ideal conditions for
training an adaptive deduplication system include availability of a
fair-sized subset of the database with all equivalence classes of du-
plicates identified. A training set of same-class and different-class
record pairs can then be created from such a subset with labeled
equivalence classes. We refer to such a scenario where training
data is extracted from the specific database to be deduped as the
consultingframework, since it emulates the process of on-site sys-
tem deployment by a consultant.

Sometimes no identified duplicate or non-duplicate record pairs
are available from the actual database for privacy or cost-saving
reasons. We refer to such cases when no training data from the test
database is available as theshrink-wrapscenario: the deduplication
system must be tuned using labeled records from other databases
whose similarity to the database being deduped may vary.

An ideal shrink-wrap system is specialized to a certain type of
data (e.g. census records) and trained on a dataset that is similar
to the actual database. We have conducted experiments that utilize
trainable edit distance, an adaptable string similarity metric, to in-
vestigate the performance of a duplicate detection system on the
continuum from the consulting scenario to shrink-wrap scenarios
with various degrees of similarity between the training and testing
databases. Figure 3 contains experimental results, where dedupli-
cation was evaluated on theCiteseerdatabase. Trainable edit dis-
tance with affine gaps [4] was utilized for similarity comparisons
between single-field citation records; training was performed using
20 randomly selected pairs of duplicate records. To simulate the
the consulting scenario, record pairs where assigned to folds ran-
domly, possibly splitting equivalence classes between the testing
and training sets. Five possible training scenarios are examined:

• A consulting scenario, where edit distance is trained using
randomly selected pairs from theCiteseerdatabase;

• A “similar” shrink-wrap scenario, where edit distance is trained
using pairs of duplicate records from theCora database that
also contains citations to computer science literature;

• A “dissimilar” shrink-wrap scenario, where edit distance is
trained using pairs of duplicate records from theRestaurant
database containing single-field records of restaurant names
and addresses;

• A “grossly dissimilar” shrink-wrap scenario, where edit dis-
tance is trained using pairs of duplicate records from the
Restaurantdatabase that include only restaurant names;

• A completely unlearned scenario, where generic edit dis-
tance with affine gaps [8] is used to identify duplicates.

Results on Figure 3 show that the utility of training an adaptive
string distance metric depends on the similarity between the train-
ing and testing databases. The consulting approach results in the



highest accuracy, since near-optimal values of the edit-distance pa-
rameters are obtained from training on a subset of the actual testing
database. When training is performed on a similar yet different
database,Cora, performance degrades only slightly. Training the
edit distance on databases that are not related to the testing dataset
results in significant drops in performance that are worse than the
generic unlearned edit distance. Accuracy degradation is correlated
with the similarity of data between datasets: most records in the
Restaurant-Namedatabase are very short strings, while records in
the full Restaurantdatabase are longer, and therefore more simi-
lar to theCiteseercitation strings; therefore the system trained on
Restaurantpairs does not do as poorly as the system trained on
Restaurant-Namepairs.
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Figure 3: Comparison of consulting and shrink-wrap training
scenarios for adaptive record linkage. The system was trained
on the specified datasets and tested on theCiteseerdataset.

These results indicate that the extra effort of tuning a string met-
ric used by the duplicate detection system on training data selected
from the actual database leads to higher accuracy. However, if a
system that was trained on very similar data is available, obtaining
training data from the current database leads to minor improve-
ments, and is probably worthwhile only if misclassification costs
are high.

4.2 Static-active selection of duplicate records
Training adaptive duplicate detection systems in real-world sce-

narios involves selecting a set of record pairs for a human expert to
label as duplicates or non-duplicates. Since typical databases con-
tain small amounts of duplicate records, selecting random pairs of
database records as potential training examples leads to database
subsets with extremely few identified duplicates (positive exam-
ples). As a result, such randomly selected training sets are highly
skewed toward non-duplicates, which leads to suboptimal perfor-
mance of classifiers trained on that data.

Active learning methods attempt to identify informative exam-
ples that lead to maximal accuracy improvements when added to
the training set. During each round of active learning, the exam-
ple(s) that is estimated to improve performance the most when
added to the training set is identified and labeled. The system is
then re-trained on the training set including the newly added la-
beled example. Thus, traditional active learning systems are “dy-
namic”: labels of training examples selected in earlier rounds in-
fluence which unlabeled examples are deemed most informative in
subsequent rounds.

