
PhD Proposal, Oct 2003 (Also appears as Technical Report, UT-AI-TR-03-305)

Learnable Similarity Functions and
Their Applications to Record Linkage and Clustering

Mikhail Bilenko
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

mbilenko@cs.utexas.edu

Doctoral Dissertation Proposal

Supervising Professor: Raymond J. Mooney

Abstract

Many machine learning tasks require similarity functions that estimate likeness between observa-
tions. Similarity computations are particularly important for clustering and record linkage algorithms
that depend on accurate estimates of the distance between datapoints. However, standard measures such
as string edit distance and Euclidean distance often fail to capture an appropriate notion of similarity for a
particular domain or dataset. This problem can be alleviated by employinglearnablesimilarity functions
that adapt using training data. In this proposal, we introduce two adaptive string similarity measures: (1)
Learnable Edit Distance with Affine Gaps, and (2) Learnable Vector-Space Similarity Based on Pairwise
Classification. These similarity functions can be trained using a corpus of labeled pairs of equivalent
and non-equivalent strings. We illustrate the accuracy improvements obtained with these measures using
MARLIN, our system for record linkage in databases that learns to combine adaptive and static string
similarity functions in a two-level learning framework.

Obtaining useful training examples for learnable similarity functions can be problematic due to
scarcity of informative similar and dissimilar object pairs. We propose two strategies, Static-Active
Selection and Weakly-Labeled Selection, that facilitate efficient training data collection for record link-
age. Additionally, we describe a method for combining seeding with Euclidean distance learning for
semi-supervisedk-means clustering. Experimental evaluation demonstrates that our method outper-
forms unsupervised clustering and semi-supervised clustering that employs seeding or metric learning
separately.

In future research, we intend to pursue several directions in developing accurate learnable similarity
functions and applying them to record linkage and clustering problems. This work will involve improv-
ing the proposed string similarity functions as well as introducing several novel approaches to adaptive
string distance computation. We also plan to extend our initial work on learnable similarity functions
for clustering, particularly for high-dimensional data. Finally, we will investigate the utility of various
active learning strategies for learning similarity functions, as well as extend the preliminary work on
static-active selection of training pairs.
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1 Introduction

Many problems in machine learning and data mining depend on distance estimates between observations.
Consequently, a large number of functions that estimate similarity between objects have been developed for
different data types, varying greatly in their expressiveness, mathematical properties, and assumptions.

However, the notion of similarity can differ depending on the particular domain, dataset, or task at hand.
Similarity between certain features may be highly indicative of overall object similarity, while other features
may be unimportant. A number of similarity functions have been proposed that combine similarity between
individual features in various ways (Tversky, 1977; Gusfield, 1997; Baxter, 1997; Baeza-Yates & Ribeiro-
Neto, 1999). Additionally, there exists a substantial body of research on feature space transformations that
attempt to provide a more salient representation of data than the original feature space, e.g. Principal Com-
ponent Analysis (PCA) and Independent Component Analysis (ICA) methods (Jolliffe, 1986; Hyvärinen &
Oja, 2000).

All of these techniques make certain assumptions about the optimal representation of data and its influ-
ence on computing similarity which may or may not be applicable for specific datasets and tasks. Therefore,
it is desirable tolearn similarity functions from training data to capture the correct notion of distance for
a particular task at hand in a given domain. Recently, several approaches have been suggested for training
such functions that usepairwise constraintsin the form of pairs of datapoints labeled as similar or dis-
similar (alternatively, pairs can be composed of points that are equivalent or distinct) (Ristad & Yianilos,
1998; Phillips, 1999; Cohen & Richman, 2002; Xing, Ng, Jordan, & Russell, 2003). These approaches have
shown improvements over traditional similarity functions for different data types such as vectors in Eu-
clidean space, strings, and database records composed of multiple text fields. While these initial results are
encouraging, there still remains a large number of similarity functions that are currently unable to adapt to
a particular domain. In our work, we attempt to bridge this gap by developing both new learnable similarity
functions and methods for their application to particular problems in machine learning and data mining.

We begin by introducing two learnable similarity functions for strings. The first one is based on a
probabilistic model of edit distance with affine gaps (Gotoh, 1982), a widely used character-based metric.
The second one is a vector-space similarity function that utilizes a Support Vector Machine (SVM) classi-
fier (Vapnik, 1998) to discriminate between similar and dissimilar string pairs. As opposed to theirstatic
analogs, these similarity functionsadaptto a particular domain using training examples and produce more
accurate similarity estimates as a result.

We apply these functions to therecord linkageproblem, which is the task of identifying semantically
equivalent database records that are syntactically different (Newcombe, Kennedy, Axford, & James, 1959).
Record linkage is one of the key problems for data cleaning since presence of unidentified duplicate records
violates data integrity principles. Information integration from multiple sources also relies on record linkage
methods because information describing the same entity must be linked across sources. Record linkage
algorithms fundamentally depend on string similarity functions for discriminating between equivalent and
non-equivalent record fields, as well as on record similarity functions for combining similarity estimates
from individual string fields. We use record linkage as a testbed for evaluating learnable string metrics: our
system, MARLIN (Multiply Adaptive Record Linkage using INduction), learns to combine trainable string
metrics in a two-layer framework for identifying duplicate database records (Bilenko & Mooney, 2003a). In
initial evaluation on several real-world datasets we show that learnable similarity functions both at the string
level and at the record level lead to higher record linkage accuracy than static approaches.

For any supervised learning task, the learning process can be facilitated significantly by intelligent se-
lection of informative training examples from a pool of unlabeled data, and a number of such active learning
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methods have been proposed (Lewis & Catlett, 1994; Tong, 2001; Muslea, 2002). Because training data
for learnable similarity functions is composed of object pairs, selecting meaningful training examples can
be problematic since very few randomly selected object pairs are informative for learning similarity func-
tions, while traditional active learning methods tend to be computationally expensive. Based on our initial
experiments with MARLIN, we propose two strategies for selectively collecting training data: static-active
sampling and weakly-labeled selection. Experimental evaluation shows that using static-active selection
leads to improvements over random selection of training data for similarity function learning without the
computational cost of traditional active learning methods. Weakly-labeled selection, on other hand, allows
unsupervised collection of negative training examples, reducing the burden of labeling data for the user
(Bilenko & Mooney, 2003b).

Another important application that can benefit from using learnable similarity functions is clustering.
While traditionally clustering is an unsupervised learning problem, recently there has been increasing at-
tention to semi-supervised clustering, where some supervision is provided to obtain better grouping of data
(Cohn, Caruana, & McCallum, 2000; Wagstaff, Cardie, Rogers, & Schroedl, 2001; Basu, Banerjee, &
Mooney, 2002; Xing et al., 2003). We present MPC-KMEANS, a method that combines cluster initial-
ization via seeding with learning Euclidean distance for semi-supervisedk-means clustering. Our results
show that using both similarity metric learning and seeding leads to improvements over both unsupervised
clustering and the individual methods in separation (Basu, Bilenko, & Mooney, 2003b).

In future work, we will pursue several directions in developing better adaptive similarity metrics and
applying them to duplicate detection and clustering:

• Extending vector-space string similarity based on pairwise classification by incorporating advanced
techniques for transforming strings into vector space (Lodhi, Saunders, Shawe-Taylor, Cristianini, &
Watkins, 2002) and methods for tuning Support Vector Machines for optimal accuracy (Valentini &
Dietterich, 2003);

• Incorporatingmacro detection and learninginto learnable string edit distance with affine gaps;

• Designing a model for edit distance based onconditional random fields(Lafferty, McCallum, &
Pereira, 2001), an undirected graphical model that has been shown to be more effective than tradi-
tional probabilistic frameworks such as hidden Markov models;

• Developing string distance functions that learnsemanticstring similarity using generic external sources
such as large text corpora and the World Wide Web;

• Constructing and evaluating learnable similarity functions for high-dimensional vector-space data that
would lead to improved semi-supervised clustering algorithms;

• Applying active learning methods to similarity function training to minimize the amount of labeled
data required for adaptation.

We hope that pursuing these research topics will lead to developing a number of learnable similarity func-
tions that can be used in such applications as duplicate detection and clustering.

The remainder of this proposal is organized as follows. Section 2 introduces several popular similarity
functions for strings and Euclidean space vectors, as well as prior work on unsupervised and supervised
learning of similarity functions. Duplicate detection and clustering problems are also described in this sec-
tion. Section 3 presents two new learnable string similarity functions, and describes MARLIN, our duplicate
detection system, as well as MPC-KMEANS, our method for semi-supervisedk-means clustering. We
discuss proposed directions for future work in Section 4.
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2 Background and Related Work

Because many supervised and unsupervised learning algorithms require estimating similarity between ob-
jects, a number of distance functions for various object description types have been developed. In this
section, we provide a brief overview of most important distance functions for text and vector-space data,
and describe prior work on algorithms for adapting these functions to particular domains. We also provide
background on two important problems, record linkage and clustering, most algorithms for which rely on
similarity estimates between observations. We believe that these two problems can benefit greatly from em-
ploying learnable distance functions, and we will use them for evaluating our adaptive methods. Finally, we
introduce active learning methods that select informative training examples from a pool of unlabeled data.

Let us briefly describe the notation that we will use in the rest of this proposal. Strings are denoted
by lower-case italic letters such ass andt; brackets are used for string characters and subsequences:s[i]
stands fori-th character of strings, while s[i:j] represents the contiguous subsequence ofs from i-th to j-th
character. We use lowercase bold letters such asx andy for vectors, and uppercase bold letters for matrices
such asΣ andU. Sets are denoted by script uppercase letters such asS andV.

2.1 String Similarity Functions

Techniques for calculating similarity between strings can be roughly separated into two broad groups:
sequence-based functions and token-based functions. Sequence-based functions model string similarity
by viewing strings as contiguous sequences that differ at the level of individual characters. Token-based
functions, on other hand, do not view strings as contiguous sequences but as unordered sets of tokens. Be-
low we describe most commonly used string similarity measures from both of these families as well as
several hybrid distance functions; see (Gusfield, 1997) and (Cohen, Ravikumar, & Fienberg, 2003) for more
discussion of string distance measures.

2.1.1 Sequence-based String Similarity Functions

String Edit Distance. The most well-known sequence-based string similarity measure is string edit dis-
tance, also known in its simplest form as Levenshtein distance. It defines distance between two strings as
the minimum number of character insertions, deletions or substitutions required to transform one string into
another (Levenshtein, 1966). For example, consider calculating distance between stringss = “12 8 Street”
and t = “12 8th Str.” . The minimum sequence of edit operations that transformss into t consists of the
following five operations, implying that Levenshtein distance betweens andt is 5:

1. Insert“t” : “12 8 Street”→”12 8t Street”
2. Insert“h” : “12 8t Street”→”12 8th Street”
3. Substitute“e” with “.” : “12 8th Street”→”12 8th Str.et’
4. Delete“e” : ”12 8th Str.et”→”12 8th Str.t”
5. Delete“t” : ”12 8th Str.t”→”12 8th Str.”

Needleman and Wunsch (1970) described a general dynamic programming method for computing edit
distance using individual edit operations costs. The algorithm computes the distance inO(|s||t|) computa-
tional time by recursively calculating distanceD(s[1 : i], t[1 : j]) between prefixes of lengthi andj:

D(s[1:i], t[1:j]) = min




D(s[1:i−1], t[1:j−1]) + c(s[i], t[j])
D(s[1:i−1], t[1:j]) + c(s[i], ε)
D(s[1:i], t[1:j−1]) + c(ε, t[j])
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wherec(s[i], t[j]) is the cost of substitutingi-th character ofs with j-th character oft (which is usually set to
0 or a negative value if the characters are equivalent); whilec(s[i], ε) andc(ε, t[j]) are the costs of deletingi-
th character ofs and insertingj-th character oft respectively. The recursive computation ofD(s[1:i], t[1:j])
corresponds to a matrix of prefix matching costs as well as to analignmentof characters ofs andt. Figure
1 below illustrates theD matrix and the optimal alignment for the above example assuming unit costs for
all insertions, deletions, and substitutions, and zero cost for exact matching.

1 2 8 t h S t r .
0 1 2 3 4 5 6 7 8 9 10 11

1 1 0 1 2 3 4 5 6 7 8 9 10
2 2 1 0 1 2 3 4 5 6 7 8 9

3 2 1 0 1 2 3 4 5 6 7 8
8 4 3 2 1 0 1 2 3 4 5 6 7

5 4 3 2 1 1 2 2 3 4 5 6
S 6 5 4 3 2 2 2 3 2 3 4 5
t 7 6 5 4 3 2 3 3 3 2 3 4
r 8 7 6 5 4 3 3 4 4 3 2 3
e 9 8 7 6 5 4 4 4 5 4 3 3
e 10 9 8 7 6 5 5 5 5 5 4 4
t 11 10 9 8 7 6 6 6 6 5 5 5

(a)

1 2 8 H H S t r e e t
1 2 8 t h S t r . N N

(b)

Figure 1: (a) Dynamic programming computation of Levenshtein distance between strings“12 8 Street”
and“12 8th Str.”. (b) Optimal alignment of the strings, corresponding to the sequence of edit operations
that can be traced by following the matrix elements shown in bold font above.

