
Technical Report AI-02-296, Artificial Intelligence Lab,
University of Texas at Austin, February 2002.

Learning to Combine Trained Distance Metrics for Duplicate
Detection in Databases�

Mikhail Bilenko and Raymond J. Mooney
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

fmbilenko,mooneyg@cs.utexas.edu

February 22, 2002

Abstract

The problem of identifying approximately duplicate records in databases has previously been studied
as record linkage, the merge/purge problem, hardening soft databases, and field matching. Most existing
approaches have focused on efficient algorithms for locating potential duplicates rather than precise
similarity metrics for comparing records. In this paper, we present a domain-independent method for
improving duplicate detection accuracy using machine learning. First, trainable distance metrics are
learned for each field, adapting to the specific notion of similarity that is appropriate for the field’s
domain. Second, a classifier is employed that uses several diverse metrics for each field as distance
features and classifies pairs of records as duplicates or non-duplicates. We also propose an extended
model of learnable string distance which improves over an existing approach. Experimental results on
real and synthetic datasets show that our method outperforms traditional techniques.

Keywords: data cleaning, deduplication, record linkage, distance metric learning, trained similarity mea-
sures, string edit distance

1 Introduction

Databases frequently contain approximately duplicate field-values and records that refer to the same entity
but are not identical. Variations in representation can arise from typographical errors, misspellings, ab-
breviations, as well as other sources. Variations are particularly pronounced in data that is automatically
extracted from unstructured or semi-structured documents or web pages [15, 8, 3]. Such variant duplicates
can have many deleterious effects, including preventing data-mining algorithms from discovering important
regularities. Such problems are typically handled during a tedious manual “data cleaning” or “de-duping”
process.

Some previous work has addressed the problem of identifying duplicate records, where it is referred to
as record linkage [17, 25], the merge/purge problem [10], duplicate detection [14], hardening soft databases
[3], and reference matching [12]. Typically, a fixed textual similarity metric such as edit distance [22] or
vector-space cosine similarity [21] is used to determine whether two values or records are alike enough to
be duplicates.

�This research was supported by the National Science Foundation under grant IIS-0117308.

1

However, the similarity of two strings can depend on the domain and field under consideration. For ex-
ample, deleting the substring “Street” may be acceptable when comparing addresses but not when comparing
names of people (e.g. “Nick Street”), web sites (e.g. “TheStreet.com”), or newspapers (e.g. “Wall Street
Journal”). Rather than hand-tuning a distance metric for each field in each domain, we present a method for
automatically learning an appropriate string-similarity metric from small corpora of hand-labeled examples.
When computing edit distance, a different cost can be assigned to each edit operation. These costs are typi-
cally set manually; however, an algorithm was recently introduced for learning appropriate costs by training
on a set of labeled examples [20]. We consider an extended model of edit distance and employ a similar
Expectation Maximization (EM) method to train metrics appropriate for each field.

Different types of textual similarity, such as “bag of words” metrics versus string-based edit distances,
have complementary strengths and weaknesses. Consequently, it is also useful to consider multiple simi-
larity metrics when evaluating potential duplicates. The utility of different metrics is task-dependent, and
therefore it is also preferable to adaptively learn an appropriate function for combining them [2]. In our
approach, Support Vector Machines (SVM’s) [23], are used to learn a function of multiple similarity metrics
that best discriminates duplicates from non-duplicates.

Our overall system, MARLIN (Multiply Adaptive Record Linkage with INduction), employs a two-level
learning approach. First, a set of similarity metrics are trained to appropriately determine the similarity
of different field values. Next, a final predicate for detecting duplicate records is learned from multiple
(trained and static) similarity metrics applied to each of the individual fields. Experimental results on real
and synthetic datasets show that MARLIN is more accurate than traditional techniques.

2 Learnable String Distance

2.1 Background

There are several well-known methods for estimating similarity between strings, which can be roughly
separated into two groups: token-based techniques and character-based techniques. Jaccard and vector-
space cosine similarity are examples of difference measures that operate on tokens, treating a string as a
“bag of words” [21]. Character-based measures, such as Levenshtein distance and its variants [9], compute
similarity between strings by estimating the minimum sequence of changes that transform one string into
another. When data is represented by relatively short strings that contain similar yet orthographically distinct
tokens, character-based measures are preferable since they can estimate the difference between the strings
with higher resolution.

Original string edit distance proposed by Levenshtein [11] is defined as the minimum number of inser-
tions, deletions or substitutions necessary to transform one string into another. Needleman and Wunsch [16]
extended the distance model to allow contiguous sequences of mismatched characters, or gaps, in the align-
ment of two strings and described a general dynamic programming method for computing edit distance.
Most commonly the gap penalty is calculated using theaffinemodel: cost(g) = s + e � l, wheres is the
cost of opening a gap,e is the cost of extending a gap, andl is the length of a gap in the alignment of two
strings, assuming that all characters have a unit cost. Usuallye is set to a value lower thans, thus decreas-
ing the penalty for contiguous mismatched substrings. Since differences between duplicate records often
arise because of abbreviations or whole-word insertions and deletions, this model produces a more sensitive
similarity estimate than Levenshtein distance.