While prior work has examined active learning approaches to
adaptive record linkage [16, 18], such strategies may not always
be feasible due to high computational costs or logistic issues. We
propose using a simple “static” active learning method for select-
ing pairs of records that are likely duplicates as a middle ground
between computationally expensive dynamic active learning meth-
ods that try to identify the most informative training examples and
random selection that is efficient but fails to select useful training
data.

Our approach relies on the fact that off-the-shelf string similar-
ity metrics, such as the Jaro metric [19] or TF-IDF vector-space
distance [2], can accurately identify duplicate pairs at low recall
levels even for databases where duplicates are difficult to sepa-
rate from non-duplicates at high recall levels. Therefore, when a
random sample of records from a database is taken and similarity
between them is computed using such an off-the-shelf similarity
metric, record pairs that have high similarity scores across multiple
fields are likely potential examples of duplicate pairs. By asking
the user to label records that have high textual similarity, a train-
ing sample with a high proportion of duplicates can be obtained.
At the same time, non-duplicate records selected using this method
are likely to be “near-miss” negative examples that are more in-
formative for training than randomly selected record pairs most of
which tend to be “easy” non-duplicates.

Figures 4 and 5 demonstrate the comparative utility of static-
active selection and random pair selection for choosing training
record pairs onRestaurantandCora datasets respectively. Each
system was trained on 40 training examples comprised of randomly
selected record pairs and/or the most similar pairs selected by a
static-active method using TF-IDF cosine similarity. Using a token-
based inverted index for the vector-space model [2] allowed effi-
cient selection of static-active training examples without comput-
ing similarity between all pairs of records. All experiments uti-
lized SVMlight as the classifier and two textual similarity metrics
for field comparisons: TF-IDF cosine similarity and unlearned edit
distance with affine gaps.

For both datasets, the highest performance is achieved when train-
ing data is a mix of examples selected using the static-active strat-
egy and randomly chosen record pairs. However, employing many
random pairs with a few static-active examples yields the best re-
sults onCora, while onRestaurantthe highest performance is achi-
eved when the system is trained on a balanced mix of static-active
and random examples. This difference is explained by the makeup
of the two datasets.Cora has a higher absolute number of du-
plicates thanRestaurant(8592 versus 56 for each fold); dupli-
cates inCora also represent a larger proportion of all record pairs
(8592/211242 versus 56/93406 for each fold). OnRestaurant, ran-
dom selection results in datasets that contain almost no duplicates,
while including a significant number of pairs selected using the
static-active technique leads to balanced training sets that contain
sufficient positive and negative examples. OnCora, however, ran-
domly selected pairs are likely to contain a few duplicates. In-
cluding a limited number of record pairs chosen using the static-
active technique results in the best performance, but as more and
more static-active examples are added, performance goes down be-
cause highly similar duplicates take the place of informative non-
duplicates in the training set. Thus, the worst performance on
Restaurantoccurs when all training examples are chosen randomly
because duplicates are almost never encountered, while onCora
using only examples chosen by static-active selection results in the
opposite problem: extremely few non-duplicate pairs are found,
and the class distribution of training data is highly skewed toward
duplicates.
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Figure 4: Comparison of random and static-active training ex-
ample selection on theRestaurantdataset.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

0 static-active, 40 random
5 static-active, 35 random

15 static-active, 25 random
25 static-active, 15 random
35 static-active, 5 random
40 static-active, 0 random

Figure 5: Comparison of random and static-active training ex-
ample selection on theCora dataset.

Based on these results, we conclude that best training sets for
adaptive duplicate detection systems are obtained when randomly
chosen pairs of records are combined with pairs chosen using static-
active selection. The specific proportion in which the two kinds of
training data should be mixed can be estimated based on the out-
come of labeling randomly chosen pairs. If duplicates are excep-
tionally rare, a significant number of static-active examples is re-
quired to obtain a sufficient sample of duplicates, while databases
with a large number of duplicates need only a small number of
record pairs selected using the static-active methodology to com-
plete a representative training set.

Overall, we argue that a reasonable baseline to which dynamic
active learning methods should be compared is not the one that
uses only randomly selected training pairs, but one that employs
the static-active method to overcome the extreme skewness in class
distribution that is typical for duplicate detection problems.