Two extensions to string edit distance have been suggested that lead to a significantly more flexible
distance function. First, Smith and Waterman (1981) proposed modifying the above computation to discard
mismatching regions of two strings and only compute similarity of matching regions. Second, Gotoh (1982)
suggested penalizing gaps, or contiguous inserted or deleted regions, using a linear model:cost(s[i:j]) =
σc(s[i], ε) + δ

∑
k=i+1...j c(s[k], ε), wheres[i:j] is the contiguous substring ofs that is aligned to a gap,σ

is the cost of starting a gap andδ is the per-character cost of extending a gap (δ < σ). Since similar strings
often differ due to abbreviations or whole-word insertions and deletions, this model typically produces more
robust similarity estimates than Levenshtein distance. The resulting metric, string distance with affine gaps
Dag(s, t), can be computed using a dynamic programming algorithm that constructs three matrices based
on the following recurrences inO(|s||t|) computational time:

M(s[1:i], t[1:j]) = min




M(s[1:i−1], t[1:j−1]) + c(s[i], t[j])
I(s[1:i−1], t[1:j−1]) + c(s[i], t[j])
D(s[1:i−1], t[1:j−1]) + c(s[i], t[j])
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D(s[1:i], t[1:j]) = min

{
M(s[1:i−1], t[1:j]) + σ + c(s[i], ε)
D(s[1:i−1], t[1:j]) + δ + c(s[i], ε)

(1)

I(s[1:i], t[1:j]) = min

{
M(s[1:i], t[1:j−1]) + σ + c(ε, t[j])
I(s[1:i], t[1:j−1]) + σ + c(ε, t[j])

Dag(s, t) = min(I(s, t), D(s, t), M(s, t))

In this recurrent computation, each matrix elementM(s[i], t[j]) contains the distance between prefixes
s[1:i] andt[1:j] for the minimum-cost alignment that ends with the last two characters of the prefixes,s[i]
and t[j], being matched. Matrix elementsI(s[i], t[j]) andD(s[i], t[j]) give the distances between prefix
alignments that end in insertion and deletion gaps respectively. Costs of edit operationsc(s[i], t[j]) are
defined as for Levenshtein distance above. The final distance between the strings is the minimum of three
alignments:M(s, t) matching the last characters of the two strings,D(s, t) matching the last character of
the first string with a gap in the second string, andI(s, t) matching the last character of the second string
with a gap in the first string.

String edit distance with affine gaps is widely used in practice in a variety of applications ranging from
biological sequence analysis (Durbin, Eddy, Krogh, & Mitchison, 1998) to duplicate detection (Monge &
Elkan, 1997). It is particularly useful for comparing short and medium-length strings in domains where
corruptions at the level of individual characters are common.

Jaro-Winkler String Similarity. Researchers working on the problem of identifying matching names in
census records have created several efficient string similarity functions specialized for the matching task.
Jaro (1989) proposed a metric that is less sensitive to character transpositions. Given stringss andt, char-
acters[i] is defined to becommonto s andt if there existst[j] = s[i] such thati−H ≤ j ≤ i + H, where
H = min(|s|, |t|). Given sequences of common characterss′ of s andt′ of t, thenumber of transpositions
T (s′, t′) betweens andt is defined as one-half of the number of characters ins′ andt′ that do not match
(s′[i] 6= t′[i]). Then, the Jaro metric can be computed as:

SimJaro(s, t) = w1
|s′|
|s| + w2

|t′|
|t| + wτ

|s′| − T (s′, t′)
|s′|

where weightsw1, w2, andwτ are typically set to13 . Several enhancements to the Jaro metric have been
shown to increase its accuracy (Winkler, 1994), most important ones of which are:

• Counting disagreeing but similar characters (e.g.“1” and “l” ) as contributing weight 0.3 to the
number of common charactersC(s, t);

• Increasing similarity value proportionally to exact agreement in string prefixes (Winkler, 1990).

The resulting similarity function, known as Jaro-Winkler similarity, is computed as:

SimJW (s, t) = SimJaro(s, t) +
max(P (s, t), 4)

10
(1− SimJaro(s, t)) (2)

whereP (s, t) is the length of the longest common prefix ofs andt.
The Jaro-Winkler metric is widely used for matching census records (Winkler, 1994), and has also been

shown to be competitive with edit distance for the task of matching equivalent database records composed
of short strings (Cohen et al., 2003).
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2.1.2 Token-based String Similarity Functions

While sequence-based string similarity functions work well for estimating distance between shorter strings
that differ largely at character level, they become too computationally expensive and less accurate for larger
strings. For example, when differences between equivalent strings are due to insertions, deletions and trans-
positions of multiple words, sequence-based similarity functions assign high cost to non-aligned string seg-
ments, resulting in low similarity scores for strings that share many common words. At the same time,
computing string edit distance becomes computationally prohibitive for larger strings such as text docu-
ments on the Web since the computational complexity is quadratic in average string size.

The vector-space model of text avoids these problems by viewing strings as “bags of tokens” and dis-
regarding the order in which the tokens occur in the strings (Salton & McGill, 1983). Jaccard similarity
can then be used as the simplest method for computing likeness as the proportion of tokens shared by both
strings. If stringss andt are represented by sets of tokensS andT , Jaccard similarity is:

SimJaccard =
|S ∩ T |
|S ∪ T | (3)

The primary problem with Jaccard similarity is that it does not take into account the relative importance
of different tokens. Tokens that occur frequently in a given string should have higher contribution to sim-
ilarity than those that occur few times, as should those tokens that are rare among the set of strings under
consideration. The Term Frequency-Inverse Document Frequency (TF-IDF) weighting scheme achieves this
by associating a weightwvi,s = N(vi,s)

maxvj∈s N(vj ,s) · log N
N(vi)

with every tokenvi from strings, whereN(vi, s)
is the number of timesvi occurred ins (term frequency),N is the number of strings in the overall corpus
under consideration, andN(vi) is the number of strings in the corpus that includevi (document frequency).

Given a corpus of strings that yields the setV of distinct tokens after tokenization, a strings can be
represented as a|V|-dimensional vector of weightswvi,s, every non-zero component of which corresponds
to a token present ins. TF-IDF cosine similarity between two strings is defined as the cosine of the angle
between their vector representations:

SimTF−IDF (s, t) =

∑
vi∈V wvi,swvi,t√∑

si∈S w2
si,s ·

√∑
ti∈T w2

ti,t

(4)

With the help of appropriate hashing data structures, TF-IDF cosine similarity is computationally effi-
cient due to high sparsity of most vectors, and provides a reasonable off-the-shelf metric for long strings and
text documents. Tokenization is typically performed by treating each individual word of certain minimum
length as a separate token, usually excluding a fixed set of functional “stopwords” and optionally stemming
tokens to their roots (Baeza-Yates & Ribeiro-Neto, 1999). An alternative tokenization scheme is known as
n-grams: it relies on using all overlapping contiguous subsequences of lengthn as tokens.

2.1.3 Hybrid String Similarity Functions

Recently, several hybrid string similarity functions were introduced that combine sequence-based and token-
based methods. Monge and Elkan (1996) proposed a distance function that applies some “secondary”
sequence-based similarity functionSim′(s, t) for each combination of tokens from the two strings and
takes the average of maximum values for each token . Given two stringss andt and their token setsS and
T , similarity betweens andt is defined as:

SimME(s, t) =
1
|S|

∑
si∈S

max
tj∈T

Sim′(si, tj) (5)
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Another hybrid string similarity function, “soft” TF-IDF similarity, was proposed by Cohen et al. (2003).
They also employ a “secondary” sequence-based similarity functionSim′(s, t) to identify tokens in the two
strings that are sufficiently similar according toSim′, and then incorporate similarity between these tokens
into the computation of TF-IDF vector-space similarity:

SimSoftTFIDF (s, t) =
∑

v∈CLOSE(θ,s,t)

wv,s ·N(v, t) · Sim′(w, t) (6)

whereCLOSE(θ, s, t) is the set of tokensv from strings for which there exists some tokenv′ in string t
such thatSim′(v, v′) > θ, andN(v, t) = maxv′∈t Sim′(v, v′). Cohen et al. (2003) have shown that this
hybrid metric that uses the Jaro-Winkler metricSimJW as the “secondary” similarity function frequently
outperforms traditional sequence-based and token-based metrics on the task of matching equivalent strings,
thus combining the strengths of these two families of similarity functions.

2.2 Vector-space Similarity Functions

In Euclidean space, the Minkowski family of metrics, also known as theLk norms, includes most commonly
used similarity measures for objects described byd-dimensional vectors:

Lk(x,y) =
( d∑

i=1

|xi − yi|k
)1/k

(7)

TheL2 norm, commonly known as Euclidean distance, is frequently used for low-dimensional vector
data. Its popularity is due to a number of factors:

• Intuitive simplicity: theL2 norm corresponds to straight-line distance between points in Euclidean
space;

• Invariance to rotation or translation in feature space;

• Mathematical metric properties: non-negativity (L2(x,y) ≥ 0)), reflexivity (L2(x,y) = 0 iff x = y),
symmetry (L2(x,y) = L2(y,x)), and triangle inequality (L2(x,y) + L2(y, z) ≥ L2(x, z)).

Despite these attractive characteristics, Euclidean distance as well as other Minkowski metrics suffer
from thecurse of dimensionalitywhen they are applied to high-dimensional data (Friedman, 1997). As the
dimensionality of the Euclidean space increases, sparsity of observations increases exponentially with the
number of dimensions, which leads to observations becoming equidistant in terms of Euclidean distance.
Cosine similarity, or normalized dot product, has been widely used as an alternative similarity function for
high-dimensional data (Duda, Hart, & Stork, 2001):

Simcos(x,y) =
xTy
‖x‖‖y‖ =

∑d
i=1 xi · yi√∑d

i=1 x2
i ·

√∑d
i=1 y2

i

(8)

If applied to normalized vectors, cosine similarity obeys metric properties; in general, however, it is not
a metric in the mathematical sense, and it is not invariant to translations and linear transformations.
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2.3 Methods for Unsupervised Learning of Similarity Functions

Given a set of observations, it may be possible to obtain insights about relative importance of different
features by observing statistical properties of the dataset. There exists a number of techniques that modify
either the distance function computation or the data representation to provide more meaningful measures of
similarity. The TF-IDF weighting scheme described above can be viewed as one such method for string sim-
ilarity since it takes statistical properties of the entire dataset into account when performing computations.
Below we describe some of the many such methods for data in Euclidean space.

2.3.1 Mahalanobis distance

Given a set of observation vectors{x1, ...,xn}, it is possible to scale the computation of Euclidean distance
according to the variance of observation components in each dimension. Squared Mahalanobis distance is
defined as:

D2
Mah(xi,xj) = (xi − xj)Σ−1(xi − xj) (9)

whereΣ−1 is the inverse of the covariance matrixΣ = 1
n−1

∑n
i=1(xi −µ)(xi −µ)T , andµ = 1

n

∑n
i=1 xi

is the data mean.
Essentially, Mahalanobis distance attempts to give each dimension equal weight when computing dis-

tance by scaling its contribution proportionally to variance, while taking into account co-variances between
the dimensions.

2.3.2 Space transformation methods

Although Mahalanobis distance “evens out” the contributions of different dimensions to similarity compar-
isons, it is possible that certain features are redundant and non-informative, while others do not capture
the variance in the dataset. In such cases projecting the data onto some lower-dimensional subspace may
lead to a better representation in which distance computations using traditional similarity functions can be
performed.

Principal component analysis (PCA). Principal component analysis, also known as the Karhunen-Loéve
transform, finds a lower-dimensional subspace that can embed the projection of data that is optimal in
the linear least-squares sense (Jolliffe, 1986). PCA is performed by computing the covariance matrixΣ
for a dataset, and obtaining its eigenvalues and eigenvectors. The eigenvectors with largest eigenvalues
correspond to orthogonal directions of highest variance in data. By forming a matrixA of eigenvectors
corresponding to the largest eigenvalues, the original data can be projected into the subspace formed by
directions of largest variance:x′ = AT (x− µ).

Independent Component Analysis. Independent component analysis is a recently developed technique
for finding the statistically independent components of a vector of observed signals (Comon, 1994). Given a
d-dimensional vectorx, ICA tries to find a full-rankd× r matrixA and anr-dimensional vectors such that
x = As where components ofs are statistically independent. Intuitively, ICA can be understood through
its relation to the blind source separation problem: each independent component can be viewed as a source
of data with a separate set of parameters. A number of ICA algorithms exists based on various techniques
including fixed-point iteration and maximum likelihood; see (Hyvärinen & Oja, 2000) for an overview.
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Non-negative Matrix Factorization (NMF). Non-negative matrix factorization is distinguished from
other feature space reduction techniques by its use of non-negativity constraints (Lee & Seung, 1997).
These constraints lead to a parts-based representation because they allow only additive combinations, which
is compatible with the intuitive notion of combining parts to form a whole. The NMF factorization is usually
found using iterative algorithms based on several proposed objective functions, see (Lee & Seung, 1997) for
details. NMF has been shown to be successful in learning parts of faces and semantic features of text (Lee &
Seung, 1999). However, good approximation can only be achieved if the basis vectors discover structure that
is latent in the data. For example, when using NMF to analyze face images, the basis vectors would contain
non-global information about different facial parts. The data vectors can be reconstructed by combining
these different parts. Because both the basis and encodings are typically sparse, NMF creates a sparsely
distributed encoding of the original data, in contrast to the fully distributed ICA and PCA encodings.

2.4 Methods for Supervised Learning of Similarity Functions

While statistical properties of a collection of observations can be used to extract certain features that are sta-
tistically salient, representation obtained by the unsupervised methods described above may not be optimal
with respect to the actual user task such as record linkage or clustering. For example, irrelevant features
may have the highest variance, and methods such as PCA would result in a representation in which these
features are most salient, while more important features with lower variance are under-expressed.