String distance with affine gaps,S(xT ; yV), between stringsxT of lengthT andyV of lengthV , can
be computed using a dynamic programming algorithm that constructs three matrices based on the following

2

recurrences inO(TV) computational time:

Mi;j = min

8><
>:
Mi�1;j�1 + c(xi; yj)

Ii�1;j�1 + c(xi; yj)

Di�1;j�1 + c(xi; yj)

Di;j = min

(
Mi�1;j + s+ c(xi; �)

Di�1;j + e+ c(xi; �)
(1)

Ii;j = min

(
Mi;j�1 + s+ c(�; yj)

Ii;j�1 + e+ c(�; yj)

S(xT ; yV) = min(IT;V ;DT;V ;MT;V)

Each matrix elementMi;j contains the distance between substringsx0:::i andy0:::j for an alignment where
the last two characters of the substrings,xi andyj, are aligned, while matrix elementsIi;j andDi;j give
the distances between substring alignments that end in insertion and deletion gaps respectively. Cost of a
single edit operation (insertion, deletion or substitution) that aligns characterxi to characteryj is given by
c(xi; yj), where eitherxi or yj can be the null string�, corresponding to a part of a gap. The final distance
between the strings is the minimum of three alignments:MT;V , matching the last two characters of the
two strings;DT;V , matching the last character of the first string with a gap in the second string; andIT;V ,
matching the last character of the second string with a gap in the first string.

2.2 Learnable Distance Metrics

Different edit operations have varying significance in different domains. For example, inserting, deleting and
substituting symbols “-” and “/” is common and unimportant when phone numbers are being matched, while
any edit operation involving digits introduces a semantically meaningful difference. Therefore, adapting a
string similarity metric to a particular domain requires assigning different weightsc(xi; yj) to different edit
operations, a task that has traditionally been performed manually either using domain knowledge or by trial
and error.

Ristad and Yianilos [20] proposed a generative model of Levenshtein distance along with an Expectation-
Maximization algorithm that learns model parameters using a training corpus of matched strings. In their
model, a string alignment is equivalent to a sequence of character pairs generated by edit operations emitted
by a memoryless stochastic transducer. Each edit operation corresponds to the probability of producing a
substitutionp(hxi; yji), an insertionp(h�; yji), or a deletionp(hxi; �i), where probabilities of all operations
are normalized.

An analogous generative model can be constructed for string distance with affine gaps. Given an alpha-
bet of symbolsA� = A

S
f�g, the full set of edit operations isE = Es

S
Ed

S
Ei, whereEs = fha; bi j

a; b 2 Ag is the set of all substitution and matching operationsha; bi; andEi = fh�; ai j a 2 Ag and
Ed = fha; �i j a 2 Ag are sets of insertion and deletion operations respectively.

Each of the three matrices of the original affine gap model (1) corresponds to one of the states of the
generative model in Fig.1. A pair of matched strings is generated by this model as a sequence of traversals
along the edges accompanied by emissions of characters pairs, which are determined by the state that is
reached via each traversal. The production starts in stateM and terminates when special state# is reached.

3

σ

σ

µ M

D

#

I

µτ

τI

τD

D

γD

I

γI

δI

δD

Figure 1: Generative model for string distance with affine gaps

Edit operations emitted in each state correspond to aligned pairs of characters: substitutionsha; bi and
exact matchesha; ai in stateM ; deletions from the first stringha; �i in stateD; and insertions of characters
from the second string into the first stringh�; ai in stateI. Each edit operatione 2 E is assigned a probability
p(e) such that

P
e2Es

p(e) = 1,
P

e2Ed
p(e) = 1, and

P
e2Ei

p(e) = 1. Edit operations with higher
probabilities produce character pairs that are likely to be aligned in a given domain, such as substitution
(“/”, “-”) for phone numbers, or deletion (“.”,�) for addresses.

Transitions�D and�I from the matching stateM to either the deletion stateD or the insertion stateI
correspond to starting a gap in one of the strings. A gap is ended when edgesD andI are traversed back
to the matching state. Remaining in stateM by taking edge� corresponds to a sequence of substitutions
or exact matches of characters, while remaining in statesI andD is analogous to extending a gap in either
the first or the second string. Thus, gap opening and extension costss ande of the original affine model
(1) correspond to transition probabilities�D, �I , ÆD andÆI . The sum of transition probabilities must be
normalized in each state for the model to be complete:

�+ �D + �I + �� = 1

ÆD + D + �D = 1 (2)

ÆI + I + �I = 1

This generative model is similar to one given for amino-acid sequences in [6] with two differences: (1)
transition probabilities are distinct for statesD andI, and (2) every transition has a probability parameter
associated with it, instead of being expressed through other transitions outgoing from the same state.

Given two strings,xT of lengthT andyV of lengthV , we can calculate probabilities of generating the
pair of prefixes(xT1:::t; y

V
1:::v) and suffixes(xTt+1:::T ; y

V
v+1:::V) using dynamic programming in forward and

backward algorithms shown in Fig.2 and Fig.3 inO(TV) time. The total probability of generating a pair
of stringsp(xT ; yV) by taking all possible paths through the model is the same for forward and backward
algorithms.

Given a corpus ofn matched strings corresponding to pairs of duplicates,C = f(xT1 ; yV1); : : : ;
(xTn ; yVn)g, this model can be trained using the Baum-Welch algorithm, which is a variant of the Expectation-
Maximization procedure for learning parameters of generative models [19], shown in Fig.4. The training
procedure iterates between two steps, shown in Fig.5 and Fig.6. In each EXPECTATION-STEP, the expected
number of occurrences for each state transition and edit operation emission is accumulated for a given pair
of strings(xT ; yV) from the training corpus. This is achieved by accumulating the posterior probabilities
for every possible state transition and an accompanying emission in lines 7-20. In the MAXIMIZATION

procedure all model parameters are updated using the collected expectations.