4.3 Using weakly-labeled non-duplicates
While the static-active method allows constructing a training set

with a significant number of duplicate record pairs, the inverse
problem can be encountered in some real-world situations: a “legacy”
training set consisting of identified duplicates may be available,

while examples of non-duplicates need to be collected. For such
situations we consider an unsupervised technique for collecting
negative examples. Since duplicate records are rare in a typical
database, two randomly selected records are likely to be non-duplicates,
and therefore are potentially useful as negative training examples.
To help ensure that no duplicate records are included among these
pairs, only pairs of records that donot share a significant number
of common tokens are included as negative examples. Such se-
lection of “weakly-labeled” (and potentially noisy) non-duplicate
record pairs is the unsupervised analog of static active selection of
duplicates. The process can also be thought of as the opposite of
blocking or canopies techniques that use off-the-shelf metrics to
avoid comparing “obvious” non-duplicates to speed up the dupli-
cate detection process.

We have conducted experiments where we compared the perfor-
mance of MARLIN trained using weakly-labeled negatives with ex-
periments where user-labeled negatives were used. Figures 6 and
7 present the results of these experiments on theRestaurantand
Cora datasets. Weakly-labeled negatives were selected randomly
from record pairs that shared no more than 20% of tokens to min-
imize the noise. All experiments used training sets composed of
two parts: half the examples were positive examples randomly se-
lected among user-labeled duplicate pairs, and the other half was
composed of either weakly-labeled non-duplicate records or ran-
domly selected labeled record pairs. TF-IDF cosine similarity and
edit distance with affine gaps were used as the underlying textual
similarity metrics for individual fields.

The results again demonstrate that the utility of training-data
selection heuristics is dataset-dependent. OnRestaurant, where
duplicate pairs are scarce and randomly selected records are true
non-duplicates with very high probability, using a number of “ob-
vious” non-duplicates yields results identical to random selection
when a large number of examples is selected, and actually improves
slightly over random selection when the training set is small. We
conjecture that biasing the SVM with “highly negative” examples
when very little training data is available allows learning a better
separating hyperplane. OnCora, using weakly-labeled negatives
leads to slight degradation of system accuracy, which is expected
since duplicates are relatively frequent, and noise is likely to be in-
troduced when negative examples are collected in an unsupervised
manner. However, the drop in performance is small, and in situa-
tions where human labeling of negatives is expensive or infeasible
(e.g. due to privacy issues), using weakly-labeled non-duplicates is
a viable avenue for unsupervised acquisition of negative examples.

5. FUTURE WORK
It would be interesting to compare static-active sample selection

with active learning techniques [16, 18], since the results would
help determine how much active learning helps select informative
training pairs beyond that of just balancing the extremely uneven
class distribution in the training data. The proposed scheme for
weakly-labeled negative selection results in training sets that never
contain “near-miss” negative examples, since the inverse block-
ing method guarantees that records selected for negative pairs are
dissimilar. While there were no indications that this methodol-
ogy hurts accuracy compared to random selection of true nega-
tive examples, it would be interesting to compare weakly-labeled
negative selection to active learning to determine how much ac-
curacy improvement can be obtained from employing near-miss
negatives during training. Comparing active learning with a com-
bination of the two techniques that we proposed, static-active du-
plicate selection and weakly-labeled non-duplicate selection, could
also yield interesting experimental results. Finally, exploring ap-
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Figure 6: Comparison of using weakly-labeled non-duplicates
with using random labeled record pairs on the Restaurant
dataset.
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Figure 7: Comparison of using weakly-labeled non-duplicates
with using random labeled record pairs on theCoradataset.

proaches to using weakly-labeled record pairs as both duplicate
and non-duplicate training examples could potentially lead to new
purely unsupervised duplicate detection methods.

6. CONCLUSION
This paper has discussed several important issues in evaluation

and training-set construction for duplicate detection. First, research
in the area would benefit from a uniform experimental methodol-
ogy, therefore, we propose precision-recall curves as the most ap-
propriate methodology to adopt. Second, the deduplication accu-
racy of adaptive systems depends on the similarity between training
and test data. We have explored the effect of moving from a “con-
sulting” approach using training data from the same database to a
“shrink-wrap” approach using training data from other databases
of decreasing similarity. Finally, we have explored the effect of us-
ing various approaches to collecting labeled training data, introduc-
ing two new approaches: static-active learning and weakly-labeled
non-duplicates, and presenting experimental results demonstrating
their effectiveness.
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