If user supervision in the form of observation pairs that are labeled as similar or dissimilar is available,
it is desirable to adapt similarity functions using such feedback directly. Below we describe several such
methods for supervised similarity function learning.

2.4.1 Learnable String Edit Distance

Ristad and Yianilos (1998) proposed learning the parameters of string edit distance using a probabilistic
generative model. In their model, a string alignment is equivalent to a sequence of character pairs generated
by edit operations emitted by a hidden Markov model with a single non-terminal state. Each edit operation
corresponds to the probability of observing a pair of characters, or a single inserted/deleted character in
the alignment. Given two strings, the model can be used to compute similarity between them as either the
probability of the most likely alignment between the strings (using the Viterbi algorithm), or the overall
probability of generating the string pair over all possible alignments (Rabiner, 1989).

Given a corpus of matched string pairs, the model parameters can be learned using a variant of the
Expectation-Maximization algorithm. Ristad and Yianilos (1998) demonstrate the improvements obtained
using their method over Levenshtein distance on the task of matching natural language strings and their
phonetic representation.

2.4.2 Learnable Vector-space Similarity Functions

The problem of adapting similarity computations to a given domain using training data has been addressed
for Euclidean space data mainly in the context of classification, although recently there has been some work
on learning similarity measures for clustering. Supervised methods for learning similarity functions have
received particular attention in the context ofk-nearest neighbor (k-NN) classifiers. Given an unlabeled
observation vectorx, these classifiers use the majority vote ofk training points that are nearest tox to cat-
egorizex. Because determining which points are nearest directly relies on accurately computing similarity,
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several methods have been proposed fork-NN classifiers that allow using flexible similarity metrics which
attempt to identify most meaningful features and give them higher weight.

Hastie and Tibshirani (1996) proposed an algorithm, Discriminative Adaptive Nearest Neighbor (DANN),
that combinesk-nearest neighbor with linear discriminant analysis. This technique relies on computing a
weighting matrixΣ = W−1/2(W−1/2BW−1/2 + εI)W−1/2, whereB andW are between-class and
within-class covariance matrices respectively. For each test point,Σ is used to weight the Euclidean dis-
tance metric that identifiesk nearest neighbors.

Friedman (1994) and Domeniconi, Peng, and Gunopulos (2001) developed methods for learning weights
for Euclidean distance locally for different points in the context ofk-nearest neighbor using class posterior
probabilities for data points to compute similarity. In following work, Domeniconi and Gunopulos (2002)
proposed an alternative approach to learning local feature relevance by identifying most discriminant direc-
tions using the margin of a support vector machine.

Phillips (1999) also used support vector machines for implicit learning of a similarity function on the task
of face recognition. By mapping the multi-class classification problem to a two-class decision problem in
thedifference space, where the two classes correspond to same-class vector differences{xi − xj |xi ∼ xj}
and different-class vector differences{xi−xj |xi ¿ xj}, the SVM learns to distinguish between informative
and uninformative features when classifying instances in the difference space.

In unsupervised learning applications such as clustering, no category labels are available for individual
observations. However, supervision can be obtained in some cases with respect to pairs of observations
in the form of labeled same-cluster and different-cluster pairs. Cohn et al. (2000) proposed using gradient
descent for weighting dimensional components of Jensen-Shannon divergence in the context of Expectation-
Maximization (EM) clustering. They assume that a user provides supervision in the form of must-link and
cannot-link constraints, which are pairs of observations that should be placed in the same or different clusters
respectively. These pairs are then used to learn weights that result in a distance function which reduces
distance between same-cluster pairs and maximizes distance between different-cluster pairs.

Xing et al. (2003) assumed a similar scenario where pairwise supervision is used to improve the similar-
ity function used for clustering. They utilize weighted Euclidean distance:DA(x,y) =

√
(x− y)TA(x− y),

whereA is a positive semi-definite matrix of weights. Pairwise constraints are used to pose similarity func-
tion learning as a convex optimization problem that aims to minimize the total distance between must-link
pairs while constraining distance between cannot-link pairs to be larger than an arbitrary constant. A com-
bination of gradient descent and iterative projections was used to learn the weight matrixA which lead to
improvements over using the unlearned Euclidean metric withk-means clustering.

2.5 Record Linkage

The goal of record linkage is to identify database field-values and records that are semantically identical but
differ syntactically. Algorithms for this task rely heavily on string similarity functions that estimate likeness
between record fields and overall records. Since variations in representation can arise from typographical
errors, misspellings, abbreviations, as well as integration of multiple data sources, using string similarity
functions that capture the source of variation is essential for accurate identification of approximate dupli-
cates.

A large body of work exists on the record linkage problem: after being introduced in the context of
matching medical records by (Newcombe et al., 1959), it was studied under a number of names including
merge/purge (Herńandez & Stolfo, 1995), heterogeneous database integration (Cohen, 1998), hardening
soft databases (Cohen, Kautz, & McAllester, 2000), reference matching (McCallum, Nigam, & Ungar,
2000), de-duplication (Sarawagi & Bhamidipaty, 2002), and entity-name clustering and matching (Cohen &
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Richman, 2002). Typically, standard string similarity measures such as edit distance or vector-space cosine
similarity are used to determine whether two values or records are alike enough to be equivalent. In recent
work, Cohen and Richman (2001) and Tejada, Knoblock, and Minton (2001) proposed trainable similarity
functions thatcombinemultiple standard similarity functions. By treating individual field similarities as
record features and training a classifier that distinguishes between equivalent and non-equivalent records, a
record-level similarity function is obtained. This approach is similar to Phillips’s (1999) approach to face
recognition via the “difference space” described above.

2.6 Clustering

Clustering can be roughly defined as the problem of partitioning a dataset into disjoint groups so that ob-
servations belonging to the same cluster are similar, while observations belonging to different clusters are
dissimilar. Traditionally, clustering has been viewed as a form of unsupervised learning, since no class la-
bels on the data are provided. Insemi-supervised clustering, supervision from a user is incorporated in the
form of class labels or pairwise constraints on objects which can be used to initialize clusters, guide the
clustering process, and improve the clustering algorithm parameters (Demiriz, Bennett, & Embrechts, 1999;
Cohn et al., 2000; Basu et al., 2002).

Clustering has been widely studied for several decades, and a great variety of algorithms for clustering
exists (Jain, Murty, & Flynn, 1999). Most popular algorithms include agglomerative clustering (Kaufman
& Rousseeuw, 1990), hard and softk-means (Dhillon & Modha, 2001; Basu et al., 2002), and graph-based
methods that include spectral algorithms and partitioning methods (Karypis & Kumar, 1998; Strehl, 2002).
Similarity functions, however, are central to the clustering problem regardless of the particular algorithm
used, since all of them explicitly or implicitly utilize similarity computations between observations and
cluster prototypes or between individual observations. (Strehl, Ghosh, & Mooney, 2000) have shown that
selecting an appropriate similarity measure for clustering can have significant impact on clustering results;
therefore, using learnable similarity functions for semi-supervised clustering is a promising research direc-
tion.

In this proposal, we focus on thek-Means algorithm which is based on iterative relocation of cluster
centroids to locally minimize the total distance between the data points and the centroids. Given a set of
data pointsX = {xi}N

i=1,xi ∈ R
m, let {µh}K

h=1 represent thek cluster centroids, andli be the cluster
assignment of a pointxi, whereli ∈ L andL = {1, . . . , K}. The Euclidean K-Means algorithm creates
a K-partitioning1 {Xl}K

l=1 of X so that the objective function
∑

xi∈X ‖xi − µli‖2 is locally minimized.
Sphericalk-means is a variant of the algorithm that is effective for clustering high-dimensional data by
employing dot product similarity as the similarity metric between vectors on a hypersphere (Dhillon &
Modha, 2001).

It can be shown that the K-Means algorithm is essentially an EM algorithm on a mixture ofK Gaussians
under assumptions of identity covariance of the Gaussians, uniform priors of the mixture components and
expectation under a particular conditional distribution (Basu et al., 2002). IfX denotes the observed data,
Θ denotes the current estimate of the parameter values of the mixture of Gaussians model andL denotes
the missing data, then in the E-step the EM algorithm computes the expected value of the complete-data
log-likelihood log p(X ,L|Θ) over the conditional distributionp(L|X , Θ) (Bilmes, 1997). Maximizing the
complete data log-likelihood under the assumptions specified above can be shown to be equivalent to mini-
mizing the K-Means objective function.

1K disjoint subsets ofX , whose union isX
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2.7 Active Learning

When training examples are selected for a learning task at random, they may be suboptimal in the sense that
they do not lead to a maximally attainable improvement in performance.Active learningmethods attempt to
identify those examples that lead to maximal accuracy improvements when added to the training set (Lewis
& Catlett, 1994; Cohn, Ghahramani, & Jordan, 1996; Tong, 2001). During each round of active learning,
the example that is estimated to improve performance the most when added to the training set is identified
and labeled. The system is then re-trained on the training set including the newly added labeled example.

Three broad classes of active learning methods exist: (1) uncertainty sampling techniques (Lewis &
Catlett, 1994) attempt to identify examples for which the learning algorithm is least certain in its prediction;
(2) query-by-committee methods (Seung, Opper, & Sompolinsky, 1992) utilize a committee of learners and
use disagreement between committee members as a measure of training examples’ informativeness; (3)
estimation of error reduction techniques (Lindenbaum, Markovitch, & Rusakov, 1999; Roy & McCallum,
2001) select examples which, when labeled, lead to greatest reduction in error by minimizing prediction
variance.

Active learning was shown to be a successful strategy for improving performance using small amounts
of training data on a number of tasks, including classification (Cohn et al., 1996), clustering (Hofmann &
Buhmann, 1998; Basu, Banerjee, & Mooney, 2003a), and record linkage (Sarawagi & Bhamidipaty, 2002;
Tejada, Knoblock, & Minton, 2002).

3 Learnable Similarity Functions

3.1 Motivation

The purpose of every similarity function is to compare its arguments and return a value that measures the
degree to which they are alike. The notion of similarity is domain-specific and situation-specific: objects
are similar to others only in a certain context (Tversky, 1977). For example, strings“D. Ivanov” and“E.
Ivanova” are likely to describe similar individuals (family members) if they correspond to two records of
people residing in a small Texas town. However, if these strings are taken from a phone book in a large
Russian city, it is not very likely that the two individuals they describe are connected in any way.

We argue that traditional similarity measures for different data types can be drastically improved if their
parameters arelearnedusing training data taken from the particular domain. Therefore, the task before us
is to propose parameterized similarity functions for different data types and develop algorithms for learning
the parameter values from data. In this proposal, we are particularly interested in similarity functions for
strings and vectors in Euclidean space, as well as textual records in multi-field databases. In the rest of this
section, we describe some preliminary research on adaptive similarity functions for these data types.

3.2 Learnable String Similarity Functions

3.2.1 Learnable edit distance with affine gaps

Different edit operations have varying significance in different domains. For example, a digit substitution
makes a major difference in a street address since it effectively changes the house number, while a sin-
gle letter substitution is semantically insignificant because it is more likely to be caused by a typo or an
abbreviation. Frequency and length of abbreviations in string alignment gaps also varies from domain to
domain. Therefore, adapting edit distance with affine gaps to a particular domain requires learning the costs
for different edit operations and the gap parameters.

14



We propose a stochastic model for the edit distance with affine gaps similar to the one proposed by
Ristad and Yianilos (1998). The affine-gap alignment is modeled by the hidden Markov model shown in
Figure 2 below. The three matrices of the original edit distance with affine gaps described in Section 2.1.1
correspond to accumulated forward probabilities for an alignment that ends in one of the three statesM ,
D, or I. A particular alignment of two strings is generated by this model as a sequence of traversals along
the edges. Each traversal is accompanied by an emission of a character pair sampled from a probability
distribution of the state that is reached via each traversal.

σ

σ

µ M

D

#

I

µτ

τI

τD

D

γD

I

γI

δI

δD

Figure 2: A generative model for edit distance with affine gaps

Given an alphabet of symbolsA∗ = A ∪ {ε}, the full set of edit operations isE = Es ∪ Ed ∪ Ei, where
Es = {〈a, b〉 | a, b ∈ A} is the set of all substitution and matching operations〈a, b〉; andEi = {〈ε, a〉 | a ∈
A} andEd = {〈a, ε〉 | a ∈ A} are sets of insertion and deletion operations respectively.

The production starts in stateM and terminates when the special state# is reached. TransitionsσD and
σI from the matching stateM to either the deletion stateD or the insertion stateI correspond to a gap in
the alignment of the strings. A gap ends when the edgeγD (or γI ) is traversed back to the matching state.
Remaining in stateM by taking edgeµ corresponds to a sequence of substitutions or exact matches, while
remaining in statesI or D is analogous to extending a gap in either the first or the second string. The sum
of transition probabilities must be normalized in each state for the model to be complete.

Edit operations emitted in each state correspond to aligned pairs of characters: substitutions〈a, b〉 and
exact matches〈a, a〉 in stateM ; deletions from the first string〈a, ε〉 in stateD; and insertions of characters
from the second string into the first string〈ε, a〉 in stateI. Each edit operatione ∈ E is assigned a probability
p(e) such that

∑
e∈Es

p(e) = 1,
∑

e∈Ed
p(e) = 1, and

∑
e∈Ei

p(e) = 1. Edit operations with higher
probabilities produce character pairs that are likely to be aligned in a given domain, such as substitution
〈/, -〉 for phone numbers, or deletion〈., ε〉 for addresses.