4

FORWARD(xT ; yV)
1. M0;0 = 1; D0;0 = 0; I0;0 = 0
2. for i = 0 to T
3. for j = 0 to V
4. if (i > 0)
5. Di;j = p(hxi; �i)[�DMi�1;j + ÆDDi�1;j]
6. if (j > 0)
7. Ii;j = p(h�; yji)[�IMi;j�1 + ÆIIi;j�1]
8. if (i > 0 ^ j > 0)
9. Mi;j = p(hxi; yji)[�Mi�1;j�1+

+ IIi�1;j�1 + DDi�1;j�1]
10. p(xT ; yV) = ��MT;V + �DDT;V + �IIT;V
11. returnM , I, D,p(xT ; yV)

Figure 2: Forward algorithm for generative string distance with affine gaps

BACKWARD(xT ; yV)
1. MT;V = ��; DT;V = �D; IT;V = �I
2. for i = T downto0
3. for j = V downto0
4. if (i < T)
5. Di;j = p(hxi+1; �i)ÆDDi+1;j

6. Mi;j = p(hxi+1; �i)DDi+1;j

7. if (j < V)
8. Ii;j = p(h�; yj+1i)ÆIIi;j+1

9. Mi;j += p(h�; yj+1i)IIi;j+1

10. if (i < T ^ j < V)
11. Di;j += p(hxi+1; yj+1i)�DMi+1;j+1

12. Ii;j += p(hxi+1; yj+1i)�IMi+1;j+1

13. Mi;j += p(hxi+1; yj+1i)�Mi+1;j+1

14. p(xT ; yV) = M0;0

15. returnM , I, D,p(xT ; yV)

Figure 3: Backward algorithm for generative string distance with affine gaps

EXPECTATION-MAXIMIZATION (f(xT1 ; yV1); : : : ; (xTn ; yVn)g)
until convergence

for i = 0 to n

EXPECTATION-STEP((xTi ; yVi))
MAXIMIZATION ()

Figure 4: Training algorithm for generative string distance with affine gaps

5

EXPECTATION-STEP((xT ; yV))
1. (Mf , If , Df ,p(xT ; yV)) = FORWARD(xT ; yV))
2. (M b, Ib, Db,p(xT ; yV)) = BACKWARD(xT ; yV))
3. E(h�Di)+= 1; E(h�Ii)+= 1
4. E(h��i)+= 1
5. for i = 1 to T
6. for j = 1 to V

7. �� =
M

f
j�1;k�1

���p(hxi;yji)�M
b
j;k

p(xT ;yV)

8. E[�] += ��; E[hxi; yji) += ��

9. ��I =
M

f
j;k�1

��I�p(h�;yji)�I
b
j;k

p(xT ;yV)

10. E[�I] += ��I ; E[hxi; �i] += ��I

11. ��D =
M

f
j�1;k

��D�p(hxi;�i)�Db
j;k

p(xT ;yV)

12. E[�D] += ��D ; E[h�; yji] += ��D

13. �ÆI =
I
f
j;k�1

�ÆI�p(h�;yji)�I
b
j;k

p(xT ;yV)

14. E[ÆI] += �ÆI ; E[h�; yji] += �ÆI

15 �ÆD =
D
f
j�1;k

�ÆD�p(hxj ;�i)�Db
j;k

p(xT ;yV)

16. E[ÆD] += �ÆD ; E[hxi; �i] += �ÆD

17. �I =
I
f
j�1;k�1

�D�p(hxi;yji)�Mb
j;k

p(xT ;yV)

18. E[I] += �I ; E[hxi; yji] += �I

19. �D =
D
f
j�1;k�1

�D�p(hxi;yji)�Mb
j;k

p(xT ;yV)

20. E[D] += �D ; E[hxi; yji] += �D

Figure 5: Expectation step for generative string distance with affine gaps

It can be proved that this training procedure is guaranteed to converge to a local maximum of likelihood
of observing the training corpusC. The trained model can be used for estimating distance between two
strings by computing the probability of generating the aligned pair of strings summed across all possible
paths as calculated by the FORWARD and BACKWARD algorithms:d(xT ; yV) = � log p(xT ; yV). A practi-
cal problem that may arise in this computation is numerical underflow for long strings, which can be solved
by mapping all computations into logarithmic space or by periodic scaling of all values in matricesM , D
andI [20].

2.3 Adapting Learned String Distance with Affine Gaps for Duplicate Detection

Because the order of strings being aligned does not matter when similarity of database records is being
estimated, insertion and deletion operations as well as transitions for statesI andD can be represented by
a single set of parameters:p(ha; �i) = p(h�; ai) for all symbolsa 2 A; �=�I=�D; =I=D; Æ=ÆI=
ÆD;�=�I =�D. All algorithms described above then would use the unified set of parameters instead of
separate sets of values for statesI andD.

The generative model of Fig.1 suffers from two drawbacks that impede its utility for computing similar-
ity between strings in a database. One problem lies in the fact that the model assigns a probability less than

6

MAXIMIZATION ()
1. NM = E[�] +E[�I] +E[�D] +E[��]
2. � = E[�]=NM ;� = E[�]=NM ; �� = E[��]=NM

3. NI = E[ÆI] +E[I] +E[�ÆI]
4. ÆI = E[ÆI]=NI ; = E[I]=NI ; �ÆI = E[�ÆI]=NI

5. ND = E[ÆD] +E[D] +E[�ÆD]
6. ÆD = E[ÆD]=ND; = E[D]=ND; �ÆD = E[�ÆD]=ND

7. for eachha; bi
8. N 0

M += E[ha; bi]
9. for eachh�; ai
10. N 0

I += E[h�; ai]
11. for eachha; �i
12. N 0

D += E[ha; �i]
13. for eachha; bi
14. p(ha; bi) = E[ha; bi]=N 0

M

15. for eachh�; ai
16. p(h�; ai) = E[h�; ai]=N 0

I

17. for eachha; �i
18. p(ha; �i) = E[ha; �i]=N 0

D

Figure 6: Maximization step for generative string distance with affine gaps

one to strings that are exact duplicates. Because the probability of an alignment monotonically decreases
as more matching characters are appended to the strings, longer exact duplicates are penalized even more
severely than shorter exact duplicates, which is counter-intuitive and exacerbates the problem further.