This generative model is similar to one given for amino-acid sequences in (Durbin et al., 1998) with
two differences: (1) transition probabilities are distinct for statesD and I, and (2) every transition has
a probability parameter associated with it, instead of being expressed through other transitions that are
outgoing from the same state.

Given two strings,s andt, probabilities of generating the pair of prefixes(s[1:i], t[1:j]) and suffixes
(s[i:|s|], t[j:|t|]) can be computed using dynamic programming in standard forward and backward algorithms
in O(|s||t|) time (Rabiner, 1989).

Then, given a corpus of equivalent string pairsC = {(s, t)}, this model can be trained using a variant
of the Baum-Welch algorithm, shown in Figure 3, which is an Expectation-Maximization procedure for
learning parameters of generative models (Rabiner, 1989). The training procedure iterates between two
steps, where in the first step the expected number of occurrences for each state transition and edit operation
emission is accumulated for a given pair of strings(s, t) from the training corpus. This is achieved by
accumulating the posterior probabilities for every possible state transition and an accompanying character
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pair emission. In the MAXIMIZATION procedure all model parameters are updated using the collected
expectations. Complete pseudo-code for the algorithms can be found in (Bilenko & Mooney, 2002).

Input: A corpus of equivalent strings C = {(s, t), s ≈ t}
Output: A set of parameters for edit distance with

affine gaps that minimizes distance for each (s, t) ∈ C
Method:
until convergence

for each (s, t) ∈ C
Expectation-step: Use forward and backward algorithms

to accumulate the expected number of occurrences E[〈s[i], t[j]〉]
for each edit operation used to align s and t,
as well as E[µ], E[σI ], E[σD], E[δI ], E[δD], E[γI ], E[γD].

end
Maximization-step: Update all transition and emission

probabilities using the expected numbers of occurrences
and re-normalize.

end

Figure 3: Training algorithm for generative string distance with affine gaps

It can be proved that this training procedure is guaranteed to converge to a local maximum of likelihood
of observing the training corpusC. The trained model can be used for estimating similarity between two
strings by computing the probability of generating the aligned pair of strings summed across all possible
paths as calculated by the forward and backward algorithms, and then obtaining the posterior probability:
Sim(s, t) = p(s∼t|s, t) = p(s∼t,s,t)

p(s,t) . Numerical underflow may occur when these computation are per-
formed for long strings; this problem can be resolved by mapping all computations into logarithmic space
or by periodic scaling of all values in matricesM , D andI (Ristad & Yianilos, 1998).

Because the order of strings being aligned usually does not matter for similarity estimation, insertion and
deletion operations as well as transitions for statesI andD can be represented by a single set of parameters:
p(〈a, ε〉) = p(〈ε, a〉) for all symbolsa ∈ A; τ =τI =τD; γ=γI =γD; δ=δI =δD; σ=σI =σD.

One problem with the described probabilistic model lies in the fact that due to the large size of the edit
operation set, probabilities of individual operations are significantly smaller than transition probabilities. If
only a few training examples are available, probabilities of some edit operations may be underestimated or
even degraded to 0, and distances between strings will vary significantly with minor character variations. To
address this problem, the probability distribution over the set of edit operations,E , is smoothed by bounding
each edit operation probability by some reasonable minimum valueλ.

The learned parameters of the generative distance model can be directly mapped to edit operation costs
of the additive model from Section 2.1.1 by taking the negative logarithm of each probability. Distance
can then be calculated analogously to Equation (1) with the addition of supplemental costsg =− log γ for
ending a gap andm=− log µ for continuing to substitute/match characters. This is equivalent to calculating
the cost of the most likely (Viterbi) alignment of the two strings by the generative model in log-space.
The resulting similarity function can be viewed as a hybrid between the generative model and the original
fixed-cost model.

3.2.2 Learnable Vector-space Similarity

While learnable string edit distance with affine gaps provides us with an adaptive sequence-based string
similarity function, there are many domains where token-based similarity functions are preferable. The TF-
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IDF weighting scheme is often a good off-the-shelf token-based string similarity function because it attempts
to give tokens weights that are proportional to their relative importance. However, the true contribution of
each token to similarity is domain-specific. For example, suppose that record linkage is conducted on a
database that contains street addresses. If there are several records of addresses from the same street, the
street name token (for example,“34th” ) will have a lower weight due to its many occurrences across the
corpus resulting in a lower IDF value. At the same time, some addresses may contain the token“Square”,
which then will be assigned approximately the same weight as“34th” since it may be as common. While
two addresses on the same street are more similar than two addresses that are both on squares, the generic
TF-IDF cosine similarity is incapable of making this distinction using only statistical information.

If training data in the form of labeled pairs of equivalent and non-equivalent strings is available, it can
be used to learn a similarity function that will give more weight to those tokens that are good indicators
of similarity. In TF-IDF cosine similarity between two strings shown in Equation (4), every component

of the sum corresponds to thei-th token in the vocabulary:
wvi,swvi,t

‖s‖‖t‖ , where‖s‖ =
√∑

si∈S w2
si,s and

‖t‖ =
√∑

ti∈T w2
ti,t

. Then each component can be thought of as thei-th component of ad-dimensional

vector that is being categorized into one of two classes, corresponding to similar and dissimilar strings. Then
the vector space similarity computation between two strings can be viewed as two consecutive steps:
(i) A d-dimensionalpair vectorp(s,t) = 〈wvi,swvi,t

‖s‖‖t‖ 〉 is created, each component of which corresponds to the
normalized product of weights for the corresponding token in the vocabulary;
(ii) The summation is performed, which is equivalent to the pair instancep(s,t) being classified by a percep-
tron with unit weights as either belonging to the equivalent-string class (output is 1), or the different-string
class (output is 0). The perceptron output value corresponds to the confidence of the prediction.

Given training data in the form of equivalent-string pairsS = {(s, t), s ∼ t} and different-string pairs
D = {(s, t), s ¿ t}, a classifier for step (ii) can be trained to produce outputs that correspond to the desired
categorization of string pairs. The trained classifier should be able to distinguish between features that are
informative for similarity judgments, and those that are not, adapting the computation to a domain-specific
notion of similarity contained in the training data.

For this task, a classifier should be able to learn well from limited training sets of high-dimensional
data. It also must produce meaningful confidence estimates that correspond to the relative likelihood of
belonging to the equivalent-strings or the non-equivalent-strings class. Moreover, the learned hypothesis
must be independent of the relative sizes of the positive and negative training sets, since the proportion of
equivalent pairs in the training set is likely to be much higher than in the actual database where duplicates
are detected.

Support vector machines (Vapnik, 1998) satisfy all of these requirements. SVMs classify input vec-
torsp(s,t) by implicitly mapping them via a kernel to a high-dimensional space where the two classes (S,
equivalent-string pairs, andD, different-string pairs) are separated by a hyperplane. The output of the clas-
sifier is the distance betweenφ(p(s,t)), the image of the pair vector in high-dimensional space, and the
separating hyperplane. This distance provides an intuitive measure of similarity: those pair vectors that are
classified with a large margin as belonging toS correspond to pairs of strings that are highly similar, while
those classified with a large margin as belonging toD represent dissimilar pairs of strings.

The output of an SVM has the formf(x) =
∑l

i=1 αiyiK(pi,x)+b, whereK(x,y) is a kernel function
(dot product between images ofx andy in high-dimensional space), andαi is the Lagrangian coefficient cor-
responding toi-th training pair vectorpi, obtained from the solution to the quadratic optimization problem.
The output functionf(x) is bounded; the specific range of output values depends on the choice of kernel

functionK and the training set. For example, for radial basis function kernelsK(x,xi) = exp(−‖x−xi‖2
2σ2 )
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Figure 4: String similarity calculation for the SVM-based learnable vector-space model

(a very loose) bound is|f(x)| ≤
∑l

i=1 αi + b. Given upper and lower boundsfmin ≤ f(x) ≤ fmax for a
particular kernel function and training set, it is trivial to obtain a similarity value in the[0; 1] range from the
SVM output:

SimV S−SV M (s, t) =
f(p(s,t))− fmin

fmax − fmin
(10)

The overall approach for obtaining a similarity value based on vector space using SVMs is shown in
Figure 4, and the training algorithm is presented in Figure 5. To compare similarity between stringss andt,
they are transformed to vector-space representations, and the pair vectorp(s,t) is formed from components
of their vector representations. The pair vector is then classified by the trained SVM, and the final similarity
value is obtained from the SVM predictionf(p(x,y)) using Equation (10).

3.3 Application of Learnable String Similarity Functions to Record Linkage

Accurate similarity functions are essential for identifying records that refer to the same object but are syn-
tactically different. Two types of similarity functions are required for matching records: string distances for
comparing individual field values and record distances for combining field similarities to obtain an overall
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Input: Sets of equivalent strings S = {(s, t), s ∼ t}
and non-equivalent strings D = {(s, t), s ¿ t}

Output: A string similarity function SimV S−SV M (s, t)
Method:

1. Convert all strings in S and D to vector representation
2. Create positive and negative training sets Sp and Dp

by constructing pair instances p(s,t) = 〈wvi,swvi,t

‖s‖‖t‖ 〉:
Sp = {p(s,t), (s, t) ∈ S}; Dp = {p(s,t), (s, t) ∈ D}

3. Train an SVM on Sp and Dp to obtain the classification
function f(x) =

∑l
i=1 αiyiK(pi, x) + b, fmin ≤ f(x) ≤ fmax

4. Return SimV S−SV M (s, t) = f(p(s,t))−fmin
fmax−fmin

Figure 5: Training algorithm for SVM-based vector space similarity

estimate of likeness between records. Thus, the record linkage problem permits evaluation of the learn-
able string similarity measures for two tasks: matching strings from individual field values and providing
features for record-level similarity functions. Below, we describe our framework for using learnable string
similarities for these two tasks and provide details of experiments on several record linkage datasets.

3.3.1 Learnable Similarity for Database Records

Because correspondence between overall record similarity and individual field similarities can vary greatly
depending on how informative the fields are, an accurate record similarity function must weight fields ac-
cording to their contribution to the true distance between records. While statistical aspects of combining
similarity scores for individual fields have been addressed in previous work on record linkage (Winkler,
1999), availability of labeled duplicates allows a more direct approach that uses a binary classifier which
computes a similarity function (Cohen & Richman, 2002). Given a database containing records composed
of k different fields and a setD = {D1(·, ·), . . . , Dm(·, ·)} of similarity functions, we can represent any pair
of records by anmk-dimensional vector. Each component of the vector represents similarity between two
field values calculated using one of them similarity functions.

Fenix at the Argyle 8358 Sunset Blvd. W. Hollywood French (new)

8358 Sunset Blvd. WestFenix Hollywood American

Name Address City Cuisine

SVM

Learned 
distance
measures

Distance

Duplicate records Non−duplicate records

T
Feature vector d1n d1a d1c d1cu d2cud2n d2cd2a

D1n D1a D2a D1c D2c D1cu D2cuD2n

Figure 6: Computation of record similarity from individual field similarities

Matched pairs of equivalent records can be used to construct a training set of such feature vectors by
assigning them a positive class label. Pairs of records that are not labeled as duplicates implicitly form a
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complementary set of negative examples. If the transitive closure of matched pairs contains disjoint sets of
duplicate records, this approach will result in noisy negative examples. Then, a binary classifier is trained
using these training vectors to discriminate between pairs of records corresponding to duplicates and non-
duplicates. Overall, this approach follows the same framework that is used for learnable vector-space string
similarity in the previous section. Following the same reasoning, support vector machines are an appropriate
classifier choice due to their resilience to noise and their ability to handle correlated features well. The
distance from the hyperplane provides a measure of confidence in the pair of records being a duplicate;
it can be transformed to an actual similarity value using Equation (10). Figure 6 illustrates this process
of computing record similarity using multiple similarity measures over each field and a binary classifier to
categorize the resulting feature vector as belonging to the class of duplicates or non-duplicates. For each field
of the database, two learnable distance measures,D1 andD2, are trained and used to compute similarity for
that field. The values computed by these measures form the feature vector that is then classified by a support
vector machine, producing a confidence value that represents similarity between the database records.

3.3.2 The Overall Record Linkage Framework

An overall view of our system, MARLIN, is presented in Figure 7. The training phase consists of two
steps. First, the learnable string similarity functions are trained for each record field. The training corpus
of paired field-level duplicates and non-duplicates is obtained by taking pairs of values for each field from
the set of paired duplicate records. Because equivalent records may contain individual fields that are not
equivalent, training data can be noisy. For example, if one record describing a restaurant contains“Asian”
in the Cuisine field, and an equivalent record contains“Seafood”, a noisy training pair is formed that
implies equivalence between these two strings. However, this issue does not pose a serious problem for
our approach for two reasons. First, particularly noisy fields that are unhelpful for identifying record-level
duplicates will be considered irrelevant by the classifier that combines similarities from different fields.
Second, the presence of such pairs in the database indicates that there is a degree of similarity between such
values, and using them in training allows the learnable record similarity function to capture that likelihood.

After individual string similarity functions are learned, they are used to compute distances for each field
of training record pairs to obtain training data for the binary classifier in the form of vectors composed of
distance features.

The record linkage phase starts with generation of potential duplicate pairs. Given a large database,
producing all possible pairs of records and computing similarity between them is too expensive since it
would requireO(n2) distance computations. MARLIN utilizes thecanopiesclustering method (McCallum
et al., 2000) using Jaccard similarity, a computationally inexpensive metric based on an inverted index, to
separate records into overlapping clusters (“canopies”) of potential equivalent records. Pairs of records that
fall in each cluster then become candidates for a full similarity comparison shown in Figure 6.