The second difficulty lies in the fact that due to the large size of the edit operation set, probabilities of
individual operations are significantly smaller than transition probabilities. If only a relatively small number
of training examples is available, probabilities of some edit operations may be underestimated, and distances
assigned to strings will vary significantly with minor character variations. There are two steps that need to be
taken to address these issues. First, the probability distribution over the set of edit operations,E, is smoothed
by bounding each edit operation probability by some minimum value�. This is achieved by adding� to each
updated probability in lines 11-16 of the MAXIMIZATION procedure and subsequent normalization. Second,
learned parameters of the generative distance model are mapped to operation costs of the additive model (1)
by taking the negative logarithm of each probability. Distance can then be calculated analogously to Eq.(1)
with the addition of supplemental costsg = � log for ending a gap andm = � log� for continuing to
substitute/match characters. This is equivalent to calculating the cost of the most likely (Viterbi) alignment
of the two strings by the generative model in log-space. To solve the “non-zero exact match” problem and
decrease high variance in distances due to edit operation costsc(a; b) compared to transition costss, e, g
andm, we dynamically scale edit operation costs to values between 0 and the cost of the state transition
that precedes emitting the operation. We also scale the overall distance by the length of the larger string to
correct for the “increasing distance for longer exact duplicates” problem. Thus, the resulting metric can be
viewed as a hybrid between the generative model and the original fixed-cost model.

7

3 Record-level Similarity

3.1 Combining similarity across multiple fields

When the distance between records composed of multiple fields is being calculated, it is necessary to com-
bine similarity estimates for individual fields in a meaningful manner. Because correspondence between
overall record similarity and similarity across individual fields can vary greatly, it is necessary to weight
fields according to their contribution to the true similarity between records.

While statistical aspects of combining similarity scores for individual fields have been addressed in pre-
vious work on record linkage [25], availability of labeled duplicates allows a more direct approach that uses
a binary classifier [2]. Given a database that contains records composed ofk different fields and a setD =
fd1; : : : ; dmg of distance metrics, we can represent any pair of records by anmk-dimensional vector of “dis-
tance features”. Each component of the vector represents similarity between two fields of the records calcu-
lated using one of the distance metrics. Matched pairs of duplicate recordsR = f(r10; r11); : : : ; (rn0; rn1)g
can be used to construct a training set of such vectors by assigning them a positive class label. Pairs of
records that are not labeled as duplicates form the complementary set of negative examples.

A binary classifier can then be trained using these vectors to discriminate between pairs of records
corresponding to duplicates and non-duplicates. Such a classifier must possess several important properties:

1. Resilience to irrelevant features that correspond to those fields that do not carry discriminatory infor-
mation.

2. Ability to handle correlated features corresponding to fields that are closely related.

3. Independence from the relative sizes of the positive and negative example sets. Because it could be
easier for a human expert to identify a small subset of duplicate records, achieving equal proportions
of duplicate and non-duplicate records in the training set and the testing set could be difficult.

4. Capability to compute confidence estimates for class membership.

Support vector machines [23] satisfy all of these requirements. SVM’s perform binary classification based
on the concept of structural risk minimization by mapping data into a high-dimensional space where the
two classes are separated by a hyperplane via a kernel function. SVM’s exhibit remarkable resistance to
noise, handle correlated features well, and rely only on most informative training examples, which implies
independence from the relative sizes of the sets of positive and negative examples. Confidence estimates
of belonging to each class are naturally given by a datapoint’s distance from the hyperplane that separates
classes of duplicates and non-duplicates in high-dimensional space.

3.2 Duplicate detection algorithm

A confidence estimate of belonging to the class of duplicates for a given pair of records can be viewed as
an overall measure of similarity between the records comprising the pair. Given a large database, producing
all possible pairs of records and computing similarity between them is too expensive since it would require
n2�1
2 distance computations. The sorted neighborhood method [10] dramatically reduces the number of

potential duplicate pairs. The database is sorted using different fields as keys in several passes. After each
sorting pass, potential pairs of duplicates are generated by sliding a window of fixed size over the sorted
database and adding all pairs of records that co-occur within the window. This technique generatesO(wN)
pairs, wherew is the window size andN is the total number of records in the database.

The canopies clustering method [12] is an alternative approach to reducing the number of candidate
pairs. It utilizes some computationally inexpensive metricdc, such as Jaccard similarity based on an inverted

8

index, to separate records into overlapping clusters (“canopies”) of potential duplicates. Jaccard similarity
between two stringss1 ands2 composed of tokensfs10; : : : ; s1vg andfs20; : : : ; s2wg is given by:

J(s1; s2) =
jfs10; : : : ; s1vg

T
fs20; : : : ; s2wgj

jfs10; : : : ; s1vg
S
fs20; : : : ; s2wgj

(3)

The clustering process requires two distance thresholds:Tloose for the maximum distance between records
that are placed in the same cluster and correspond to potential duplicates, andTtight for limiting the number
of clusters by considering only records at a distance of at leastTtight from each other as possible cluster
centers, whereTloose > Ttight. Candidate pairs are then equivalent to all pairs of records that fall in each
cluster, where clusters may overlap.