Learned string similarity functions are then used to calculate distances for each field of each pair of po-
tential equivalent records, forming field feature vectors for the classifier. Confidence estimates for belonging
to the class of duplicates are produced by the binary classifier for each candidate pair, and pairs are sorted
by increasing confidence.

The problem of finding a similarity threshold for separating duplicates from non-duplicates arises at
this point. A trivial solution would be to use the binary classification results to label some records as
duplicates, and others as non-duplicates. A traditional approach to this problem (Winkler, 1999), however,
requires assigning two thresholds: one that separates pairs of records that are high-confidence duplicates,
and another for possible duplicates that should be reviewed by a human expert. Since relative costs of
labeling a non-duplicate as a duplicate (false positives) and overlooking true duplicates (false negatives)
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Figure 7: MARLIN overview

can vary from database to database, there is no “silver bullet” solution to this problem. Availability of
labeled data, however, allows us to provide precision-recall estimates for any threshold value and thus offer
a way to control the trade-off between false and unidentified duplicates by selecting threshold values that
are appropriate for a particular database.

It is possible that several identified duplicate pairs will contain the same record. Since the “duplicate
of” relation is transitive, it is necessary to compute the transitive closure of equivalent pairs to complete the
identification process. Following (Monge & Elkan, 1997), MARLIN utilizes the union-find data structure to
store all database records in this step, which allows updating the transitive closure of identified duplicates
incrementally in an efficient manner.

3.3.3 Experimental Evaluation

Datasets. Our experiments were conducted on six datasets.Restaurantis a database of 864 restaurant
names and addresses containing 112 duplicates obtained by integrating records from Fodor’s and Zagat’s
guidebooks (Tejada et al., 2001).Cora is a collection of 1295 distinct citations to 122 Computer Science
research papers from the Cora Computer Science research paper search engine (Cohen & Richman, 2002).
The citations were segmented into multiple fields such asauthor, title , venue, etc. by an information
extraction system, resulting in some crossover noise between the fields.Reasoning, Face, Reinforcement
and Constraintare single-field datasets containing unsegmented citations to computer science papers in
corresponding areas from theCiteseerscientific literature digital library2 (Lawrence, Bollacker, & Giles,

2http://citeseer.nj.nec.com/
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Table 1: Sample equivalent records from theCoradatabase
authors title venue address year pages
Yoav Freund, H. Sebas-
tian Seung, Eli Shamir,
and Naftali Tishby

Information, predic-
tion, and query by
committee

Advances in Neural
Information Process-
ing System

San Mateo, CA 1993 pages 483-490

Freund, Y., Seung, H. S.,
Shamir, E., & Tishby, N.

Information, predic-
tion, and query by
committee

Advances in Neural
Information Process-
ing Systems

San Mateo, CA. – (pp. 483-490).

Table 2: Sample equivalent records from theRestaurantdatabase
name address city phone cuisine
Fenix 8358 Sunset Blvd. West Hollywood 213/848-6677 American
Fenix at the Argyle 8358 Sunset Blvd. W. Hollywood 213-848-6677 French(New)

Table 3: Sample equivalent records from theReasoningdatabase
L. P. Kaelbling. An architecture for intelligent reactive systems. In Reasoning
About Actions and Plans: Proceedings of the 1986 Workshop. Morgan Kaufmann, 1986
Kaelbling, L. P., 1987. An architecture for intelligent reactive systems. In
M. P. Georgeff & A. L. Lansky, eds., Reasoning about Actions and Plans, Morgan
Kaufmann, Los Altos, CA, 395 410

1999).Reasoningcontains 514 citation records that represent 196 unique papers,Facecontains 349 citations
to 242 papers,Reinforcementcontains 406 citations to 148 papers, andConstraintcontains 295 citations to
199 papers. Tables 1–3 contain sample duplicate records from theRestaurant, Cora, andReasoningdatasets.

Experimental Methodology. Every dataset was randomly split into 2 folds for cross-validation for each
experimental run. A larger number of folds is impractical since it would result in few duplicate records per
fold. To create the folds, duplicate records were grouped together, and the resulting clusters were randomly
assigned to the folds, which resulted in uneven folds in some of the trials. All results are reported over 20
random splits, where for each split the two folds were used alternately for training and testing.

During each trial, record linkage was performed as described in Section 3.2. At each iteration, the pair of
records with the highest similarity was labeled a duplicate, and the transitive closure of groups of duplicates
was updated. Precision, recall and F-measure defined over pairs of duplicates were computed after each
iteration, where precision is the fraction of identified duplicate pairs that are correct, recall is the fraction of
actual duplicate pairs that were identified, and F-measure is the harmonic mean of precision and recall:

Precision =
#ofCorrectlyIdentifiedDuplicatePairs

#ofIdentifiedDuplicatePairs

Recall =
#ofCorrectlyIdentifiedDuplicatePairs

#ofTrueDuplicatePairs

F−measure =
2× Precision×Recall

Precision + Recall

As more pairs with lower similarity are labeled as duplicates, recall increases, and precision decreases
because the number of non-duplicate pairs erroneously labeled as duplicates grows. Precision was interpo-
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Table 4: Maximum F-measure for detecting equivalent field values
Similarity function Restaurantname Restaurantaddress Reasoning Face Reinforcement Constraint

Edit distance 0.290 0.686 0.927 0.952 0.893 0.924
Learned edit distance 0.354 0.712 0.938 0.966 0.907 0.941
Vector-space 0.365 0.380 0.897 0.922 0.903 0.923
Learned vector-space 0.433 0.532 0.924 0.875 0.808 0.913

lated at 20 standard recall levels following the traditional procedure in information retrieval (Baeza-Yates &
Ribeiro-Neto, 1999).
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Figure 8: Field record linkage results for the
namefield of theRestaurantdataset.
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Figure 9: Field record linkage results for thead-
dressfield of theRestaurantdataset.

Results: Field-level Record Linkage. To evaluate the performance of learnable string similarity func-
tions, we compared learned string similarity functions with their fixed-cost analogs for the task of identify-
ing equivalent field values. Along with the four single-fieldCiteseerdatasets we chose two most meaningful
fields from theRestaurantdataset -nameandaddress.

We have compared four string similarity functions:

• Edit distance with affine gaps (Gusfield, 1997) using substitution cost of 2, gap opening cost of 3, gap
extension cost of 1, and match cost of -1, which are commonly used parameters;

• Learnable edit distance with affine gaps described in Section 3.2.1, trained using the EM algorithm
shown in Figure 3 with edit operation probabilities smoothed atλ = 10−5;

• Normalized dot product in vector space (cosine similarity), computed using TF-IDF weights after
stemming and stopword removal;

• Learnable vector-space SVM-based similarity described in Section 3.2.2, implemented over TF-IDF
representation after stemming and stopword removal. SVM implementation based on the radial basis
function kernel with widthσ = 10 from the SVMlight package was used as the classifier (Joachims,
1999).
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Results for field-level record linkage experiments are summarized in Table 4. Each entry in the table
contains the average of maximum F-measure values over the 40 evaluated folds. The results in bold font
indicate that the difference between the learned and the corresponding unlearned similarity function is sig-
nificant at the 0.05 level using a 1-tailed paired t-test. Figures 8 and 9 contain recall-precision curves for the
performance of MARLIN on thenameandaddressfields of theRestaurantdataset respectively.

Relatively low precision of these two experiments is due to the fact that the duplicates for individ-
ual fields are very noisy due to falsely labeled negatives: for example, several restaurants from different
cities may have variations of the same name, and in these trials these variations would be considered a
non-duplicate. However, results in the following section will show that a combination of individual field
estimates provides an accurate approximation of overall record similarities. The comparison of results for
learned string similarity functions and the corresponding baselines shows that despite the noise, learned edit
distance was able to adjust to the notion of similarity specific for each domain, while learned vector-space
similarity improved over the standard vector-space similarity for approximately half of the domains.

It is peculiar that the learned vector space measure made more mistakes than unlearned cosine similarity
for low recall values on thename and addressdatasets, but has outperformed it for higher recall. We
conjecture that cosine similarity was able to correctly identify the few duplicates that were transpositions of
exact matches (e.g.“Hotel Bel-Air” and“Bel-Air Hotel” , but has failed to give sufficiently high similarity
to more difficult duplicates (e.g.“Art’s Deli” and“Art’s Delicatessen”). The SVM-trained string similarity
function, on other hand, was able to generalize from the training examples, resulting in better similarity
estimates across a range of more difficult duplicates while penalizing some of the “obvious” matches.

Overall, results of Table 4 show that learned affine edit distance outperforms both non-trained edit
distance and vector-space cosine similarity for record linkage on individual fields. Visual inspection of
the learned parameter values reveals that the parameters obtained by our training algorithm indeed capture
certain domain properties that allow more accurate similarity computations. For example, for theaddress
field of the Restaurantdata, the lowest-cost edit operations include deleting’e’ and deleting’t’ , which
capture the fact that a common cause of street name duplicates are abbreviations from“Street” to “Str” .

Results: Record-level Linkage. We evaluated the performance of MARLIN for multi-field record link-
age. We again used the SVMlight implementation of a support vector machine as the binary classifier that
combines similarity estimates across the different fields to produce the overall record similarity function as
shown on Figure 6.

We have compared the performance of learnable and baseline string similarity functions for producing
the similarity estimates of individual record fields. Table 5 summarizes the results for theRestaurantand
Coradatasets. Again, results in bold font correspond to those experiments in which differences between the
results for learned and corresponding unlearned string similarity functions are significant at the 0.05 level
using a 1-tailed paired t-test. Figures 10 and 11 present the precision-recall curves for the experiments.

From these results we can conclude that using learnable string edit distance with affine gaps to compute
similarity between field values makes a positive contribution when similarities from multiple fields are
combined. Thus, better estimates of individual field similarities result in a more accurate calculation of the
overall record similarity.

Using the SVM-based vector-space learnable similarity did not lead to improvements over the original
vector space cosine similarity; performance has in fact decreased. Given that results for field-based record
linkage with learnable vector-space similarity function were mixed, this is not surprising. We conducted
additional experiments where the folds were created not by assigning the equivalence classes of duplicate
records to folds, but by randomly assigning individual instances. This resulted in duplicate pairs correspond-
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Table 5: Maximum F-measure for record linkage based on multiple fields
Similarity function Restaurant Cora

Edit distance 0.904 0.793
Learned edit distance 0.922 0.824
Vector space 0.919 0.867
Learned Vector space 0.826 0.803
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Figure 10: Record linkage results for theCora
dataset based onauthor, title, venue, yearand
pagesfields

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Restaurant

Recall

P
re

ci
si

on

Affine
Learned Affine
Vector space
Learned Vector space

Figure 11: Record linkage results for theRestau-
rant dataset based onname, address, cityand
cuisinefields

ing to the same object being in both training and test sets (such experiments were only possible for theCora
andCiteseerdatasets since there are at most 2 duplicates per equivalence class in theRestaurantdataset). In
several of these experiments the learned vector-space similarity function outperformed the unlearned base-
line. This can be explained by the fact that the training algorithm used by SVMlight relies on the assumption
that the training data comes from the same distribution as the test data. Separating equivalence classes into
different folds results in different token distributions for the two sets, and the learned classifier is not suitable
for producing accurate predictions on the test data as a result. We believe that a number of enhancements
to our algorithm can be made that will drastically improve on these initial results; we will describe them in
detail in Section 4.1.1.

We also ran trials which combined sequence-based similarity functions (static and learnable string edit
distance with affine gaps) and vector-space cosine similarity. These experiments resulted in near-100% pre-
cision and recall, without significant differences between static and adaptive field-level similarity functions.
This demonstrates that combining sequence and token-based string similarity functions, such as learned edit
distance with affine gaps and cosine similarity, is clearly an advantage of the two-level learning approach
implemented in MARLIN. Current datasets did not allow us to show the benefits of adaptive similarity
functions over their static prototypes in this scenario, but our preliminary results suggest that this can be
demonstrated on more challenging datasets.
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3.3.4 Training-Set Construction for Similarity Function Learning and Record Linkage

Training string and record similarity functions in real-world scenarios requires selecting a set of pairs for
a human expert to label as duplicates or non-duplicates. Since typical corpora and databases contain few
duplicates, selecting random pairs as potential training examples leads to training sets with extremely few
identified duplicates (positive examples). As a result, such randomly selected training sets are highly skewed
toward non-duplicates, which leads to suboptimal performance of similarity functions trained on this data.
We propose two heuristic approaches for collecting training data: static-active learning and weakly-labeled
selection, and then present experimental results on their effectiveness.

Static-active Selection of Training Pairs. Traditional active learning systems are “dynamic”: labels of
training examples selected in earlier rounds influence which unlabeled examples are deemed most informa-
tive in subsequent rounds. While prior work has examined dynamic active learning approaches to adaptive
record linkage (Sarawagi & Bhamidipaty, 2002; Tejada et al., 2002), such strategies may not always be fea-
sible due to high computational costs exacerbated by the large number of potential training examples. We
propose using a “static” active learning method for selecting pairs of records that are [likely duplicates as a
middle ground between computationally expensive dynamic active learning methods that try to identify the
most informative training examples and random selection that is efficient but fails to select useful training
data.