Labeled
duplicate pairs

Distance

Learner
Metric

Database
records

duplicates
Potential

Distance
Learned

Metrics

Binary classifier

Identified
duplicates

Distance
Metrics

Learned
Binary classifier

Duplicate Detection:

Candidate pair extractor

non−duplicate

Duplicate and

distance features

Distance features

Learned
parametersRecord training

data extractor

Training:

Field training data extractor

Field duplicates

Record duplicates

and non−duplicates

Figure 7: MARLIN overview

An overall view of our system, MARLIN , is presented in Fig.7. The training phase consists of two steps.
First, the learnable distance metrics are trained for each record field. The training corpus of paired field-
level duplicates is obtained by taking pairs of values for each field from the set of paired duplicate records.
Because duplicate records may contain individual fields that are not equivalent, training data can be noisy.
This does not pose a serious problem for our approach, since particularly noisy fields that are unhelpful for
identifying record-level duplicates will be ignored by the binary classifier as irrelevant distance features.

After individual similarity metrics are learned, they are used to compute distances for each field of
duplicate and non-duplicate record pairs to obtain training data for the binary classifier in the form of vectors
composed of distance features. For a given training set that containsn duplicate pairs,O(n2) non-duplicate
pairs can be generated. Because we are employing a classifier that does not depend on the relative sizes of
training data for the two classes, it is sufficient to randomly addn non-duplicate record pairs to the training
set.

9

The duplicate detection phase starts with the generation of potential duplicate pairs using either the
sorted neighborhood or canopies method. This process requires selecting parameter values for either the
window sizew or for the canopy thresholdsTloose andTtight. This can be done by applying the chosen
method to the training data and selecting parameter values that result in labeling all true duplicate pairs as
candidates.

Next, learned distance metrics are used to calculate distances for each field of each pair of potential
duplicate records, thus creating distance feature vectors for the classifier. Confidence estimates for belonging
to the class of duplicates are then produced by the binary classifier for each candidate pair, and pairs are
sorted by increasing confidence.

The problem of finding a similarity threshold for separating duplicates from non-duplicates arises at this
point. A trivial solution would be to use the binary classification results to label some records as duplicates,
and others as non-duplicates. A traditional approach to this problem [25], however, requires assigning two
thresholds: one that separates pairs of records that are high-confidence duplicates, and another for possible
duplicates that should be reviewed by a human expert. Since relative costs of labeling a non-duplicate as
a duplicate (false positives) and overlooking true duplicates (false negatives) can vary from database to
database, there is no “silver bullet” solution to this problem. Availability of labeled data, however, allows
us to provide precision-recall estimates for any threshold value and thus offer a way to control the trade-off
between false and unidentified duplicates by selecting threshold values that are appropriate for a particular
database.

It is highly likely that several identified duplicate pairs will contain the same record. Since the “duplicate
of” relation is transitive, it is necessary to compute the transitive closure of equivalent pairs to complete the
identification process. Following [14], we utilize the union-find data structure to store all database records
in this step, which allows updating the transitive closure of identified duplicates incrementally in an efficient
manner.

4 Experimental Evaluation

4.1 Datasets

We have used three different datasets for our experiments. RESTAURANT is a database of 864 restau-
rant names and addresses containing 112 duplicates assembled by Sheila Tejada from Fodor’s and Zagat’s
guidebooks. The second dataset, CORA, is a collection of 1295 distinct references to 122 Computer Sci-
ence research papers from the Cora Computer Science research paper search engine1. Finally, we used the
database generator of Hern´andez and Stolfo [10] that randomly corrupts records to introduce duplicates into
a mailing list database to create the MAILING dataset of 1200 records corresponding to 400 original entries.
Tables 1–3 contain sample duplicate records from each of the databases.

4.2 Experimental Methodology

All experiments were conducted using 10-fold cross validation. To create the folds, duplicate records were
grouped together, and the resulting clusters were randomly assigned to the folds. This method was chosen
because randomly assigning records to different folds would dramatically reduce the number of duplicate
records that can be potentially identified in each fold, as well as corrupt training data since some of the
duplicate pairs would be split between the training and testing folds.

In each trial, the training phase of MARLIN was performed using nine training partitions, and then tested
on the remaining test partition. Because the sizes of our datasets allowed computing distances between all

1http://cora.whizbang.com

10

Table 1: Sample duplicate records from the CORA database
authors title venue address year pages

Yoav Freund, H.
Sebastian Seung, Eli
Shamir, and Naftali
Tishby

Information, pre-
diction, and query
by committee

Advances in Neu-
ral Information
Processing System

San Mateo, CA 1993 pages 483-490

Freund, Y., Seung, H.
S., Shamir, E., &
Tishby, N.

Information, pre-
diction, and query
by committee

Advances in
Neural Informa-
tion Processing
Systems

San Mateo, CA. – (pp. 483-490).

Table 2: Sample duplicate records from the RESTAURANT database
name address city phone cuisine

Second Avenue Deli 156 2nd Ave. at 10th St. New York 212/677-0606 Delicatessen
Second Avenue Deli 156 Second Ave. New York City 212-677-0606 Delis

Table 3: Sample duplicate records from the MAILING database
first last street address city

Tsy C Dodgson 18 Lilammal Ave 3k1 Christina MT 59423
Tessy Dodgeson PO Box 3879 Christina MT 59428

pairs of records, we did not employ the sorted neighborhood or canopies approaches to limit the number of
potential duplicates. Either of the approaches, however, could be used for evaluating accuracy of duplicate
detection on larger datasets.

After computing distances between all pairs of potential duplicates, the pair of records with the high-
est similarity was labeled as a duplicate, and the transitive closure of groups of duplicates was updated.
Precision, recall and F-measure defined over pairs of duplicates were computed after each iteration:

Precision =
#ofCorrectlyIdentifiedDuplicatePairs

#ofIdentifiedDuplicatePairs

Recall =
#ofCorrectlyIdentifiedDuplicatePairs

#ofTrueDuplicatePairs

F�measure =
2� Precision�Recall

P recision+Recall

As more pairs with lower similarity are labeled as duplicates, recall increases, while precision begins to
decrease because the number of non-duplicate pairs erroneously labeled as duplicates increases. Precision
was interpolated at 20 standard recall levels following the traditional procedure in information retrieval [1]
(Fig.11 shows results for two additional recall levels of 0.925 and 0.975). Some of the graphs show only
those portions of the curves that exhibit differences between approaches; precision results for recall values
that are not shown on the graphs were identical for all curves.

11

Table 4: Maximum F-measure for detecting duplicate field values
Distance metric CORA title RESTAURANT name RESTAURANT address MAILING name MAILING address

Levenshtein 0.870 0.843 0.950 0.867 0.878
Learned Levenshtein 0.902 0.886 0.975 0.899 0.897
Affine 0.917 0.883 0.870 0.923 0.886
Learned Affine 0.971 0.967 0.929 0.959 0.892

4.3 Results

4.3.1 Detecting duplicate field values

To evaluate the usefulness of adapting character-based distance metrics to a specific domain, we compared
learned similarity metrics with their fixed-cost equivalents for the task of identifying equivalent field values.
Because duplicate records may contain field values that are not equivalent, while non-duplicate records may
contain equivalent entries in some of the fields, it would be erroneous to label all fields from equivalent
records as duplicates. For example, if two different restaurant records appear in a database, one containing
“New York City” in thecity field, and another containing“New York”, it would be erroneous to consider
the pair(“New York City”, “New York”) a non-duplicate. To avoid this problem, we have manually relabeled
the duplicates for some of the fields to evaluate the utility of different metrics in detecting duplicates for
individual fields. We chose the most meaningful fields from the three datasets for these experiments: CORA

paper title field, RESTAURANT name andaddress fields, and MAILING street address and
namefields (the latter is a concatenation offirst name andlast name fields).

We have compared four distance metrics:

� Levenshtein edit distance [22], calculated as the minimum number of character deletions, insertions
and substitutions of unit cost;

� Learned Levenshtein edit distance based on a generative model and trained using the Expectation-
Maximi-zation procedure described in [20];

� String distance with affine gaps [9] using a substitution cost of 3, gap opening cost of 3, and gap
extension cost of 1, which are commonly used parameters;

� Learned string distance with affine gaps described in Section 2.2, trained using Expectation-Maximization
procedure in Fig.4 with edit operation probabilities smoothed at� = 10�12 and converted to the ad-
ditive cost model as described in Section 2.3.

Results for field-level duplicate detection experiments are summarized in Table 4. Each entry in table con-
tains the average of maximum F-measure values over 10 folds. Results for experiments where the difference
between the learned and corresponding unlearned metric is significant at the 0.05 level using a 1-tailed t-test
are presented in bold font. Figures 8-10 contain recall-precision curves for the performance of MARLIN on
the CORA paper title field, the RESTAURANT address field, and the MAILING name field (which
is a concatenation offirst name andlast name fields).

Performance improvements achieved when learned distance metrics were used instead of fixed-cost
distance metrics for detecting field duplicates demonstrate that learnable distance metrics are able to ap-
proximate the relative importance of differences between strings for a specific field. This can be seen from
the fact that precision-recall curves for learned distance metrics are above those for corresponding fixed-
cost metrics on Figures 8-10, as well as from higher maximum F-measure values in Table 4. Results of
all experiments except for theaddress field of the MAILING database demonstrate that taking gaps into
account when constructing string alignments results in better estimates of string similarity for the task of

12

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Levenshtein
Affine

Learned Levenshtein
Learned Affine

Figure 8:Title duplicate field-value detection results for the CORA dataset

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Levenshtein
Affine

Learned Levenshtein
Learned Affine

Figure 9:Address duplicate field-value detection results for the RESTAURANT dataset

0

0.2

0.4

0.6

0.8

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
re

ci
si

on

Recall

Levenshtein
Affine

Learned Levenshtein
Learned Affine

Figure 10:Nameduplicate field-value detection results for the MAILING dataset

13

Table 5: Maximum F-measure for duplicate detection based on multiple fields
Classifier Distance metric CORA RESTAURANT MAILING

None (sum) Affine 0.561 0.847 0.9431
None (sum) Learned Affine 0.564 0.832 0.991
SVM Affine 0.959 0.861 0.992
SVM Learned Affine 0.958 0.971 0.996
SVM Jaccard 0.983 0.971 0.961

detecting approximate duplicate field values. The fact that the results of all metrics were not significantly
different on that field can be explained by the fact that a certain fraction of entries was heavily corrupted by
substituting PO Box addresses, which are effectively impossible to match against the corresponding street
address without using other fields such asnameandcity .