Our approach relies on the fact that off-the-shelf string similarity functions, such as the Jaro-Winkler
metric or TF-IDF cosine similarity, can accurately identify duplicates at low recall levels (high confidence)
even when duplicates are difficult to separate from non-duplicates at high recall levels (low confidence).
Therefore, when a random sample of records from a database is taken and similarity between them is com-
puted using such an off-the-shelf similarity function, string or record pairs with high similarity scores are
likely to be duplicates. By asking the user to label strings or records with high textual similarity, a train-
ing sample with a high proportion of duplicates can be obtained. At the same time, non-duplicate records
selected using this method are likely to be “near-miss” negative examples that are more informative for
training than randomly selected record pairs most of which tend to be “obvious” non-duplicates.

Figures 12 and 13 demonstrate the comparative utility of static-active selection and random selection
for choosing training record pairs onRestaurantand Cora datasets respectively. The record similarity
function was trained on 40 training examples comprised of randomly selected record pairs and/or the most
similar pairs selected by a static-active method using TF-IDF cosine similarity. Using a token-based inverted
index for the vector-space model (Baeza-Yates & Ribeiro-Neto, 1999) allowed efficient selection of static-
active training examples without computing similarity between all pairs of records. All experiments utilized
SVMlight for computing learnable record similarity function and two unlearned string similarity functions
for field comparisons: TF-IDF cosine similarity and edit distance with affine gaps.

For both datasets, the highest performance is achieved when record similarity functions are trained
using a mix of static-active and randomly selected pairs. However, employing many random pairs with a
few static-active examples yields the best results onCora, while onRestaurantthe highest performance is
achieved when the system is trained on a balanced mix of static-active and random examples. This difference
is explained by the makeup of the two datasets.Cora has a higher absolute number of duplicates than
Restaurant(8592 versus 56 for each fold); duplicates inCoraalso represent a larger proportion of all record
pairs (8592/211242 versus 56/93406 for each fold). OnRestaurant, random selection results in training sets
that contain almost no duplicates, while including a significant number of pairs selected using the static-
active technique leads to balanced training sets that contain sufficient positive and negative examples. On
Cora, however, randomly selected record pairs are likely to contain a few duplicates. Including a limited
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Figure 12: Comparison of random and static-
active training example selection on theRestau-
rant dataset.
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Figure 13: Comparison of random and static-
active training example selection on theCora
dataset.

number of record pairs chosen using the static-active technique results in the best performance, but as more
static-active examples are added, performance decreases because highly similar duplicates take the place
of informative non-duplicates in the training set. Thus, the worst performance onRestaurantoccurs when
all training examples are chosen randomly because duplicates are almost never encountered, while onCora
using only examples chosen by static-active selection results in the opposite problem: extremely few non-
duplicate pairs are found, and the class distribution of training data is highly skewed toward duplicates.

Based on these results, we conclude that best training sets for learnable record similarity functions
are obtained when randomly chosen pairs of records are combined with pairs chosen using static-active
selection. The specific proportion in which the two kinds of training data should be mixed can be estimated
based on the outcome of labeling randomly chosen pairs. If duplicates are exceptionally rare, a significant
number of static-active examples is required to obtain a sufficient sample of duplicates, while databases
with a large number of duplicates need only a small number of record pairs selected using the static-active
methodology to complete a representative training set.

Overall, we show that a reasonable baseline to which dynamic active learning methods for adaptive
similarity functions should be compared is not the one that uses only randomly selected training pairs, but
one that employs the static-active method to overcome the extreme skewness in class distribution that is
typical for similarity function learning and record linkage problems.

Weakly-labeled Selection. While the static-active method allows identifying duplicate training pairs for
learnable similarity functions, the inverse problem can be encountered in some real-world situations: a
“legacy” training set consisting of identified duplicates may be available, while informative non-duplicate
pairs need to be collected. For such situations we consider an unsupervised technique for obtaining negative
examples. Since duplicate records are rare in a typical database, two randomly selected records are likely to
be non-duplicates, and therefore can potentially be used as negative training examples for learning similarity
functions. To help ensure that no duplicate records are included among these pairs, only pairs of records
that donot share a significant number of common tokens should be included as negative examples. Such
selection of “weakly-labeled” (and potentially noisy) non-duplicate record pairs is the unsupervised analog
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Figure 15: Comparison of using weakly-labeled
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of static-active selection of duplicates. The process can also be thought of as the opposite of blocking or
canopies techniques that use off-the-shelf metrics to avoid comparing “obvious” non-duplicates to speed up
the record linkage process.

We compared the record linkage accuracy of MARLIN trained on weakly-labeled negatives with training
on user-labeled negatives. Figures 14 and 15 present the results of these experiments on theRestaurant
andCoradatasets. Weakly-labeled negatives were selected randomly from record pairs that shared no more
than 20% of tokens to minimize the noise. All experiments used training sets composed of two parts:
half the examples were positives randomly selected among user-labeled duplicate pairs, and the other half
was composed of either weakly-labeled non-duplicate records or randomly selected labeled record pairs.
SVMlight was employed to compute record similarity, and TF-IDF cosine similarity and edit distance with
affine gaps were used as the underlying string similarity functions for individual fields.

The results again demonstrate that the utility of heuristic selection of training data for similarity func-
tion learning is dataset-dependent. OnRestaurant, where duplicate pairs are scarce and randomly selected
records are true non-duplicates with very high probability, using weakly-labeled non-duplicates yields re-
sults identical to randomly selected labeled duplicates when a large number of examples is selected, and
improves slightly over random selection when the training set is small. We conjecture that biasing the SVM
with “negative but slightly similar” examples when very little training data is available allows learning a
better separating hyperplane. OnCora, using weakly-labeled negatives leads to slight degradation of system
accuracy, which is expected since duplicates are relatively frequent, and noise is likely to be introduced
when negative examples are collected in an unsupervised manner. However, the drop in performance is
small, and in situations where human labeling of negatives is expensive or infeasible (e.g. due to privacy
issues), using weakly-labeled selection is a viable avenue for unsupervised acquisition of negative training
examples for similarity function learning.
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3.4 MPC-KM EANS: Combining Similarity Function Learning and Seeding in K-Means

In previous section, we have shown that using learnable string similarity functions leads to improvements
in record linkage accuracy. Clustering is another application that could benefit from using adaptive metrics,
and in this section we describe MPC-KMEANS, our method for integrating an adaptive variant of Euclidean
distance in a constrained clustering algorithm.

Semi-supervised Clustering with Constraints In a semi-supervised clusteringsetting, a small amount
of labeled data is available to aid the unsupervised clustering process. For pairwise constrained cluster-
ing, we consider a framework that has pairwise must-link and cannot-link constraints (with an associated
cost of violating each constraint) between points in a dataset, in addition to having distances between the
points (Wagstaff et al., 2001). Supervision in the form of constraints is generally more practical than pro-
viding class labels in the clustering framework, since true labels may be unknown a priori, while a human
expert can easily specify whether pairs of points belong to the same cluster or different clusters.

Since K-Means clustering cannot handle pairwise constraints explicitly, we formulate the goal of clus-
tering in the pairwise constrained clustering framework as minimizing a combined objective function, which
is defined as the sum of the total square distances between the points and their cluster centroids and the cost
of violating the pairwise constraints. The mathematical formulation of this framework is motivated by the
metric labelingproblem and thegeneralized Pottsmodel (Kleinberg & Tardos, 1999; Boykov, Veksler, &
Zabih, 1998).

In the pairwise constrained clustering framework, letM be the set of unordered must-link pairs such
that(xi,xj) ∈ M impliesxi andxj should be assigned to the same cluster, andC be the set of unordered
cannot-link pairs such that(xi,xj) ∈ C implies xi andxj should be assigned to different clusters. Let
W = {wij} andW = {wij} be two sets that give the weights corresponding to the must-link constraints in
M and the cannot-link constraints inC respectively. LetdM anddC be two metrics that quantify the cost of
violating must-link and cannot-link constraints:dM (li, lj) = 1[li 6= lj ] anddC(li, lj) = 1[li = lj ], where1
is the indicator function (1[true] = 1,1[false] = 0), andli andlj are the cluster labels forxi andxj . Using
this model, the problem of pairwise constrained clustering under must-link and cannot-link constraints is
formulated as minimizing the following objective function, where pointxi is assigned to the partitionXli

with centroidµli :

Jpckm =
∑
xi∈X

‖xi − µli‖
2 +

∑
(xi,xj)∈M

wij1[li 6= lj ] +
∑

(xi,xj)∈C
wij1[li = lj ] (11)

We will refer to this model as the pairwise constrained K-Means (PC-KMEANS) model.

Semi-supervised Clustering via Similarity Function Learning Another avenue for utilizing labeled data
involves adapting the similarity function employed by the clustering algorithm. Intuitively, this allows cap-
turing the user’s view of which objects should be considered similar and which dissimilar. Since the original
data representation may not be embedded in a space where clusters are sufficiently separated, modifying
the similarity function transforms the representation so that distances between same-cluster objects are min-
imized, while distances between different-cluster objects are maximized. As a result, clusters discovered
using the learned distance functions adhere more closely to the notion of similarity expressed by the labeled
data than the clusters obtained using untrained similarity functions.

Following previous work (Xing et al., 2003), we can parameterize Euclidean distance with a symmetric

positive-definite weight matrixA as follows:‖xi − xj‖A =
√

(xi − µli)
TA(xi − µli). If A is restricted
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to be a diagonal matrix, then it scales each axis by a different weight and corresponds to feature weighting;
otherwise new features are created that are linear combinations of the original features. In our clustering
formulation, using the matrixA is equivalent to considering a generalized version of the K-Means model
described in Section 2.6, where all the Gaussians have a covariance matrixA−1 (Bilmes, 1997).

It can be easily shown that maximizing the complete data log-likelihood under this generalized K-Means
model with metric learning is equivalent to minimizing the objective function:

Jmkmeans=
∑
xi∈X

‖xi − µli‖
2
A − log(det(A)) (12)

where the second term arises due to the normalizing constant of a Gaussian with covariance matrixA−1.

Unifying Constraints and Similarity Function Learning in Clustering Previous work on semi-supervised
clustering (Cohn et al., 2000; Xing et al., 2003) that used labeled data for learning a similarity function only
utilized pairwise constraint information to learn weights that minimize constraint violations. We incorpo-
rate similarity function learning directly into the clustering algorithm in a way that allows unlabeled data
to influence the similarity function learning process along with pairwise constraints. Combining objective
functions (11) and (12) leads to the following objective function that attempts to minimize cluster dispersion
under a learned metric along with minimizing the number of constraint violations:

Jcombined =
∑
xi∈X

‖xi − µli‖
2
A +

∑
(xi,xj)∈M

wij1[li 6= lj ] +
∑

(xi,xj)∈C
wij1[li = lj ]− log(det(A)) (13)

If we assume uniform weightswij andwij , as traditionally done in the generalized Potts model (Boykov
et al., 1998), one problem with this objective function would be that all constraint violations are treated
equally. However, the cost of violating a must-link constraint between twoclosepoints should be higher
than the cost of violating a must-link constraint between two points that arefar apart. Such cost assignment
reflects the intuition that it is a worse error to violate a must-link constraint between similar points, and such
an error should have more impact on the similarity function learning framework. Multiplying the weights
wij with the penalty functionfM (xi,xj) = max(αmin, αmax − ‖xi − xj‖2

A) gives us the overall cost
of violating a must-link constraint between two pointsxi andxj , whereαmin andαmax are non-negative
constants that correspond to minimum and maximum penalties respectively. They can be set as fractions of
the square of the maximum must-link distancemax(xi,xj)∈M ‖xi−xj‖2, thus guaranteeing that the penalty
for violating a constraint is always positive. Overall, this formulation enables the penalty for violating a
must-link constraint to be proportional to the seriousness of the violation.

Analogously, the cost of violating a cannot-link constraint between twodissimilar points should be
higher than the cost of violating a cannot-link constraint between points that aresimilar, since the former
is a “worse error”. Multiplying weightswij with fC(xi,xj) = min(αmin + ‖xi − xj‖2

A, αmax) allows
us to take the “seriousness” of the constraint violation into account. The combined objective function then
becomes:

Jmpc-kmeans=
∑
xi∈X

‖xi − µli‖
2
A − log(det(A))

+
∑

(xi,xj)∈M
wijfM (xi,xj)1[li 6= lj ] +

∑
(xi,xj)∈C

wijfC(xi,xj)1[li = lj ] (14)
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The weightswij andwij provide a way to specify the relative importance of the unlabeled versus labeled
data while allowing individual constraint weights. This objective functionJmpc-kmeansis greedily optimized
by our proposed metric pairwise constrained K-Means (MPC-KMEANS) algorithm that uses a K-Means-
type iteration.

Given a set of data pointsX , a set of must-link constraintsM, a set of cannot-link constraintsC,
corresponding weight setsW andW , and the number of clusters to formK, metric pairwise constrained
K-Means (MPC-KMEANS) finds a disjointK partitioning{Xh}K

h=1 of X (with each partition having a
centroidµh) such thatJmpc-kmeansis (locally) minimized.

The algorithm MPC-KMEANS has two components. Utilizing constraints during cluster initialization
and satisfaction of the constraints during every cluster assignment step constitutes the search-based compo-
nent of the algorithm. Learning the similarity function by re-estimating the weight matrixA during each
algorithm iteration based on current constraint violations is the similarity-based component.

Intuitively, the search-based technique uses the pairwise constraints to generate seed clusters that ini-
tialize the clustering algorithm, and also uses the constraints to guide the clustering process through the
iterations. At the same time, the similarity-based technique distorts the metric space to minimize the costs
of violated constraints, possibly removing the violations in the subsequent iterations. Implicitly, the space
where data points are embedded is transformed to respect the user-provided constraints, thus learning a
similarity function that is appropriate for the dataset from the user’s perspective.