4.3.2 Record-level duplicate detection

Next, we evaluated the performance of MARLIN for multi-field (record-level) duplicate detection. The
SVM implementation from the WEKA toolkit [26] that utilizes the sequential minimal optimization (SMO)
algorithm [18] was used as the binary classifier. We have compared classifier-based similarity estimation to
using the sum of distances from different fields as a non-trained record-level similarity measure. In these
trials, distance values for individual fields were scaled by the largest string length that occurs in each field
to correct for variation in field sizes. Either simple affine gap distance or learned string distance with affine
gaps described above were used for computing similarity between values of each record field, corresponding
to results on Figures 11-13 labeled as “Static” and “Adaptive”. Classifier-based experiments are marked as
“SVM”, while experiments that used a sum of distances across fields are labeled as “Sum” on the figures.
We also conducted additional experiments using the SVM for record-level classification based on Jaccard
similarity as the distance metric for individual fields. Jaccard similarity was computed as shown in Eq.(3),
where strings were split into tokens of alphanumeric characters.

Certain fields were not used in these experiments because they either provided too much information
and resulted in near-100% precision and recall for all methods, e.g.phone in the RESTAURANT database,
or they mostly contained missing field values, e.g.editor in CORA. Results for all experiments are
summarized in Table 5. Again, results in bold font correspond to those experiments in which differences
between using the learned and unlearned string metrics are significant at the 0.05 level using a 1-tailed t-test.
All differences between the SVM and Sum approaches are significant at the 0.05 level using a 1-tailed t-test,
except for the experiments that use unlearned string distance with affine gaps for the RESTAURANT dataset,
and those that use learned string distance with affine gaps for the MAILING dataset.

From the results on the RESTAURANT and MAILING datasets we can conclude that using adaptive string
distance metrics to compute similarity between field values makes a positive contribution when similarities
from multiple fields are combined either in a simplistic manner by adding them, or by using them as record-
pair attributes for classification. This means that better estimates of individual field similarities result in a
more accurate calculation of the overall record similarity.

The fact that using learned distance metrics for estimating similarity between the fields did not aid the
record-level matching process for the CORA dataset can be explained by the fact that most duplicates in this
dataset have either very minor differences (such as abbreviations of authors’ names), or drastic differences
such as misplaced slots (e.g. authors’ name in thetitle field), or missing features, such asyear or
pages . The sporadic and highly varying nature of these differences prevented trained string distance from
capturing them. These domain peculiarities also explain the good performance of duplicate detection using

14

0

0.2

0.4

0.6

0.8

1

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

P
re

ci
si

on

Recall

SVM Adaptive
SVM Static

Sum Adaptive
Sum Static

SVM Jaccard

Figure 11: Duplicate detection results for MAILING dataset based onfirst name, last name,
street address andcity fields

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

SVM Adaptive
SVM Static

Sum Adaptive
Sum Static

SVM Jaccard

Figure 12: Duplicate detection results for RESTAURANT dataset based onname, address, city and
cuisine fields

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

SVM Adaptive
SVM Static

Sum Adaptive
Sum Static

SVM Jaccard

Figure 13: Duplicate detection results for CORA dataset based onauthor, title, venue, year
andpages fields

15

Jaccard similarity to compare field values.
Limitations of using Jaccard similarity are highlighted by the results on the MAILING dataset. Because

many duplicates are corrupted by typos, token-based distance metrics are not able to capture the degree
of similarity between strings with minor variations in several characters. This result demonstrates that
character-based metrics are particularly useful for detecting duplicates among shorter strings with minor
variations, such as those resulting from OCR errors for scanned data or from typographic errors.

We also ran trials which combined character-based metrics (static and adaptive string distance with affine
gaps) and token-based metrics (Jaccard similarity). These experiments resulted in near-100% precision
and recall, without significant differences between static and adaptive field-level metrics. Similar results
were obtained when common prefix and common suffix lengths were used as field-level distance metrics
along with the character-based metrics used above. This demonstrates that combining character- and token-
based distance metrics, such as learned string distance with affine gaps and Jaccard similarity, is clearly an
advantage of the two-level approach implemented in MARLIN . Current datasets did not allow us to show
the benefits of adaptive metrics over their static prototypes in this scenario, but our initial results suggest
that this can be demonstrated on more challenging datasets.

5 Related Work

The problem of identifying duplicate records in databases was originally described by Newcombe [17]
as record linkage in the context of identifying medical records of the same individual from different time
periods. Fellegi and Sunter [7] developed a formal mathematical problem description for record linkage
and offered statistical methods for estimating matching parameters and error rates. In more recent work
in statistics, Winkler proposed using EM-based methods for estimating error rates and optimal matching
rules [24]. This work studied the duplicate detection problem for the specialized domain of census records,
therefore all similarity metrics were hand-tuned for optimal performance in this domain.

Hernández and Stolfo [10] developed the sorted neighborhood method for limiting the number of po-
tential duplicate pairs that require distance computation, while McCallum et. al. proposed the canopies
clustering algorithm [12] for the task of matching scientific citations. Monge and Elkan developed the iter-
ative merging algorithm based on the union-find data structure [14] and showed the advantages of using a
string distance metric that allows gaps [13]. Cohen et. al. described the problem of duplicate detection as
database hardening: inferring the most likely underlying databases without duplicates (a “hard” database)
given a database containing duplicates (a “soft” database) [3]. They proved NP-hardness of solving the prob-
lem optimally and proposed a nearly linear time algorithm for finding a local optimum using the union-find
data structure.

In all of these approaches fixed-cost similarity metrics were used to compare database records. The only
previous work on adaptive duplicate detection that we know of is the approach described by Cohen in [2],
which learns how to combine multiple similarity metrics to identify duplicates, but does not adaptively tune
the underlying field-similarity metrics themselves.