The Algorithm. MPC-KMEANS starts by generating the seed clusters in the initialization step. A set
of λ neighborhood sets{Np}λ

p=1 is created by taking the transitive closure of the must-link constraints,
augmenting the set of must-link constraintsM by adding these entailed constraints, and using the resulting
connected components to create the neighborhood sets. The set of cannot-link constraintsC is augmented
in a similar manner. The resulting set of neighborhoods provides a good initial starting point for the MPC-
KM EANS algorithm. The initial cluster centers are initialized usingk neighborhood sets of largest size.

Then, MPC-KMEANS alternates between cluster assignments in the Expectation step and centroid es-
timation and similarity function learning in the Maximization step until convergence. In the E-step, every
point x is assigned to a cluster so that the sum of the distance ofx to the cluster centroid and the cost of
constraint violations possibly incurred by this cluster assignment is minimized. Each point moves to a new
cluster only if the component ofJmpc-kmeanscontributed by this point decreases, so when all points are given
their new assignment,Jmpc-kmeanswill decrease or remain the same.

In the M-step, the cluster centroidsµh are first re-estimated using the points inXh. As a result, the
contribution of each cluster toJmpc-kmeansvia its first term is minimized. Then, similarity function learning
is performed: the matrixA is re-estimated to decrease the objective functionJmpc-kmeans. The updated

matrixA is obtained by taking the partial derivative∂Jmpc-kmeans

∂A and setting it to zero, resulting in:

A =
( ∑

xi∈X
(xi − µli)(xi − µli)

T

−
∑

(xi,xj)∈M∗
wij(xi − xj)(xi − xj)T

1[li 6= lj ] +
∑

(xi,xj)∈C∗
wij(xi − xj)(xi − xj)T

1[li = lj ]
)−1

(15)

whereM∗ and C∗ are subsets ofM and C that exclude the constraint pairs for which the penalty
functionsfM andfC take the threshold valuesαmin andαmax respectively.
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Since estimating a full matrixA from limited training data is difficult, we currently limit ourselves to
diagonalA, which is equivalent to similarity function learning via feature weighting. In that case, thed-th
diagonal element ofA, add, corresponds to the weight of thed-th feature:

add =
( ∑

xi∈X
(xid − µlid)

2 −
∑

(xi,xj)∈M∗
wij(xid − xjd)21[li 6= lj ] +

∑
(xi,xj)∈C∗

wij(xid − xjd)21[li = lj ]
)−1

Intuitively, the first term in the sum,
∑

xi∈X (xid − µlid)
2, scales the weight of each feature proportion-

ately to the feature’s contribution to the overall cluster dispersion, analogously to scaling performed when
computing Mahalanobis distance. The last two terms,
−

∑
(xi,xj)∈M∗ wij(xid − xjd)21[li 6= lj ] and

∑
(xi,xj)∈C∗ wij(xid − xjd)21[li = lj ], handle constraint

violations by respectively contracting and stretching each dimension to reduce the current violations. Thus,
the distance function weights are adjusted at each iteration in such a way that the contribution of different
attributes to similarity is equalized, while constraint violations are minimized.

Algorithm: m-PCKMeans
Input: Set of data points X = {xi}Ni=1,

set of must-link constraints M = {(xi, xj)},
set of cannot-link constraints C = {(xi, xj)},
number of clusters K, sets of constraint weights W and W .

Output: Disjoint K partitioning {Xh}Kh=1 of X such that
objective function Jmpc-kmeans is (locally) minimized.

Method:
1. Initialize clusters:
1a. create the λ neighborhoods {Np}λp=1 from M and C
1b. sort the indices p in decreasing size of Np

1c. if λ ≥ K

initialize {µ(0)
h }Kh=1 with centroids of {Np}Kp=1

else if λ < K

initialize {µ(0)
h }λh=1 with centroids of {Np}λp=1

if ∃ point x cannot-linked to all neighborhoods {Np}λp=1

initialize µ
(0)
λ+1 with x

initialize remaining clusters at random
2. Repeat until convergence
2a. assign cluster: Assign each data point xi to cluster h∗

(i.e. set X (t+1)
h∗ ), for h∗ = arg min

h
(‖xi − µ

(t)
h ‖2A − log(det(A))

+
∑

(xi,xj)∈M wijfM (xi, xj)1[h 6= lj ]
+

∑
(xi,xj)∈C wijfC(xi, xj)1[h = lj ])

2b. estimate means: {µ(t+1)
h }Kh=1 ← { 1

|X (t+1)
h |

∑
x∈X (t+1)

h

x}Kh=1

2c. update metric: A−1 =
∑

xi∈X (xi − µli)(xi − µli)
T

−
∑

(xi,xj)∈M∗ wij(xi − xj)(xi − xj)T
1[li 6= lj ]

+
∑

(xi,xj)∈C∗ wij(xi − xj)(xi − xj)T
1[li = lj ]

2d. t← (t + 1)

Figure 16: MPC-KMEANS algorithm

The objective function decreases after every cluster assignment, centroid re-estimation and similarity
function learning step till convergence, implying that the MPC-KMEANS algorithm will converge to a local
minima ofJmpc-kmeans.

Experiments: Methodology and Datasets Experiments were conducted on several datasets from the UCI
repository:Iris, Wine, and representative randomly sampled subsets from thePen-DigitsandLetterdatasets.
ForPen-DigitsandLetter, we chose two sets of three classes:{I, J, L } from Letterand{3, 8, 9} from Pen-
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Digits, sampling 20% of the data points from the original datasets randomly. These classes were chosen from
the handwriting recognition datasets since they intuitively represent difficult visual discrimination problems.

We used pairwise F-measure to evaluate the clustering results similarly to record linkage result evalua-
tion described above. Such evaluation is based on the traditional information retrieval measures, adapted for
evaluating clustering by considering same-cluster pairs:

Precision =
#PairsCorrectlyPredictedInSameCluster

TotalPairsPredictedInSameCluster

Recall =
#PairsCorrectlyPredictedInSameCluster

TotalPairsInSameCluster

F −measure =
2× Precision×Recall

Precision + Recall

We generated learning curves with 10-fold cross-validation for each dataset to determine the effect of
utilizing the pairwise constraints. Each point in the learning curve represents a particular number of pairwise
constraints given as input to the algorithm. Unit constraint weightsW andW were used, since the datasets
did not provide individual weights for the constraints. The maximum square distance between must-link
constraints was used as value forαmax, while αmin was set to 0. The clustering algorithm was run on the
whole dataset, but the pairwise F-measure was calculated only on the test set. Results were averaged over
50 runs of 10 folds.

Experiments: Results and Discussion Figures 17-20 show learning curves for the four datasets. For each
dataset, we compared four semi-supervised clustering schemes:

• MPC-KMEANS clustering, which involves both seeding and similarity function learning in the unified
framework described above;

• M-KM EANS, which is K-Means clustering with the learnable similarity function component described
above, without utilizing constraints for seeding;

• PC-KMEANS clustering, which utilizes constraints for seeding the initial clusters and forces the clus-
ter assignments to respect the constraints without doing any similarity function learning, as outlined
above;

• Unsupervised K-Means clustering.

The learning curves illustrate that providing pairwise constraints is beneficial to clustering quality: as
the amount of supervision increases, PC-KMEANS, M-KM EANS, and MPC-KMEANS produce clusters
that are more homogeneous with respect to the data classes, which is indicated by rising learning curves.
Overall, the unified approach (MPC-KMEANS) outperforms individual seeding (PC-KMEANS) and simi-
larity function learning (M-KM EANS) approaches on the presented datasets.

For theWineandLetter-IJLdatasets, the difference at 0 pairwise constraints between methods that uti-
lize similarity function learning (MPC-KMEANS andM-KM EANS) and those that do not (PC-KMEANS

and regular K-Means) indicates that even in the absence of constraints, weighting features by their variance
(essentially using Mahalanobis distance) improves clustering accuracy. For theWinedataset, additional con-
straints provide an insubstantial improvement in cluster quality on this dataset, which shows that meaningful
feature weights are obtained from scaling by variance using just the unlabeled data.

Some of the similarity function learning curves display a characteristic “dip”, where clustering accuracy
decreases when initial constraints are provided, but after a certain point starts to increase and eventually
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Figure 17: Results on theIris dataset
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Figure 18: Results on theWinedataset
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Figure 19: Results on theDigits-389dataset
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Figure 20: Results on theLetter-IJLdataset

outperforms the initial point of the learning curve. We conjecture that this phenomenon is due to the fact
that feature weights learned from few constraints are unreliable, while increasing the number of constraints
provides the similarity function learning mechanism enough data to estimate good parameter values.

On the other hand, seeding the clusters with a small number of pairwise constraints has an immediate
positive effect on the final cluster quality, while providing more pairwise constraints has diminishing returns,
i.e., PC-KMEANS learning curves rise slowly. When both seeding and similarity function learning are
utilized, the unified approach benefits from the individual strengths of the two methods, as can be seen from
the MPC-KMEANS results.

Overall, our results indicate that combining similarity function learning with seeding in clustering out-
performs these methods in isolation and leads to improvements in cluster quality.
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4 Proposed Work

4.1 Learnable String Similarity Functions

Improvements obtained using learnable string edit distance with affine gaps and learnable vector-space string
similarity indicate that developing methods for adapting string metrics to particular domains is a promising
area for future research. In proposed work, we plan to extend the methods that we described in Section 3.2,
as well as develop several new techniques for training learnable similarity functions.

4.1.1 Learnable Vector-space String Similarity

Improving Vector-space Similarity Based on Pairwise Classification. In Section 3.2.2 we described
a general approach for learning vector-space similarity using a binary classifier. While our initial experi-
ments produced mixed results, we intend to add several enhancements to this technique that should lead to
significant improvements.

In experiments described in Section 3.3.4, the hyperplanes produced by the SVM typically rely on a
large number of support vectors (which are training pairs of similar and dissimilar strings). This indicates
that the learned separating hyperplane has high bias, which predictably leads to high error (Domingos, 2000;
Valentini & Dietterich, 2003). However, simply altering the SVM parameters to lower bias by decreasing
the number of support vectors is a flawed strategy. Since we focus on similarity for domains where strings
are short, their vector representations are highly sparse, which leads to very few words being selected as
classification features. If the number of support vectors is reduced artificially by changing kernel parameters,
even fewer words are selected as discriminating features, which brings us back to increased bias and high
error. We plan to investigate the following strategies that can solve this problem:

• Because using word tokenization for obtaining the vector-space representation of strings leads to very
sparse vectors, the pairwise classification approach to learnable string similarity would benefit from a
more expressive string representation. In recent work on string kernels for text classification, Lodhi
et al. (2002) proposed mapping strings into the feature space generated by all subsequences of fixed
length. Instead of word orn-gram tokenization, strings are represented by features corresponding to
all of their ordered fixed-length subsequences that are not necessarily contiguous. For example, the
following length-3 features represent the string’8 str’ : {’8 s’, ’ st’, ’str’, ’8 t’, ’8 r’, ’8st’, ’8sr’, ’8tr’,
’ sr’, ’ tr’ }. Feature weights for non-contiguous subsequences are penalized by using a decay factor
that scales weights proportionally to the subsequence length in the original string.

Explicit computation of such vector-space representation is inefficient for large text documents since
it would lead to very dense high-dimensional vectors. To resolve this problem, Lodhi et al. (2002)
describe a direct algorithm for computing the kernel (inner product between string representations in
feature space) inO(n|s||t|) time, wheren is subsequence length, and|s| and |t| are string lengths.
However, since in our work we focus on strings that are much shorter than typical text documents,
storing an explicit vector-space representation is computationally feasible with appropriate hashing
data structures.

We plan to use subsequence feature spaces for obtaining pair vectors that would be classified by the
support vector machine yielding similarity between strings. Since this representation yields signif-
icantly denser vectors than simple tokenization, we conjecture that it will enable us to avoid overly
aggressive feature selection by the SVM, which will in turn allow using the bias reduction technique
described below.
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• There are two parameters in support vector machines with Gaussian kernels that account for bias.
First, the regularization parameterC controls the tradeoff between obtaining the maximum possible
margin of the separating hyperplane and fitting all training data to be separated. Second, kernel
width σ2 determines how much influence individual training points exert on the discriminant function
learned by the classifier, implicitly controlling the number of support vectors.

In recent work, Valentini and Dietterich (2002) described a technique for analyzing the bias-variance
decomposition for support vector machines. In their experiments, they found that an optimal region
in the space of SVM parameters exists where both variance and bias are low. Following this work,
we will incorporate a simple parameter search procedure (e.g. using Powell’s linear search) into the
SVM training algorithm to obtain values ofC andσ2 that correspond to a low-bias SVM that will
then yield an accurate token-based string similarity function.

• When string similarity functions are used for the task of identifying equivalent strings, we are only
concerned with the correct ordering of string pairs by their similarity. Converting the SVM margins
to similarity values using Equation (10) served this purpose; however, a more principled approach to
obtaining string similarity values from the classification margin for the pair vector would be appropri-
ate.

One approach to calculating similarity values from the classification margin can rely on converting
the SVM output to a true probabilistic value. Platt (1999) has suggested using a sigmoid function
for such conversion, where the sigmoid parameters are fitted using maximum likelihood estimation.
We plan to incorporate Platt’s method into our approach, which would allow us to obtain a learnable
vector-space string similarity measure with a clear probabilistic interpretation similar to one provided
by generative models for string edit distance.

Since these three approaches tackle orthogonal problems with our current technique, we hope that em-
ploying a combination of them will make learnable vector-space similarity based on pairwise classification
a useful adaptive method for string distance computation.

Learning Vector-space Similarity Using Gradient Descent Along with the pairwise classification ap-
proach to vector-space string similarity, we intend to look at other methods for adapting vector-space simi-
larity computations to a particular domain using string labeled pairs. Cohn et al. (2000) employed gradient
descent for weighting the contribution of individual words to Jensen-Shannon divergence for clustering
documents, effectively training a probabilistic similarity function for clustering. We plan to experiment
with gradient descent methods for learning feature weights, possibly utilizing methods such as simulated
annealing, and compare this approach with classification-based vector-space similarity.

4.1.2 Extending String Edit Distance with Affine Gaps

While learnable string edit distance with affine gaps leads to substantial improvements over untrained string
metrics, we plan to investigate several additional enhancements to string edit distance that we hope will
yield a more accurate metric.

One such improvement involves detecting and learning weights for macros, which can be defined as
frequent contiguous string subsequences that can be treated as atomic objects for the purpose of computing
edit distance. For example, subsequence“reet” can be treated as a single unit for the purpose of comparing
street addresses (corresponding to a frequent transformation“Street”→ “St” ).
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We propose to incorporate macros into string edit distance with affine gaps by automatically detecting
them in a training corpus of equivalent strings and including them into the learning algorithm. Given a train-
ing set of equivalent string pairsT = {(s1, t1), ...(sn, tn)}, macros can be identified by training learnable
string edit distance with affine gaps as described in Section 3.2.1, computing optimal alignments between
the equivalent strings inT , and selecting the most frequent insertion/deletion sequences. Then, string edit
distance with affine gaps can be re-trained treating macros as atomic symbols and learning edit operation
weights for them. The optimum threshold frequency for macro detection can be selected by cross-validation
on the training corpus.

Our approach for learning string edit distance with affine gaps relies on training using a corpus of equiv-
alent string pairs. It is possible, however, that training data may include pairs of strings that are explicitly
not equivalent. One way to incorporate negative training examples in the learning algorithm described in
Section 3.2.1 is to use discriminative training. Bahl, Brown, de Souza, and Mercer (1986) described the
Maximum Mutual Information (MMI) method for training hidden Markov models to discriminate between
positive and negative examples in a maximum a posteriori (MAP) framework. We hope to utilize their
approach for learning string edit distance using both positive and negative string pair examples.

4.1.3 CRF-based String Edit Distance

Conditional random fields, recently introduced by Lafferty et al. (2001), are an undirected graphical frame-
work for probabilistic sequence labeling that yields significant improvements over other graphical models
such as hidden Markov models (HMMs). Conditional random fields have been shown to outperform tradi-
tional approaches on such tasks as part-of-speech tagging (Lafferty et al., 2001), named entity recognition
(McCallum & Li, 2003), table extraction (Pinto, McCallum, Wei, & Croft, 2003), and identity uncertainty
(McCallum & Wellner, 2003). Key benefits of conditional random fields over other probabilistic models are
the following.

• Conditional random fields attempt to assign most likely labels to observation sequences without mod-
eling the generative process that produced the observations. More specifically, instead of estimating
the joint probability of paired observation and label sequences, conditional random fields only com-
pute the probabilities of possible label sequences. As a result, no computational effort is spent on
modeling the observations, which allows performing inference using multiple non-independent fea-
tures.

• Unlike other conditional models such as maximum entropy Markov models (McCallum, Freitag, &
Pereira, 2000) and maximum entropy taggers (Ratnaparkhi, 1999), conditional random fields do not
suffer from thelabel biasproblem. The label bias problem occurs because per-state normalization
of transition probabilities leads to all probability mass arriving at a state being passed along the tran-
sitions, while observations are effectively ignored. Conditional random fields avoid this problem by
using a single exponential model for the joint probability of the entire sequence of labels. This trades
off the weights of different features at different states against each other, leading to increased accuracy
on tasks such as part-of-speech tagging (Lafferty et al., 2001).

• Observations in HMMs are atomic entries, such as character pairs or words. Representing multiple
interacting features or long-range dependencies is not practical since it makes solving the inference
problem for the models intractable. In contrast, conditional random fields allow constructing special-
ized, long-range features that can be highly informative for the prediction task.
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In future work, we hope to employ conditional random fields for modeling edit distance between strings.
We are currently investigating mechanisms for formalizing string alignment as a random field, which will
allow us to construct probabilistic models of string edit distance that are much more expressive than the
HMM-based models of Ristad and Yianilos (1998) and Section 3.2.1.

4.1.4 Learning Semantic String Similarity Using External Sources

In many domains, strings that are closely related or identical may have very different syntactic representa-
tions. For example, geographic locations“Hollywood” and“Los Angeles”can be synonymous for address
matching, while string distance measures described above view them as highly dissimilar. We propose to use
string contextfor estimating semantic similarity: since strings that consistently appear in similar contexts
are likely to be related, measuring similarity between the contexts provides us with valuable information
about string likeness.

Sometimes an extensive domain model that allows conducting type-specific string comparisons is avail-
able (Michalowski, Thakkar, & Knoblock, 2003). With geographical addresses, for example, mapping
street addresses and zip codes to latitude and longitude provides physical proximity information. However,
domain-specific secondary sources may not be available. In such situations, semantic similarity of strings
can be inferred from large external sources such as large text corpora or the World Wide Web. We propose
the following three measures for obtaining semantic similarity from external sources:

• Average context cosine similarity. Given a set of documentsSs in which the strings occurs, a
prototype vectorcs for the context ofs can be constructed by averaging the TF-IDF vector-space
representations for each documentds ∈ Ss in whichs occurs (excludings itself from the vector-space
representation). Such prototypes are similar to those used in the Rocchio text classifier (Rocchio,
1971):

cs =
∑

ds∈Ss

ds

Contextual similarity between stringss andt can then be approximated by cosine similarity between
their prototype vectors:

Simavg−context(s, t) =
cs

T ct

‖cs‖‖ct‖
(16)

• Latent Semantic similarity. Latent Semantic Analysis (LSA) is a well-known dimensionality re-
duction technique that uses singular value decomposition (SVD) of the term-document matrix to
find a projection of the original vector-space into a lower-dimensional space that is optimal in the
least-squared error sense. Performing SVD on the term-document matrixX encodingd documents
in vector-space of dimensionalitym results in a decompositionX = Tm×nSn×nDT

d×n, where
n = min(m, d). Matrix T contains projections of original terms into the new representation, and
similarity can be measured as the cosine of the angle between the projections of terms into the new
space (Landauer & Dumais, 1997).

• Jensen-Shannon similarity. Assuming that documents are generated by a multinomial model that
follows the naive Bayes assumption for words/features, we can develop a probabilistic measure of
string similarity. In the multinomial model, we assume that every document is an ordered sequence of
independent word events (Lewis & Catlett, 1994; McCallum & Nigam, 1998). Then, for each string
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s, probability of encountering tokenwi in the same document can be estimated from co-occurrence
counts:

p(wi|s) =
1 +

∑
ds∈Ss

N(wi, ds)
|V|+

∑
j=1..|V|

∑
ds∈Ss

N(wj , ds)

whereSs is the set of documents where strings occurs, andN(wi, ds) is the number of occurrences
of word wi in documentds. Thus, each strings can be described by the conditional probability
distribution ps(w) = p(w|s) over the vocabularyV. Then, for any two stringss and t, Jensen-
Shannon divergence can be used as a measure of similarity between the corresponding probability
distributionsps(w) andpt(w) (Dhillon, Mallela, & Kumar, 2002):

SimJS(s, t) = πsKL(ps, πsps + πtpt) + πtKL(pt, πsps + πtpt) (17)

whereπs andπt are relative prior probabilities ofs andt estimated from occurrence counts ofs and
t in the corpus:πs = N(s)

N(s)+N(t) andπt = N(t)
N(t)+N(s) ; andKL(ps, πsps+πtpt) is Kullback-Leibler di-

vergence to the mean probability distribution:KL(ps, πsps+πtpt) =
∑

wi∈V ps(wi) log ps(wi)
p(wi|πss+πtt)

.

Thus, we suggest estimating semantic similarity of stringss andt based on external sources as likeness
between the probabilistic models for terms occurring in their context.

We foresee two possible scenarios for computing semantic string similarity from external sources. If
a large corpus of text documents or a database of text records is available, similarity functions described
above can be computed using such a corpus or a database. It is possible, however, that certain strings occur
infrequently in the provided dataset. For this scenario, we propose using the World Wide Web as a large text
corpus that is accessible via a search engine. When similarity between stringss andt needs to be estimated,
each of the strings can be supplied as a query to a search engine. Documents returned as search results will
then form setsS andT based on which contextual similarity can be estimated using the three measures
described above.

In previous work, Turney (2001) used statistical data obtained by querying a Web search engine for
recognizing synonyms, while Bunescu (2003) proposed a similar approach for anaphora resolution in natural
text. However, their methods only considered similarity as a function of the number of common documents
returned by the search engine. We propose to go a step further and use the actual contents of documents
retrieved from the Web, which will allow us to use context-specific similarity measures described above.
We conjecture that such measures will perform significantly better than statistics that only compare retrieval
results.

Since semantic similarity based on external sources can be expensive to compute compared to standard
syntactic distance metrics, we propose to use it in record linkage scenarios only as an additional similarity
feature in conjunction with standard syntactic measures. Combining multiple similarity measures can be
performed as a part of the two-layer learning framework described in Section 3.3.1, where record similarity
function is trained after learning individual field similarity functions. We hope to show that using external
information sources can improve string comparisons for the record linkage task and lead to more accurate
identification of equivalent records.

4.2 Clustering with Learnable Vector-space Similarity Functions

Our initial experiments with learning similarity functions for semi-supervised clustering described in Section
3.4 show that clustering algorithms can benefit from utilizing metrics learned from pairwise training data.
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While we proposed a method for combining learnable Euclidean distance with seeding, in future work we
plan to investigate learning methods for weighted cosine similarity. This will allow us to work with high-
dimensional data that is common in real-world domains such as text and computational biology.

The vector-space learnable similarity based on pairwise classification described in Section 3.2.2 can be
employed for any domain where data is represented by vectors in Euclidean space. Along with approaches
proposed above for improving this similarity function, we will evaluate its applicability to semi-supervised
clustering using algorithms such as hierarchical agglomerative clustering (HAC) andk-means, as well as
clustering algorithms based on graph partitioning techniques (Karypis & Kumar, 1998; Meila & Shi, 2001).
We will employ text clustering datasets such as20Newsgroups3 andDMOZ (Dhillon et al., 2002) to evaluate
our methods for high-dimensional similarity function learning.

4.3 Active learning techniques for similarity metrics

As we have discussed in Section 3.3.4, active learning for learnable similarity functions aims to identify pairs
of objects whose labels are most informative for improving distance computations. For similarity metrics
that are used in clustering, active learning methods seek pairs of objects that the user labels as belonging to
the same cluster or different clusters.

The classifier-based learnable vector-space similarity described in Section 3.2.2 lends itself nicely to
active learning techniques developed for classification. Prior work on active learning for support vector
machines has shown that SVM accuracy can increase significantly when training examples are sampled
selectively. Tong (2001) proposed a method that selects examples which lead to maximum reduction in
version space, while Schohn and Cohn (2000) developed a technique similar to uncertainty sampling that
selects examples which are closest to the separating hyperplane of the SVM. Finally, query-by-committee
active learning has been successfully applied to SVMs for record linkage by Sarawagi and Bhamidipaty
(2002). We plan to investigate the utility of these methods for reducing the number of training examples
required to learn a vector-space classifier-based distance metric accurately.

As our initial investigation of training example selection strategies for record linkage has shown, the
biggest challenge in selecting useful training example pairs lies with the fact that the space of possible
pairs grows quadratically with the number of examples, while most pairs are non-equivalent and not useful
for training metrics. In future work, we intend to continue developing static-active strategies for string
metrics by incorporating more principled uncertainty sampling techniques (Lewis & Catlett, 1994), as well
as comparing static-active and dynamic-active methods. We also plan to combine static-active techniques
with semi-supervised strategies that use weakly labeled examples. Additionally, we will experiment with
purely unsupervised discriminative training of similarity functions using weakly-labeled negative examples
along with weakly-labeled positive examples. We will compare this approach with previously developed
unsupervised record linkage techniques that use the Expectation-Maximization algorithm (Winkler, 1993).

In previous work, Dagan and Engelson (1995) have proposed a query-by-committee active learning
method for hidden Markov models using committees of models created by varying HMM parameters. We
are interested in utilizing their method for actively selecting string pairs for training string edit distance with
affine gaps. We hope that combining active learning techniques with discriminative training of HMMs (Bahl
et al., 1986) can drastically lower the number of examples required to learn reliable parameters for string
edit distances and thereby yield accurate metrics.

3http://www.ai.mit.edu/people/jrennie/20Newsgroups
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5 Conclusion

Accurate similarity functions are important for many learning problems including clustering and duplicate
detection. Developing functions that can adapt to a particular domain is a promising direction for research.
Our initial results on the record linkage task with learnable string similarity functions show improvements
over their static analogs, and we hope to obtain even better performance with several enhancements to
our methods. We also propose new adaptive similarity measures based on conditional random fields and
information contained in large text corpora. We demonstrate good performance of our proposed approach
for incorporating learnable similarity functions into semi-supervisedk-means clustering with seeding. We
plan to continue this line of research by focusing on learnable similarity functions for high-dimensional
vector data. Finally, we intend to extend our work on active learning methods for selecting informative
training examples for learning similarity metrics.
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