6 Future Work

Extending the metric learning approach to token-based distance metrics is a promising avenue for research.
Because in some databases differences between duplicate records may take the form of commonly added and
deleted tokens, it would be desirable to develop learning methods for token-based metrics, such as Jaccard
similarity or vector-space cosine distance. Previous work on semi-supervised clustering [4] has shown the

16

usefulness of a similar approach: learning weights of individual words when calculating distance between
documents using Kullback-Leibler divergence.

Another area for future work lies in generalizing edit distance to include macro-operators for inserting
and deleting common substrings, e.g. deleting “Street” in address fields. Certain common abbreviations and
unimportant substrings account for many differences between records, and detecting these should improve
our results. The string distance model with gaps would be particularly useful for this task, since it would
allow discovering useful deletion sequences by counting the frequencies of common gaps. Substructure
discovery methods [5] could also be used to identify useful edit operation sequences that include different
edit operations.

7 Conclusions

Duplicate detection is an important problem in “data cleaning,” and an adaptive approach that learns to iden-
tify duplicate records for a specific domain has clear advantages over a static, domain-independent method.
Our approach uses learning at two levels. First, similarity metrics are trained to identify duplicate values
for each field. Second, multiple similarity metrics for each field are combined to learn a final function for
identifying duplicate records. Experimental results demonstrate that this approach detects duplicates more
accurately than competing static approaches. In addition, results demonstrate that both levels of adaptation
independently contribute to improving the overall accuracy of the system.

8 Acknowledgments

We would like to thank William Cohen for providing us the CORA dataset, Nick Kushmerick for useful
discussion and Sheila Tejada’s RESTAURANT dataset, and Mauricio Hern´andez for providing us the mailing
address database generator used to create the MAILING dataset.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. ACM Press, New York, 1999.

[2] W. Cohen and J. Richman. Learning to match and cluster entity names. InACM SIGIR-2001 Workshop
on Mathematical/Formal Methods in Information Retrieval, New Orleans, LA, Sept. 2001.

[3] W. W. Cohen, H. Kautz, and D. McAllester. Hardening soft information sources. InProceedings
of the Sixth International Conference on Knowledge Discovery and Data Mining (KDD-2000), pages
255–259, Boston, MA, Aug. 2000.

[4] D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering with user feedback. Unpublished
manuscript. Available athttp://www-2.cs.cmu.edu/˜mccallum/ .

[5] D. J. Cook and L. B. Holder. Substructure discovery using minimum description length and back-
ground knowledge.Journal of Artificial Intelligence Research, 1:231–255, 1994.

[6] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids. Cambridge University Press, 1998.

[7] I. P. Fellegi and A. B. Sunter. A theory for record linkage.Journal of the American Statistical Associ-
ation, 64:1183–1210, 1969.

17

[8] R. Ghani, R. Jones, D. Mladeni´c, K. Nigam, and S. Slattery. Data mining on symbolic knowledge
extracted from the web. In D. Mladeni´c, editor,Proceedings of the Sixth International Conference on
Knowledge Discovery and Data Mining (KDD-2000) Workshop on Text Mining, pages 29–36, Boston,
MA, Aug. 2000.

[9] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press, New York,
1997.

[10] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. InProceedings
of the 1995 ACM SIGMOD International Conference on Management of Data (SIGMOD-95), pages
127–138, San Jose, CA, May 1995.

[11] V. I. Levenshtein. Binary codes capable of correcting insertions and reversals.Soviet Physics Doklady,
10(8):707–710, Feb. 1966.

[12] A. K. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets with
application to reference matching. InProceedings of the Sixth International Conference on Knowledge
Discovery and Data Mining (KDD-2000), pages 169–178, Boston, MA, Aug. 2000.

[13] A. E. Monge and C. Elkan. The field matching problem: Algorithms and applications. InProceedings
of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), pages
267–270, Portland, OR, Aug. 1996.

[14] A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting approximately
duplicate database records. InProceedings of the SIGMOD 1997 Workshop on Research Issues on
Data Mining and Knowledge Discovery, pages 23–29, Tuscon, AZ, May 1997.

[15] U. Y. Nahm and R. J. Mooney. Using information extraction to aid the discovery of prediction rules
from texts. InProceedings of the Sixth International Conference on Knowledge Discovery and Data
Mining (KDD-2000) Workshop on Text Mining, pages 51–58, Boston, MA, Aug. 2000.

[16] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the
amino acid sequences of two proteins.Journal of Molecular Biology, 48:443–453, 1970.

[17] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic linkage of vital records.
Science, 130:954–959, 1959.

[18] J. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors,Advances in Kernel Methods - Support Vector
Learning, pages 185–208. MIT Press, Cambridge, MA, 1999.

[19] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

[20] E. S. Ristad and P. N. Yianilos. Learning string edit distance.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(5), 1998.

[21] G. Salton.Automatic Text Processing: The Transformation, Analysis and Retrieval of Information by
Computer. Addison-Wesley, 1989.

[22] D. Sankoff and J. B. Kruskal, editors.Time Warps, String Edits and Macromolecules: the Theory and
Practice of Sequence Comparison. Addison-Wesley, Reading, MA, 1983.

18

[23] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin, 1995.

[24] W. E. Winkler. Advanced methods for record linkage. Technical report, Statistical Research Division,
U.S. Bureau of the Census, Wachington, DC, 1994.

[25] W. E. Winkler. The state of record linkage and current research problems. Technical report, Statistical
Research Division, U.S. Bureau of the Census, Wachington, DC, 1999.

[26] I. H. Witten and E. Frank.Data Mining: Practical Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, San Francisco, 1999.

19

